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(Received 16 July 2013; published 15 October 2013)

We comparatively analyze the flavor-changing neutral current process of �b ! �‘þ‘� in the standard

model as well as the topcolor-assisted technicolor model using the form factors calculated via light cone

QCD sum rules in full theory. In particular, we calculate the decay width, branching ratio and lepton

forward-backward asymmetry related to this decay channel. We compare the results of the topcolor-

assisted technicolor model with those of the standard model and debate how the results of the topcolor-

assisted technicolor model depart from the standard model predictions. We also compare our results on the

branching ratio and differential branching ratio with recent experimental data provided by CDF and LHCb

Collaborations.
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I. INTRODUCTION

The flavor-changing neutral current (FCNC) processes in
the baryonic sector are promising tools in the indirect search
for new physics (NP) effects, in addition to the direct
searches at large hadron colliders. Hence, both experimental
and phenomenological works devoted to the analysis of
these channels receive special attention nowadays. The
semileptonic FCNC decay of �b ! �‘þ‘� (‘ ¼ e, �, �)
is one of the most important transitions in this respect since a
heavy quark with a light diquark combination of the �b

baryon makes this process significantly different than the
B-meson decays. Experimentally, the CDF Collaboration at
Fermilab first reported their observation of the semileptonic
�0

b ! ��þ�� decay, with a statistical significance of

5:8� and 24 signal events at
ffiffiffi
s

p ¼ 1:96 TeV, collected by
the CDF II detector in 2011 [1]. They measured a branching
ratio of ½1:73� 0:42ðstatÞ � 0:55ðsystÞ� � 10�6 [1] in the
muon channel. Recently, the LHCb Collaboration at CERN
also reported their observation of �0

b ! ��þ�� with a

signal yield of 78� 12, collected by the LHCb detector,
corresponding to an integrated luminosity of 1:0 fb�1 atffiffiffi
s

p ¼ 7 TeV [2]. They measured a branching ratio of
½0:96� 0:16ðstatÞ � 0:13ðsystÞ � 0:21ðnormÞ� � 10�6 in
the muon channel. So far, there has been no direct evidence
for the NP effects beyond the standard model (SM) at
present particle physics experiments. However, the
ATLAS and CMS Collaborations at CERN reported their
observations of a new particle like the SMHiggs boson with
a mass of �125 GeV at a statistical significance of 5� in
2012 [3,4]. Taking into consideration the above experimen-
tal progress and recent developments at the LHC, by in-
creasing the center-of-mass energy, we hope we will be able
to search for more FCNC decay processes as well as NP

effects in the near future. Therefore, theoretical calculations
for NP effects on the FCNC processes using different sce-
narios will be required for analysis of the experimental
results.
In the present work, we analyze the semileptonic FCNC

channel of �b ! �‘þ‘� in the topcolor-assisted techni-
color (TC2) model. We calculate many parameters such as
decay width, branching ratio and forward-backward asym-
metry (FBA) and look for the difference between the
results from those of the SM predictions. We also compare
our results with the above-mentioned experimental data.
The technicolor (TC) mechanism provides us with an

alternative explanation for the origin of masses of the
electroweak gauge bosons W� and Z0 [5]. Although the
TC and extended TC models explain the flavor symmetry
and electroweak symmetry breakings (EWSB), these mod-
els are unable to explain why the mass of the top quark is
too large [6,7]. In topcolor models, however, the top quark
involves a new strong interaction, spontaneously broken at
some high energy scales but not confining. According to
these models, the strong dynamics provides the formation
of the top quark condensate �tt which leads to a large
dynamical mass for this quark, but with unnatural fine
tuning [7,8]. Hence, a TC model containing a topcolor
scenario (TC2 model) has been developed [6]. This model
explains the electroweak and flavor symmetry breakings as
well as the large mass of the top quark without unnatural
fine tuning. This model also predicts the existence of top

pions (�0;�
t ), the top Higgs (h0t ) and the nonuniversal gauge

boson (Z0); we are going to discuss the dependencies of the
physical quantities defining the �b ! �‘þ‘� transition
on the masses of these objects in this article. For more
details of the TC2 model and some of its applications, see
for instance [9–12] and references therein.
The outline of the article is as follows. In the next

section, after briefly introducing the TC2 scenario we
present the effective Hamiltonian of the transition under
consideration, including Wilson coefficients as well as the
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transition amplitude and matrix elements in terms of form
factors. In Sec. III, we calculate the differential decay
width in the TC2 model and numerically analyze the
differential branching ratio, the branching ratio and the
lepton forward-backward asymmetry and compare the ob-
tained results with those of the SM as well as existing
experimental data.

II. SEMILEPTONIC �b ! �‘þ‘� TRANSITION
IN THE SM AND TOPCOLOR-ASSISTED

TECHNICOLOR MODEL

In this section, first we give a brief overview of the TC2
model. Then we present the effective Hamiltonian in both
the SM and TC2 model and show how the Wilson coef-
ficients that enter the low energy effective Hamiltonian are
changed in the TC2 model compared to the SM. We also
present the transition matrix elements in terms of form
factors in full QCD and calculate the transition amplitude
of �b ! �‘þ‘� in both models.

A. The TC2 model

As we previously mentioned, the TC2 model creates an
attractive scheme because it combines the TC interaction,
which is responsible for the dynamical EWSB mechanism
as an alternative to the Higgs scenario, and the topcolor
interaction for the third generation at a scale�1 TeV. This
model provides an explanation of the electroweak and
flavor symmetry breakings and also the large mass of the
top quark. This model predicts a triplet of strongly coupled
pseudo-Nambu-Goldstone bosons, neutral-charged top

pions (�0;�
t ) near the top mass scale, one isospin-singlet

boson, the neutral top Higgs (h0t ) and the nonuniversal
gauge boson (Z0). Exchange of these new particles gener-
ates flavor-changing (FC) effects which lead to changes in
the Wilson coefficients compared to the SM [6].

