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We determine the decay constants of the � and K mesons on gluon field configurations from the MILC

Collaboration includingu, d, s, and c quarks.We use three values of the lattice spacing andu=d quarkmasses

going down to the physical value. We use thew0 parameter to fix the relative lattice spacing and f� to fix the

overall scale. This allows us to obtain a value for fKþ=f�þ ¼ 1:1916ð21Þ. Comparing to the ratio of

experimental leptonic decay rates gives jVusj ¼ 0:22564ð28ÞBrðKþÞð20ÞEMð40Þlattð5ÞVud
and the test of unitar-

ity of the first row of the Cabibbo-Kobayashi-Maskawa matrix: jVudj2þjVusj2þjVubj2�1¼0:00009ð51Þ.
DOI: 10.1103/PhysRevD.88.074504 PACS numbers: 12.38.Gc, 13.20.�v, 14.40.Df

I. INTRODUCTION

The annihilation of a charged� orKmeson to leptons via a
W boson is a ‘‘gold-plated’’ process whose rate can be de-
termined very accurately from experiment. The decay width
for pseudoscalar P made of valence quarks a �b is given by

�ðP ! l�Þ ¼ G2
FjVabj2
8�

f2Pm
2
l MP

�
1� m2

l

M2
P

�
2

(1)

up to known electromagnetic corrections. Here Vab is the
appropriate Cabibbo-Kobayashi-Maskawa (CKM) matrix
element for coupling to the W and fP is the pseudoscalar
decay constant which parametrizes the amplitude for the
annihilation. fP can only be determined accurately from
lattice QCD calculations.

The experimental determination of �ðKþ ! l�Þ=
�ð�þ ! l�Þ can be converted to a result for the ratio of the
CKM element� decay constant for K and �. Using experi-
mental averages [1] �ð�þ!l�Þ¼3:8408ð7Þ�107 s�1 and
�ðKþ ! l�Þ ¼ 5:133ð13Þ � 107 s�1 gives

jVusjfKþ

jVudjf�þ
¼ 0:27598ð35ÞBrðKþÞð25ÞEM: (2)

Here we have allowed for an electromagnetic correction to
the ratio of widths given by (1þ �EM) with �EM ¼
�0:0070ð18Þ [2,3]. The error in Eq. (2) from this correction
is sizeable but not as large as that from the Kþ branching
fraction to��which dominates. The total error in determin-
ing the ratio of Eq. (2) from experiment is then 0.16%.

The electromagnetic correctionmeans that fK and f� are
defined as quantities in pure QCD without electromagnetic
interactions. An accurate theoretical result from lattice

QCD for fKþ=f�þ then yields jVusj=jVudj [4]. Since Vud

is known accurately from nuclear � decay, this gives Vus.
The higher the accuracy onVus themore stringent the test of
CKM first row unitarity we can do, since Vub is too small to
contribute (at present) to this. Any deviations are indica-
tions of new physics and the more stringent the test, the
higher the scale to which the new physics is pushed.
State-of-the-art lattice QCD calculations have achieved

errors below 1% in fK=f� [5–9], typically dominated by
the systematic errors from extrapolation of the lattice
results to the real-world continuum and chiral limits where
the lattice spacing is zero and the u=d quark masses take
their physical values (equivalent to the � meson mass
taking its physical value). This means that significant
improvements can be expected if we reduce discretization
errors, to make the continuum extrapolation more benign,
and if we work with physical u=d quark masses that
obviate the need for a chiral extrapolation. It also means
that the comparison of different methods for arriving at a
physical answer from lattice QCD are important in testing
systematic error estimates.
The MILC Collaboration recently gave an analysis of

fKþ=f�þ [10] from lattice QCD on their ‘‘second-
generation’’gluon field configurations that include u, d, s,
and c quarks in the sea using the highly improved staggered
quark (HISQ) formalism [11] and a fullyOð�sa

2Þ improved
gluon action [12]. They have ensembles with the average of
the u and d quark masses down to the physical value. Their
final error was 0.4% on the decay constant ratio dominated
by errors from the extrapolation to zero lattice spacing.
Their analysis [10] concentrated on the ensembles with
physical u=d quark mass and the aim was to perform a
single self-contained analysis that did not use additional
information from, for example, chiral perturbation theory or
determination of the lattice spacing using other quantities.
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In this paper we provide a new analysis with the most
accurate result to date. To do this we use the same MILC
ensembles with a completely independent analysis of me-
son correlation functions with high statistics. We include
ensembles with heavier-than-physical u=d quark masses
and use chiral perturbation theory to pin down the point
corresponding to physical light- and strange-quark masses.
We also include very accurate information on the relative
lattice spacings of the ensembles using the Wilson flow
parameter, w0 [13]. This enables us to reduce the error on
the decay constant ratio to below 0.2% which is close to the
error coming from experiment in Eq. (2).

Section II describes the lattice calculation. The results
and analysis, including a table of all our raw lattice values
for meson masses and decay constants, are given in
Sec. III. This is followed by a discussion and conclusions
in Secs. IV and V respectively.

II. LATTICE CALCULATION

A. Meson correlators

Table I gives the parameters for the MILC ensembles of
gluon field configurations that we use here [14,15]. The
table includes the values of sea-quark masses in lattice
units, where the u and d quarks are taken to have the same
mass, m‘ ¼ mu ¼ md. The accurate determination of the
lattice spacing will be discussed further below. Here we
simply note that the ‘‘very coarse’’ lattices (sets 1, 2, and 3)
have lattice spacing, a � 0:15 fm, the coarse lattices (sets
4, 5, and 6) have a � 0:12 fm, and the fine lattices (sets 7
and 8) have a � 0:09 fm. Thus the spatial volumes of the
lattices are large: the sets with physicalml (sets 3, 6, and 8)
are all larger than 4.8 fm on a side, with sets 6 and 8 being
larger than 5.5 fm on a side.

