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We calculate the effective Polyakov line action corresponding to SU(2) lattice gauge theory on a

163 � 4 lattice via the ‘‘relative weights’’ method. We consider a variety of lattice couplings, ranging from

� ¼ 1:2 in the strong-coupling domain to � ¼ 2:3 at the deconfinement transition, in order to study how

the effective action evolves with �. Comparison of Polyakov line correlators computed in the effective

theory and the underlying gauge theory is used to test the validity of the effective action for �> 1:4, while

for � ¼ 1:2, 1.4 we can compare our effective action to the one obtained from a low-order strong-coupling

expansion. Very good agreement is found at all couplings. We find that the effective action is given by a

simple expression bilinear in the Polyakov lines. The range of the bilinear term, away from strong

coupling, grows rapidly in lattice units as � increases.
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I. INTRODUCTION

In a recent article [1], we have applied a technique,
which we call the ‘‘relative weights’’ method, to determine
the effective Polyakov line action (PLA) corresponding to
an SU(2) lattice gauge theory. The effective Polyakov line
action SP is defined as the action which results from
integrating out all gauge and matter degrees of freedom
in the lattice gauge theory, for which the action is denoted
SL, under the constraint that Polyakov line holonomies
are held fixed. In temporal gauge, where the timelike link
variables are set to the identity matrix except on a single
time slice at, say, t ¼ 0, we have1

exp ½SP½Ux��
¼

Z
DU0ðx; 0ÞDUkD�

�Y
x

�½Ux �U0ðx; 0Þ�
�
eSL ; (1)

where � denotes any matter fields, scalar or fermionic,
coupled to the gauge field.

In pure SU(2) lattice gauge theory, which is the case we
will consider in this article, SP can depend only on the trace
of Polyakov line holonomies. Consider a Fourier expan-
sion of the trace

Px � 1

2
Tr½Ux�

¼ a0 þ 1

2

X
q�0

faq cos ðq � xÞ þ bq sin ðq � xÞg; (2)

where the sum runs over all wave vectors q on a cubic
lattice of volume L3, and aq ¼ a�q, bq ¼ �b�q are real

valued. The relative weights method allows us to compute

the derivatives of the action with respect to any of the
Fourier components,�

@SP
@ak

�
ak¼�

;

�
@SP
@bk

�
bk¼�

; (3)

and from these derivatives we are able to deduce the action
itself. In Ref. [1] we found that the effective action is a
simple bilinear expression in terms of the Polyakov lines:

SP ¼ 1

2
c1
X
x

P2
x � 2c2

X
xy

PxQðx� yÞPy; (4)

where

Qðx� yÞ ¼
8<
:
� ffiffiffiffiffiffiffiffiffiffiffi

�r2
L

q �
xy

jx� yj � rmax

0 jx� yj> rmax

; (5)

and r2
L is the lattice Laplacian. Our method also deter-

mines the constants c1, c2 and the range rmax . The validity
of this expression was tested by comparing Polyakov line
correlators computed by numerical simulation of the
effective theory based on SP and of the underlying lattice
gauge theory. We found accurate agreement, down to
correlator magnitudes on the order of 10�5, between the
two sets of correlators.
A limitation of the work in Ref. [1] is that it was carried

out for a single gauge coupling � ¼ 2:2 at Nt ¼ 4 lattice
spacings in the time direction. An obvious question is how
the effective action evolves as � varies from strong cou-
plings to weaker couplings, up to the deconfinement phase
transition. Answering this question will also allow us to
check how the relative weights method performs over a
range of couplings, rather than just a single coupling. At
very strong couplings, the effective action can be computed
analytically, and only the nearest-neighbor term in the

1For convenience, we adopt a sign convention for the action
such that the Boltzman weight is proportional to exp ½þS�.
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effective action is significant. At next-to-leading order,
we have2

SP ¼ �P

X
x

X3
i¼1

PxPxþ{̂;

�P ¼ 4

�
1þ 4Nt

�
I2ð�Þ
I1ð�Þ

�
4
	�

I2ð�Þ
I1ð�Þ

�
Nt

;

(6)

where Nt is the lattice extension in the periodic time
direction. In contrast, at � ¼ 2:2 we found it necessary
to include couplings among Polyakov lines separated by
distances up to rmax ¼ 3 lattice units. We would like to
study how the action, and in particular the range of the
bilinear term rmax , evolves from strong coupling through
to the deconfinement transition.

