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We study the features of nonlocal SU(3) chiral quark models with wave function renormalization.

Model parameters are determined from meson phenomenology, considering different nonlocal form factor

shapes. In this context we analyze the characteristics of the deconfinement and chiral restoration

transitions at finite temperature, introducing the couplings of fermions to the Polyakov loop. We analyze

the results obtained for various thermodynamical quantities considering different Polyakov loop potentials

and nonlocal form factors, in comparison with data obtained from lattice QCD calculations.
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I. INTRODUCTION

The detailed understanding of the behavior of strongly
interacting matter under extreme conditions of temperature
and/or density has become an issue of great interest in
recent years. It is widely believed that as the temperature
and/or density increase, one finds a transition from a
hadronic phase, in which chiral symmetry is broken and
quarks are confined, to a partonic phase in which chiral
symmetry is restored and/or quarks are deconfined. From
the theoretical point of view, one way to address this
problem is through lattice QCD calculations [1–3], which
have been significantly improved in the last years.
However, this ab initio approach is not yet able to provide
a full understanding of the QCD phase diagram and the
related hadron properties, owing to the well-known diffi-
culties of dealing with small current quark masses and
finite chemical potentials. Thus, it is worth developing
effective models that show consistency with lattice results
and can be extrapolated into regions not accessible by
lattice calculation techniques. Here we will concentrate
on one particular class of effective theories, namely, the
so-called nonlocal Polyakov–Nambu–Jona-Lasinio (nlPNJL)
models [4–8], in which quarks move in a background color
field and interact through covariant nonlocal chirally sym-
metric four-point couplings. These approaches, which can
be considered an improvement over the (local) PNJL model
[9–15], offer a common framework to study both the chiral
restoration and deconfinement transitions. In fact, the non-
local character of the interactions arises naturally in the
context of several successful approaches to low-energy
quark dynamics [16,17], and it leads to a momentum de-
pendence in the quark propagator that can be made consis-
tent [18] with lattice results [19–21]. Moreover, it has been
found that, under certain conditions, it is possible to derive
the main features of nlPNJL models starting directly from
QCD [22].

Some previous works have addressed the study of
nlPNJL models for the case of two dynamical quarks,

showing that the presence of nonlocal form factors in the
current-current quark interactions leads to a momentum-
dependent mass and wave function renormalization (WFR)
in the quark propagator [23–25]. As already stated, it is
possible to choose the model parameters and form factors
so as to fit these momentum dependences to those obtained
in lattice QCD [18]. The aim of this work is to extend those
works to three flavors, including flavor mixing through a
nonlocal ’t Hooft-like six-fermion interaction. The case of
a three-flavor nlPNJL model with simple Gaussian form
factors and no WFR in the quark propagator has been
previously addressed in Refs. [5,6], where the phenome-
nology of light scalar and pseudoscalar mesons is ana-
lyzed. In addition, the introduction of a Gaussian form
factor to account for the WFR in the three-flavor case has
been considered in Ref. [26]. For comparison, we analyze
here both the case of a model in which the form factors are
Gaussian functions (which ensure a fast ultraviolet con-
vergence of loop integrals), and a model in which these are
given by the mentioned lattice QCD-inspired functions
[see Eqs. (29) and (30) below] of the momentum. In this
framework we determine several properties of light mesons
(masses, mixing angles, decay constants), analyzing the
compatibility with the corresponding phenomenological
values. Then we study the deconfinement and chiral resto-
ration phase transitions that occur at finite temperature, and
we determine the corresponding critical temperatures. Our
analyses are carried out at the mean field level, considering
the above-mentioned form factor shapes and various pa-
rameter sets and functional forms for the Polyakov poten-
tial. We also analyze the behavior of thermodynamical
quantities such as the interaction energy and the entropy
and energy densities. The results are discussed in compari-
son with data obtained from lattice QCD calculations.
This article is organized as follows. In Sec. II we present

the general formalism, including analytical results for the
scalar and pseudoscalar meson properties. We discuss the
model parametrization and compare our predictions with
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phenomenological expectations. In Sec. III we extend our
analysis to nonzero temperature. The Polyakov loop po-
tential is introduced, and the deconfinement and chiral
restoration phase transitions are analyzed. In Sec. IV we
summarize our results and conclusions. The Appendix
includes some of our analytical expressions.

II. NONLOCAL SU(3) CHIRAL QUARK
MODEL—ZERO TEMPERATURE

We start by considering the Euclidean effective action

SE ¼
Z

d4x

�
�c ðxÞð�{ 6Dþ m̂Þc ðxÞ

�G

2
½jSaðxÞjSaðxÞ þ jPa ðxÞjPa ðxÞ þ jrðxÞjrðxÞ�

�H

4
Aabc½jSaðxÞjSbðxÞjScðxÞ � 3jSaðxÞjPb ðxÞjPc ðxÞ�

þU½AðxÞ�
�
; (1)

where c ðxÞ is the Nf ¼ 3 fermion triplet c ¼ ðu d sÞT ,
and m̂ ¼ diagðmu;md;msÞ is the current quark mass
matrix. We will work in the isospin symmetry limit,
assuming mu ¼ md. The fermion currents are given by

jsaðxÞ ¼
Z

d4zgðzÞ �c
�
xþ z

2

�
�ac

�
x� z

2

�
;

jpa ðxÞ ¼
Z

d4zgðzÞ �c
�
xþ z

2

�
{�a�5c

�
x� z

2

�
;

jrðxÞ ¼
Z

d4zfðzÞ �c
�
xþ z

2

�
{ 6@$
2�

c

�
x� z

2

�
;

(2)

where fðzÞ and gðzÞ are covariant form factors responsible
for the nonlocal character of the interactions, and �a, a ¼
0; . . . ; 8, are the standard eight Gell-Mann matrices, plus

�0 ¼
ffiffiffiffiffiffiffiffi
2=3

p
13�3. The relative weight of the interaction

driven by jrðxÞ, which is responsible for the quark wave
function renormalization, is controlled by the parameter �.
The model includes flavor mixing through a ’t Hooft-like
term, in which the SU(3) symmetric constants Aabc are
defined by

Aabc ¼ 1

3!
�ijk�mnlð�aÞimð�bÞjnð�cÞkl: (3)

The interaction between fermions and color gauge fields
Ga

� takes place through the covariant derivative in the

fermion kinetic term, D� � @� � {A�, where A� ¼
gGa

��
a=2. Finally, the action includes an effective poten-

tialU that accounts for gauge field self-interactions. At the
mean field level we will assume that fermions move on a
uniform background gauge field, which for zero tempera-
ture decouples from matter (finite temperature effects will
be discussed in the next sections).