On these ensembles we calculate light and s-quark
propagators using the same HISQ action as used in the

sea. The valence ‘ quarks are taken to have the same mass
as those in the sea, the valence s quarks are retuned slightly
to correspond more closely to the physical value [16]. The
valence masses used are given in Table III. We use an
unsmeared random wall source on each of 16 time sources
per configuration for very high statistical accuracy [16].
The propagators are combined to make meson correla-

tion functions for �, K, and �s mesons. The �s is a
fictitious ss meson that is not allowed to decay here be-
cause we do not include the disconnected pieces of the
correlation function. Since it does not contain valence u=d
quarks it is a useful particle to study in lattice QCD [16,18].
We include it here to provide more information to our fits
about the meson mass dependence of the decay constants.
We average over the 16 time sources to obtain a result

for each configuration and then study the configuration-to-
configuration correlations. An autocorrelation analysis was
performed in [16] and plots of the autocorrelation function
for the � and �s correlators are given for the ensembles
with m‘=ms ¼ 0:1 and 0.2. The autocorrelation function
for the sets at physical m‘=ms show a decrease in correla-
tion between configurations. We give an example in Fig. 1
for the � meson correlator on coarse set 6. The other
physical point ensembles show very similar behavior. We
bin over two adjacent configurations on sets 1, 2, 3, and 6
and bin over four adjacent configurations on all other sets.
We then fit all three meson correlators simultaneously as

a function of time, t, between source and sink according to

GmesonðtÞ ¼
Xnexp
k¼0

akðe�Ekt þ e�EkðT�tÞÞ

� ð�1Þt=a Xnexp
ko¼0

~akoðe� ~Ekot þ e� ~EkoðT�tÞÞ: (3)

The oscillating piece is absent for the � and �s mesons
because the valence quark and antiquark have equal mass.
We use Bayesian fitting methods [19,20] so that the full
effect of excitations in the spectrum can be included in the

TABLE I. Details of the MILC gluon field ensembles used in
this paper [14,15]. � ¼ 10=g2 is the SU(3) gauge coupling and L
and T give the length in the space and time directions for each
lattice. am‘;sea, ams;sea, and amc;sea are the light (up and down

taken to have the same mass), strange, and charm sea-quark
masses in lattice units. The ensembles 1, 2, and 3 will be referred
to in the text as ‘‘very coarse,’’ 4, 5, and 6 as ‘‘coarse,’’ and 7 and
8 as ‘‘fine.’’ The number of configurations that we have used in
each ensemble is given in the final column. We have used 16
time sources on every configuration.

Set � am‘;sea ams;sea amc;sea L=a� T=a ncfg

1 5.80 0.013 0.065 0.838 16� 48 1020

2 5.80 0.0064 0.064 0.828 24� 48 1000

3 5.80 0.002 35 0.0647 0.831 32� 48 1000

4 6.00 0.0102 0.0509 0.635 24� 64 1052

5 6.00 0.005 07 0.0507 0.628 32� 64 1000

6 6.00 0.001 84 0.0507 0.628 48� 64 1000

7 6.30 0.0074 0.0370 0.440 32� 96 1008

8 6.30 0.0012 0.0363 0.432 64� 96 621
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FIG. 1 (color online). The autocorrelation function for the �
meson correlator at lattice time 20 on coarse set 6. �T ¼ 1
corresponds to adjacent configurations in the ordered list for the
set which are 5 molecular dynamics time units apart.
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errors on the ground-state quantities that we are interested
in, i.e. a0 and E0 for each meson. The simultaneous fit to all
three mesons allows us to take into account the correlations
between the fit results for each meson in our subsequent
analysis. Results are taken from six exponential fits (with
an additional six oscillating exponentials for the K).

The �, K, and �s meson masses are given by the appro-
priate E0 values from the fit above. The decay constant is
determined from the corresponding amplitude, a0, by

fab ¼ ðma þmbÞ
ffiffiffiffiffiffiffiffi
2a0
E3
0

s
(4)

for a meson with quark content a �b [5]. This formula holds
for Goldstone pseudoscalar mesons made of staggered
quarks and follows from the existence of a partially con-
served axial current relation in these formalisms. The decay
constant is then absolutely normalized in lattice QCD.

Table III gives the results of our correlator fits for the
decay constant and meson masses in lattice units on each
ensemble. The errors are below 0.1% in almost all cases.

B. Lattice spacing determination

It has recently been proposed that lattice spacings be
measured by smoothing the gluon field using a series of
infinitesimal ‘‘smearing’’ steps [13,21]. This drives the
gluon field towards a smooth renormalized field and
gauge-invariant functions of this field, such as the pure
gluon action density, become physical quantities. The
parameters used to determine the lattice spacing can
then be defined from the flow-time, t, dependence of
such quantities. Reference [21] defines t0 from

t2hEijt¼t0 ¼ 0:3; (5)

where hEi is the expectation value of the gluon action
density. The parameter w0 is preferred in [13], where w0

is defined by

t
d

dt
t2hEijt¼w2

0
¼ 0:3: (6)

w0 should be less sensitive to small flow times where
discretization effects may be important. Both w0 and t0
can be determined by direct measurement on the gluon field
and this makes them simpler to evaluate as well as typically
more precise than parameters based on the heavy-quark
potential [22]. The heavy-quark potential must be deter-
mined by fitting largeWilson loops as a function of (lattice)
time and then, to extract parameters such as r1 [14], a further
fit as a function of r must be done to the potential.