In this article we extend our previous work by comput-
ing SP, via the relative weights method, for a variety of
lattice couplings, starting from a strong coupling value of
� ¼ 1:2, and proceeding to the deconfinement transition at
� ¼ 2:3, Nt ¼ 4. All our numerical computations are car-
ried out on a 163 � 4 lattice volume for the SU(2) lattice
gauge theory, while simulations of SP are carried out on a
three-dimensional 163 lattice volume. Our main finding is
that the effective action is well described by a bilinear form
throughout the range of lattice couplings and that the range
of the kernel Qðx� yÞ, beyond the strong-coupling limit,
increases rapidly in lattice units with increasing �.

II. PROCEDURE

The relative weights method allows us to calculate
numerically the difference,

�SP ¼ SP½U0
x� � SP½U00

x �; (7)

of Polyakov line actions, evaluated at configurations U0
x

andU00
x , respectively, which are nearby in the configuration

space of Polyakov line holonomies. The method is based
on the fact that, while it may be difficult to evaluate the
integral in Eq. (1) directly, the ratio (or relative weights)

e�SP ¼ exp ½SP½U0
x��

exp ½SP½U00
x �� (8)

can be expressed in a form which is more amenable
to numerical simulation. Let S0L, S00L represent the lattice
action with timelike links U0ðx; 0Þ fixed to U0

x and U00
x ,

respectively; these links are not integrated over. Then

e�SP ¼
R
DUkD�eS

0
LR

DUkD�eS
00
L

¼
R
DUkD� exp ½S0L � S00L�eS00LR

DUkD�eS
00
L

¼ hexp ½S0L � S00L�i00; (9)

where h� � �i00 indicates that the vacuum expectation value is
to be taken in the probability measure

eS
00
LR

DUkD�eS
00
L

: (10)

As mentioned in the previous section, for the SU(2)
gauge group the effective action SP depends only on the
trace Px ¼ 1

2 Tr½Ux� of Polyakov line holonomies, so we

may consider two configurations in which the Fourier
decomposition (2) of Polyakov lines in each configuration
differ only by �ak in the amplitude of a particular Fourier
component. In that case we can estimate the derivative by a
finite difference: �

@SP
@ak

�
ak¼�

� �SP
�ak

: (11)

The remaining Fourier components, which are the same for
Polyakov lines in U0 and U00, are derived from a thermal-
ized lattice configuration. The procedure is to generate a
thermalized configuration U�ðx; tÞ by the usual lattice

Monte Carlo method, calculate the associated Polyakov
line holonomies

Ux � U0ðx; 1ÞU0ðx; 2Þ . . .U0ðx; NtÞ; (12)

and carry out the Fourier decomposition of the corre-
sponding Polyakov lines (2). Then pick a particular
wave number k, and set ak ¼ 0. Denote the modified
Polyakov lines as ~Px. We then construct two other
Polyakov line configurations,

P0
x ¼ � cos ðk � xÞ þ f ~Px

P00
x ¼ ð�þ �akÞ cos ðk � xÞ þ f ~Px;

(13)

along with corresponding holonomies U0
x, U

00
x , which give

rise to these Polyakov lines. The constant f � 1� � is
chosen to ensure that the absolute values of P0

x and P00
x

are� 1. We then compute Eq. (11) by the relative weights
approach.
For a detailed exposition of the relative weights method,

including noise reduction and the precise way in which we
choose U0

x, U
00
x , and f, the reader is referred to Ref. [1].

III. RESULTS

We have carried out simulations of pure SU(2) lattice
gauge theory on a 163 � 4 lattice volume at the following
� values:

� ¼ 1:2; 1:4; 1:6; 1:8; 2:0; 2:1; 2:2; 2:25; 2:3: (14)

All of these values lie inside the confined phase with the
exception of � ¼ 2:3, which lies essentially right at the
deconfinement transition for Nt ¼ 4 (the precise transition
point is �c ¼ 2:2986ð6Þ [3]). We also calculate the deriva-
tive (11) at � values,

� ¼ 0:05; 0:10; 0:15; 0:20; (15)2For a higher-order computation, cf. Ref. [2].

