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Using the geometry of a double-layered torus, we investigate the deconfining phase transition of pure

SU(3) lattice gauge theory by Markov chain Monte Carlo simulations. In one layer, called ‘‘outside,’’ the

temperature is set below the deconfining temperature and in the other, called ‘‘inside,’’ it is iterated to a

pseudotransition temperature. Lattice sizes are chosen in a range suggested by the physical volumes

achieved in relativistic heavy ion collisions, and both temperatures are kept close enough to stay in the

SU(3) scaling region, which is required for approaching a quantum continuum limit. Properties of the

transition are studied as a function of the volume for three outside temperatures. When compared with

infinite volume extrapolations, small volume corrections of the deconfining temperature and width

compete with those found by including quarks. Effective finite-size scaling exponents of the specific

heat and Polyakov loop susceptibilities are also calculated.
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I. INTRODUCTION

Experimentally, the deconfining phase transition has
been studied in heavy ion scattering experiments, notably
at the relativistic heavy ion collider (RHIC) of Brookhaven
National Lab and at the LHC at CERN. Inevitably a quark
gluon plasma phase created in a laboratory experiment is
limited to a small hot volume, which is surrounded by a
cold exterior. These volumes are not of a fixed size, but one
has to deal with data from an ensemble of differently sized
volumes created by central and less central collisions.
For instance, at the RHIC one scatters Au atoms, and the
dimension in transverse direction is limited by the radius of
the Au nucleus, which is about 6.5 fm when one calculates

it from the formula [1] R ¼ r0A
1=3, where r0 ¼ 1:5 fm and

A is the mass number. In the longitudinal direction the Au
nuclei are Lorentz contracted so that this extension of the
plasma becomes set by the speed of light times the expan-
sion time after a binary collision. For example, an expan-
sion time of 10�23 s would give a longitudinal extension
of 3 fm. Volumes of quark gluon plasma fireballs from
sufficiently central collisions range then from 5–10 fm in
the transverse as well as in the longitudinal directions. See,
for instance, Ref. [2] for a figure of the density distribution.
There has been and still is some debate whether such a
plasma will equilibrate in the available time. This is not
the subject of this paper, which relies on equlibrated
configurations from Markov chain Monte Carlo (MCMC)
simulations.

MCMC calculations for lattice gauge theory (LGT) pro-
vide theoretical estimates for thermodynamic quantities of
the deconfining phase transition, in particular for the tem-
perature and width. In contrast to the physical situation of
heavy ion collisions, simulations of the transition focused
on the infinite volume limit in which boundary effects
become negligible. Notable exceptions are provided by
some older work [3] andmore recent investigations of finite

volume effects for pure SU(3) lattice gauge theory [4,5],
for QCD [6–8] and for a Polyakov-Nambu-Jona-Lasinio
model [9].
Most LGT calculations use periodic boundary conditions

(PBC), because they ensure a fast approach to the infinite
volume limit. But they are not suitable when one wants to
study the effect of an exterior confined phase on a small
volume, which is deconfined or at the transition tempera-
ture. In previous work [4] on N�N

3
s lattices, zero outside

temperature was targeted and modeled by the strong cou-
pling limit � ! 0 (i.e., lattice spacing að�Þ ! 1) on pla-
quettes crossing the boundary and called cold boundary
condition (CBC). For illustrative purposes, physical dimen-
sions of theN3

s space volumes were calculated by assuming
for the infinite volume deconfining temperature the value
T1
t ¼ 174 MeV, which is in the range of QCD estimates

obtained from LGT calculations (results reported in a
recent review [10] range from 147 to 192 MeV). The value
T1
t ¼ 174 MeV corresponds to a temporal lattice size

L� ¼ að�ÞNs ¼ 1=T1
t of approximately L� ¼ 1:1 fm.

With this scale, spatial dimensions Ls ¼ að�ÞNs were set
in the range 4 fm< Ls < 12 fm. Thus they are realistically
sized with respect to RHIC experiments, and one can
investigate questions about the size of boundary effects.
For volumes from 12 down to 7 fm, an increase of the
effective deconfining temperature from 10 to 30 MeV was
computedwith a diverging trend up to 90MeVwhenLs was
reduced down to 4 fm. These are sizeable corrections,
though the composition of the experimental ensemble of
deconfined volumes into which the LGT results ought to
enter remains to be analyzed.
A theoretical shortcoming of CBCs is that they do not

allow for a joint (quantum) continuum limit of the inside
and outside volumes, because the construction mixes an
inside SU(3) scaling region with a strong coupling limit.
Although agreement with SU(3) scaling was seen for the
(inside) pseudotransition temperatures and widths when
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varying the temporal lattice extension N� from 4 to 6,
one may still be worried. Building on [4], the aim of our
paper is to calculate for pure SU(3) lattice gauge theory
effects due to relatively small temperature differences at
the boundaries, so that both volumes can be kept in the
SU(3) scaling region, which allows in principle for a joint
quantum continuum limit. The penalty is that outside and
inside temperatures are then rather close. Our aim is to
show that even within such limits, corrections to the infi-
nite volume extrapolations are visible, supporting that
CBCs give reasonable results. In this sense the present
investigation supplements the CBC calculations.

We use the Wilson action [11] on a four-dimensional
hypercubic lattice. Configurations are weighted with a
Boltzmann factor exp ½SðfUgÞ�, where

SðfUgÞ¼X
h

�hSh; Sh¼1

3
ReðUi1j1Uj1i2Ui2j2Uj2i1Þ: (1)

Here i1, j1, i2, and j2 label the sites circulating about
the square h and the Uij are SU(3) matrices. For later

convenience, we allow the coupling constant,

g2h ¼ 6=�h; (2)

to depend on the position of the plaquette.
Numerical evidence supports that SU(3) lattice gauge

theory with the Wilson action (1) exhibits for infinite
volumes a weak first-order [12] deconfining phase
transition at pseudotransition coupling constant values
�1

t ðN�Þ ¼ 6=g2t ðN�Þ. In this paper we set the scale in our
calculations by the corresponding SU(3) deconfining tran-
sition temperature T1

t and report results as a function of the
reduced temperature,

t ¼ T � T1
t

T1
t

: (3)