None of w0, t0, and r1 can be simply related to any
directly measurable experimental quantity and their physi-
cal value must be determined by a lattice QCD calculation
of such a quantity. For example, w0 and t0 are determined
from the mass of the� baryon in [13] and r1 is determined
from a basket of quantities including the � excitation
energy and the decay constant of the �s meson in [16,18].

Here we will use w0=a to determine the relative lattice
spacing between the ensembles and finally fix its value
from f� in our analysis in Sec. III. We give values forw0=a
on each ensemble in Table II and also, for comparison, offfiffiffiffi
t0

p
=a. These were obtained using the methods explained

TABLE II. Values of the lattice spacing for the ensembles of
Table I in units of parameters w0 [13], t0 [21], and r1 [23]. The
r1=a values were calculated by MILC and given in [15].

Set w0=a
ffiffiffiffi
t0

p
=a r1=a

1 1.1119(10) 1.0249(5) 2.059(23)

2 1.1272(7) 1.0319(3) 2.073(13)

3 1.1367(5) 1.0357(2) 2.089(8)

4 1.3826(11) 1.2389(5) 2.575(17)

5 1.4029(9) 1.2475(4) 2.626(13)

6 1.4149(6) 1.2521(3) 2.608(8)

7 1.8869(39) 1.6515(16) 3.499(24)

8 1.9525(20) 1.6769(7) 3.565(13)
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FIG. 2 (color online). At the top the ratio r1=w0 plotted as a
function of a2 and below the ratio

ffiffiffiffi
t0

p
=w0. The grey band gives

the results of a simple polynomial fit to the a2 and m‘ depen-
dence as described in the text. The dashed line shows the fit
evaluated at the physical value for ml=ms of 0.036 [1].
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in [13]. We bin over 12 adjacent configurations (60 mo-
lecular dynamics time units on all sets except for set 8
where it is 72 time units) to remove the effects of auto-
correlations in the results as assessed by a binning analysis.

Figure 2 compares the scales w0, t0, and r1 by plotting
r1=w0 and

ffiffiffiffi
t0

p
=w0 as a function of ða=w0Þ2. We see that

discretization errors largely cancel between r1 andw0 since
their ratio is very flat in a2. There is a small variation with
m‘. The errors here are dominated by statistical/fitting
errors in r1. In contrast

ffiffiffiffi
t0

p
=w0 is much more precise but

has relatively strong lattice-spacing dependence, presum-
ably from

ffiffiffiffi
t0

p
[13].We carried out a simple polynomial fit in

m‘=ð10msÞ and �sð�aÞ2, ð�aÞ4, ð�aÞ6 with � ¼ 0:6 GeV
for both ratios, taking priors on the coefficients of 0.0(1.0).
This gives the result r1=w0 ¼ 1:789ð26Þ and

ffiffiffiffi
t0

p
=w0 ¼

0:835ð8Þ in the continuum and physical light-quark mass
limits represented by the grey shaded bands in Fig. 2. The
result for

ffiffiffiffi
t0

p
=w0 agrees well with the BMW-c result of

0.835(15)(7) using theWilson clover 2-HEX action in [13].

III. ANALYSIS AND RESULTS

Table III gives our raw lattice results for the pseudoscalar
meson masses and decay constants in lattice units. In this
section we use these data to compute the dependence of f�,
fK, and f�s

on the quark masses and on the lattice spacing.

This allows us to interpolate to the physical values of the
strange-quark and light-quark masses, and to extrapolate to
zero lattice spacing, obtaining new predictions for the decay
constants (as well as the�s mass). The differences between
our most chiral simulation data and our final results are
small since our simulation is very close to physical. It is
nevertheless important to model these corrections accu-
rately to optimize the precision of our final results.

Our analysis involves the following steps:
(1) Remove the lattice spacing by multiplying the

masses and decay constants for the �, K, and �s

by the values (with errors) of w0=a from Table II.

We also apply an singular value decomposition
(svd) cut to the data to guarantee that roundoff errors
are not an issue when inverting the covariance ma-
trix for the �2 function. This in effect triples the
statistical errors.

(2) Fit the simulation results for w0f�, w0fK, w0f�s
,

and w2
0M

2
�s
, together with the experimental result

for f�þ , as functions of the corresponding pion and
kaon masses, and w0. We take the functional depen-
dence from one-loop partially quenched chiral per-
turbation theory plus terms polynomial in M2

�, M
2
K,

and a2. The fit gives a new value for w0, which is
largely determined by the experimental value for f�
used in the fit. It also gives the functional depen-
dence of the decay constants and the �s mass on the
quark masses, as specified byM� andMK. Sea- and
valence-quark masses are specified separately. The
same chiral formulas, with the same couplings, are
used for pions, kaons, and �ss; only the valence-
quark masses differ.

(3) Evaluate the best-fit functions for fK and f� at
values of the pion and kaon masses appropriate for
f�þ and fKþ . We set the u and d quark masses equal
in our simulations. We correct for this approxima-
tion through appropriate choices for the values of
M� and MK used in our fit formulas to obtain our
final results. At the same time we correct for (small)
electromagnetic corrections to the meson masses.
[The decay constants, by definition, do not need
electromagnetic corrections; these are included
explicitly in Eq. (2).]

In the rest of this section we elaborate on these steps, and
survey our results.

A. Chiral fit

We fit our lattice results for the decay constants using a
formula drawn from partially quenched chiral perturbation
theory [24] that has the following form:

TABLE III. Values for �, K, and �s masses and decay constants in lattice units calculated for valence masses given in columns 2 and
3. Some of the results were previously given in [16,17]. There are slight differences in some values with earlier results because
different fit results were used.