JEFF GREENSITE AND KURT LANGFELD PHYSICAL REVIEW D 88, 074503 (2013)

074503-2



and for a range of lattice momenta 0 � kL � 2:9, where

kL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
X3
i¼1

sin 2

�
1

2
ki

�s
: (16)

The components ki of the wave vector k are ki ¼ 2�
L mi,

with L ¼ 16 the spatial extension of the lattice, and
mi ¼ integers (including zero). We have used the follow-
ing triplets (m1m2m3) of mode numbers:

fð000Þ; ð100Þ; ð110Þ; ð111Þ; ð200Þ; ð210Þ; ð211Þ; ð300Þ; ð311Þ;
ð320Þ; ð400Þ; ð322Þ; ð421Þ; ð430Þ; ð333Þ; ð433Þ;
ð443Þ; ð444Þ; ð554Þ; ð654Þg:

The striking fact is that, in all cases, the derivative (11)
of SP is linear in �. This is evident when we plot

1

�

1

L3

�
@SP
@ak

�
ak¼�

vs: kL; (17)

as shown in Fig. 1 (� ¼ 1:2–1:8) and Fig. 2 (� ¼ 2:0–2:3).3

In these figures the data points displayed at kL ¼ 0 are

actually equal to the data values divided by a factor of
two, for reasons we will explain. The important feature to
notice in each of these plots is that, at any given � and kL,
the data points at different � essentially coincide. This
means that the first derivative of SP is linear in �, and it
follows that SP itself is quadratic in ak for any k. As a
consequence, SP will also be quadratic in the position space
variables (i.e., the Polyakov linesPx), and we can write this
effective action in the form (4). The problem is then to
determine c1, c2 and Qðx� yÞ from the data.

Let ~QðkÞ be the finite Fourier transform of QðxÞ. This
leads to derivatives

1

L3

�
dSP½UxðakÞ�

dak

�
ak¼�

¼
8><
>:
�
�
1
2c1 � 2c2 ~QðkÞ

�
kL � 0

2�
�
1
2c1 � 2c2 ~Qð0Þ

�
kL ¼ 0

:

(18)

The relative factor of two in the kL ¼ 0 and kL > 0 cases is
due to the fact that

P
x1 ¼ L3, while

P
xcos

2ðk � xÞ ¼ 1
2L

3.

The kL > 0 data should extrapolate, as kL ! 0, to a value
which is half the result at kL ¼ 0. For this reason, in Fig. 1
and subsequent figures, the point shown at kL ¼ 0 is the
data value at kL ¼ 0 divided by two.
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FIG. 1 (color online). Derivatives of SP with respect to Fourier components ak, evaluated at ak ¼ �, and divided by �, for
intermediate/strong-coupling values of � ¼ 1:2–1:8. The data, obtained by the relative weights method, is plotted vs kL. The point
displayed at kL ¼ 0 is the data value divided by two, for reasons explained in the text.

3Error bars are only displayed at � ¼ 1:2; in all other plots,
the error bars are smaller than the symbol sizes.
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Let us begin with the data for lattice couplings � in the
intermediate/weak-coupling regime 2:0 � � � 2:3 shown
in Fig. 2. In addition to the � independence, what is
striking about this data is that it is clearly linear for most
of the range of lattice momenta. If the data were linear for
the entire range, then we would have

SP ¼ 1

2
c1
X
x

P2
x � 2c2

X
xy

Px

� ffiffiffiffiffiffiffiffiffiffiffi
�r2

L

q �
xy
Py: (19)

In this case the kernel is Qðx� yÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffi

�r2
L

q �
xy
, which

translates in momentum space to ~QðkÞ ¼ kL. This

corresponds to the linear behavior seen in Fig. 2.

However, the action (19) has a long-range coupling

between Polyakov lines which, in the first place, is incon-

sistent with the nonlinear behavior seen at low kL and, in

the second place, would violate one of the assumptions of

the Svetitsky–Yaffe conjecture [4], which postulates only

finite-range couplings in the effective action. A simple

finite range ansatz forQðx� yÞ, having the linear behavior
in momentum space seen at high kL, is the expression (5)

proposed in Ref. [1]. The corresponding Fourier transform,
~QðkÞ, is a smooth function of kL. Since ~QðkÞ ! kL at high

kL, the constants c1, c2 are determined from a linear fit of
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FIG. 2 (color online). Same as Fig. 1, for intermediate/weak-coupling values � ¼ 2:0–2:3.
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the data in the linear (higher-momentum) regime to the

expression4

1

�

1

L3

�
dSP½UxðakÞ�

dak

�
ak¼�

¼ 1

2
c1 � 2c2kL: (20)