To work with mesonic degrees of freedom we proceed to
perform a standard bosonization of the fermionic theory,

introducing scalar fields �aðxÞ, �ðxÞ and pseudoscalar
fields �aðxÞ, together with auxiliary fields SaðxÞ, PaðxÞ,
and RðxÞ, with a ¼ 0; . . . ; 8. After integrating out the
fermion fields we obtain a partition function

Z ¼
Z

D�aD�aD�Að�a;�a; �Þ

�
Z

DSaDPaDR exp
Z

d4x

�
�aSa þ �aPa

þ �RþG

2
ðSaSa þ PaPa þ R2Þ

þH

4
AabcðSaSbSc � 3SaPbPcÞ

�
; (4)

where the operator Aðp; p0Þ (in momentum space) is
given by

Aðp; p0Þ ¼ ð2�Þ4	ð4Þðp� p0Þð�6pþmcÞ

þ g

�
pþ p0

2

�
½�aðp0 � pÞ þ {�5�aðp0 � pÞ��a

þ 1

2�
f

�
pþ p0

2

�
ð6pþ 6p0Þ�ðp0 � pÞ: (5)

Now we follow the stationary phase approximation, replac-
ing the path integrals over the auxiliary fields by the
corresponding argument evaluated at the minimizing val-

ues ~Sa, ~Pa, and ~R. The procedure is similar to that carried
out in Ref. [27], where more details can be found.

A. Mean field approximation

We consider the mean field approximation (MFA), in
which the meson fields are expanded around their vacuum
expectation values. One thus has

�aðxÞ¼ ��aþ	�aðxÞ;
�aðxÞ¼	�aðxÞ;
�ðxÞ¼ ��þ	�ðxÞ;

(6)

where we have assumed that pseudoscalar mean field
values vanish, owing to parity conservation. Moreover,
for the scalar fields only ��0;8 and �� can be different from

zero due to charge and isospin symmetries. Thus, the
Euclidean action reduces to

SMFA
E

Vð4Þ ¼ �2Tr
Z d4p

ð2�Þ4 log

�
M2ðpÞ þ p2

Z2ðpÞ
�
� ��a

�Sa

� �� �R�G

2
ð �Sa �Sa þ �R2Þ �H

4
Aabc

�Sa �Sb �Sc; (7)

where �Sa, �Pa, and �R stand for the values of ~Sa, ~Pa, and ~R
within the MFA.
For the neutral fields (a ¼ 0, 3, 8) it is convenient to

change to a flavor basis, 
a ! 
i, where i ¼ u, d, s, or
equivalently i ¼ 1, 2, 3. In this basis, by minimizing the
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mean field action in Eq. (7) we obtain the gap equations
given in Ref. [27],

��u þG �Su þH

2
�Sd �Ss ¼ 0;

��d þG �Sd þH

2
�Ss �Su ¼ 0;

��s þG �Ss þH

2
�Su �Sd ¼ 0;

(8)

plus an extra equation arising from the jrðxÞ current-
current interaction,

�� þG �R ¼ 0; (9)

where the mean field values �Si and �R are given by

�Si ¼ �8Nc

Z d4p

ð2�Þ4 gðpÞ
ZðpÞMiðpÞ
p2 þM2

i ðpÞ
; i ¼ u; d; s;

�R ¼ 4Nc

�

Z d4p

ð2�Þ4 p
2fðpÞX3

i¼1

ZðpÞ
p2 þM2

i ðpÞ
:

(10)

The functions MiðpÞ and ZðpÞ correspond to momentum-
dependent effective masses and WFR of the quark propa-
gators. In terms of the model parameters and form factors,
these are given by

MiðpÞ ¼ ZðpÞ½mi þ ��igðpÞ�;

ZðpÞ ¼
�
1�

��

�
fðpÞ

��1
:

(11)

Thus, for a given set of model parameters and form factors,
from Eqs. (8)–(11) one can numerically obtain the mean
field values ��u;s and �� .

The chiral condensates h �qqi, order parameters of the
chiral restoration transition, can be obtained by varying
the MFA partition function with respect to the current
quark masses. These quantities are, in general, divergent
and can be regularized by subtracting the free quark con-
tributions. One has

h �qqi¼�4Nc

Z d4p

ð2�Þ4
�
ZðpÞMqðpÞ
p2þM2

qðpÞ
� mq

p2þm2
q

�
; q¼u;d;s:

(12)

B. Quadratic fluctuations—Meson masses and weak
decay constants

In order to analyze the properties of meson fields it is
necessary to go beyond the MFA, considering quadratic
fluctuations in the Euclidean action:

S
quad
E ¼ 1

2

Z d4p

ð2�Þ4
X
M

rMGMðp2Þ
MðpÞ �
Mð�pÞ; (13)

where meson fluctuations 	�a, 	�a have been translated
to a charge basis 
M,M being the scalar and pseudoscalar

mesons in the lowest mass nonets (�, �0, etc.), plus the �
field. The coefficient rM is 1 for charge eigenstates M ¼
a00, �, f0, � , �

0, �, �0, and 2 for M ¼ aþ0 , K
�þ
0 , K�0

0 , �þ,
Kþ, K0. Meson masses are then given by the equations

GMð�m2
MÞ ¼ 0: (14)

In addition, physical states have to be normalized through

~
MðpÞ ¼ Z�1=2
M 
MðpÞ; (15)

where

Z�1
M ¼ dGMðpÞ

dp2

��������p2¼�m2
M

: (16)