Set am‘;val ams;val aM� af� aMK afK aM�s
af�s

1 0.013 0.0688 0.236 44(15) 0.111 84(10) 0.412 14(24) 0.126 95(15) 0.533 50(17) 0.141 85(9)

0.0641 0.400 06(19) 0.125 85(10) 0.515 11(16) 0.140 09(7)

2 0.0064 0.0679 0.166 14(7) 0.105 08(6) 0.390 77(10) 0.122 65(4) 0.527 98(9) 0.140 27(4)

0.0636 0.379 48(10) 0.121 77(4) 0.510 80(9) 0.138 40(4)

3 0.002 35 0.0628 0.101 72(4) 0.099 38(6) 0.365 57(8) 0.118 37(4) 0.506 56(6) 0.137 20(2)

4 0.010 44 0.0522 0.191 58(9) 0.090 77(6) 0.327 89(11) 0.101 89(5) 0.423 58(11) 0.113 18(4)

5 0.005 07 0.0505 0.134 14(6) 0.084 52(5) 0.307 56(10) 0.097 88(4) 0.414 74(8) 0.111 19(3)

6 0.001 84 0.0507 0.081 54(2) 0.079 90(3) 0.298 43(5) 0.095 32(2) 0.414 78(4) 0.110 65(2)

7 0.0074 0.0364 0.140 62(10) 0.066 18(5) 0.239 19(11) 0.074 24(4) 0.308 71(10) 0.082 36(3)

8 0.0012 0.0360 0.057 16(2) 0.057 84(3) 0.218 55(5) 0.069 21(2) 0.304 80(4) 0.080 53(2)
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fNLOðxa; xb; xsea‘ ; xseas ; LÞ þ �f� þ �flat: (7)

Here fNLO is the result from chiral perturbation theory
through one-loop order, in a finite volume of size L on a
side, and �f� and �flat are corrections for higher-order

chiral contributions and nonzero lattice-spacing errors,
respectively. We specify valence- and sea-quark masses
through the dimensionless parameters xa, xb, etc., where,
for example, a light quark with mass m‘ ¼ ðmu þmdÞ=2
would correspond to

x‘ ¼
M2

0;�

16�2f20
: (8)

Here f0 is fixed to the standard value 131.5 MeV, close to
the experimental result for f�. M0;� is the bare pion mass

obtained by subtracting the one-loop chiral correction from
masses measured in the simulation (Table III). Using bare
meson masses corrects for (negligible) finite-volume errors
in the masses. The s-quark parameter is given by

xs ¼
2M2

0;K �M2
0;�

16�2f20
; (9)

whereM0;K is the bare mass coming from the kaon masses

measured in the simulation. The same formula is used for
each of the three mesons we study, changing only the
valence masses:

f� $ fNLOðx‘; x‘; xsea‘ ; xseas ; LÞ þ �f� þ �flat;

fK $ fNLOðx‘; xs; xsea‘ ; xseas ; LÞ þ �f� þ �flat;

f�s
$ fNLOðxs; xs; xsea‘ ; xseas ; LÞ þ �f� þ �flat:

(10)

In our fits, we use very broad priors for the chiral
parameters in fNLO—10–100 times wider than the final
errors—so these have no impact on the fit. We also intro-
duce a new parameter that multiplies the finite-volume
correction in fNLO. This allows our fit to correct (crudely)
for finite-volume corrections from higher orders in chiral
perturbation theory. We set its prior to 1� 0:33. Finite-
volume corrections are quite small on almost all of the
ensembles, as is evident from Table IV which lists correc-
tions for the decay constants. (The �s mass has very small
corrections, similar in magnitude to those for f�s

.) The

finite-volume corrections agree at the level of the errors we
have with the range of those calculated in [25], as well as
with the finite-volume analysis in [10].
The square of the �s mass is fit with an analogous

formula of the form

M2
NLOðxa; xb; xsea‘ ; xseas ; LÞ þ �M2

� þ �M2
lat; (11)

with xa ¼ xb ¼ xs.

B. Higher-order corrections

We include terms beyond one-loop order in chiral per-
turbation theory by adding a correction of the form

�f��c2aðxaþxbÞ2þc2bðxa�xbÞ2þc2cðxaþxbÞð2xsea‘ þxseas Þþc2dð2xsea‘ þxseas Þ2þc2eð2xsea2‘ þxsea2s Þþc3aðxaþxbÞ3
þc3bðxaþxbÞðxa�xbÞ2þc3cðxaþxbÞ2ð2xsea‘ þxseas Þþc4ðxaþxbÞ4þc5ðxaþxbÞ5þc6ðxaþxbÞ6; (12)

where we take priors of 0� 1 for each parameter cj. We
only keep higher-order terms that might be significant
given the precision of our simulation data. In fact, we
obtain an excellent fit and almost identical results (to
within a quarter of a standard deviation) when we keep
only the quadratic terms. We include an analogous correc-
tion, �M2

�, for the square of the �s mass.