This allows one to confront results with dynamical
quark calculations without assuming a MeV value for the
transition temperature T1

t .
To make sure that the encountered corrections are not

strong coupling artifacts, we consider in the present paper
differences between inside and outside temperature that are
small enough to keep both regions in the SU(3) scaling
region so that a common continuum limit becomes, in
principle, possible. Reduced outside temperatures tout in
the confined region are taken close to

t1 ¼�0:095; t2 ¼�0:073 and t3 ¼�0:036; (4)

i.e., only about 10% into the direction of the desired limit
t ! �1. Inside temperatures are then iterated to pseudo-
transition values, which we locate by maxima of the SU(3)
Polyakov loop susceptibility. A possible geometry would
use for the inside a N�n

3
s sublattice of a N�N

3
s lattice with

PBC (ns < Ns). We decided instead to explore the interest-
ing geometry of a double-layered torus (DLT), which joins

two N�N
3
s lattices so that each N3

s volume provides the
boundary of the other [5].
One would like to repeat these calculations for lower and

lower values of tout to study the approach to �1, while
staying in the SU(3) scaling region. In practice this is
impossible, because prohibitively large lattices would be
required. However, it appears reasonable to assume that the
pseudotransition inside temperatures and widths increase
monotonically for a decreasing outside temperature.
Therefore, finding this effect for the tout values (4) and
their approach towards results from the outside approxi-
mation by a strong coupling region gives us increased
confidence in physical relevance of the CBC approach.
In the next section we give details of the DLT con-

struction. For subsequent reference we present in Sec. III
simulations on lattices with PBC after introducing our
observables and the lambda lattice scale of Ref. [13],
which we use for our analysis. Within the DLT geometry,
finite volume corrections to the SU(3) deconfining transi-
tion are studied in Sec. IV. In addition to our main focus,
we add in Sec. V a discussion of the finite-size scaling
exponents of the specific heat and our Polyakov loop
susceptibilities for large spatial lattices. Summary and
conclusions follow in Sec. VI. All MCMC simulations
for this paper were performed with the SU(3) FORTRAN

programs, which we documented in Ref. [14].

II. DOUBLE-LAYERED TORUS

The DLT [5] extends PBC by using two layers. Let us
first recall the definition of PBC for a lattice of sizeQ

4
i¼1 Ni. We label its sites by integer four-vectors,

n ¼ ðn1; n2; n3; n4Þ;
with coordinates ni ¼ 0; . . . ; Ni � 1 (i ¼ 1; . . . ; 4). Steps
in forward direction are defined by

ni � 1 ¼
(
ni þ 1 for ni < Ni � 1;

0 for ni ¼ Ni � 1;
(5)

and steps in backward direction by

ni � 1 ¼
�
ni � 1 for ni > 0;

Ni � 1 for ni ¼ 0:
(6)

Our DLT is defined by two identical lattices of size N�N
3
s .

We label their coordinates by n‘i , ‘ ¼ 0, 1. PBC are used in
the temporal (i ¼ 4) direction. Defining

‘0 ¼ modð‘þ 1; 2Þ ¼
(
1 for ‘ ¼ 0;

0 for ‘ ¼ 1;
(7)

the DLT boundary conditions (BCs)in the space directions
(i ¼ 1, 2, 3) are for steps in forward direction,

n‘i � 1 ¼
( ½ni þ 1�‘ for n‘i < Ni � 1;

0‘
0

for n‘i ¼ Ni � 1;
(8)
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and for steps in backward direction,

n‘i � 1 ¼
( ½ni � 1�‘ for n‘i > 0;

½Ni � 1�‘0 for n‘i ¼ 0:
(9)

The other layer is entered whenever the same lattice would
be entered from the other side in case of PBC. For two
space dimensions, the topology is that of a Klein bottle.

The usual derivation, for instance [15], of the interpre-
tation of the inverse temporal lattice extension (in which
we have PBC) is still valid and we find for equilibrium
configurations

T ¼ 1

að�‘ÞN�

(10)

for the physical temperature. Here we allow distinct cou-
pling constants �0 and �1 for the layers [in LGT � is
defined by (2) and not 1=ðkTÞ]. As for the action in Eqs. (1)
and (2), coupling constants are assigned to entire
plaquettes. SU(3) matrices in Eq. (1) are defined on
directed links, which originate from sites of the layers
and point forward in one of the four directions (a matrix
U is replaced by U�1 when it is encountered in reverse
direction of the link). Our rule is that we use the coupling
constant value�1 for a plaquette if any of its links originate
in the ‘ ¼ 1 layer. Otherwise, the value �0 is used. This
introduces a slight asymmetry for their assignments in our
two layers. The ‘ ¼ 0 layer will be taken as the outside and
the ‘ ¼ 1 layer as the inside volume.

The MCMC process equilibrates the entire system by
providing for each SU(3) matrix the appropriate infinite
heat bath reservoir. Distinct couplings in different regions
are no obstacle and are used as well in other systems such
as spin glasses. In the infinite volume limit, each layer
equilibrates at its own temperature and the other layer
serves as boundary. At the boundaries a quasistatic region
emerges with a temperature gradient from one into the
other. For small finite volumes, effects from this boundary
region are not negligible.

III. DECONFINING TRANSITION WITH PBC

First, we define the observables used in this paper.
Subsequently, the SU(3) lambda lattice scale of Ref. [13]
is introduced. Finally in this section, we present our
MCMC simulations with PBC. Each data point relies on
213 sweeps for reaching equilibrium and thereafter
64� 213 measurements, each separated from the next by
4 sweeps. Error bars (given in parentheses) were calculated
with respect to jackknife bins, so that autocorrelations are
properly accounted for. For most data sets it was possible
to use 32 or more jackknife bins, so that the statistical
interpretation of these error bars is up to two standard
deviations practically Gaussian according to their Student
distribution. See, for instance, Ref. [16] for the underlying
statistics. Details about the autocorrelations of our data can
be found in [17]. Improved estimators relying on the

multihit approach [18] were explored, but found rather
inefficient in our range of coupling constant values, and
the simulations remained very CPU time demanding.