The flavor-diagonal (FD) couplings of top pions to the
fermions are defined as [6,7,13–15]
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wherem�
t ¼ mtð1� "Þ andm�

b ¼ mb � 0:1"mt denote the

masses of the top and bottom quarks generated by topcolor
interactions, respectively. Here, F� is the physical top-pion
decay constant which is estimated from the Pagels-Stokar

formula, �w ¼ �=
ffiffiffi
2

p ¼ 174 GeV, wherein the � is defined
as the vacuum expectation of the Higgs field and the factorffiffiffiffiffiffiffiffiffiffiffiffi

�2
w�F2

�

p
�w

represents the mixing effect between the Goldstone

bosons (techni-pions) and top pions.

The FC couplings of top pions to the quarks can be
written as [16–18]

m�
tffiffiffi

2
p

F�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
w � F2

�

p
�w

½iKtc
URK

tt�
UL

�tLcR�
0
t

þ ffiffiffi
2

p
Ktc�

URK
bb
DL �cRbL�

þ
t þ ffiffiffi

2
p

Ktc
URK

bb�
DL

�bLcR�
�
t

þ ffiffiffi
2

p
Ktc�

URK
ss
DL

�tRsL�
þ
t þ ffiffiffi

2
p

Ktc
URK

ss�
DL �sLtR�

�
t �; (2.2)

where KULðRÞ and KDLðRÞ are rotation matrices that diago-

nalize the up-quark and down-quark mass matricesMU and
MD for the down-type left- and right-hand quarks, respec-
tively. The values of the coupling parameters are given as

Ktt
UL � Kbb

DL � Kss
DL � 1; Ktc

UR �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2"� "2

p
: (2.3)

The FD couplings of the new gauge boson Z0 to the
fermions are also given by [6,7,13–16]
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where K1 is the coupling constant taken in the region
(0.3–1), �0 is the mixing angle and tan�0 ¼ g1ffiffiffiffiffiffiffiffiffi

4�K1

p , with

g1 being the ordinary hypercharge gauge coupling
constant.
The FC couplings of the nonuniversal Z0 gauge boson to

the fermions can be written as [19]

LFC
Z0 ¼ �g1

2
cot�0Z0�

�
1

3
Dbb

L Dbs�
L �sL��bL

� 2

3
Dbb

R Dbs�
R �sR��bR þ H:c:

�
; (2.5)

where DL and DR are matrices rotating the weak eigenba-
sis to the mass ones for down-type left- and right-hand
quarks, respectively.

B. The effective Hamiltonian and Wilson coefficients

The�b ! �‘þ‘� decay is governed by the b ! s‘þ‘�
transition at quark level in the SM, whose effective
Hamiltonian is given by [20–23]

H eff
SM ¼ GF�emVtbV

�
ts

2
ffiffiffi
2

p
�

½Ceff
9 �s��ð1� �5Þb �‘��‘

þ C10 �s��ð1� �5Þb �‘���5‘

� 2mbC
eff
7

1

q2
�si���q

�ð1þ �5Þb �‘��‘�; (2.6)
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where GF is the Fermi coupling constant, �em is the fine
structure constant, Vtb and V

�
ts are elements of the Cabibbo-

Kobayashi-Maskawa matrix, q2 is the transferred momen-
tum squared, and Ceff

7 , Ceff
9 , C10 are the Wilson coefficients.

Ourmain task in the following is to present the expressions of
the Wilson coefficients. The Wilson coefficient Ceff

7 in the
leading log approximation in the SM is given by [24–27]

Ceff
7 ð�bÞ ¼ 	

16
23C7ð�WÞ þ 8

3
ð	14

23 � 	
16
23ÞC8ð�WÞ

þ C2ð�WÞ
X8
i¼1

hi	
ai ; (2.7)

where

	 ¼ �sð�WÞ
�sð�bÞ (2.8)

and

�sðxÞ ¼ �sðmZÞ
1� 
0

�sðmZÞ
2� ln ðmZ

x Þ
; (2.9)

with �sðmZÞ ¼ 0:118 and 
0 ¼ 23
3 . The remaining func-

tions in Eq. (2.7) are written as

C7ð�WÞ ¼ � 1

2
D0

0
SMðxtÞ;

C8ð�WÞ ¼ � 1

2
E0
0
SMðxtÞ;

C2ð�WÞ ¼ 1;

(2.10)

where the functions D0
0
SMðxtÞ and E0

0
SMðxtÞ with xt ¼ m2

t

m2
W

are given by

D0
0
SMðxtÞ ¼ � ð8x3t þ 5x2t � 7xtÞ

12ð1� xtÞ3
þ x2t ð2� 3xtÞ

2ð1� xtÞ4
ln xt
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and

E0
0
SMðxtÞ ¼ � xtðx2t � 5xt � 2Þ

4ð1� xtÞ3
þ 3x2t

2ð1� xtÞ4
ln xt:

(2.12)

The coefficients hi and ai in Eq. (2.7), with i running from
1 to 8, are also given by [25,26]

hi ¼ 2:2996; �1:0880; � 3
7 ; � 1

14 ; �0:6494; �0:0380; �0:0186; �0:0057
� �

(2.13)

and

ai ¼ 14
23 ;

16
23 ;

6
23 ; � 12

23 ; 0:4086; �0:4230; �0:8994; 0:1456
� �

: (2.14)

The Wilson coefficient Ceff
9 in the SM is expressed as

[25,26]
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(2.15)

where ŝ0 ¼ q2

m2
b

with q2 in the interval 4m2
l �q2�

ðm�b
�m�Þ2. The CNDR

9 in the naive dimensional
regularization (NDR) scheme is given as

CNDR
9 ¼ PNDR

0 þ YSM

sin 2�W
� 4ZSM þ PEE

SM; (2.16)

where PNDR
0 ¼ 2:60� 0:25, sin 2�W ¼ 0:23, YSM ¼ 0:98

and ZSM ¼ 0:679 [25–27]. The last term in Eq. (2.16) is
ignored due to the smallness of the value of PE. The 	ðŝ0Þ
in Eq. (2.15) is also defined as

	ðŝ0Þ ¼ 1þ �sð�bÞ
�

!ðŝ0Þ; (2.17)

with
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9
�2 � 4

3
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The function hðy; ŝ0Þ is given as

hðy; ŝ0Þ ¼ � 8

9
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�b

� 8

9
ln yþ 8

27
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p for x	 4z2

ŝ0 >1;