The full expressions for the one-loop functions GMðqÞ
are quoted in the Appendix. They can be written in terms of
the coupling constants G andH, the mean field values �Su;s,
and quark loop functions that prove to be ultraviolet con-
vergent, owing to the asymptotic behavior of the nonlocal
form factors. For the pseudoscalar meson sector, the � and
K mesons decouple, while the I ¼ 0 states get mixed.
Since the corresponding mixing angles are momentum-
dependent functions, it is necessary to introduce two mix-
ing angles �� and ��0 , defined at p2 ¼ �m2

� and p2 ¼
�m2

�0 respectively; see Eq. (A6). In the case of the scalar

meson sector, the a0 and K�
0 mesons decouple, while

the � , �0, and �8 fields get mixed by a 3� 3 matrix; see
Eq. (A7).
One can also calculate the weak decay constants of

pseudoscalar mesons. These are given by the matrix ele-
ments of the axial currents Aa

� between the vacuum and the

physical meson states,

{fabðp2Þp� ¼ h0jAa
�ð0Þj	�bðpÞi: (17)

The matrix elements can be calculated from the expansion
of the Euclidean effective action in the presence of external
axial currents,

h0jAa
�ð0Þj	�bðpÞi ¼ 	2SE

	Aa
�	�bðpÞ

��������Aa
�¼	�b¼0

: (18)

It is important to notice that, owing to nonlocality, the axial
currents have to be introduced not only into the covariant
derivative in the Euclidean action, but also in the fermion
fields entering the nonlocal currents, through the replace-
ments [27,28]

c

�
x� z

2

�
! WA

�
x; x� z

2

�
c

�
x� z

2

�
;

c y
�
xþ z

2

�
! c y

�
xþ z

2

�
WA

�
xþ z

2
; x

�
:

(19)

Here the transport function WAðx; yÞ is given by
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WAðx; yÞ ¼ P exp

�
{

2

Z y

x
ds��5�aA

a
�ðsÞ

�
; (20)

where s runs over an arbitrary path connecting x with y.
After a rather lengthy calculation, we find that the relevant term in the expansion of the Euclidean action can be

written as

S½A;
�
E ¼

Z d4p

ð2�Þ4
d4p0

ð2�Þ4
X3
i;j¼1

A�ijðpÞ	�jiðp0ÞG�
ijðp; p0Þ; (21)

where we have defined A� ¼ �aA
a
�=

ffiffiffi
2

p
, 	� ¼ �a	�a=

ffiffiffi
2

p
. The functions G�

ijðp; p0Þ are found to satisfy the relation

p�G
�
ijðp; p0Þ ¼ �i	ð4Þðpþ p0ÞFijðp2Þ; (22)

where

Fijðp2Þ¼2Nc

Z d4q

ð2�Þ4 ½gðq
þÞþgðq�Þ�2gðqÞ�ZðqÞ

�
MiðqÞ

q2þM2
i ðqÞ

þ MjðqÞ
q2þM2

j ðqÞ
�

�2Nc

Z d4q

ð2�Þ4 ð ��iþ ��jÞ½gðqþÞþgðq�Þ�2gðqÞ�gðqÞ ZðqþÞ
M2

i ðqþÞþqþ2

Zðq�Þ
M2

j ðq�Þþq�2
½ðqþ �q�ÞþMiðqþÞMjðq�Þ�

þ4Nc

Z d4q

ð2�Þ4gðqÞ
½MiðqþÞq��Mjðq�Þqþ�� ½Zðq�Þqþ�ZðqþÞq��

½qþ2þM2
i ðqþÞ�½q�2þM2

j ðq�Þ�
; (23)

with q� ¼ q� p=2. It is worth pointing out that the
functions Fij (and, therefore, the weak decay constants)
are given by the longitudinal component of G

�
ijðp; p0Þ,

which does not depend on the arbitrary path chosen in
the transport functions WAðx; yÞ.

From the above expressions, the weak decay constants
for � and K mesons in the isospin limit are given by

f� ¼ Z1=2
�

m2
�

Fuuðp2Þjp2¼�m2
�
;

fK ¼ Z1=2
K

m2
K

Fusðp2Þjp2¼�m2
K
:

(24)

For the �� �0 sector, the functions fabðp2Þ defined in
Eq. (17) are related to Fijðp2Þ through

f00ðp2Þ ¼ 1

3
½2Fuuðp2Þ þ Fssðp2Þ�;

f88ðp2Þ ¼ 1

3
½Fuuðp2Þ þ 2Fssðp2Þ�;

f08ðp2Þ ¼
ffiffiffi
2

p
3

½Fuuðp2Þ � Fssðp2Þ�:

(25)

These can be translated to the mass eigenstate basis
through the mixing angles in Eq. (A6). Thus one defines

fa� ¼ Z1=2
�

m2
�

½fa8ðp2Þ cos�� � fa0ðp2Þ sin���jp2¼�m2
�
; a ¼ 0; 8;

fa�0 ¼
Z1=2
�0

m2
�0

½fa8ðp2Þ sin ��0 þ fa0ðp2Þ cos��0 �jp2¼�m2

�0
; a ¼ 0; 8:

(26)

In order to compare with phenomenological determina-
tions, it is convenient to consider an alternative parametri-
zation in terms of two decay constants, f0, f8, and two
mixing angles, �0, �8 [29,30]. Both parametrizations are
related by

f8� f0�

f8
�0 f0

�0

0
@

1
A ¼ f8 cos �8 �f0 sin �0

f8 sin�8 f0 cos�0

 !
: (27)

C. Model parameters and form factors

The model includes five parameters, namely, the current
quark masses mu;s and the coupling constants G, H, and �.
In addition, one has to specify the form factors fðzÞ and
gðzÞ entering the nonlocal fermion currents. Here, follow-
ing Ref. [18], we will consider two parameter sets, corre-
sponding to two different functional forms for fðzÞ and
gðzÞ. The first one corresponds to the often-used exponen-
tial forms
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gðpÞ¼expð�p2=�2
0Þ; fðpÞ¼expð�p2=�2

1Þ; (28)

which guarantee a fast ultraviolet convergence of the loop
integrals. Note that the range (in momentum space) of the
nonlocality in each channel is determined by the parame-
ters�0 and�1, respectively. The second set of form factors
considered here is

gðpÞ ¼ 1þ z

1þ zfzðpÞ
mfmðpÞ �mzfzðpÞ

m �mz

;

fðpÞ ¼ 1þ z

1þ zfzðpÞ fzðpÞ;
(29)

where

fmðpÞ ¼ ½1þ ðp2=�2
0Þ3=2��1;

fzðpÞ ¼ ½1þ ðp2=�2
1Þ��5=2:

(30)

As shown in Ref. [18], for the SU(2) version of the model
these functional forms can very well reproduce the mo-
mentum dependence of mass and wave function renormal-
ization obtained in lattice calculations.