A. Observables

The specific heat of the LGT system is

Cð�Þ ¼ 1

6N
½hS2i � hSi2�; (11)

where N is the total number of lattice sites. Writing the
sum over all Polyakov loops on the lattice as

P ¼ X
~x

P~x; (12)

the magnetic Polyakov loop susceptibility is defined by

� ¼ 1

N~x

½hjPj2i � hjPji2�; (13)

and the thermal Polyakov loop susceptibility by

�� ¼ 1

N~x

d

d�
hjPji2; (14)

where N~x is the total number of spatial lattice sites,
N~x ¼ N3

s in our geometry.
As signal for the pseudotransition temperature, we use

in this paper the locations of the maxima of the mag-
netic Polyakov loop susceptibility and drop the adverb
‘‘magnetic.’’ For N� ¼ 4 the curves are shown in Fig. 1.
For smaller lattices, the yellow line for Ns ¼ 20 and the
two lines below, the curves are almost flat on the� range of
the figure. If the range is sufficiently extended, they are also
clearly peaked. The thermal Polyakov loop susceptibility
gives, slightly shifted, similarly strong signals, whereas the
maxima of the specific heat are less pronounced.
Another interesting quantity is the structure factor (see,

e.g., Refs. [19,20]),

Fð ~kÞ ¼ 1

N~x

���������
X
~x

P~x exp ði ~k ~xÞ
��������

2
�
; ~k ¼ 2�

Ns

~n; (15)
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FIG. 1 (color online). Reweighted Polyakov loop magnetic
susceptibilities for N� ¼ 4 PBC lattices. The ordering in the
legend agrees with that of the curves.
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where ~n is an integer vector. These quantities are important
in the determination of finite-size scaling exponents.
Specifically, for large spatial dimension Ns, the maxima
of the above quantities scale like

Cmax ¼ Cð�max Þ � N�=�
s ; (16)

�max ¼ �ð�max Þ � N�=�
s ; (17)

��
max ¼ ��ð�max Þ � Nð1��Þ=�

s ; (18)

Fmax ð ~kÞ ¼ Fð ~k;�max Þ � N
2��
s : (19)

Definitions of the exponents �, �, �, �, � and finite-size
scaling relations can be found in [21]. For a first-order
transition we have

�¼ 1

D
;

�

�
¼D;

�

�
¼D;

1��

�
¼D; (20)

where D is the dimension of the spatial volume of the
system under study.

For � the situation of a first-order transition is that
one has a superposition of the disordered phase, where
� ¼ 2 holds, and the ordered phase with � ¼ 2�D (at
the critical point of a second-order transition two-point
correlation falloff like j~rj�Dþ2��). This limits the useful-
ness of structure factors for equilibrium investigations of
first-order transitions, while they played some role in an
investigation of the dynamics of the SU(3) deconfining

transition [20]. As we have calculated Fð ~kÞ for the smallest

momenta, ~k ¼ ð2�=Ns; 0; 0Þ and cyclic permutations
thereof, we report maxima Fmax of this quantity together
with maxima for our other observables.

B. SU(3) scaling

Like any mass in pure SU(3) LGT, the temperature is in
the quantum continuum limit related by a constant to the
lambda lattice scale �L,

T ¼ 1

að�ÞN�

¼ 1

L�

¼ cT�L: (21)

Using accurate MCMC data for the potential of a static
quark-antiquark pair, an effective nonperturbative parame-
trization of the lambda lattice scale was derived by Necco
and Sommer [13] for the range 5:7 � � � 6:92,

a�L ¼ f	ð�Þ ¼ const exp ½�1:6804� 1:7331ð�� 6Þ
þ 0:7849ð�� 6Þ2 � 0:4428ð�� 6Þ3�; (22)

which we adopt for our analysis. In the scaling window of a
lattice of fixed size, we have for the coupling constant
(g2 ¼ 6=�) dependence of the reduced temperature,

tð�Þ ¼ f	ð�1
t Þ

f	ð�Þ � 1: (23)

Notably, the constant in the definition (22) of the lambda
lattice scale drops out.

C. Numerical results

In this section we report from our simulations with PBC.
The results are summarized in Tables I and II. They rely on
reweighting [22,23]. For each lattice size, a time series
from a single simulation point �0 turns out to be sufficient.
The values of �0 are given in Table I. As there are few
finite-size effects with PBC, it is easy to estimate appro-
priate �0 values in advance from previous simulations on
smaller lattices, so that the pseudotransition couplings �t

in the next column of Table I are well within the reweight-
ing range. Following [23] (compare figures 1 and 3 of this
paper), we define the reweighting range in � by q tiles sq
and s1�q of the action times series and the requirement that

the reweighted action average �sð�Þ has to lie in between
these q tiles, sq < �sð�Þ< s1�q. Even when generous 10%

q tiles are used, all �t values are found well within this
range. For N� ¼ 4 the underlying reweighted Polyakov
loop susceptibilities are shown in Fig. 1.
Below the pseudotransition couplings �t in Table I, their

infinite volume extrapolations �1
t are listed, relying on fits

with const=N3
s corrections. Using them and Eq. (23), the

reduced temperatures tð�tÞ are found as listed in the next
column of Table I. Their error bars are calculated by
standard error propagation for independent events, which

TABLE I. PBC: Pseudo-transition coupling constant values,
reduced temperatures and widths.

N�N
3
s �0 �t t 4�4=5

t

4123 5.6905 5.69055 (21) �0:00449 (50) 0.01452 (17)

4163 5.6910 5.69124 (16) �0:00288 (39) 0.00666 (11)

4203 5.6918 5.69175 (12) �0:00168 (30) 0.003547 (73)

4243 5.6920 5.69210 (14) �0:00086 (34) 0.002015 (43)

4283 5.6922 5.69226 (10) �0:00049 (25) 0.001261 (20)

4323 5.6923 5.69215 (07) �0:00075 (19) 0.0008432 (96)

4363 5.6924 5.69236 (07) �0:00026 (19) 0.0005753 (70)

4403 5.6925 5.69252 (05) þ0:00012 (15) 0.0004088 (26)

41 � � � 5.692469 (42) 0.00000 (10) 0

6243 5.8934 5.89368 (34) �0:00080 (68) 0.01091 (29)

6303 5.8934 5.89346 (34) �0:00122 (68) 0.00607 (19)