(2.20)

where y ¼ 1 or y ¼ z ¼ mc

mb
and
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hð0; ŝ0Þ ¼ 8

27
� 8

9
ln
mb

�b

� 4

9
ln ŝ0 þ 4

9
i�: (2.21)

At the �b ¼ 5 GeV scale, the coefficients Cj (j ¼
1; . . . ; 6) are given by [27]

Cj ¼
X8
i¼1

kji	
ai ðj ¼ 1; . . . ; 6Þ; (2.22)

where the constants kji are given as

k1i¼ 0; 0; 1
2; �1

2; 0; 0; 0; 0;
� �

;

k2i¼ 0; 0; 1
2;

1
2; 0; 0; 0; 0;

� �
;

k3i¼ 0; 0; � 1
14;

1
6; 0:0510; �0:1403; �0:0113; 0:0054

� �
;

k4i¼ 0; 0; � 1
14; �1

6; 0:0984; 0:1214; 0:0156; 0:0026
� �

;

k5i¼ 0; 0; 0; 0; �0:0397; 0:0117; �0:0025; 0:0304
� �

;

k6i¼ 0; 0; 0; 0; 0:0335; 0:0239; �0:0462; �0:0112
� �

:

(2.23)

The Wilson coefficient C10 in the SM is scale independent
and has the following explicit expression:

C10 ¼ � YSM

sin 2�W
: (2.24)

The effective Hamiltonian for the b ! s‘þ‘� transition
in the TC2 model is given by [12]

H eff
TC2 ¼

GF�emVtbV
�
ts

2
ffiffiffi
2

p
�

½ ~Ceff
9 �s��ð1� �5Þb �‘��‘
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where ~Ceff
7 , ~Ceff

9 , ~C10, CQ1
and CQ2

are new Wilson coef-

ficients. ~Ceff
7 , ~Ceff

9 and ~C10 contain contributions from both
the SM and TC2 model. The charged top pions ��

t only

give contributions to the Wilson coefficient ~Ceff
7 , while the

nonuniversal gauge boson Z0 contributes to the Wilson

coefficients ~Ceff
9 and ~C10. In the following, we present the

explicit expressions of the Wilson coefficients C7ð�WÞ and
C8ð�WÞ that enter Eq. (2.7) in the TC2 model. The new
photonic- and gluonic-penguin diagrams in the TC2 model
can be obtained by replacing the internal W� lines in SM
penguin diagrams with unit-charged scalar (��

1 , �
�
8 and

��
t ) lines (for more information, see Ref. [9]). As a result,

the Wilson coefficients ~C7ð�WÞ and ~C8ð�WÞ in TC2 take
the following forms [12,28]:
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with zt ¼ m�2
t =m2

��
t
.

There are new contributions coming from the nonuni-
versal gauge boson Z0 in the TC2 model to the YSM and

ZSM that enter the CNDR
9 in Eq. (2.15) [12]. The ~CNDR

9 in the

TC2 model is given by

~CNDR
9 ¼ PNDR

0 þ YTC2totðytÞ
sin 2�W

� 4ZTC2totðytÞ; (2.29)

where

YTC2totðytÞ ¼ YSM þ YTC2ðytÞ;
ZTC2totðytÞ ¼ ZSM þ ZTC2ðytÞ:

(2.30)

The functions YTC2ðytÞ and ZTC2ðytÞ are given by the
following expressions in the case of e or � in the final
state [11,12]:

YTC2ðytÞ ¼ ZTC2ðytÞ

¼ �tan 2�0M2
Z

M2
Z0

½KabðytÞ þ KcðytÞ þ KdðytÞ�;

(2.31)

with yt ¼ m�2
t =m2

W . In the case of � as a final leptonic state,
the factor �tan 2�0 in the above equation is replaced by 1.
The functions in Eq. (2.31) are also defined as [29]

KabðytÞ ¼ 8

3
ðtan 2�0 � 1Þ F1ðytÞ

ðvd þ adÞ ;

KcðytÞ ¼ 16F2ðytÞ
3ðvu � auÞ �

8F3ðytÞ
3ðvu þ auÞ ;

KdðytÞ ¼ 16F4ðytÞ
3ðvu � auÞ þ

8F5ðytÞ
3ðvu þ auÞ ;

(2.32)
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where

F1ðytÞ ¼ �½0:5ðQ� 1Þsin 2�W þ 0:25�fy2t ln ðytÞ=ðyt � 1Þ2 � yt=ðyt � 1Þ � yt½0:5ð�0:5772þ ln ð4�Þ � ln ðM2
WÞÞ

þ 0:75� 0:5ðx2 ln ðytÞ=ðyt � 1Þ2 � 1=ðyt � 1ÞÞ�g½ð1þ ytÞ=ðyt � 2Þ�;
F2ðytÞ ¼ ð0:5Qsin 2�W � 0:25Þ½y2t ln ðytÞ=ðyt � 1Þ2 � 2yt ln ðytÞ=ðyt � 1Þ2 þ yt=ðyt � 1Þ�;
F3ðytÞ ¼ �Qsin 2�W½yt=ðyt � 1Þ � yt ln ðytÞ=ðyt � 1Þ2�;
F4ðytÞ ¼ 0:25ð4sin 2�W=3� 1Þ½y2t ln ðytÞ=ðyt � 1Þ2 � yt � yt=ðyt � 1Þ�;
F5ðytÞ ¼ �0:25Qsin 2�Wyt½�0:5772þ ln ð4�Þ � ln ðM2

WÞ þ 1� ytlnðytÞ=ðyt � 1Þ�
� sin 2�W=6½y2t ln ðytÞ=ðyt � 1Þ2 � yt � yt=ðyt � 1Þ�; (2.33)

and au;d ¼ I3, vu;d ¼ I3 � 2Qu;dsin
2�W , with u

and d representing the up- and down-type quarks,
respectively.