The action (4) is then well-defined, given the finite range

cutoff rmax .
To determine rmax , we look for the value which satisfies

the lower (kL ¼ 0) identity in Eq. (18), i.e.,

1

�

1

L3

�
dSP
da0

�
a0¼�

¼ c1 � 4c2 ~Qð0Þ; (21)

as accurately as possible. We cannot satisfy this relation-
ship exactly because, while � can be varied continuously,
rmax cannot, since on the lattice it is the square root of a
sum of squared integers. Nevertheless, if rmax is not too
small, we can come close to satisfying the equality. This is
essentially an optimization problem. For each trial rmax ,
compute Qðx� yÞ from Eq. (5), and then Fourier trans-

form to obtain ~QðkÞ. The optimal choice of rmax is the
value which comes closest to satisfying Eq. (21). We can
then compute the right-hand side of Eq. (18) at all kL and
see how well it fits the data. The fractional deviation
between the left- and right-hand sides of Eq. (21),

� ¼
1
�

1
L3

�
dSP
da0

�
a0¼�

� c1 � 4c2 ~Qð0Þ
1
�

1
L3

�
dSP
da0

�
a0¼�

; (22)

is on the order of 1% or less, for �> 2:0 and about 2%
at � ¼ 2:0.

The results, shown in Fig. 3, seem to be quite satisfac-
tory. The green line is the linear fit used to compute c1, c2,

and the blue dots correspond to 1
2 c1 � 2c2 ~QðkÞ. The red

open squares are the data points already seen in Fig. 2, this
time with no distinction on � values.

The essential test of the proposed effective action (4)
with kernel (5) is the comparison in the Polyakov line
correlators

Gðx� yÞ ¼ hPxPyi; (23)

computed in both the effective theory and in the underlying
lattice gauge theory. Results for on-axis separations at
� ¼ 2:2, 2.25, 2.3 are shown in Fig. 4. The correlators in
the lattice gauge theory have been calculated using
Lüscher–Weisz noise reduction [5].

The agreement between the correlators in the effective
theory and the lattice gauge theory is remarkably accurate,
down to values of Gðx� yÞ � 10�5. However, as � is
reduced, we find that the data in the effective theory

seem to flatten out at around 10�5, as can be seen in
Fig. 5. This flattening may simply be a finite volume effect
in the numerical simulation of the effective theory. The
argument is as follows: For separations R ¼ jx� yj which
are several times greater than a correlation length, say for
R> Rmax , Polyakov lines are almost uncorrelated. Let us
denote the average value of a Polyakov line in a given
thermalized configuration as

Px ¼ 1

L3

X
x

Px (24)

and also define

ðPxPyÞR>Rmax
�

P
x

P
y PxPy�ðR� Rmax ÞP

x

P
y �ðR� Rmax Þ ; (25)

where �ðxÞ is the Heaviside theta function. Now for
R> Rmax Polyakov lines, Px and Py are essentially

uncorrelated, and if the lattice volume L3 is much greater
than R3

max , we may approximate Px and Py in the double

sum by their average values in the configuration. But this
means that in each configuration

ðPxPyÞR>Rmax
� ðPxÞ2: (26)

If we take the typical magnitude of Px on any given lattice
site to be on the order of the rms value of 0.5, then the
average value on the lattice, in a typical configuration, will

be on the order of Px �	0:5=L3=2. For L ¼ 16, this gives
us a rough estimate of

ðPxPyÞR>Rmax
� 6� 10�5 (27)

in any thermalized configuration in the effective theory
on a 163 lattice volume. This is at least the right order of
magnitude, and such estimates may explain why the mea-
sured values of Gðx� yÞ seem to plateau at around 10�5

at these lattice volumes.5

It is worth checking whether the plateau drops as
volume increases, as suggested by the previous argument.
In Fig. 6(a) we display the Polyakov correlators in the
effective theory at � ¼ 2:1, for L ¼ 16 and L ¼ 20, on a
logarithmic scale. Both sets of data appear to plateau at
correlator values around 10�5. Figure 6(b) is a closeup of
the data, on a linear scale, in the plateau region at R � 1

2L.

According to our previous argument, one would expect the
plateau level at L ¼ 20 to be lower than L ¼ 16 by about a
factor of 2. Unfortunately, the error bars are too large to
draw any strong conclusions from the data. Still, apart from
the data points at jR� 1

2Lj ¼ 1, the L ¼ 20 data points do

seem to lie consistently below the L ¼ 16 data points in the

4The precise choice of interval in kL to carry out the linear fit is
a potential source of systematic error in c1, c2. In practice we
choose a low-momentum cutoff which minimizes the �2 value of
the linear fit.