Given the form factor functions, one can fix the model
parameters so as to reproduce the observed meson phe-
nomenology. To the above-mentioned parameters mu;s, G,
H, and � one has to add the cutoffs �0 and �1, introduced
through the form factors. Here we have chosen to take as an

input value the light quark mass mu, while the remaining
six parameters are determined by fixing the value of the
quark WFR at momentum zero, Zð0Þ ¼ 0:7 (as dictated by
lattice QCD estimations), and by requiring that the model
reproduces the empirical values of five physical quantities.
These are the masses of the pseudoscalar mesons�,K, and
�0, the pion weak decay constant f�, and the light quark
condensate h �uui. In Table I we quote the numerical results
for the model parameters that we have obtained for the
above-described form factor functions. In what follows,
the parameter sets corresponding to the form factors in
Eq. (28) and Eqs. (29) and (30) will be referred to as
set I and set II, respectively. As expected from the ansatz
chosen for the form factors, for set II the momentum-
dependent mass and WFR in the light quark propagators
are able to fit adequately the results obtained in lattice
QCD calculations. This is shown in Fig. 1, where we plot
the curves obtained for the functions MðpÞ and ZðpÞ,
together with Nf ¼ 2þ 1 lattice data taken from

Ref. [20]. For comparison, we also quote the results cor-
responding to set I.

D. Meson phenomenology

Once the parameters have been determined, we can
calculate the values of several meson properties for the
scalar and pseudoscalar sectors. Our numerical results for
sets I and II are summarized in Table II, together with the
corresponding phenomenological estimates. The quantities
marked with an asterisk are those that have been chosen as
input values. In general, it is seen that the meson masses,
mixing angles, and weak decay constants predicted by the
model are in reasonable agreement with phenomenological
expectations. Moreover, the results for set I do not differ
significantly from those obtained in Ref. [6] for a nlPNJL
model with a Gaussian form factor gðpÞ and no WFR.
Regarding the scalar meson sector, a new ingredient with
respect to the model with no WFR is the presence of the
additional field � , which mixes with the I ¼ 0 fields�0 and
�8. The mass of the physical particles can be obtained by

TABLE I. Model parameters for the form factors in Eq. (28)
(set I) and Eqs. (29) and (30) (set II).

Set I Set II

mu (MeV) 5.7 2.5

ms (MeV) 136 63.9

G�2
0 23.64 15.55

�H�5
0 526 241

� (GeV) 4.36 8.08

�0 (GeV) 0.814 0.824

�1 (GeV) 1.032 1.550

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.5  1  1.5  2  2.5  3

M
(p

)

p [GeV]

Lattice
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 0.8

 0.9
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 0  0.5  1  1.5  2  2.5  3

Z
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)

p [GeV]

Lattice
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FIG. 1 (color online). Mass and WFR as functions of the momentum for our parametrization sets I and II, in comparison with lattice
results from Ref. [20].
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determining the zeros of the functions G�;�;f0ðp2Þ arising
from the diagonalization of the 3� 3 matrix in Eq. (A7)
(see the Appendix). From the corresponding numerical
calculation it is seen that one of these functions is positive
definite for the momentum range described by our models,
which reflects that the eigenstate associated with � does not
correspond to a physical particle. For the remaining two
states, which can be interpreted as the f0ð500Þ (or �) and
f0ð980Þ scalar mesons quoted by the Particle Data Group
(PDG) [31], we obtain masses of about 550 and 1200 MeV.
In fact, in the case of the f0 meson it happens that the loop
integrals in Eq. (A8) become divergent and need some
regularization prescription. This occurs since p2 exceeds
a threshold above which both effective quarks can be
simultaneously on shell, which can be interpreted as the
possibility of a decay of the meson into two massive
quarks. The integrals can be properly defined e.g., follow-
ing the prescription in Ref. [27]. Since the threshold lies at
about 1 GeV, we have estimated the mass value for the f0
meson by an extrapolation from the momentum region in
which the integrals are well defined. Following a similar
procedure, the masses of K�

0 charged and neutral mesons

are found to be ’ 1300 MeV; thus, these particles can be
identified with the K�

0ð1430Þ mesons quoted by the PDG

(mK�
0
¼ 1425� 50 MeV) [31]. Our models do not seem to

include the light strange scalar mesons �, which indeed
still need confirmation and thus have been omitted from
PDG particle summary tables.

Concerning the quark masses and condensates, it is
found that in the case of set II we obtain relatively low
values for mu and ms, and a somewhat large value for the
light quark condensate. Similar results have previously
been obtained in Refs. [18,26], within two- and three-flavor
parametrizations, respectively. As discussed in those
articles, this can be in part attributed to the fact that our
fit to lattice data for the function ZðpÞ is based on the
calculations in Ref. [20], which correspond to a rather
large renormalization scale � ¼ 3 GeV. On the other
hand, for both sets I and II we find that the quark mass
ratio is ms=mu ’ 25, which is phenomenologically ade-
quate. Something similar happens with the product
�h �uuimu, which gives 7:9� 10�5 GeV4 for set I and
8:2� 10�5 GeV4 for set II: These values are in agreement
with the scale-independent result obtained from the
Gell-Mann-Oakes-Renner relation at the leading order
in the chiral expansion, namely, �h �uuimu ¼ f2�m

2
�=2 ’

8:3� 10�5 GeV4.