The Wilson coefficients CQ1
and CQ2

that appear in the

effective Hamiltonian in the TC2 model belong to the
neutral top pion �0

t and top Higgs h0t contributing to
the rare decays. The coefficient CQ1

in the TC2 model is

given by [11]
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where the Inami-Lim function C0ðxtÞ is defined by [27]

C0ðxtÞ ¼ xt
8

�
xt � 6

xt � 1
þ 3xt þ 2

ðxt � 1Þ2 ln xt

�
: (2.35)

The CðxsÞ function in Eq. (2.34) is also given as [12]

CðxsÞ ¼ F6ðxÞ
�½0:5ðQ� 1Þsin 2�W þ 0:25� ; (2.36)

with

F6ðxsÞ ¼ �½0:5ðQ� 1Þsin 2�W þ 0:25�fx2s ln ðxsÞ=ðxs � 1Þ2
� xs=ðxs � 1Þ � xs½0:5ð�0:5772þ ln ð4�Þ
� ln ðM2

WÞÞþ 0:75� 0:5ðx2 ln ðxsÞ=ðxs � 1Þ2
� 1=ðxs � 1ÞÞ�g; (2.37)

where xs ¼ m�2
t =m2

�0
t
and g2 is the SUð2Þ coupling con-

stant. Since, the neutral top-Higgs coupling with fermions
differs from that of the neutral top pion by a factor of �5,

the form of CQ2
is the same as CQ1

except for the masses of

the scalar particles [11].

C. Transition amplitude and matrix elements

The transition amplitude for the �b ! �‘þ‘� decay is
obtained by sandwiching the effective Hamiltonian
between the initial and final baryonic states,

M�b!�‘þ‘� ¼ h�ðp�Þ j H eff j �bðp�b
Þi; (2.38)

where p�b
and p� are momenta of the �b and � baryons,

respectively. In order to calculate the transition amplitude,
we need to define the following matrix elements in terms of
twelve form factors in full QCD:

h�ðp�Þ j �s��ð1� �5Þb j �bðp�b
Þi

¼ �u�ðp�Þ½��f1ðq2Þ þ i���q
�f2ðq2Þ þ q�f3ðq2Þ

� ���5g1ðq2Þ � i����5q
�g2ðq2Þ

� q��5g3ðq2Þ�u�b
ðp�b

Þ; (2.39)

h�ðp�Þ j �si���q
�ð1þ �5Þb j �bðp�b

Þi
¼ �u�ðp�Þ½��f

T
1 ðq2Þ þ i���q

�fT2 ðq2Þ
þ q�fT3 ðq2Þ þ ���5g

T
1 ðq2Þ

þ i����5q
�gT2 ðq2Þ þ q��5g

T
3 ðq2Þ�u�b

ðp�b
Þ;
(2.40)

and

h�ðp�Þ j �sð1þ �5Þb j �bðp�b
Þi

¼ 1

mb

�u�ðp�Þ½6qf1ðq2Þ þ iq����q
�f2ðq2Þ

þ q2f3ðq2Þ � 6q�5g1ðq2Þ � iq�����5q
�g2ðq2Þ

� q2�5g3ðq2Þ�u�b
ðp�b

Þ; (2.41)
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where u�b
and u� are spinors of the initial and final baryons. By the way, fðTÞi and gðTÞi , with i ¼ 1, 2 and 3, are transition

form factors.
Using the above transition matrix elements, we find the transition amplitude for �b ! �‘þ‘� in the TC2 model as

M�b!�‘þ‘�
TC2 ¼ GF�emVtbV

�
ts

2
ffiffiffi
2

p
�

f½ �u�ðp�Þð��½A1RþB1L� þ i���q
�½A2RþB2L�

þ q�½A3RþB3L�Þu�b
ðp�b

Þ�ð �‘��‘Þ þ ½ �u�ðp�Þð��½D1Rþ E1L�
þ i���q

�½D2Rþ E2L� þ q�½D3Rþ E3L�Þu�b
ðp�b

Þ�ð �‘���5‘Þ
þ ½ �u�ðp�Þð6q½G1RþH 1L� þ iq����q

�½G2RþH 2L�
þ q2½G3RþH 3L�Þu�b

ðp�b
Þ�ð �‘‘Þ þ ½ �u�ðp�Þð6q½K1Rþ S1L�

þ iq����q
�½K2Rþ S2L� þ q2½K3Rþ S3L�Þu�b

ðp�b
Þ�ð �‘�5‘Þg; (2.42)

where R ¼ ð1þ �5Þ=2 and L ¼ ð1� �5Þ=2. The calligraphic coefficients are defined as

A1 ¼ ðf1 � g1Þ ~Ceff
9 � 2mb

1

q2
ðfT1 þ gT1 Þ ~Ceff

7 ; G1 ¼ 1

mb

ðf1 � g1ÞCQ1
;

A2 ¼ A1ð1 ! 2Þ; G2 ¼ G1ð1 ! 2Þ;
A3 ¼ A1ð1 ! 3Þ; G3 ¼ G1ð1 ! 3Þ;
B1 ¼ A1ðg1 ! �g1; g

T
1 ! �gT1 Þ; H 1 ¼ G1ðg1 ! �g1Þ;

B2 ¼ B1ð1 ! 2Þ; H 2 ¼ H 1ð1 ! 2Þ;
B3 ¼ B1ð1 ! 3Þ; H 3 ¼ H 1ð1 ! 3Þ;
D1 ¼ ðf1 � g1Þ ~C10; K1 ¼ 1

mb

ðf1 � g1ÞCQ2
;

D2 ¼ D1ð1 ! 2Þ; K2 ¼ K1ð1 ! 2Þ;
D3 ¼ D1ð1 ! 3Þ; K3 ¼ K1ð1 ! 3Þ;
E1 ¼ D1ðg1 ! �g1Þ; S1 ¼ K1ðg1 ! �g1Þ;
E2 ¼ E1ð1 ! 2Þ; S2 ¼ S1ð1 ! 2Þ;
E3 ¼ E1ð1 ! 3Þ; S3 ¼ S1ð1 ! 3Þ:

(2.43)

III. PHYSICAL OBSERVABLES

In this section, we calculate some physical observables such as the differential decay width, the differential
branching ratio, the branching ratio and the lepton forward-backward asymmetry for the decay channel under
consideration.