We also correct for the nonzero lattice spacing using

�flat �
X4
n¼1

dn

�
a�QCD

�

�
2n
; (13)

where dn is allowed to depend upon the quark masses,

TABLE IV. Finite-volume corrections, �volf, to simulation results for the meson decay constants. Errors on the finite-volume
correction come from our fit and are correlated between ensembles and between � and K. Also listed for each ensemble are the lattice
spacing a (after determination of w0 which gives the error shown, correlated between ensembles), the ratio of valence strange- to light-
quark mass ms=m‘, the spatial dimension of the lattice L, and the pion and kaon masses (with their statistical errors from Table III).

a ms=m‘ L M�L M� (MeV) MK (MeV) �volf� (%) �volfK (%) �volf�s
(%)

0.1543(8) fm 5.3 2.5 fm 3.8 302.4(2) 527.1(3) 1.24(23) 0.50(9) 0.10(0)

0.1522(8) fm 10.6 3.7 fm 4.0 215.5(1) 506.8(1) 0.38(7) 0.12(2) 0.00(0)

0.1509(8) fm 26.7 4.8 fm 3.3 133.0(1) 477.9(1) 0.43(8) 0.13(2) 0.00(0)

0.1241(7) fm 5.0 3.0 fm 4.6 304.5(1) 521.2(2) 0.37(7) 0.14(3) 0.01(0)

0.1223(6) fm 10.0 3.9 fm 4.3 216.5(1) 496.4(2) 0.24(5) 0.08(1) 0.00(0)

0.1212(6) fm 27.6 5.8 fm 3.9 132.7(0) 485.7(1) 0.15(3) 0.05(1) 0.00(0)

0.0907(5) fm 4.9 2.9 fm 4.5 306.1(2) 520.6(2) 0.41(8) 0.16(3) 0.02(0)

0.0879(4) fm 30.0 5.6 fm 3.7 128.4(0) 490.8(1) 0.21(4) 0.07(1) 0.00(0)
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dn ¼ dn;0 þ dn;1aðxa þ xbÞ þ dn;1bð2xsea‘ þ xseas Þ
þ dn;1cðxa þ xbÞ2; (14)

and again the coefficients have priors 0� 1. We get ex-
cellent fits and almost identical answers without allowing
for mass dependence, but we are conservative and include
this possibility, since it could arise from taste-changing
effects [18,26], thereby increasing our final errors by about
half a standard deviation.

Equation (13) is an expansion in the QCD scale �QCD

divided by the ultraviolet cutoff, �=a, for the lattice. The
QCD scale is of order 500MeV to 1 GeV. This is confirmed
by the empirical Bayes criterion [19] which shows that our
data imply a scale of about 600 MeV. In our analysis we
use a conservative value, 1.8 GeV, to ensure that nonzero
lattice-spacing errors are not underestimated.

C. Isospin violation and electromagnetism

We need to determine the x‘ and xs values correspond-
ing to physical pion and kaon masses if we are to use our
formulas to extract physical values for the decay constants
and the �s mass. The correct pion and kaon masses come
from experiment, but there are two complications that
result from simplifications in the simulations. The first is
that the simulation does not include electromagnetism. The
second is that mu ¼ md in the simulation, while in reality
mu ¼ 0:48ð10Þmd [1].

The most appropriate pion mass for f�þ is the neutral-
pion mass [134.9766(6) MeV [1]]. All � mesons would
have this mass in a world without electromagnetism—our
simulations, for example—up to very small (quadratic)
corrections from the u-d mass difference. These correc-
tions are estimated at 0.32(20) MeV for M�þ in [27]. For
our purposes, it is sufficient to take 0.32 MeV as the
uncertainty in the pion mass, and ignore the distinction
between charged and neutral pions:

Mphys
� ¼ 134:98ð32Þ MeV: (15)

This pion mass corresponds in our simulation to a light-
quark mass of m‘ ¼ ðmu þmdÞ=2. The corresponding

kaon mass is one for an s �‘ meson. This is the root-mean-
square average of the Kþ and K0 masses with additional
small corrections for electromagnetism:

ðMphys
K Þ2�1

2
½ðM2

KþþM2
K0Þ�ð1þ�EÞðM2

�þ�M2
�0Þ�: (16)

�E would be zero if electromagnetic effects in the K
system mirrored those of the �. In fact it is closer to 1.
Recent lattice calculations [28–30] that include electro-
magnetic effects give values in the region 0.6–0.7. We
take �E ¼ 0:65ð50Þ to conservatively encompass these
results and this gives

M
phys
K ¼ 494:6ð3Þ MeV: (17)

Tuning the pion mass to M
phys
� and the kaon mass to

M
phys
K in our fits sets the strange-quark mass to its physical

value, and the light-quark mass to the average m‘ of the u
and d masses. This light-quark mass is correct, to within
our errors, for the valence quarks in the pion, and for sea
quarks in all three mesons.
This tuning is not correct, however, for the Kþ’s valence

light quark, which is a u quark, with mass 0:65ð9Þm‘. This
difference produces a small but significant downward shift
in fKþ . To compute the corrected Kþ decay constant, we
evaluate our fit formulas with a pion mass given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:65ð9Þp

M
phys
� , while adjusting the kaon mass so that

2M2
K �m2

� is unchanged (to leave the s-quark mass un-
changed). These adjustments are made only for the
valence-quark masses in the Kþ; the valence-quark masses

in the pion and �s, as specified byM
phys
� andM

phys
K , are left

unchanged, as are the sea-quark masses in each of the
mesons.

D. Fit results

We fit w0 times each of the decay constants and each �s

mass in Table III to the formulas above, as functions of the
pion and kaon masses and w0. We also fit the experimental
value for f�þ ¼ 130:4ð2Þ MeV to our formula evaluated at
the physical pion and kaon masses, Eqs. (15) and (17).
These fits are all done simultaneously using the same
parameters for the fit functions in each case, and including
the correlations between �, K, and �s results discussed
in Sec. II.
The results for the decay constants as a function of the

light-quark mass are shown in Fig. 3. For each decay
constant we show fit results and simulation data for each
of our three lattice spacings. The dashed line shows the
continuum extrapolation, while the grey band shows our
final results extrapolated to zero lattice spacing and the
physical light-quark mass limit (with the light-quark mass
equal to the u-d average). The fit is excellent with a �2 per
degree of freedom of 0.42 (p value 0.99), fitting 39 pieces
of data. There are 61 parameters, each with a Bayesian
prior. The final results are

f�¼130:39ð20ÞMeV; fKþ=f�þ ¼1:1916ð21Þ;
fKþ ¼155:37ð34ÞMeV; f�s

=M�s
¼0:2631ð11Þ;

f�s
¼181:14ð55ÞMeV; M2

�s
=ð2M2

K�M2
�Þ¼1:0063ð64Þ;