III. NONZERO TEMPERATURE

A. Polyakov loop

As stated in the previous section, the effective action of
the model includes the interaction of quarks with color
gauge fields through the covariant derivative in the fermion
kinetic term. This coupling will be treated at the mean field
level, considering that quarks move on a constant back-
ground field 
 ¼ A4 ¼ iA0 ¼ ig	�0G

�
a �a=2, where G

�
a

are the SU(3) color gauge fields. Then the traced Polyakov
loop, which in the infinite quark mass limit can be taken
as an order parameter of confinement, is given by � ¼
1
3 Tr exp ði
=TÞ. We will work in the so-called Polyakov

gauge, in which the matrix 
 is given a diagonal repre-
sentation 
 ¼ 
3�3 þ
8�8. Owing to the charge conju-
gation properties of the QCD Lagrangian [32], the mean
field traced Polyakov loop field � is expected to be a real
quantity. Assuming that 
3 and 
8 are real valued [13],
this implies 
8 ¼ 0, � ¼ ½2 cos ð
3=TÞ þ 1�=3.
The effective gauge field self-interactions are given by

the Polyakov-loop potentialU½AðxÞ�. At finite temperature
T, it is normal to take for this potential a functional form
based on properties of pure gauge QCD. One possible
ansatz is that based on the logarithmic expression of the
Haar measure associated with the SU(3) color group inte-
gration. The corresponding potential is given by [13]

Ulog ð�;TÞ
T4

¼�1

2
aðTÞ�2þbðTÞ logð1�6�2þ8�3�3�4Þ; (31)

where

aðTÞ¼a0þa1

�
T0

T

�
þa2

�
T0

T

�
2
; bðTÞ¼b3

�
T0

T

�
3
: (32)

TABLE II. Numerical results for various phenomenological
quantities. Input values are marked with an asterisk.

Set I Set II Empirical

��u (MeV) 529 454 � � �
��s (MeV) 702 663 � � �
��=� �0:429 �0:429 � � �
�h �uui1=3 (MeV)* 240 320 � � �
�h�ssi1=3 (MeV) 198 343 � � �
m� (MeV)* 139 139 139

mK (MeV)* 495 495 495

m� (MeV) 527 537 547

m�0 (MeV)* 958 958 958

ma0 (MeV) 936 916 980

mK�
0
(MeV) 1300 1300 1425

m� (MeV) 599 537 400–550

mf0 (MeV) 1300 1200 990

f� (MeV)* 92.4 92.4 92.4

fK=f� 1.17 1.16 1.22

f0�=f� 0.17 0.14 (0.11–0.507)

f8�=f� 1.12 1.12 (1.17–1.22)

f0�0=f� 1.09 1.43 (0.98–1.16)

f8�0=f� �0:48 �0:42 �ð0:42–0:46Þ
�� �2:95� �1:01� � � �
��0 �41:62� �30:79� � � �
�0 �8:63� �5:53� �ð0�–10�Þ
�8 �22:94� �20:67� �ð19�–22�Þ
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The parameters can be fitted to pure gauge lattice QCD
data so as to properly reproduce the corresponding equa-
tion of state and Polyakov loop behavior. This leads to [13]

a0 ¼ 3:51; a1 ¼�2:47; a2 ¼ 15:2; b3 ¼�1:75:

(33)

The values of ai and bi are constrained by the condition
of reaching the Stefan-Boltzmann limit at T ! 1 and by
imposing the presence of a first-order phase transition at
T0, which is a further parameter of the model. In the
absence of dynamical quarks, from lattice calculations
one expects a deconfinement temperature T0¼270MeV.
However, it has been argued that in the presence of light
dynamical quarks, this temperature scale should be ade-
quately reduced to about 210 and 190 MeV for the case of
two and three flavors, respectively, with an uncertainty of
about 30 MeV [33]. Besides the logarithmic function in

Eq. (31), other forms for the Polyakov-loop potential can
be found in the literature. In the following some of them
will be considered, and the effect of the parameter T0 on
the phase transitions will be analyzed.

B. Thermodynamics

To investigate the phase transitions and the temperature
dependence of thermodynamical quantities within our
model, we consider the thermodynamical potential per
unit volume at the mean field level. We will proceed
by using the standard Matsubara formalism, following
the same prescriptions as in previous works; see e.g.,
Refs. [27,34]. In this way we obtain

�MFA ¼ �reg þ�free þUð�; TÞ þ�0; (34)

where

�reg ¼ �2T
X1

n¼�1

X
c;f

Z d3p

ð2�Þ3 log

� p2
nc þM2

fðpncÞ
Z2ðpncÞðp2

nc þm2
fÞ
�
�
�
�� �RþG

2
�R2 þH

4
�Su �Sd �Ss

�
� 1

2

X
f

�
��f

�Sf þG

2
�S2f

�
;

�free ¼ �2T
X
c;f

X
s¼�1

Z d3p

ð2�Þ3 Re log

�
1þ exp

�
� �fp þ {s
c

T

��
:

(35)

Here we have defined p2
nc ¼ ½ð2nþ 1Þ�T þ
c�2 þ ~p2,

�fp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

f

q
. The sums over color and flavor indices

run over c ¼ r, g, b and f ¼ u, d, s, respectively, and
the color background fields are
r ¼ �
g ¼ 
3,
b ¼ 0.

The term �0 is just a constant that sets the value of the
thermodynamical potential at T ¼ 0.

Now, from the thermodynamic potential we can calcu-
late various thermodynamic quantities such as the energy
and entropy densities, which are given by

" ¼ �þ Ts; s ¼ �@�

@T
: (36)

We are also interested in the behavior of the quark
condensates and the corresponding chiral susceptibilities,
defined by

h �qqi ¼ @�

@mq

; �q ¼ @h �qqi
@mq

¼ @2�

@m2
q

; q ¼ u; d; s:

(37)

For large temperatures, the behavior of the regularized
quark condensates is dominated by the free contribution,
which grows with T as h �qqi 	 �mqT

2. Therefore, in order

to analyze the chiral restoration transition, it is normal to
define a subtracted chiral condensate

h �qqisub ¼
h �uui � mu

ms
h�ssi

h �uui0 � mu

ms
h�ssi0 ; (38)

where we have also introduced a normalization factor
given by the values of the chiral condensates at zero
temperature.