A. The differential decay width

In the present subsection, using the above-mentioned amplitude, we find the differential decay rate in terms of form
factors in the full theory in the TC2 model as

d2�

dŝdz
ðz; ŝÞ ¼ G2

F�
2
emm�b

16384�5
jVtbV

�
tsj2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1; r; ŝÞp ½T 0ðŝÞ þT 1ðŝÞzþT 2ðŝÞz2�; (3.1)

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

‘

q2

r
is the lepton velocity, � ¼ �ð1; r; ŝÞ ¼ ð1� r� ŝÞ2 � 4rŝ is the usual triangle function with

ŝ ¼ q2=m2
�b
, r ¼ m2

�=m
2
�b
, z ¼ cos �, and � is the angle between momenta of the lepton lþ and the �b in the center

of mass of leptons. The calligraphic T 0ðŝÞ, T 1ðŝÞ and T 2ðŝÞ functions are obtained as
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T 0ðŝÞ¼ 32m2
‘m

4
�b
ŝð1þ r� ŝÞðjD3j2þjE3j2Þþ64m2

‘m
3
�b
ð1� r� ŝÞRe½D�

1E3þD3E�
1�

þ64m2
�b

ffiffiffi
r

p ð6m2
‘�m2

�b
ŝÞRe½D�

1E1�þ64m2
‘m

3
�b

ffiffiffi
r

p f2m�b
ŝRe½D�

3E3�þð1� rþ ŝÞRe½D�
1D3þE�

1E3�g
þ32m2

�b
ð2m2

‘þm2
�b
ŝÞfð1� rþ ŝÞm�b

ffiffiffi
r

p
Re½A�

1A2þB�
1B2��m�b

ð1� r� ŝÞRe½A�
1B2þA�

2B1�
�2

ffiffiffi
r

p ðRe½A�
1B1�þm2

�b
ŝRe½A�

2B2�Þgþ8m2
�b
f4m2

‘ð1þ r� ŝÞþm2
�b
½ð1� rÞ2� ŝ2�gðjA1j2þjB1j2Þ

þ8m4
�b
f4m2

‘½�þð1þ r� ŝÞŝ�þm2
�b
ŝ½ð1� rÞ2� ŝ2�gðjA2j2þjB2j2Þ�8m2

�b
f4m2

‘ð1þ r� ŝÞ
�m2

�b
½ð1� rÞ2� ŝ2�gðjD1j2þjE1j2Þþ8m5

�b
ŝv2f�8m�b

ŝ
ffiffiffi
r

p
Re½D�

2E2�þ4ð1� rþ ŝÞ ffiffiffi
r

p
Re½D�

1D2þE�
1E2�

�4ð1� r� ŝÞRe½D�
1E2þD�

2E1�þm�b
½ð1� rÞ2� ŝ2�ðjD2j2þjE2j2Þg�8m4

�b
f4m‘½ð1� rÞ2

� ŝð1þ rÞ�Re½D�
1K1þE�

1S1�þð4m2
‘�m2

�b
ŝÞ½ð1� rÞ2� ŝð1þ rÞ�ðjG1j2þjH 1j2Þþ4m2

�b

ffiffiffi
r

p
ŝ2ð4m2

‘�m2
�b
ŝÞ

�Re½G�
3H 3�g�8m5

�b
ŝf2 ffiffiffi

r
p ð4m2

‘�m2
�b
ŝÞð1� rþ ŝÞRe½G�

1G3þH �
1H 3�þ4m‘

ffiffiffi
r

p ð1� rþ ŝÞ
�Re½D�

1K3þE�
1S3þD�

3K1þE�
3S1�þ4m‘ð1� r� ŝÞRe½D�

1S3þE�
1K3þD�

3S1þE�
3K1�

þ2ð1� r� ŝÞð4m2
‘�m2

�b
ŝÞRe½G�

1H 3þH �
1G3��m�b

½ð1� rÞ2� ŝð1þ rÞ�ðjK1j2þjS1j2Þg
�32m4

�b

ffiffiffi
r

p
ŝf2m‘Re½D�

1S1þE�
1K1�þð4m2

‘�m2
�b
ŝÞRe½G�

1H 1�gþ8m6
�b
ŝ2f4 ffiffiffi

r
p

Re½K�
1S1�

þ2m�b

ffiffiffi
r

p ð1� rþ ŝÞRe½K�
1K3þS�

1S3�þ2m�b
ð1� r� ŝÞRe½K�

1S3þS�
1K3�

�ð4m2
‘�m2

�b
ŝÞð1þ r� ŝÞðjG3j2þjH 3j2Þ�4m‘ð1þ r� ŝÞRe½D�

3K3þE�
3S3�

�8m‘

ffiffiffi
r

p
Re½D�

3S3þE�
3K3�gþ8m8

�b
ŝ3fð1þ r� ŝÞðjK3j2þjS3j2Þþ4

ffiffiffi
r

p
Re½K�

3S3�g; (3.2)

T 1ðŝÞ ¼ �32m4
�b
m‘

ffiffiffiffi
�

p
vð1� rÞReðA�

1G1 þB�
1H 1Þ � 16m4

�b
ŝv

ffiffiffiffi
�

p f2ReðA�
1D1Þ � 2ReðB�

1E1Þ
þ 2m�b

ReðB�
1D2 �B�

2D1 þA�
2E1 �A�

1E2Þ þ 2m�b
m‘ ReðA�

1H 3 þB�
1G3 �A�

2H 1 �B�
2G1Þg

þ 32m5
�b
ŝv

ffiffiffiffi
�

p fm�b
ð1� rÞReðA�

2D2 �B�
2E2Þ þ

ffiffiffi
r

p
ReðA�

2D1 þA�
1D2 �B�

2E1 �B�
1E2Þ

� ffiffiffi
r

p
m‘ ReðA�

1G3 þB�
1H 3 þA�

2G1 þB�
2H 1Þg þ 32m6

�b
m‘

ffiffiffiffi
�

p
vŝ2 ReðA�

2G3 þB�
2H 3Þ; (3.3)

and

T 2ðŝÞ ¼ �8m4
�b
v2�ðjA1j2 þ jB1j2 þ jD1j2 þ jE1j2Þ

þ 8m6
�b
ŝv2�ðjA2j2 þ jB2j2 þ jD2j2 þ jE2j2Þ:

(3.4)

We integrate Eq. (3.1) over z in the interval ½�1; 1� in
order to obtain the differential decay width only, with
respect to ŝ. Consequently, we get

d�

dŝ
ðŝÞ ¼ G2

F�
2
emm�b

8192�5
jVtbV

�
tsj2v

ffiffiffiffi
�

p �
T 0ðŝÞ þ 1

3
T 2ðŝÞ

�
:

(3.5)

B. The differential branching ratio

In this subsection, we analyze the differential branching
ratio of the transition under consideration in different
lepton channels. For this aim, using the differential decay
width in Eq. (3.5), we discuss the variation of the

differential branching ratio with respect to q2 and other
related parameters. Thus, we need some of the input
parameters presented in Tables I and II.
We also use the typical values m�0

t
¼ mh0t

¼ 300 GeV,

m�þ
t
¼ 450 GeV, MZ0 ¼ 1500 GeV, " ¼ 0:08 and K1 ¼

0:4 in our numerical calculations [12].
For other input parameters, we need the form factors

calculated via light cone QCD sum rules in full theory [31].
The fit function for f1, f2, f3, g1, g2, g3, f

T
2 , f

T
3 , g

T
2 and gT3

is given by [31] (for an alternative parametrization of form
factors see [32])

fðTÞi ðq2Þ½gðTÞi ðq2Þ� ¼ a

ð1� q2

m2
fit

Þ
þ b

ð1� q2

m2
fit

Þ2
; (3.6)

where a, b and m2
fit are the fit parameters presented

in Table III. The values of the corresponding form
factors at q2 ¼ 0 are also presented in Table III. In
addition, the fit function of the form factors fT1 and gT1
is given by [31]
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fT1 ðq2Þ½gT1 ðq2Þ� ¼
c�

1� q2

m02
fit

�� c�
1� q2

m002
fit

�
2
; (3.7)

where c, m02
fit and m002

fit are the fit parameters whose values

we present, together with the values of the corresponding
form factors at q2 ¼ 0, in Table IV.

The dependencies of the differential branching ratio on
q2, m�þ

t
and MZ0 in the cases of � and � leptons in both

the SM and TC2 model are shown in Figs. 1–6. In each
figure we show the dependencies of the differential
branching ratio on different observables for both central
values of the form factors (left panel) and for the form
factors with their uncertainties (right panel). Note that the
results for the case of e are very close to those of �, so
we do not present the results for e in our figures. We also
depict the recent experimental results on the differential
branching ratio in the � channel provided by the CDF [1]

and LHCb [2] Collaborations in Fig. 1. From this figure,
we conclude that
(i) for both lepton channels, there are considerable

differences between predictions of the SM and TC2
model on the differential branching ratio with re-
spect to q2, m�þ

t
and MZ0 when the central values of

the form factors are considered.
(ii) Although the swept regions in both models coincide

somewhere, adding the uncertainties of the form
factors cannot totally eliminate the differences
between the two models’ predictions on the differ-
ential branching ratio.

(iii) In the case of the differential branching ratio in
terms of q2 in the � channel (Fig. 1), the experi-
mental data from the CDF and LHCb
Collaborations are, overall, close to the SM predic-
tions for q2 � 16 GeV2. When q2 > 16 GeV2 the
experimental data lie in the common region swept
by the SM and TC2 model.

To better compare the results, we depict the numerical
values of the differential branching ratio at different
values of q2 in its allowed region for all lepton channels
and both the SM and TC2 model in Tables V, VI, and
VII. We also present the experimental data in the �
channel, provided by the CDF [1] and LHCb [2]

TABLE I. The values of some of the input parameters used in
the numerical analysis. The quarks masses are in the MS
scheme [30].

Input parameters Values

me 0:51� 10�3 GeV

m� 0.1056 GeV

m� 1.776 GeV

mc 1.275 GeV

mb 4.18 GeV

mt 160 GeV

mW 80.4 GeV

mZ 91.2 GeV

m�b
5.620 GeV

m� 1.1156 GeV

��b
1:425� 10�12 s

ℏ 6:582� 10�25 GeV s

GF 1:17� 10�5 GeV�2

�em 1=137

jVtbV
�
tsj 0.041

TABLE II. The values of some of the input parameters related
to the TC2 model used in the numerical analysis [12].

Input parameters Values

m�0
t

(200–500) GeV

m�þ
t

(350–600) GeV

mh0t
(200–500) GeV

MZ0 (1200–1800) GeV

F� 50 GeV

" (0.06–0.1)

K1 (0.3–1)

TABLE III. The fit parameters a, b and m2
fit appear in the fit

function of the form factors f1, f2, f3, g1, g2, g3, f
T
2 , f

T
3 , g

T
2 and

gT3 together with the values of the corresponding form factors at

q2 ¼ 0 in the full theory for �b ! �‘þ‘� decay [31].

a b m2
fit

Form factors

at q2 ¼ 0

f1 �0:046 0.368 39.10 0:322� 0:112

f2 0.0046 �0:017 26.37 �0:011� 0:004

f3 0.006 �0:021 22.99 �0:015� 0:005

g1 �0:220 0.538 48.70 0:318� 0:110

g2 0.005 �0:018 26.93 �0:013� 0:004

g3 0.035 �0:050 24.26 �0:014� 0:005

fT2 �0:131 0.426 45.70 0:295� 0:105

fT3 �0:046 0.102 28.31 0:056� 0:018

gT2 �0:369 0.664 59.37 0:294� 0:105

gT3 �0:026 �0:075 23.73 �0:101� 0:035

TABLE IV. The fit parameters c, m02
fit and m002

fit in the fit
function of the form factors fT1 and gT1 together with the values

of the related form factors at q2 ¼ 0 in the full theory for �b !
�‘þ‘� decay [31].

c m02
fit m002

fit Form factors at q2 ¼ 0

fT1 �1:191 23.81 59.96 0� 0:0
gT1 �0:653 24.15 48.52 0� 0:0
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Collaborations, in Table V. With a quick glance at these
tables, we see that

(i) in the case of�, the experimental data on the differen-
tial branching ratio, especially those provided by the