5But it is not the only possible explanation. It might be, for
example, that autocorrelations (which are known to be worse for
large values of R) affect the signal in the region where we see the
plateau.
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corresponding plateau regions, which agrees with our
expectations.

Reducing the lattice coupling below � ¼ 2:0, we enter
the regime of strong couplings. Our results for

1

�

1

L3

�
@SP
@ak

�
ak¼�

vs kL (28)

at �< 2:0 were seen in Fig. 1. In these plots there is much
more evidence of curvature, and the part of the graph which
fits a straight line disappears as � is reduced. It turns out

that the curved section of the plots are compatible with
~QðkÞ ¼ k2L, and in fact this fits the data at � ¼ 1:2, 1.4
perfectly, as we see in Fig. 7. At � ¼ 1:6, 1.8, however,
there is still a portion of the data which fits a straight line,

and so we need an ansatz for ~QðkÞ, which interpolates
between the quadratic form at small kL and linear at large
kL. A simple choice is

~QðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
; (29)

and so we do a best fit of the data at all kL to the form
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FIG. 3 (color online). Comparison of c1=2� 2c2 ~QðkÞ to the relative weights data, where ~QðkÞ is the Fourier transform of the
kernel (5), for couplings � ¼ 2:0–2:3. Red squares are data points, blue dots are the c1=2� 2c2 ~QðkÞ values, and the green line is the
linear fit used to determine c1, c2.
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FIG. 4 (color online). Comparison of Polyakov line correlators GðRÞ computed by simulation of the effective Polyakov line action
and by simulation of the underlying lattice gauge theory.
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1

�

1

L3

�
dSP½UxðakÞ�

dak

�
ak¼�

¼ 1

2
c1 � 2c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
: (30)

The resulting fits, for lattice couplings � ¼ 1:6, 1.8, are
shown in Fig. 8.

With the constants c1, c2, m
2 determined from a best fit

to the data, the position space kernel Qðx� yÞ is deter-

mined from a fast Fourier transform of ~QðkÞ, and we can
again compare the Polyakov line correlators computed in
the effective theory with the corresponding correlators
computed in the underlying lattice gauge theory. The
results are shown in Fig. 9, this time including off-axis
separations. Once again, the agreement is very good,
although the falloff in position space is so rapid that
the 10�5 plateau sets in at rather small values of jx� yj.
In these figures the Polyakov correlators in the lattice
gauge theory are computed in the standard way, without
the Lüscher–Weisz noise reduction, and these also seem to
show a plateau at the larger lattice separations.

Since Qðx� yÞ corresponding to a square root ansatz
does not have a sharp cutoff in the range of R ¼ jx� yj,
the corresponding effective action becomes challenging

to simulate numerically as m is reduced. We have not yet
investigated this form of the action in the weak coupling
regime.
Finally, at our two strongest couplings, � ¼ 1:2 and 1.4,

there is no need for an interpolating form, since the
~QðkÞ ¼ k2L ansatz fits the data quite well, as seen in
Fig. 7. The data is fit to the form

1

�

1

L3

�
dSP½UxðakÞ�

dak

�
ak¼�

¼ 1

2
c1 � 2c2k

2
L; (31)

and a short calculation gives us the effective action

SP ¼ 4c2
X
x

X3
i¼1

PxPxþ{̂ þ
�
1

2
c1 � 12c2

�X
x

P2
x: (32)

The best fits to Eq. (31) give the constants

c1 ¼ 0:3196ð5Þ c2 ¼ 0:01327ð2Þ � ¼ 1:4

c2 ¼ 0:1714ð2Þ c2 ¼ 0:007148ð8Þ � ¼ 1:2:
(33)

With these numbers, we find that
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1

2
c1�12c2¼ð�0:56	0:34Þ�10�3 ð�¼1:4Þ

1

2
c1�12c2¼ð�0:76	1:4Þ�10�4 ð�¼1:2Þ;

(34)

which are essentially consistent with zero. Then, comparing the relative weights and strong-coupling results for the PLA at
� ¼ 1:4, we find

SP ¼
8><
>:
0:05308ð8ÞPx

P3
i¼1 PxPxþ{̂ relative weights

0:0522
P

x

P
3
i¼1 PxPxþ{̂ strong coupling

ð� ¼ 1:4Þ; (35)

while at � ¼ 1:2,

SP ¼
8<
: 0:02859ð3ÞPx

P
3
i¼1 PxPxþ{̂ relative weights

0:02850
P

x

P
3
i¼1 PxPxþ{̂ strong coupling

ð� ¼ 1:2Þ: (36)