C. Numerical results

We present here our numerical results for the quantities
defined in the previous section, considering different form
factors and Polyakov loop potentials. Let us start by taking
into account the parametrization set II, based on lattice
QCD results for the quark propagators, and the logarithmic
Polyakov-loop potential in Eq. (31). In Fig. 2 we quote the
corresponding behavior of the subtracted chiral conden-
sate, the traced Polyakov loop �, and the associated sus-
ceptibilities as functions of the temperature. In the upper
panel we show the results for the subtracted chiral conden-
sate h �qqisub and the traced Polyakov loop �, for T0 ¼ 270
and 200 MeV (dashed and solid curves, respectively). As
already stated, T0 ¼ 270 MeV is the deconfinement tran-
sition temperature obtained from lattice calculations in
pure gauge QCD, while we have taken T0 ¼ 200 MeV as
a reference temperature arising from the corresponding
rescaling in the presence of dynamical quarks [33]. For
comparison, we also include lattice QCD data taken from
Refs. [35,36]. As expected, it is found that when the
temperature is increased the system undergoes both the
chiral restoration and deconfinement transitions, which
proceed as smooth crossovers for the considered values
of T0. In the central and lower panels of Fig. 2 we show the
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curves for the Polyakov loop susceptibility —defined as
d�=dT—and the chiral susceptibilities �u;s [given by

Eq. (37)] as functions of the temperature. As usual, we
take the position of the peaks to define the corresponding
transition critical temperatures. From the figure it is seen
that the curves get steeper for lower values of T0; in fact,
first order phase transitions are found for T0 & 185 MeV.
In addition, in the curves for �s it is possible to identify a
second, broad peak that allows us to define an approximate
critical temperature for the restoration of the full SU(3)
chiral symmetry. For clarity we have plotted in the graphs
the subtracted susceptibilities ��q � �q � �qðT ¼ 0Þ.

It is seen that both the SU(2) chiral restoration and
deconfinement transitions occur essentially at the same
critical temperatures, in agreement with lattice QCD
results. The numerical values from the plots in Fig. 2 are
Tc ’ 200 MeV and Tc ’ 165 MeV for T0 ¼ 270 and
200 MeV, respectively, while lattice QCD analyses lead
to a transition temperature of about 160 MeV [35,36].
Thus, the agreement with lattice QCD data favors the
suggested rescaling of the reference temperature T0 from
the pure gauge transition temperature towards values
around 200 MeV.

The above results, which correspond to the lattice QCD-
inspired form factors of our parametrization set II, are
qualitatively similar to those obtained for the case of
set I, based on Gaussian form factors. In order to compare
the features of parametrization sets I and II, it is useful to
consider other thermodynamical quantities, such as the
interaction energy and the entropy. The corresponding
curves are shown in Fig. 3, where we plot the normalized
interaction energy ð"� 3pÞ=T4 (left panel) and the nor-
malized entropy density s=sSB (right panel), where sSB
stands for the entropy density Stefan-Boltzmann limit.
Dashed and solid curves correspond to parametrization
sets I and II, respectively, for the logarithmic Polyakov
loop (PL) potential in Eq. (31) with T0 ¼ 200 MeV. We
have included, for comparison, three sets of lattice data,
taken from Refs. [36–38]. It can be seen that for both the
interaction energy and the entropy, the curves for set I show
a pronounced dip at about T 	 300 MeV, which is not
observed in the case of set II, where the falloff is smooth.
In order to trace the source of this effect we have also
considered a third parametrization set III in which the form
factor gðpÞ has a Gaussian shape as in set I, but we do not
include the coupling driven by the currents jrðxÞ [i.e., there
is no wave function renormalization, ZðpÞ ¼ 1]. This pa-
rametrization has previously been considered in Ref. [6],
where the values of model parameters can be found (see
also Ref. [8]). In Fig. 3 it corresponds to the dashed-dotted
curve, which does not show the mentioned dip. This in-
dicates that the effect can be attributed to the exponential
behavior of the form factor fðpÞ in the wave function
renormalization for set I. Moreover, our results can also
be compared with those obtained from the parametrization

considered in Ref. [26], where the form factors are intro-
duced so as to fit lattice results for the quark propagator (as
in our set II), but fðpÞ is assumed to have a Gaussian shape.
The curves for the interaction energy and the entropy for
this model (dotted lines in Fig. 3) are similar to those
obtained for our parametrization set I. Thus, from the
comparison with lattice data, one can conclude that the
choice of a powerlike behavior for fðpÞ, such as that
proposed in Eqs. (29) and (30), turns out to be more
adequate than the exponential one.
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FIG. 2 (color online). Subtracted chiral condensate, Polyakov
loop, chiral susceptibilities, and PL susceptibility d�=dT as
functions of the temperature. Solid (dashed) curves correspond
to parameter set II, for a logarithmic PL potential with T0 ¼
200 ð270Þ MeV. Triangles, circles, and squares stand for lattice
QCD results from Refs. [35,36].
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Another aspect to be analyzed is the steepness of the
curves in the transition region. From both the plots in
Figs. 2 and 3, it is seen that the transition predicted
by the nlPNJL models is too sharp in comparison with
lattice estimations. In order to study the robustness of this
behavior, it is interesting to consider different forms for the
Polyakov loop potential proposed in the literature. Besides
the logarithmic form in Eq. (31), a widely used potential is
that given by a polynomic function based on a Ginzburg-
Landau ansatz [12,39]:

Upolyð�; TÞ
T4

¼ � b2ðTÞ
2

�2 � b3
3
�3 þ b4

4
�4; (39)

where

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2 þ a3

�
T0

T

�
3
: (40)

Here the reference temperature T0 plays the same role as
in the logarithmic potential in Eq. (31). Once again, the
parameters can be fitted to pure gauge lattice QCD results
so as to reproduce the corresponding equation of state
and Polyakov loop behavior (numerical values can be
found in Ref. [12]). Another widely considered form is
the PL potential proposed by Fukushima [10,40], which
includes both a logarithmic piece and a quadratic term with
a coefficient that falls exponentially with the temperature:

UFukuð�; TÞ ¼ �bT½54 exp ð�a=TÞ�2

þ log ð1� 6�2 þ 8�3 � 3�4Þ�: (41)

Values of dimensionful parameters a and b are given in
Ref. [40] (notice that these lead to Tc ’ 200 MeV, a some-
what large transition temperature in comparison with
present lattice QCD estimations). Finally, we consider

FIG. 3 (color online). Normalized interaction energy (left panel) and entropy density (right panel) as functions of the temperature,
for different model parametrizations. Curves correspond to nlPNJL models with logarithmic PL potentials, with T0 ¼ 200 MeV.
Squares, circles, and triangles stand for lattice data from Refs. [36–38], respectively.