6363 5.8939 5.89324 (27) �0:00165 (56) 0.00384 (15)

6423 5.8940 5.89387 (20) �0:00044 (44) 0.00241 (11)

6483 5.8941 5.89366 (20) �0:00084 (44) 0.00167 (10)

6543 5.8941 5.89400 (10) �0:00019 (28) 0.001159 (31)

6603 5.8941 5.89447 (09) þ0:00071 (27) 0.000821 (24)

61 � � � 5.89410 (11) 0.00000 (21) 0

8323 6.0615 6.06144 (64) �0:0011(13) 0.01401 (61)

8403 6.0616 6.06060 (53) �0:0025(11) 0.00791 (40)

8483 6.0620 6.06207 (44) �0:00008 (99) 0.00470 (28)

8563 6.0623 6.06201 (37) �0:00018 (91) 0.00307 (23)

81 � � � 6.06212 (44) 0.00000 (67) 0.00470 (28)
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is justified because there is only a little correlation between
the �t and �1

t error bars. For t ¼ 0 the error bar of the
numerator of Eq. (23) is taken, keeping the denominator of
the same �t fixed. Whenever a comparison is possible, our
estimates are statistically consistent with those by the
Bielefeld group [24].

The last column of Table I gives the full width at 4=5

maximum denoted by4�4=5
t . Due to the restricted range in

which reweighting is possible, one is forced to use a height
definition that is located unusually close to the maximum.
Other results—the maxima of the specific heat (11), of the
magnetic (13) and thermal (14) Polyakov loop susceptibil-
ities, and of structure factors (15)—are collected in
Table II. Their analysis is postponed to Sec. V.

IV. DECONFINING TRANSITION ON A DLT

In this section we report our DLT simulations. Our
MCMC statistics per data point and our jackknife error
analysis method are the same as in the previous section
for PBC.

A. Pseudotransition temperatures

In Table III we collect our estimates of pseudotransition
couplings �t for N� ¼ 4, 6 and 8. For each N�, three
reduced outside temperatures are used with their precise
values listed in the table together with the corresponding
�out values from which they are derived via Eq. (23). For
distinct temporal lattice sizes, the tout values disagree
slightly with the targeted values of Eq. (4). This is mainly
due to a switch from the SU(3) lambda lattice scale of
Ref. [20] to the better established one of Necco and

Sommer [13]. To a minor extent, the differences are due
to rounding of the �out values.
Because of the confined outside phase, the increase in

the peaks of the Polyakov loop susceptibilities is for DLT
BC less pronounced with lattice size than for PBC (finite-
size scaling exponents are discussed in Sec. V). Iteration
towards inside coupling constant values �in, which include
pseudotransition couplings �t in their respective reweight-
ing ranges, can be quite tedious. Instead of relying on a
single final simulation, we often patch several simulations
together using the approach of [23] for continuous varia-
bles. In the neighborhood of a maximum of the Polyakov
loop susceptibility averages ��i from i ¼ 1; . . . ; p patches
are combined with weights wi to

�� ¼ Xp
i¼1

wi ��i;
Xp
i¼1

wi ¼ 1; (24)

where the weights are up to a common constant propor-
tional to the error bars of our estimators from individual
patches,

wi ¼ �1=4 ��i: (25)

For the error bar of the final estimator ��, the jackknife
approach is applied to the entire sum (24). Limitations of
the procedure are discussed in [23].

TABLE II. PBC: Maxima (values at �max ) of observables.

N�N
3
s Cmax �max ��

max Fmax

4 123 0.3848 (21) 3.61 (03) 0.1680 (15) 0.648 (05)

4 163 0.5333 (41) 7.96 (10) 0.3303 (38) 1.030 (07)

4 203 0.7557 (79) 15.32 (20) 0.5885 (81) 1.490 (13)

4 243 1.102 (15) 27.95 (44) 1.013 (16) 2.009 (20)

4 283 1.555 (17) 45.84 (54) 1.592 (22) 2.482 (22)

4 323 2.142 (22) 70.37 (59) 2.365 (23) 2.993 (21)

4 363 2.989 (30) 106.69 (96) 3.497 (45) 3.479 (29)

4 403 4.103 (22) 154.34 (73) 4.984 (19) 3.977 (15)

6 243 0.1552 (07) 5.08 (10) 0.063 (02) 0.984 (37)

6 303 0.1696 (10) 9.12 (21) 0.103 (03) 1.35 (11)

6 363 0.1866 (19) 14.83 (43) 0.154 (05) 1.869 (29)

6 423 0.2143 (31) 24.22 (78) 0.238 (08) 2.349 (51)

6 483 0.2443 (48) 35.4 (1.6) 0.332 (15) 2.789 (74)

6 543 0.2866 (34) 52.5 (1.0) 0.475 (09) 3.412 (43)

6 603 0.3464 (57) 76.7 (1.6) 0.674 (16) 4.176 (50)

8 323 0.10834 (28) 3.14 (09) 0.0196 (06) 0.677 (16)

8 403 0.11080 (37) 5.57 (21) 0.0310 (11) 0.938 (20)

8 483 0.11466 (55) 9.68 (41) 0.0498 (25) 1.269 (30)

8 563 0.11988 (78) 15.62 (83) 0.0737 (35) 1.702 (85)

TABLE III. DLT pseudotransition couplings.