In both cases there appears to be good agreement between the strong-coupling expansion and the relative weights result.
To summarize, the effective Polyakov line action is given by Eq. (4) with the parameters and kernel Qðx�yÞ listed in

Table I. Note that the range of the kernel in lattice units rises from rmax ¼ ffiffiffi
3

p � 1:73, at � ¼ 2:0, to rmax ¼ ffiffiffiffiffiffi
13

p � 3:61
at the deconfinement transition.
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IV. CONCLUSIONS

We have calculated the effective Polyakov line actions
corresponding to pure SU(2) lattice gauge theories on a
163 � 4 lattice volume in an interval of lattice couplings
ranging from� ¼ 1:2, which is deep in the strong-coupling
regime, up to � ¼ 2:3, which is at the deconfinement tran-
sition. At each coupling, the effective lattice action has a
simple bilinear form (4), although the range of the bilinear
kernel Qðx� yÞ varies from only nearest neighbor cou-
plings, in the strong-coupling regime, up to separations of
jx� yj ¼ 3:61 lattice units at the deconfinement transition.
This extends the work of Ref. [1], where only the lattice
coupling� ¼ 2:2was considered. Our test for checking the
validity of these effective actions is the comparison of
Polyakov line correlators calculated in the effective theory
and the corresponding lattice gauge theory. In every case,
the comparison works out quite well, down to correlator
values on the order of 10�5. There have been other ap-
proaches to calculating the effective Polyakov line action,
including strong-coupling expansions [2], the inverse

Monte Carlo method [6], and the Demon approach [7],
resulting in effective actions of varying complexity, but
we do not believe that these have yet demonstrated a com-
parable agreement in Polyakov line correlators at the larger
� values, at least not beyond two or three lattice spacings.
So far we have not tried to calculate the effective action

inside the deconfined regime. Preliminarywork suggests that
the range of the kernel in this region is rather large in lattice
units, which makes the effective action difficult to simulate,
and also it may be necessary to introduce higher powers of
Px in the potential of the effective theory. In addition, it is
important to study the dependence of the effective action on
Nt at fixed �; so far we have only considered Nt ¼ 4. We
leave these issues for future investigation.
Although we believe that deriving the effective

Polyakov line action is of interest in itself, our ultimate
goal is to apply our approach to the sign problem [8]. There
is no sign problem in SU(2); nor is there a sign problem in
any pure gauge theory, so the next step in our program will
be to apply the relative weights method to the SU(3)
gauge group, first without and then with matter fields.
Our method only supplies the effective action at zero
chemical potential. However, as explained in Ref. [1], the
effective action corresponding to a lattice gauge theory at
finite chemical potential may be obtained from the effec-
tive action at zero chemical potential by a simple change of
variables. If our method is successful for the SU(3) gauge
group, then the strategy would be to apply one or more of
the methods in Refs. [2,9–11], which were developed to
tackle the sign problem in Polyakov line actions, to the
problem of determining the phase structure of the theory.
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TABLE I. Constants defining the effective Polyakov line ac-
tion (4) for pure SU(2) lattice gauge theory on a 163 � 4 lattice.

� Qðx� yÞ c1 c2 m rmax

1.2 ð�r2
LÞxy 0.1714(2) 0.007148(8) 1

1.4 ð�r2
LÞxy 0.3196(5) 0.01327(2) 1

1.6
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�r2
L þm2

q �
xy

4.10(7) 0.219(2) 4.01(4)

1.8
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�r2
L þm2

q �
xy

3.62(3) 0.269(1) 2.37 (2)

2.0 Eq. (5) 2.93(1) 0.313(2)
ffiffiffi
3

p
2.1 Eq. (5) 3.63(1) 0.397(2)

ffiffiffi
5

p
2.2 Eq. (5) 4.417(4) 0.498(1) 3

2.25 Eq. (5) 4.70(1) 0.541(2)
ffiffiffiffiffiffi
10

p
2.3 Eq. (5) 4.812a 0.563(2)

ffiffiffiffiffiffi
13

p

aThe actual constant derived from the fit to the linear portion of
the data was 4.77(1). However, the correlator at � ¼ 2:3 is
extremely sensitive to the value of c1, and a small adjustment
to 4.812 greatly improves the agreement with the Polyakov line
correlator derived from lattice gauge theory.
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