M�s
¼688:5ð2:2ÞMeV; f�s

=ð2fK�f�Þ¼0:9997ð17Þ;
w0¼0:1715ð9Þ fm: (18)

Clearly the result for f� contains no new information
beyond the input value from the experiment that was
included as a fit parameter. The Kþ results here are ad-
justed to correct the valence light-quark mass, as discussed
above. We find that the Kþ decay constant is 0.27(7)%
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lower than the decay constant for a kaon whose valence
light-quark’s mass equals the u-d average mass.

Error budgets for several of our results are presented in
Table V. Our fits are unchanged if we include additional
higher-order chiral or a2 corrections, beyond what is dis-
cussed above. Omitting results from any one of our con-
figuration sets shifts the mean values by no more than one
standard deviation and usually much less. Omitting results
from the smallest lattice spacing (0.09 fm) gives the same
mean values but with standard deviations that are 2.5 times
larger. Omitting the most chiral results (ms=ml > 25) shifts

the means by about 1=3 of a standard deviation and in-
creases the standard deviation by 50%. These last two tests
are evidence that our a2 and chiral extrapolations are stable
and robust.
As a check of the ‘‘statisticalþ svdcut’’elements of the

error budget we repeated the analysis using correlator
results binned over many more adjacent configurations.
We used a bin size of 16 corresponding to 80 molecular
dynamics time units (64 or 96 on set 8 depending on
stream). This gives the same final result within 0:5	 and
the same errors.
The a2 variation of our simulation results is quite small

(1–2 standard deviations) across our entire range of lattice
spacings. This is illustrated in Fig. 4 where we show
simulation results for fK=f� in the physical light-quark
mass limit for our three lattice spacings (top curve); the
grey band is the a ¼ 0 result. This behavior is in marked
contrast with what we obtain if we set the lattice spacing

FIG. 3 (color online). Fit results for the �, K, and �s decay
constants as functions of the light-quark mass for three different
lattice spacings: 0.15 fm (top/blue), 0.12 fm (middle/green), and
0.09 fm (bottom/red). The data shown are from Table III, with
corrections for errors in the s masses, and for finite-volume
errors. The lines show our fit with the best-fit values of the fit
parameters. The dashed line is the a ¼ 0 extrapolation, and the
grey band shows our continuum results at the physical light-
quark mass point with m‘ ¼ ðmu þmdÞ=2. The current experi-
mental result for f�þ is also shown (black point). Note that the
three plots are against very different scales in the vertical
direction: the range covered in the f� plot is 10 times larger
than that covered in the f�s

plot.

TABLE V. Sources of uncertainty in the final results [Eq. (18)]
for the Kþ decay constant, the ratio of Kþ to �þ decay
constants, the �s mass, and the Wilson flow parameter w0.

fKþ fKþ=f�þ m�s
w0

Statisticsþ svd cut 0.13% 0.13% 0.28% 0.26%

Chiral extrapolation 0.03 0.03 0.04 0.15

a2 ! 0 extrapolation 0.10 0.10 0.15 0.27

Finite volume correction 0.01 0.01 0.01 0.02

w0=a uncertainty 0.02 0.02 0.02 0.28

f�þ experiment 0.13 0.03 0.07 0.19

mu=md uncertainty 0.07 0.07 0.00 0.00

Total 0.22% 0.18% 0.33% 0.54%

t0

r1

w0

0.000 0.005 0.010 0.015 0.020 0.025

a2 (fm2)

1.180

1.185

1.190

1.195

1.200

f K
f π

FIG. 4 (color online). Fit results for fK=f� evaluated at the
physical light-quark mass limit, with m‘ ¼ ðmu þmdÞ=2, for
different lattice spacings. The data shown are from Table III,
with corrections for errors in the quark masses, and for finite-
volume errors. The top curve and data are from our analysis
using w0 to set the lattice spacing; the middle results are from
our analysis using r1 instead of w0; the bottom results are from
our analysis using

ffiffiffiffi
t0

p
. The grey band shows the final result

from the w0 analysis.
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using
ffiffiffiffi
t0

p
(bottom curve). The two methods agree to within

1.3 standard deviations when extrapolated to a ¼ 0, but
the variation with a2 in the

ffiffiffiffi
t0

p
analysis is much larger.

This agrees with the findings of [13] that
ffiffiffiffi
t0

p
has larger

discretization errors than w0 when compared to hadronic
quantities. We have also redone our analysis using r1
(middle curve). These results are similar to those from
the w0 analysis, and give an extrapolated value that agrees
with that analysis to within half a standard deviation. These
two analyses also giveffiffiffiffi

t0
p ¼ 0:1420ð8Þ fm; r1 ¼ 0:3112ð30Þ fm: (19)

We use quite broad priors for w0,
ffiffiffiffi
t0

p
, and r1 in our fits:

0.1755(175), 0.1400(140), and 0.3150(320), respectively.
They have little effect on the fit results.

Finally, we give the Gasser-Leutwyler low-energy con-
stants from the next-to-leading order (NLO) term in our
chiral fit. These are evaluated at scale M� and given in

units of 10�3:

L4 ¼ 0:36ð34Þ; L6 ¼ 0:32ð20Þ;
L5 ¼ 2:00ð25Þ; L8 ¼ 0:77ð15Þ;

2L6 � L4 ¼ 0:28ð17Þ; 2L8 � L5 ¼ �0:46ð20Þ:
(20)

The values agree well with other chiral analyses, for ex-
ample the MILC analysis on configurations including u, d,
and s asqtad sea quarks [31]. The errors on the low-energy
constants reflect the fact that we allow for higher-order
terms beyond NLO chiral perturbation theory in our fits.