�out ¼ 5:65 �out ¼ 5:66 �out ¼ 5:6767

N� Ns tout ¼ �0:0966 tout ¼ �0:0744 tout ¼ �0:0365

4 12 5.72266 (28) 5.71509 (40) 5.70265 (36)

4 16 5.72224 (16) 5.71589 (28) 5.70332 (32)

4 20 5.71962 (14) 5.71481 (14) 5.70392 (24)

4 24 5.71557 (22) 5.71249 (18) 5.70424 (20)

4 28 5.71225 (18) 5.710104 (95) 5.70379 (15)

4 32 5.708855 (68) 5.707564 (74) 5.70315 (12)

4 36 5.706273 (99) 5.705415 (74) 5.702297 (92)

4 40 5.704364 (80) 5.703607 (83) 5.701417 (83)

�out ¼ 5:84318 �out ¼ 5:85514 �out ¼ 5:87514
tout ¼ �0:0951 tout ¼ �0:0732 tout ¼ �0:0360

6 24 5.93319 (35) 5.92418 (51) 5.90885 (64)

6 30 5.92846 (31) 5.92172 (25) 5.90937 (45)

6 36 5.92297 (31) 5.91905 (25) 5.90844 (21)

6 42 5.91816 (56) 5.91571 (26) 5.90777 (21)

6 48 5.91462 (26) 5.91289 (19) 5.90711 (24)

6 54 5.91136 (17) 5.91034 (13) 5.90622 (15)

6 60 5.90900 (13) 5.90802 (16) 5.90515 (20)

�out ¼ 6:004577 �out ¼ 6:018205 �out ¼ 6:040954
tout ¼ �0:0923 tout ¼ �0:0708 tout ¼ �0:0344

8 32 6.10827 (61) 6.09684 (97) 6.08005 (53)

8 40 6.10099 (46) 6.09550 (41) 6.08086 (50)

8 48 6.09549 (48) 6.09210 (40) 6.07938 (34)

8 56 6.09071 (28) 6.08752 (32) 6.07841 (24)

8 64 6.08647 (25) 6.08403 (33) 6.07735 (29)

8 72 6.08322 (29) 6.08103 (36) 6.07590 (20)
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Figures 2 and 3 illustrate patching for one of our CPU
time expensive simulations of an 8 643 DLT. All simulation
points for the finally combined patches are listed in
Tables IVand V. For N� ¼ 8, between one and five patches
are used, forN� ¼ 4 and 6, between one and three are used.
In the tables the numbers of patches are given in the
columns headlined by p. In Table IV for the N� ¼ 8
lattices, we list in the third column the outside � values
for each lattice size in increasing order. To fit the N� ¼ 4
and 6 information into one table, this information is omit-
ted in Table V, but easily obtained from Table III as the
simulation values for each lattice are given in the same
order as employed in Table IV. Because first simulation
points are always guessed on the basis of previous results,
it depends a bit on chance how many patches are needed.

In Fig. 4 the�t estimates forN� ¼ 4, 6 and 8 of Table III
are plotted together, where at N�=Ns ¼ 0, i.e. for Ns ! 1,
the infinite volume extrapolations for PBC of Table I
are taken as these results are not supposed to depend on
BCs. The connecting lines are just to guide the eyes. It is
obvious that there are large separations by lattice size,
whereas the splits due to distinct outside temperatures are

comparatively small (the larger �t corresponding to the
smaller �out values). Applying relation (23) to translate
our �t into reduced temperatures t ¼ tð�rÞ, we arrive at
Fig. 5. The dominant separation is now by �out values with
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Patched

FIG. 3 (color online). Patching of the runs of the previous
figure.
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FIG. 2 (color online). Reweighting ranges of our final runs for
the 8643 DLT at �out ¼ 6:018205.

TABLE IV. DLT: N� ¼ 8 reweighting information.

Ns p �out �1 �2 �3 �4 �5

32 3 6.004577 6.1075 6.1079 6.1090 � � �
32 1 6.018205 6.0978 � � � � � � � � � � � �
32 4 6.040954 6.0786 6.0800 6.0820 6.0850 � � �
40 4 6.004577 6.1008 6.1013 6.1018 6.1030 � � �
40 3 6.018205 6.0950 6.0960 6.0970 � � � � � �
40 4 6.040954 6.0800 6.0805 6.0810 6.0815 � � �
48 3 6.004577 6.0950 6.0957 6.0980 � � � � � �
48 2 6.018205 6.0927 6.0945 � � � � � � � � �
48 3 6.040954 6.0795 6.0803 6.0811 � � � � � �
56 3 6.004577 6.0900 6.0910 6.0920 � � � � � �
56 3 6.018205 6.0870 6.0875 6.0890 � � � � � �
56 5 6.040954 6.0775 6.0779 6.0782 6.0791 6.0803

64 2 6.004577 6.0865 6.0885 � � � � � � � � �
64 4 6.018205 6.0830 6.0840 6.0845 6.0860 � � �
64 2 6.040954 6.0772 6.0775 � � � � � � � � �
72 2 6.004577 6.0829 6.0835 � � � � � � � � �
72 1 6.018205 6.0810 � � � � � � � � � � � �
72 3 6.040954 6.0755 6.0760 6.0765 � � � � � �

TABLE V. DLT: N� ¼ 4 and N� ¼ 6 reweighting information.
Rows with the same Ns=N� value are in the order of increasing
�out.

N� ¼ 4 N� ¼ 6

Ns

N�
p �1 �2 �3 p �1 �2 �3

3 2 5.722 5.723 � � �
3 1 5.7143 � � � � � �
3 1 5.7030 � � � � � �
4 3 5.7160 5.7180 5.7157 3 5.9250 5.9328 5.9343

4 1 5.7157 � � � � � � 2 5.9250 5.9330 � � �
4 1 5.7040 � � � � � � 1 5.9085 � � � � � �
5 2 5.7180 5.7196 � � � 2 5.9280 5.9288 � � �
5 2 5.7140 5.7148 � � � 3 5.9205 5.9218 5.9241

5 1 5.7043 � � � � � � 1 5.9091 � � � � � �
6 1 5.7159 � � � � � � 2 5.9230 5.9260 � � �
6 1 5.7125 � � � � � � 2 5.9180 5.9189 � � �
6 1 5.7038 � � � � � � 3 5.9082 5.9087 5.9094

7 1 5.7120 � � � � � � 3 5.9175 5.9185 5.9190

7 2 5.7090 5.7100 � � � 2 5.9145 5.9160 � � �
7 1 5.7035 � � � � � � 3 5.9076 5.9080 5.9094

8 3 5.7078 5.7090 5.7098 1 5.9150 � � � � � �
8 2 5.7070 5.7075 � � � 3 5.9120 5.9130 5.9135

8 1 5.7030 � � � � � � 3 5.9070 5.9076 5.9085

9 1 5.7060 � � � � � � 2 5.9105 5.9115 � � �
9 2 5.7045 5.7055 � � � 3 5.9090 5.9103 5.9114

9 1 5.7022 � � � � � � 2 5.9062 5.9078 � � �
10 2 5.7015 5.7045 � � � 3 5.9080 5.9090 5.9100

10 2 5.7033 5.7038 � � � 2 5.9070 5.9085 � � �
10 1 5.7012 � � � � � � 1 5.9050 � � � � � �
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different lattice sizes clustering due to scaling together.
Scaling violations are visible, which increase towards
small volumes (i.e., large N�=Ns).