FIG. 4 (color online). Subtracted chiral condensate (left panel) and traced Polyakov loop (right panel) as functions of the
temperature, for different PL potentials. Curves correspond to parametrization set II. Squares, circles, and triangles stand for lattice
data from Refs. [35,36].
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here the ‘‘improved’’ PL potential forms recently proposed
in Ref. [41], where the full QCD potential Uglue is related

to a Yang-Mills potential UYM:

Uglueð�; tglueÞ
T4

¼ UYM½�; tYMðtglueÞ�
T4
YM

; (42)

where

tYMðtglueÞ ¼ 0:57tglue ¼ 0:57

�
T � Tglue

c

Tglue
c

�
: (43)

The dependence of the potential on the Polyakov loop
� is taken from an ansatz such as those in Eqs. (39) and

(31), while for Tglue
c a preferred value of 210 MeV is

obtained [41].
The transition shapes induced by these PL potentials

within our framework are shown in Fig. 4. We have taken
T0 ¼ 200 MeV for the logarithmic and polynomic poten-

tials, and the parameters b and T
glue
c in Eqs. (41) and (43)

have been rescaled to ð145 MeVÞ3 and 200 MeV, respec-
tively, in order to get critical temperatures of about
165 MeV. From the curves for the subtracted chiral con-
densate (left panel) it is seen that for the case of the
polynomic and Fukushima potentials the transition is
slightly smoother than for the logarithmic one. Moreover,
the improved potentials proposed in Ref. [41] lead to even
smoother transitions, showing a reasonable agreement with
lattice QCD estimations. On the other hand, by looking at
the curves for the Polyakov loop � (right panel in Fig. 4)
one finds that the transition is too steep in comparison
with lattice data. This is a general feature of Polyakov
NJL-like models, both local and nonlocal, and it also
extends to quark-meson models. In fact, as discussed in
Refs. [42–44], the strict comparison between our curves
and lattice data for the traced Polyakov loop has to be
taken with some care, owing to the difference between the
definitions of � in the continuum and on the lattice. One
should expect a coincidence in the crossover temperatures,
which, in general, appears to be satisfied in the nlPNJL
models for the potentials considered here.

It is important to remark that in nlPNJLmodels one finds
an entanglement between both chiral restoration and de-
confinement transitions, in agreement with lattice QCD
results. This feature is usually not observed in local
PNJL models, where both transitions appear to be typically
separated by about 20 MeV, or even more (see e.g.,
Refs. [45,46]). Something similar happens in the region
of imaginary chemical potential, where the entanglement
between both transitions occurs in a natural way within
nonlocal models [24], while in the PNJL model it can be
obtained only after e.g., the inclusion of an eight-quark
interaction [47]. This discrepancy with lattice QCD results
can be cured after the inclusion of an ‘‘entangled scalar
interaction,’’ in which the effective four-quark coupling is
a function of the traced Polyakov loop� [48,49]. It is also

worth noticing that while the local PNJL, in general,
predicts smoother transitions than the nlPNJL, this feature
should not be seen as a consequence of the nonlocality.
In fact, the enhancement of the steepness arises from the
feedback between both chiral restoration and deconfine-
ment transitions. This is supported by the results found in
the above-mentioned ‘‘entangled’’ PNJL: By including a
�-dependent interaction that leads to simultaneous critical
temperatures at about 175 MeV, the transitions become
steeper, just as those obtained in nlPNJL models.
Finally, for completeness we quote in Fig. 5 our results

for the behavior of the interaction energy and the entropy

,

,

,

,

,
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FIG. 5 (color online). Normalized interaction energy, entropy
density, and energy density as functions of the temperature, for
parametrization set II and three different PL potentials. Squares,
circles, and triangles stand for lattice data from Refs. [36–38].
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and energy densities as functions of the temperature, con-
sidering both the logarithmic and the polynomic PL poten-
tials, as well as the improved polynomic potential from
Ref. [41]. The curves correspond to our parameter set II.
It is seen that the improved potential seems to be more
compatible with lattice results up to the critical tempera-
ture, while at higher temperatures the agreement is better
for the usual logarithmic and polynomic potentials.
Concerning the steepness of the transitions, it is worth
mentioning that the behavior may be softened after the
inclusion of mesonic corrections to the Euclidean action,
since when the temperature is increased the light mesons
should be excited before the quarks [4,7,8,50]. The incor-
poration of meson fluctuations should not modify the
critical temperatures, which for the parameters chosen
here are in good agreement with lattice estimations.

IV. SUMMARYAND CONCLUSIONS

We analyze here the features of three-flavor nlPNJL
models that include a wave function renormalization in
the effective quark propagators. This represents an exten-
sion of previous works that consider two-flavor schemes,
and three-flavor models with no quark WFR. In this
framework, we obtain a parametrization of the model
that reproduces lattice QCD results for the momentum
dependence of the effective quark mass and WFR, and at
the same time leads to an acceptable phenomenological
pattern for particle masses and decay constants in both the
scalar and pseudoscalar meson sectors. For comparison, we
also consider a parametrization based on Gaussian form
factors, which leads to a faster convergence of quark loop
integrals. Gaussian and lattice-inspired parametrizations
are called here set I and set II, respectively. It is seen that
the predictions for meson properties are qualitatively simi-
lar in both cases, and they also agree with those obtained
previously within three-flavor models with no WFR.