CDF Collaboration, coincide with or are close to the
intervals predicted by theSM in all ranges ofq2.Within
the errors, the results of TC2 are consistent with the
data from the CDF Collaboration in the intervals

SM
TC2

CDF Collab.
LHCb Collab.
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0
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q2

dB
r

dq
2

b
x

10
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LHCb Collab.
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dB
r
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2

b
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10
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FIG. 1 (color online). The dependence of the differential branching ratio (in GeV�2 units) on q2 (GeV2) for the �b ! ��þ��
decay channel in the SM and TC2 model using the central values of the form factors (left panel) and the form factors with their
uncertainties (right panel). The recent experimental results by CDF [1] and LHCb [2] are also presented in both figures.
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TC2
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FIG. 2 (color online). The dependence of the differential branching ratio (in GeV�2 units) on q2 (GeV2) for the �b ! ��þ�� decay
channel in the SM and TC2 model using the central values of the form factors (left panel) and the form factors with their uncertainties
(right panel).
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FIG. 3 (color online). The dependence of the differential branching ratio (in GeV�2 units) on m�þ
t
for the �b ! ��þ�� decay

channel in the SM and TC2 model using the central values of the form factors (left panel) and the form factors with their uncertainties
(right panel).
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[2.00–4.30], [10.09–12.86] and [16.00–20.30] for theq2

and with the data from the LHCb Collaboration only
for the interval [16.00–20.30] for q2.

(ii) In all lepton channels and within the errors, the inter-
vals predicted by the TC2 model for the differential
branching ratio coincide partly with the intervals
predicted by the SMapproximately in all ranges ofq2.

These results show that, although central values
of the theoretical results differ considerably from the

experimental data, considering the errors of form factors
brings the intervals predicted by theory in both models
close to the experimental data, especially in the case
of the SM.

C. The branching ratio

In this subsection, we calculate the values of the branch-
ing ratio of the transition under consideration both in the

SM
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FIG. 4 (color online). The same as Fig. 3 but for the �b ! ��þ�� decay channel.
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FIG. 5 (color online). The dependence of the differential branching ratio (in GeV�2 units) on MZ0 for the �b ! ��þ�� decay
channel in the SM and TC2 model using the central values of the form factors (left panel) and the form factors with their uncertainties
(right panel).
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FIG. 6 (color online). The same as Fig. 5 but for the �b ! ��þ�� decay channel.
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SM and TC2 model. For this aim, we need to multiply the
total decay width by the lifetime of the initial baryon �b

and divide by ℏ. Taking into account the typical values for
m�þ

t
and MZ0 , we present the numerical results obtained

from our calculations for both models, together with the
existing experimental data provided by the CDF [1] and
LHCb [2] Collaborations in Table VIII. As can be seen
from this table,
(i) although the central values of the branching ratios in

the TC2 model are roughly 2–3.5 times bigger than
those of the SM, adding the errors of the form factors
causes the intervals of the values predicted by the
two models for all lepton channels to coincide.

(ii) The order of the branching ratios shows that the
�b ! �‘þ‘� decay can be accessible at the LHC
for all leptons. As already mentioned, this decay in
the � channel has previously been observed by the
CDF and LHCb Collaborations.

(iii) As is expected, the value of the branching ratio
decreases by increasing the mass of the final lepton.

(iv) In the case of the � channel, the experimental data
on the branching ratio coincide with the interval
predicted by the SM within errors, but these data
considerably differ from the interval predicted by
the TC2 model.

In order to see how theTC2model predictions deviate from
those of the SM, we plot the variations of the branching ratios
onm�þ

t
andMZ0 in Figs. 7–10. From these figures we see that

(i) there are big differences between the predictions of
the SM and TC2 model on the branching ratios with

TABLE V. Numerical values of the differential branching ratio in GeV�2 for different intervals of q2 (GeV2) for the �b ! ��þ��
decay channel in the SM and TC2 model obtained using the typical values of the masses m�þ

t
¼ 450 GeV and MZ0 ¼ 1500 GeV.

We also show the experimental values of the differential branching ratio provided by the CDF [1] and LHCb [2] Collaborations.

SM TC2 CDF [1] LHCb [2]

q2 dBr=dq2½10�7� dBr=dq2½10�7� dBr=dq2½10�7� dBr=dq2½10�7�
0.00–2.00 (0.60–2.58) (3.29–14.36) 0:15� 2:01� 0:05 0:28� 0:38� 0:40� 0:06
2.00–4.30 (0.61–2.65) (2.16–9.33) 1:84� 1:66� 0:59 0:31� 0:26� 0:07� 0:07
4.30–8.68 (0.80–3.48) (2.17–9.31) �0:20� 1:64� 0:08 0:15� 0:17� 0:02� 0:03
10.09–12.86 (1.11–4.93) (2.46–10.62) 2:97� 1:47� 0:95 0:56� 0:21� 0:16� 0:12
14.18–16.00 (1.05–4.78) (2.13–9.37) 0:96� 0:73� 0:31 0:79� 0:24� 0:15� 0:17
16.00–20.30 (0.54–2.57) (1.06–4.84) 6:97� 1:88� 2:23 1:10� 0:18� 0:17� 0:24

TABLE VI. Numerical values of the differential branching
ratio in GeV�2 for different intervals of q2 (GeV2) for the �b !
�eþe� decay channel in the SM and TC2 model obtained using
the typical values of the masses m�þ

t
¼ 450 GeV and MZ0 ¼

1500 GeV.

SM TC2

q2 dBr=dq2½10�7� dBr=dq2½10�7�
0.00–2.00 (0.60–2.59) (3.29–14.37)

2.00–4.30 (0.61–2.65) (2.17–9.34)

4.30–8.68 (0.80–3.49) (2.17–9.32)

10.09–12.86 (1.11–4.94) (2.46–10.63)

14.18–16.00 (1.05–4.78) (2.13–9.37)

16.00–20.30 (0.54–2.57) (1.06–4.84)

TABLE VII. Numerical values of the differential branching
ratio in GeV�2 for different intervals of q2 (GeV2) for the �b !
��þ�� decay channel in the SM and TC2 model obtained using
the typical values of the masses m�þ

t
¼ 450 GeV and MZ0 ¼

1500 GeV.

SM TC2

q2 dBr=dq2½10�7� dBr=dq2½10�7�
12.60–12.86 (0.11–0.53) (0.28–1.22)

14.18–16.00 (0.47–2.15) (1.05–4.61)

16.00–20.30 (0.43–1.96) (0.77–3.46)

TABLE VIII. Numerical values of the branching ratio of �b ! �‘þ‘� for m�þ
t
¼ 450 GeV

and MZ0 ¼ 1500 GeV in the SM and TC2 model, together with the experimental data provided
by the CDF [1] and LHCb [2] Collaborations.