We would like to extrapolate from our N� ¼ 4, 6, 8
results the finite volume continuum limit. This means

N� ! 1 with x ¼ L�

Ls

¼ constant: (26)

While N� and Ns both approach infinity, the physical
dimensions of the system, L� ¼ aN� and Ls ¼ aNs with
a ¼ að�Þ lattice spacing, stay finite. Let us denote the data
of Fig. 5 by tðN�; xÞ. It is reasonable to assume for fixed
outside temperature ti, i ¼ 1, 2, 3 that tðN�; xÞ can be
expanded into a Taylor series of the variable 1=N� about
tð1; xÞ:

tðN�; xÞ ¼ tð1; xÞ þ a1ðxÞ
N�

þ a2ðxÞ
ðN�Þ2

þ a3ðxÞ
ðN�Þ3

þ � � � :

For each fit there are three data points N� ¼ 4, 6 and
8 (with exception of x ¼ 0:1 for which we have only
N� ¼ 4 and 6). So, we are confined to the linear part
of the expansion in 1=N� and extract tð1; xÞ from two
parameter fits,

tðN�; xÞ ¼ tð1; xÞ þ a1ðxÞ
N�

: (27)

The results for tð1; xÞ are collected in Table VI together
with each goodness of fit Q. In the overall picture, the Q
values are quite satisfactory.
After we have thus estimated the finite volume contin-

uum limit tð1; xÞ, we focus on the volume dependence of
these estimates. As surface over volume varies�1=Ls and
the temporal lattice dimension L� is kept fixed, we plot in
Fig. 6 our tð1; xÞ estimates as a function of x ¼ L�=Ls

together with fits of the form

tð1; xÞ ¼ tð1; 0Þ þ a1x: (28)

For comparison we have also added tð1; xÞ estimates from
lattices with PBC, which give the essentially flat line at the
bottom of the figure. For the three outside temperatures and
PBC, the fit parameters are compiled in Table VII.
Towards large x we do not include our tð1; xÞ estimates

once they leave the straight line. Their turnaround contra-
dicts the expectation that the influence of the confined
outside phase increases in proportion to the surface over
volume ratio. It is assumed to be an artifact due to our
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FIG. 5 (color online). DLT: Pseudotransition reduced tempera-
ture estimates t ¼ tð�tÞ.
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FIG. 4 (color online). DLT: Pseudotransition estimates �t.

TABLE VI. To N� ¼ 1 extrapolated reduced pseudo-
transition temperatures (x ¼ L�=Lz (26)).

t1 t2 t3

x t Q t Q t Q

0 0.0000 (06) 1 0.0000 (06) 1 0.0000 (06) 1

1=10 0.0300 (11) � � � 0.0279 (12) � � � 0.0216 (14) � � �
1=9 0.0356 (11) 0.23 0.0326 (09) 0.67 0.0232 (10) 0.47

1=8 0.0417 (12) 0.84 0.0372 (11) 0.77 0.0249 (12) 0.90

1=7 0.0476 (16) 0.59 0.0421 (13) 0.81 0.0263 (12) 0.49

1=6 0.0571 (17) 0.46 0.0509 (14) 0.42 0.0282 (13) 0.42

1=5 0.0681 (15) 0.03 0.0560 (14) 0.19 0.0347 (19) 0.86

1=4 0.0850 (18) 0.32 0.0620 (26) 0.40 0.0338 (22) 0.92
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FIG. 6 (color online). Estimated behavior of reduced pseudo-
transition temperatures as function of the inverse spatial lattice
extension L�=Ls with L� about 1.1 fm.
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choice of the DLT for implementing the BC. As outlined in
[5], one can wind around each DLT layer along the diag-
onals. This leads to corner effects, where the inside phase
connects with itself. Their importance appears to increase
for smaller volumes and with decreasing temperature of
the outside layer. Altogether, only four data points are
omitted: None for outside temperature t1 or PBC, the last
(largest x) data point for t2, and the last three for t3. Their
deviations from the straight line fits are clearly visible in
Fig. 6. The somewhat small goodness of fit valueQ ¼ 0:06
for the t1 fit is entirely due to the data point at x ¼ 0:1
for which the N� ¼ 8 lattice was too big to be simulated
(Q ¼ 0:63 without this data point).

B. Width

In Table VIII we report our estimates of 4�4=5
t , which

are as in Sec. III C, the full width at 4=5 of the maximum of
the Polyakov loop susceptibility. After converting these

values to reduced temperatures4t4=5, there are rather large
scaling violations from N� ¼ 4 to N� ¼ 6, while the
situation improves considerably from N� ¼ 6 to N� ¼ 8.
For outside temperature t3, this is illustrated in Fig. 7 (to
guide the eyes, data points are connected by straight lines).
We combine the widths, similarly as before the pseudo-

transition temperatures using Eq. (27), and give the results
in Table IX. When there are onlyN� ¼ 4 and 6 data points,
there is no goodness of fit, as well as at x ¼ 0, where the
transition becomes sharp, so that the width is known to be
zero.
For a first-order phase transition, the peaks of the

Polyakov loop susceptibility develop 
-function singular-
ities, i.e., the maxima increase proportionally to the spatial
volume. Therefore, their widths decrease in leading order
proportionally to x3. However, fitting

4t4=5 ¼ a1x
3; (29)

acceptable goodness-of-fit values are only obtained by
restricting the fits to the smallest x values (corresponding
to our largest ðNsÞ3 volumes). To understand the effect
better, we perform two-parameter fits of the form

TABLE VII. Parameters obtained from fits to Eq. (28).

Outside tð1; 0Þ a1 Q

t1 �0:00059 ð57Þ 0.3364 (51) 0.06

t2 0.00005 (58) 0.2914 (54) 0.21

t3 0.00018 (60) 0.1975 (69) 0.13

PBC 0.00014 (56) �0:0003 ð18Þ 0.18

TABLE VIII. Widths 4�4=5
t of the magnetic Polyakov loop

susceptibilities.