As a second step we analyze the characteristics of the
deconfinement and chiral restoration transitions at finite
temperature, introducing the couplings of fermions to a
background gauge field and taking the traced Polyakov
loop as an order parameter for the deconfinement. In
general, it is found that both transitions occur at the same
critical temperature, in agreement with lattice QCD results.
This temperature turns out to be strongly dependent on the
scale parameter T0 in the Polyakov loop potential. A
critical temperature of about 170 MeV, consistent with
that arising from lattice QCD calculations, is obtained for
T0 ’ 200 MeV, in agreement with theoretical expectations
for a model with two/three light dynamical quarks. On the
other hand, in order to distinguish between the different
parametrizations and those proposed in related works, we
analyze the temperature dependence of the interaction
energy and the normalized entropy and energy densities.
For these thermodynamical quantities it is seen that the

lattice-inspired powerlike parametrization set II indeed
shows the best agreement with lattice QCD results, which
supports the consistency of our approach. We also consider
various possible forms for the Polyakov loop potential,
tuning the corresponding parameters so as to obtain
critical temperatures in a range compatible with lattice
QCD data. It is seen that while the logarithmic potential
Eq. (31) leads to rather sharp transitions, for some alter-
native forms such as the polynomic and Fukushima po-
tentials [Eqs. (39) and (41), respectively], the crossovers
tend to be somewhat smoother. Moreover, the improved
potentials proposed in Ref. [41] lead to even smoother
transitions, showing a reasonable agreement with lattice
QCD estimations. The compatibility with the results for
the other mentioned thermodynamical quantities is also
discussed. Finally, it is worth mentioning that the transi-
tions could also be softened after the incorporation of
meson fluctuations, which is presently under study in the
context of our models.
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APPENDIX: ANALYTIC EXPRESSIONS
FOR GMðp2Þ FUNCTIONS

We present here the analytic expressions for the func-
tions GMðp2Þ appearing in the quadratic expansion of the
Euclidean action; see Eq. (13). Our calculations are in
agreement with the results reported in Ref. [26]. For the
I � 0 states �, a0, K, and � we obtain

Gð�a0ÞðpÞ ¼
�
G�H

2
�Ss

��1 þ 4C

uuðpÞ;

GðK�ÞðpÞ ¼
�
G�H

2
�Su

��1 þ 4C

usðpÞ;

(A1)

where the functions C

ij ðpÞ, with i, j ¼ u or s, are

defined as

C

ij ðpÞ ¼ �2Nc

Z d4q

ð2�Þ4 g
2ðqÞ ZðqþÞ

qþ2 þM2
i ðqþÞ

� Zðq�Þ
q�2 þM2

j ðq�Þ
½ðqþ � q�Þ �MiðqþÞMjðq�Þ�;

(A2)

with q� ¼ q� p=2. In the I ¼ 0 pseudoscalar sector one
has a mixing between the �0 and �8 fields. The masses of
the physical states � and �0 can be obtained from the
functions
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Gð�
�0ÞðpÞ ¼

G�
88ðpÞ þG�

00ðpÞ
2



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G�

80ðpÞ2 þ
�
G�

88ðpÞ �G�
00ðpÞ

2

�
2

s
; (A3)

where we use the definitions

G

00ðpÞ ¼

4

3

�
2C


uuðpÞ þ C

ssðpÞ þ 6G
H �Ss � 4H �Su

8G2 � 4H2 �S2u 
 4HG �Ss

�
;

G

88ðpÞ ¼

4

3

�
2C


ssðpÞ þ C

uuðpÞ þ 6G
 2H �Ss 
 4H �Su

8G2 � 4H2 �S2u 
 4HG �Ss

�
;

G

80ðpÞ ¼

4

3

ffiffiffi
2

p �
C

uuðpÞ � C


ssðpÞ � Hð �Ss � �SuÞ
8G2 � 4H2 �S2u 
 4HG �Ss

�
:

(A4)

The states � and �0 are thus defined as

� ¼ �8 cos �� � �0sen��; �0 ¼ �8sen�
0
� þ �0 cos �

0
�; (A5)

where the mixing angles ��, ��0 are given by

tan 2��;�0 ¼ �2G�
80

G�
88 �G�

00

��������p2¼�m2

�;�0
: (A6)

Finally, for the I ¼ 0 scalar sector, the quadratic terms involving the fields � , �8, and �0 are mixed by the 3� 3 matrix

4C� ðpÞ þG�1
ffiffi
8
3

q
½2Cþ�

u ðpÞ þ Cþ�
s ðpÞ� 4ffiffi

3
p ½Cþ�

u ðpÞ � Cþ�
s ðpÞ�ffiffi

8
3

q
½2Cþ�

u ðpÞ þ Cþ�
s ðpÞ� Gþ

00ðpÞ Gþ
80ðpÞ

4ffiffi
3

p ½Cþ�
u � Cþ�

s ðpÞ� Gþ
80ðpÞ Gþ

88ðpÞ

0
BBBBB@

1
CCCCCA; (A7)

where

C� ðpÞ ¼ Nc

�2

Z d4q

ð2�Þ4 q
2f2ðqÞX3

i¼1

ZðqþÞ
qþ2 þM2

i ðqþÞ
Zðq�Þ

q�2 þM2
i ðq�Þ

�
qþq� þ qþ2q�2 � ðqþq�Þ2

2q2
�MiðqþÞMiðq�Þ

�

Cþ�
i ðpÞ ¼ � 2Nc

�

Z d4q

ð2�Þ4 gðqÞfðqÞ
ZðqþÞ

qþ2 þM2
i ðqþÞ

Zðq�Þ
q�2 þM2

i ðq�Þ
q � ½q�MiðqþÞ þ qþMiðq�Þ�;

(A8)

with i ¼ u, s. For a given value of p2, we denote the eigenvalues of this matrix by G� ðpÞ, G�ðpÞ, and Gf0ðpÞ. As stated in
Sec. II D, from the functions G�ðpÞ and Gf0ðpÞ one can determine the masses of the �, f0 physical states [the function

G� ðpÞ turns out to be positive definite for the allowed values of�p2]. The corresponding mixing angles can be obtained in

a similar way as in the � meson sector, now defining SO(3) rotation matrices for the � and f0 physical states.
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