BRð�b ! �eþe�Þ½10�6� BRð�b ! ��þ��Þ½10�6� BRð�b ! ��þ��Þ½10�6�
SM (1.81–8.06) (1.64–7.30) (0.34–1.51)

TC2 (6.62–29.03) (4.55–19.81) (0.63–2.77)

CDF [1] 
 
 
 1:73� 0:42� 0:55 
 
 

LHCb [2] 
 
 
 0:96� 0:16� 0:13� 0:21 
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respect to m�þ
t
and MZ0 when the central values of

the form factors are considered.
(ii) The branching ratios remain approximately un-

changed when the masses ofm�þ
t
andMZ0 are varied

in the regions presented in the figures for both leptons.
(iii) Adding the uncertainties of the form factors, we

end up with intersections between the swept re-
gions of the two models, but cannot totally elimi-
nate the differences between the two models’
predictions.

D. The FBA

The present subsection embraces our analysis of the
lepton forward-backward asymmetry (AFB) in both the
SM and TC2 model. The FBA is one of the most
important tools to investigate the NP beyond the SM,
and it is defined as

AFBðŝÞ ¼
R
1
0

d�
dŝdz ðz; ŝÞdz�

R
0
�1

d�
dŝdz ðz; ŝÞdzR

1
0

d�
dŝdz ðz; ŝÞdzþ

R
0
�1

d�
dŝdz ðz; ŝÞdz

: (3.8)
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FIG. 8 (color online). The same as Fig. 7 but for the �b ! ��þ�� transition.
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FIG. 7 (color online). The dependence of the branching ratio on m�þ
t
for the �b ! ��þ�� decay channel in the SM and TC2

model using the central values of the form factors (left panel) and the form factors with their uncertainties (right panel).
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FIG. 9 (color online). The same as Fig. 7 but with respect to MZ0 .
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The dependencies of the FBA on q2, m�þ
t
and MZ0 for the

decay under consideration in both the� and � channels are
depicted in Figs. 11–16. A quick glance at these figures
leads to the following results:

(i) The effects of the uncertainties of the form factors on
AFB are smaller compared to the differential
branching ratio and the branching ratio discussed
in the previous figures.

(ii) In Fig. 11, where the dependence ofAFB on q
2 in the

� channel is discussed, we see considerable differ-
ences between the two models’ predictions at lower

values of q2 in the left and right panels. At higher
values of q2, the two models have approximately the
same predictions. In the � case (Fig. 12), the two
models have roughly the same results.

(iii) In the case of AFB in terms of m�þ
t
and the �

channel, the uncertainties of the form factors end
up in some common regions between the two
models’ predictions. In the case of the � channel,
the difference between the two models’ results exists
even when considering the uncertainties of the form
factors.

SM
TC2

13 14 15 16 17 18 19 20
0.3

0.2

0.1

0.0

0.1

0.2

0.3

q2

A
F

B
b

SM
TC2

13 14 15 16 17 18 19 20
0.3

0.2

0.1

0.0

0.1

0.2

0.3

q 2

A
F

B
b

FIG. 12 (color online). The same as Fig. 11 but for the �b ! ��þ�� decay channel.
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FIG. 11 (color online). The dependence of the FBA on q2 for the �b ! ��þ�� decay channel in the SM and TC2 model using the
central values of the form factors (left panel) and the form factors with their uncertainties (right panel).
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FIG. 10 (color online). The same as Fig. 9 but for the �b ! ��þ�� transition.
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FIG. 13 (color online). The same as Fig. 11 but with respect to m�þ
t
.
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FIG. 16 (color online). The same as Fig. 15 but for the �b ! ��þ�� decay channel.
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FIG. 15 (color online). The same as Fig. 11 but with respect to MZ0 .
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FIG. 14 (color online). The same as Fig. 13 but for the �b ! ��þ�� decay channel.
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(iv) In the case ofAFB onMZ0 and the� channel,we see a
small difference between the SM and TC2 model
predictionswhen the central values of the form factors
are considered. Taking into account the uncertainties
of the form factors causes some intersections between
the twomodels’ predictions. In the case of � (Fig. 16),
we see considerable discrepancies between the two
models’ predictions which cannot be eliminated by
the uncertainties of the form factors.

(v) AFB is sensitive to q2 for both leptons.AFB is also
sensitive toMZ0 only for the case of �. However, this
quantity remains roughly unchanged with respect to
changes in m�þ

t
for both lepton channels, as well as

with respect to MZ0 only for the � channel.

IV. CONCLUSION

In the present work, we have performed a comprehen-
sive analysis of the baryonic FCNC �b ! �‘þ‘�
channel, both in the SM and TC2 scenarios. In particular,
we discussed the sensitivity of the differential branching
ratio, the branching ratio and the lepton FBA on q2 and the
model parameters m�þ

t
and MZ0 using the form factors

calculated via light cone QCD sum rules as the main input.
We saw overall considerable differences between the two
models’ predictions, which cannot be totally eliminated by
the uncertainties of the form factors as the main sources of
errors. However, the existing experimental data provided
by the CDF and LHCb Collaborations in the case of the
differential branching ratios with respect to q2 are very
close to the SM results, approximately in all ranges of q2

when the errors of the form factors are considered. Only in
some intervals of q2 do the experimental data on the
differential branching ratio lie in the intervals predicted
by the TC2 model within the errors. From the experimental
side, we think we should have more data on different
physical quantities defining the decay under consideration
at different lepton channels, as well as different baryonic
and mesonic processes. This will help us in searching for
NP effects, especially those in the TC2 model, as an
alternative EWSB scenario to the Higgs mechanism.
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