Chiral extrapolation contributes much less to our error
budget here than in our previous analyses. This is expected
because we have lattice results for m‘ very close to the
physical mass; indeed, m‘ is actually slightly below the
physical mass, so we are interpolating. We checked our
chiral extrapolation in several ways:

(i) We replaced the fixed value of f0 that sets the chiral
scale in Eqs. (8) and (9) with the floating parameter
that corresponds to f� in the chiral limit. Any
changes should be absorbed by the higher-order
mass-dependent terms in the chiral fit, so this tests
whether we have included enough higher-order
terms. Changing f0 in this way had negligible effect
on our final answers (around 	=20).

(ii) We replaced SU(3) chiral perturbation theory with
SU(2) chiral perturbation theory, where the chiral
parameters for pions, kaons, and the �s are allowed
to differ. Unlike in the SU(3) case, it is possible to fit
our data with the SU(2) theory expanded only
through NLO; the results are the same as above to
within 1	, with slightly smaller errors. We prefer to
include analytic terms from next-to-next-to-leading
order and above to ensure that we have not under-
estimated our errors. This again gives results that
agree with those in Eq. (18) (to better than 0:5	)
but now with slightly larger errors (by 0:1	).

See [31,32] for a comparison of SU(2) and SU(3)
chiral fits with similar conclusions for results with
asqtad u, d, and s sea quarks.

(iii) We repeated our analysis using staggered chiral
perturbation theory through one loop [26] supple-
mented by higher-order terms in meson masses and
discretization effects, as given earlier in Eqs. (7),
(12), and (13). Staggered chiral perturbation theory
explicitly incorporates discretization effects that
arise when using staggered quarks because of the
multiple tastes of mesons that can appear in loop
terms in the chiral expansion. The standard chiral
logarithm terms are modified to include multiple
tastes and in addition there are ‘‘hairpin’’ correc-
tion terms that also depend on taste splittings. The
final effect from these two terms is very benign,
even at physical quark masses. We find that final
results from our fits differ by less than 0:5	 from
the results given above in Eq. (18).

These tests give us confidence that our estimates of the
errors due to our chiral fits are reliable.

IV. DISCUSSION

Equation (18) lists a number of outputs from our analy-
sis. The key result is that for fKþ and in particular the ratio
fKþ=f�þ needed to make use of Eq. (2). This is obtained
with an error of 0.18%.
Figure 5 compares our new result for fKþ=f�þ to earlier

values on nf ¼ 2þ 1þ 1 (u, d, s, and c sea quarks) [10]

and nf ¼ 2þ 1 (u, d, s sea quarks) configurations [5–9].

There is good agreement with earlier results within their

1.15  1.17  1.19  1.21  1.23  1.25

HPQCD this work

MILC, 1301.5855

BMW, 1001.4692

HPQCD, 0706.1726

LvW, 1112.4861

MILC, 1012.0868

RBC/UKQCD
1011.0892

fK/f
nf=2+1

fK+/f +

nf=2+1+1

FIG. 5 (color online). A comparison of lattice QCD results for
the ratio of K to � decay constants. The top two values (filled
blue triangles) are for fKþ=f�þ including u, d, s, and c sea
quarks—results from this paper and from [10]. The lower values
(red squares) include u, d, and s sea and typically do not
distinguish fKþ from fK [5–9].
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larger error bands. Typically the results on nf ¼ 2þ 1 did

not distinguish between fKþ and fK because the errors
were not small enough to see this difference. The differ-
ence that we see, 0.27(7)%, is in agreement with that
expected from chiral perturbation theory [0.21(6)% [3]].
It is also in agreement with a simple-minded argument
assuming that the ratio of f�s

=fK depends linearly on

M2
� between 0 and M2

�s
.

Our result for fKþ=f�þ is more accurate than MILC’s
recent analysis [10] based on the physical point ensembles
because we have included additional information: accurate
relative lattice-spacing values, fits to decay constants at
heavier sea- and valence-quark masses, fits to �s masses
and decay constants, and chiral perturbation theory to
relate all of these fits at all of the lattice spacings to each
other. The MILC error is dominated by their continuum
extrapolation. Our Figs. 3 and 4 show very little depen-
dence on lattice spacing (when using w0) and benign
extrapolations. Our error is nevertheless also dominated
by the continuum extrapolation uncertainties along with
statistical errors.

Our analysis also gives results for the properties of the
�s meson, by fixing its mass and decay constant in the
continuum and physical light-quark mass limits from those
of the � and K. Here the surprising result found earlier in
[18] is how closely the properties of the �s match those
expected from low-order chiral perturbation theory. Our
results here agree well with earlier results from nf ¼ 2þ 1

[18] as well as from earlier analysis on these nf¼2þ1þ1

configurations [16].
We used w0=a to determine the relative lattice

spacing between ensembles. Fixing the lattice spacing
finally from f� gives a physical value for w0 in Eq. (18)
of 0.1715(9) fm. This agrees at 2	 with the earlier result
from BMW-c [13] of 0.1755(18) fm using the mass of the
� baryon to fix the physical value. The error in the BMW-c
result is dominated by the statistical errors in the lattice
calculation of M�, and so we are able to obtain a smaller
error using f�.

In separate fits for comparison, not used for our central
values, we also obtained values for

ffiffiffiffi
t0

p
and r1 in Eq. (19).