N� Ns �out ¼ 5:65 �out ¼ 5:66 �out ¼ 5:6767

4 12 0.01767 (19) 0.01633 (24) 0.01563 (23)

4 16 0.00890 (11) 0.00805 (15) 0.00713 (15)

4 20 0.00539 (10) 0.00472 (08) 0.00379 (10)

4 24 0.00422 (16) 0.00323 (11) 0.002276 (56)

4 28 0.00335 (14) 0.002531 (78) 0.001498 (44)

4 32 0.002580 (71) 0.002185 (65) 0.001089 (44)

4 36 0.001986 (85) 0.001688 (64) 0.000869 (40)

4 40 0.001574 (69) 0.001319 (58) 0.000718 (38)

�out ¼ 5:84318 �out ¼ 5:85514 �out ¼ 5:87514
6 24 0.01458 (30) 0.01365 (42) 0.01191 (35)

6 30 0.00919 (26) 0.00837 (21) 0.00676 (24)

6 36 0.00674 (28) 0.00563 (19) 0.00419 (13)

6 42 0.00516 (23) 0.00462 (26) 0.00289 (11)

6 48 0.00402 (28) 0.00350 (16) 0.00197 (11)

6 54 0.00320 (17) 0.00278 (13) 0.00159 (14)

6 60 0.00250 (13) 0.00224 (15) 0.00131 (10)

�out ¼ 6:004577 �out ¼ 6:018205 �out ¼ 6:040954
8 32 0.01780 (43) � � � 0.01471 (36)

8 40 0.01175 (39) 0.01008 (35) 0.00824 (32)

8 48 0.00882 (56) 0.00658 (47) 0.00540 (22)

8 56 0.00629 (58) 0.00484 (24) 0.00359 (13)

8 64 � � � 0.00422 (21) 0.00245 (17)

8 72 0.00365 (21) 0.00343 (39) 0.00202 (17)
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FIG. 7 (color online). Widths estimates for outside tempera-
ture t3 and temporal lattice sizes N� ¼ 4, 6, 8.

TABLE IX. At fixed x ¼ L�=Ls (26) to N� ¼ 1 extrapolated
widths. Power law parameters for fits to Eq. (30) are given in the
last row.

t1 t2 t3

x 4t4=5t Q 4t4=5t Q 4t4=5t Q

0 0.0 (0) � � � 0.0 (0) � � � 0.0 (0) � � �
1=10 0.00707 (82) � � � 0.00676 (92) � � � 0.00419 (60) � � �
1=9 0.00798 (63) 0.15 0.00796 (71) 0.61 0.00479 (48) 0.63

1=8 0.0112 (17) � � � 0.00925 (60) 0.32 0.00586 (45) 0.39

1=7 0.0138 (13) 0.63 0.01110 (75) 0.01 0.00878 (39) 0.09

1=6 0.0195 (14) 0.96 0.0164 (11) 0.10 0.01303 (57) 0.34

1=5 0.0273 (11) 0.42 0.02440 (90) 0.20 0.01942 (91) 0.10

1=4 0.0407 (13) 0.50 0.0418 (26) � � � 0.0328 (12) 0.14

� � � a2 Q a2 Q a2 Q
� � � 1.947 (74) 0.89 2.093 (94) 0.35 2.374 (72) 0.78
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4t4=5 ¼ a1x
a2 ; (30)

which leave the exponent variable. Surprisingly, this
allows us to fit all our width data consistently, as shown
in Fig. 8. Together with the goodness of fit, the estimated
exponents are given in the last row of Table IX. The pattern
is that disorder (decreasing outside temperature) reduces
the a2 exponents, so that they look effectively like second-
order phase transition exponents. Apparently, much larger
lattices are needed to exhibit the weak first-order nature of
the transition. This is even true for PBC, though the ob-
tained effective exponent is the largest: a2 ¼ 2:594 ð60Þ
with Q ¼ 0:70.

V. FINITE SIZE SCALING EXPONENTS

We consider the influence of DLT BCs with different
outside temperatures on the finite-size scaling exponents of

the specific heat C, the magnetic Polyakov loop suscepti-
bility � and the thermal Polyakov loop susceptibility �b.
We extract estimates from the finite-size behavior of
their maxima Cmax , �max and �b

max by performing two-
parameter fits,

YðNsÞ ¼ aðNsÞb: (31)

Smaller lattices are omitted until an acceptable goodness of
fit Q is obtained (this procedure avoids additional fit
parameters for higher-order corrections, which tend to
render such fits unstable).
For fixed N� and Ns ! 1, one has to obtain the same

exponents as with PBC, because we are still dealing with a
weak first-order phase transition and the asymptotic be-
havior does not depend on the BC. However, effective
estimates from our actual lattices show strong deviations
from the asymptotic behavior. They are compiled in
Table X, where n denotes the number of data points used
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FIG. 8 (color online). Width estimates for N� ¼ 1 and outside
reduced temperatures t1, t2, t3 as well as PBC. The lines are
two-parameter fits (30) to the widths.

TABLE X. Estimates of finite-size scaling exponents from two-parameter fits (31) for our data with DLT BC and PBC.

Cmax �max �b
max

b Q n b Q n b Q n

N� ¼ 4 N� ¼ 4 N� ¼ 4
t1 0.776 (80) 0.97 4 1.381 (36) 0.33 6 1.163 (70) 0.30 5

t2 0.83 (15) 0.73 3 1.75 (18) 0.73 3 1.52 (26) 0.67 3

t3 1.27 (11) 0.24 4 2.01 (11) 0.29 4 1.70 (13) 0.26 4

PBC 2.925 (51) 0.39 3 3.441 (30) 0.16 4 3.343 (46) 0.86 3

N� ¼ 6 N� ¼ 6 N� ¼ 6
t1 0.242 (09) 0.83 7 1.569 (55) 0.91 6 1.198 (58) 0.91 6

t2 0.275 (09) 0.57 7 1.702 (48) 0.05 6 1.323 (49) 0.10 6

t3 0.591 (21) 0.86 6 2.219 (83) 0.20 5 2.173 (40) 0.13 7

PBC 1.58 (12) 0.16 3 3.195 (64) 0.36 5 2.863 (70) 0.31 5

N� ¼ 8 N� ¼ 8 N� ¼ 8
t1 0.0898 (38) 0.26 6 1.537 (77) 0.12 5 1.220 (55) 0.11 6

t2 0.1074 (55) 0.39 6 1.637 (95) 0.69 5 1.279 (77) 0.18 5

t3 0.1956 (94) 0.20 5 2.637 (70) 0.51 6 2.215 (47) 0.69 6

PBC 0.222 (20) 0.17 3 2.824 (92) 0.36 4 2.345 (93) 0.29 4
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FIG. 9 (color online). Two-parameter exponent fits for the
magnetic susceptibility �max on N� ¼ 6 lattices.
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and refers always to the largest available lattices (see, e.g.,
Table III for a list of all simulated DLT lattices).

Instead of the predicted (20) first-order exponent
b ¼ D ¼ 3, far smaller values are obtained. With N� fixed
the systematic trend is that the exponents for outside
temperature t3 are larger than those for t1 and t2. To give
an example, we show in Fig. 9 the fits of the maxima of the
magnetic susceptibility for N� ¼ 6 lattices.

The used �max data are compiled in Table XI, and the
other maxima can be found in [17]. One may assume that
larger N� values need also larger spatial lattice sizes Ns to
exhibit asymptotic behavior. Our data take care of this by
keeping Ns=N� for all N� in the same range. Nevertheless,
the scaling behavior of the specific heat is for N� ¼ 8 in all
cases, including PBC, erratic: The Cð�Þ curves show only
very broad peaks. They are expected to sharpen for even
larger Ns, but those are beyond our computational means.

VI. SUMMARYAND CONCLUSIONS

Our simulations show that even for relatively small tem-
perature differences between outside and inside volumes,
sizeable small volume corrections survive for pseudotran-
sition temperatures. Using the illustrative scale of the
Introduction, the volume dependence of our present esti-
mates from PBC and DLT calculations, together with those
from CBCs [4], are shown in Fig. 10 for L3

s volumes with

edge length Ls between 4 and 12 fm. With PBC there are
practically no finite-size corrections. Then, pseudotransi-
tion temperatures increase when the outside temperature
falls below the infinite volume deconfining transition tem-
perature. For the outside temperatures used in this paper, the
change is less pronounced than with CBCs, but astonish-
ingly large when one bears in mind that CBCs are supposed
tomodel zero outside temperature and that ourDLTBCs are
only moving up to 10% in this direction on the scale of the
transition temperature. This suggests that CBC estimates
are realistic and not just a strong coupling artifact.
While a lot of work has focused on including quarks,

little has so far been done about calculating small volume
corrections, which increase the SU(3) transition tempera-
ture, while quark effects decrease it. The SU(3) simulations
suggest that the magnitudes of the changes are similar.
Assuming that the increase with decreasing volume holds
also with quarks included, lattice calculations with PBC
would underestimate the pseudotransition temperature in
RHIC. The width of the transition is broadened by both
effects, so that the conversion into a crossover is expected
to become even more eminent. See Fig. 8 for the width
estimates of this paper.
Including quarks requires building on software of one of

the large scale QCD collaborations. At least in the first
stage, one should fall back to simple CBCs as one cannot
afford a multiplicative CPU time increase due to more
involved BCs and fermions. This limitation appears
acceptable, as our SU(3) DLT calculations support the
relevance of the earlier CBC estimates. CBC modifications
of, e.g., the MILC code would already be laborious,
because to reduce discretization errors one has to imple-
ment CBCs for improved actions like [25] in both gauge
and fermionic sectors.
A supporting investigation could aim at a further per-

fection of the BC between cold and hot regions of pure
SU(3) gauge theory. This should include studying the
effect due to a cold surrounding geometry instead of a
DLT. Using the always confined [26] spacelike string
tension as an additional scale would allow one to tune

TABLE XI. DLT: Maxima �max of the Polyakov loop suscep-
tibility (values at �max ).

N� Ns �out ¼ 5:65 �out ¼ 5:66 �out ¼ 5:6767

4 12 3.67 (03) 3.75 (04) 3.63 (04)

4 16 7.58 (07) 8.01 (11) 8.27 (13)

4 20 12.56 (17) 13.90 (17) 16.20 (30)

4 24 15.81 (41) 20.25 (49) 27.89 (50)

4 28 19.09 (54) 25.47 (57) 42.80 (92)

4 32 23.54 (46) 28.31 (61) 58.9 (1.8)

4 36 28.42 (86) 34.49 (93) 72.4 (2.4)

4 40 33.8 (1.1) 42.1 (1.5) 86.4 (3.3)

�out ¼ 5:84318 �out ¼ 5:85514 �out ¼ 5:87514
6 24 5.11 (08) 5.04 (11) 5.30 (11)

6 30 8.23 (17) 8.51 (15) 9.53 (24)

6 36 11.00 (34) 12.60 (30) 15.86 (35)

6 42 13.77 (43) 15.51 (60) 23.58 (64)

6 48 16.86 (83) 19.52 (63) 31.12 (90)

6 54 20.47 (75) 22.68 (73) 37.5 (1.6)

6 60 25.4 (1.3) 28.5 (1.4) 50.0 (2.7)

�out ¼ 6:004577 �out ¼ 6:018205 �out ¼ 6:040954
8 32 3.556 (69) 3.27 (11) 3.35 (12)

8 40 5.39 (13) 5.98 (13) 6.43 (17)

8 48 7.14 (24) 8.46 (39) 10.27 (31)

8 56 9.30 (31) 10.48 (68) 14.98 (87)

8 64 9.41 (71) 12.46 (74) 21.7 (1.2)

8 72 13.65 (63) 16.1 (1.3) 27.5 (2.1)
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FIG. 10 (color online). Small volume corrections for the pseu-
dotransition temperature with CBC, DLT and PBC boundaries.
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couplings for spacelike and timelike plaquettes distinctly,
so that the space transition from deconfined to confined
volumes becomes entirely smooth.
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