Our
ffiffiffiffi
t0

p
agrees with the value in [13]. The value for r1 is

not in good agreement with our earlier result, which it
supersedes, on a subset of these ensembles [16], however.
The reason for this is largely because the values for r1=a
have been updated, resulting in changes outside the origi-
nal error bars. This underscores the difficulty of determin-
ing parameters from the heavy-quark potential accurately
[13] and provides further incentive to use w0.

V. CONCLUSIONS

We give here the most accurate result to date for
fKþ=f�þ from lattice QCD. Our result comes from
‘‘second-generation’’gluon field configurations with a

highly improved discretization of QCD and including u,
d, s, and c quarks in the sea. We fit results from a range of
ensembles with u=d quark masses down to the physical
point and including additional accurate information on the
relative lattice spacing between the ensembles. We test
the robustness of our continuum extrapolation using two
different methods for lattice-spacing determination. These
features mean that we are able to improve on the error
obtained by the MILC Collaboration [10] which aimed for
a self-contained analysis using only physical u=d quark
masses.
Our result is

fKþ

f�þ
¼ 1:1916ð21Þ: (21)

With this level of accuracy the difference between fK with
mu ¼ md and fKþ , which we determine to be 0.27(7)%, is
important. Going forward it will be necessary to make sure
that fK and fKþ results from lattice QCD are averaged
separately.
Using Eq. (2) we determine

jVusj
jVudj

¼ 0:23160ð29ÞBrðKþÞð21ÞEMð41Þlatt: (22)

It is no longer true that the lattice QCD error is much larger
than the total of experiment plus corrections to experiment
from electromagnetism.
Given a value of Vud from nuclear � decay of 0.974 25

(22) [33] gives

jVusj ¼ 0:22564ð28ÞBrðKþÞð20ÞEMð40Þlattð5ÞVud
: (23)

This agrees well with values from experimental results for
semileptonic K decay rates combined with lattice QCD
calculations of the appropriate hadronic form factor
[2,34,35]. The test of unitarity of the first row of the
CKM matrix yields 1� jVudj2 � jVusj2 � jVubj2 ¼
�0:000 09ð51Þ. This agrees well with the Standard
Model result of zero and pushes the scale of new physics
above 10 TeV [36]. To improve the limit on this scale
significantly now needs further improvements to the accu-
racy of Vud [33].
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H. Pedroso Lima, C. T. Sachrajda, and J.M. Zanotti (RBC-
UKQCD Collaboration), Eur. Phys. J. C 69, 159 (2010).

[36] V. Cirigliano, J. Jenkins, and M. Gonzalez-Alonso, Nucl.
Phys. B830, 95 (2010).

DOWDALL et al. PHYSICAL REVIEW D 88, 074504 (2013)

074504-10

http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1140/epjc/s10052-010-1406-3
http://dx.doi.org/10.1016/j.physletb.2011.04.038
http://dx.doi.org/10.1103/PhysRevLett.93.231803
http://dx.doi.org/10.1103/PhysRevLett.100.062002
http://dx.doi.org/10.1103/PhysRevD.81.054507
http://arXiv.org/abs/1012.0868
http://dx.doi.org/10.1103/PhysRevD.83.074508
http://arXiv.org/abs/1112.4861
http://dx.doi.org/10.1103/PhysRevLett.110.172003
http://dx.doi.org/10.1103/PhysRevLett.110.172003
http://dx.doi.org/10.1103/PhysRevD.75.054502
http://dx.doi.org/10.1103/PhysRevD.79.074008
http://dx.doi.org/10.1007/JHEP09(2012)010
http://dx.doi.org/10.1103/PhysRevD.82.074501
http://dx.doi.org/10.1103/PhysRevD.82.074501
http://dx.doi.org/10.1103/PhysRevD.87.054505
http://dx.doi.org/10.1103/PhysRevD.87.054505
http://dx.doi.org/10.1103/PhysRevD.85.054509
http://dx.doi.org/10.1103/PhysRevD.85.054509
http://dx.doi.org/10.1103/PhysRevD.87.034503
http://dx.doi.org/10.1103/PhysRevD.87.034503
http://dx.doi.org/10.1103/PhysRevD.81.034506
http://dx.doi.org/10.1103/PhysRevD.81.034506
http://dx.doi.org/10.1016/S0920-5632(01)01638-3
http://dx.doi.org/10.1016/S0920-5632(01)01638-3
https://github.com/gplepage
http://dx.doi.org/10.1007/JHEP08(2010)071
http://dx.doi.org/10.1016/0550-3213(94)90473-1
http://dx.doi.org/10.1103/RevModPhys.82.1349
http://dx.doi.org/10.1103/PhysRevD.62.094503
http://dx.doi.org/10.1103/PhysRevD.62.094503
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.015
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.015
http://dx.doi.org/10.1103/PhysRevD.68.074011
http://dx.doi.org/10.1016/S0550-3213(01)00121-3
http://dx.doi.org/10.1016/S0550-3213(01)00121-3
http://arXiv.org/abs/1210.8157
http://arXiv.org/abs/1201.2787
http://dx.doi.org/10.1103/PhysRevD.82.094508
http://dx.doi.org/10.1103/PhysRevD.82.094508
http://arXiv.org/abs/0910.3618
http://arXiv.org/abs/0911.0472
http://dx.doi.org/10.1103/PhysRevC.79.055502
http://dx.doi.org/10.1103/PhysRevD.87.073012
http://dx.doi.org/10.1103/PhysRevD.87.073012
http://dx.doi.org/10.1140/epjc/s10052-010-1405-4
http://dx.doi.org/10.1016/j.nuclphysb.2009.12.020
http://dx.doi.org/10.1016/j.nuclphysb.2009.12.020

