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We introduce a hybrid variable flavor number scheme for heavy flavors, denoted H-VFNS, which

incorporates the advantages of both the traditional variable flavor number scheme as well as the fixed

flavor number scheme (FFNS). By including an explicit NF dependence in both the parton distribution

functions (PDFs) and the strong coupling constant �S, we generate coexisting sets of PDFs and �S for

NF ¼ f3; 4; 5; 6g at any scale � that are related analytically by theMS matching conditions. The H-VFNS

resums the heavy quark contributions and provides the freedom to choose the optimal NF for each

particular data set. Thus, we can fit selected HERA data in a FFNS framework, while retaining the benefits

of the VFNS to analyze LHC data at high scales. We illustrate how such a fit can be implemented for the

case of both HERA and LHC data.
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I. INTRODUCTION

Parton distribution functions (PDFs) provide the essen-
tial link between the theoretically calculated partonic cross
sections and the experimentally measured physical cross
sections involving hadrons and mesons. A good under-
standing of this link is crucial if we are to make incisive
tests of the standard model, and search for subtle deviations
which might signal new physics.

For precision analyses of PDFs, the heavy quarks
(charm, bottom, and top) must be properly taken into
account; this is a nontrivial task due to the different
mass scales which enter the theory. There is extensive
literature devoted to this question, and various heavy
flavor schemes have been devised which are used in
modern global analyses of parton distribution functions.
The CTEQ global analyses of PDFs in nucleons [1,2]
and nuclei [3,4] employ as a default1 the Aivazis-
Collins-Olness-Tung (ACOT) scheme [5,6] and refine-
ments of it [7,8]. Extensions of the ACOT scheme
beyond next-to-leading order (NLO) [6,9] were recently
presented in Refs. [10,11]. The general ACOT scheme
has also been applied to the case of deep inelastic
scattering (DIS) jet production [12,13] and pp induced

heavy quark production [14]. The default scheme of the
Martin-Stirling-Thorne-Watt (MSTW) PDFs [15] is the
Thorne-Roberts (TR) factorization scheme [16,17] and
the NNPDF Collaboration uses the fixed-order next-to-
leading logs (FONLL) method [18] applied to DIS [19]
in its most recent PDF studies [20,21]. The ACOT, TR,
and FONLL schemes are examples of (general mass)
variable flavor number schemes (VFNS). Other groups
like ABKM/ABM [22,23] and GJR/JR [24,25] utilize
the fixed flavor number scheme (FFNS) as their default
option, but include an option for other NF values [22].
For recent reviews of the schemes see, e.g., [26,27] and
Sec. 22 in [28].
The ACOT scheme is based on the proof of factorization

with massive quarks by Collins [29] which incorporates the
flexibility of introducing separate matching and switching
scales (see Secs. II and III). This possibility has been
discussed in the literature for some time [19,26,27,30].
However, it is technically more complicated and has never
been implemented in a global analysis framework employ-
ing the ACOT scheme. In this paper we study the VFNS in
its most general formulation, with separate matching and
switching scales, and denote it as the hybrid variable flavor
number scheme (H-VFNS) in order to clearly distinguish it
from the traditional VFNS.
In the H-VFNS we generate coexisting sets of PDFs

faðx;�;NFÞ and the strong coupling constant �sð�;NFÞ
with NF ¼ f3; 4; 5; 6g which are related analytically by

the precise MS matching conditions. This provides
maximal flexibility, both in a global analysis and for
application of these PDFs, to choose the optimal sub-
scheme (i.e. the value of NF) in which to compute a
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1In addition to the default scheme, many groups also provide

sets of PDFs obtained in other heavy flavor schemes.
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given observable. The freedom of the H-VFNS allows
an improved description of heavy flavor data sets in a
wide kinematic range.

The rest of this paper is organized as follows. In Sec. II
we present a brief review of existing heavy flavor schemes
before we introduce our new H-VFNS in Sec. III. In
Sec. IV we investigate the NF dependence of the PDFs
and �s, followed by a discussion of the NF dependence of
physical structure functions in Sec. V. In Sec. VI we
present an example of how the H-VFNS scheme could be
employed for a simultaneous study of low-scale data from
HERA and high-scale data from the LHC as they might
enter a global analysis of PDFs. Finally, in Sec. VII we
present our conclusions. Technical details concerning
the evolution of �s and the PDFs as well as the matching
conditions between sets with different NF have been
relegated to the appendix.

II. BRIEF REVIEWOF HEAVY FLAVOR SCHEMES

There are several basic requirements that any complete
theoretical description of heavy quarks must satisfy in
the context of perturbative QCD (pQCD) to be valid in
the full kinematic range from low to high energies [26,29].
In particular, we focus on the following three:

(1) For energy scales � � m, the heavy quark of mass
m should decouple from the theory.

(2) For energy scales � � m, physical observables
must be infrared safe (IR safe).

(3) Heavy quark mass effects should be properly taken
into account.

We now discuss/review some of the heavy flavor schemes
used in the literature in the light of the three basic
requirements.

In the following, we denote a factorization (renormal-
ization) scheme with NF (NR) active quark flavors in the

initial state (in quark loops) by SðNF;NRÞ. If not stated

otherwise, we set NF ¼ NR and write SðNFÞ.

A. Fixed flavor number scheme

A single scheme SðNFÞ with a fixed number of active
quark partons NF is called a fixed flavor number scheme.

For example, in the NF ¼ 3 FFNS, Sð3Þ, the gluon and the
three light quarks ðu; d; sÞ are treated as active partons
whereas the heavy quarks are not partons. They can only
be produced in loops and in the final state and their masses
are fully retained in the perturbative fixed order calcula-
tions. Similarly, it is possible to define a NF ¼ 4 FFNS,

Sð4Þ, and a NF ¼ 5 FFNS, Sð5Þ.
The FFNS satisfies the requirements 1 and 3. In particu-

lar, the final state kinematics are exactly taken into ac-
count. Conversely, the FFNS is not IR safe because
logarithms of the heavy quark mass �s ln ð�=mÞ arise in
each order of perturbation theory which will become large
for asymptotic energies � � m so that they eventually

spoil the convergence of the perturbation series in �s.
Therefore, the FFNS cannot be reliably extended up to
high energy scales such as those required for analysis of
the LHC data.
Despite the lack of IR safety, the FFNS is widely used

because it is conceptually simple and a proper treatment of
the final state kinematics is crucial close to the heavy quark
production threshold and for exclusive studies of heavy
quark production.

B. Variable flavor number scheme

Avariable flavor number scheme is composed of a set of

fixed flavor number schemes SðNFÞ with different NF val-

ues. The matching scale � ¼ �ðNFÞ
M specifies the scale at

which the PDFs and �s in the scheme with NF þ 1 flavors
are related to those with NF flavors. The matching scales

are of the order of the heavy quark mass �ðNFÞ
M ’ mNF

(NF ¼ 4, 5, 6) in order to avoid large logarithms in the
perturbatively calculable matching conditions. The PDFs,

�s, and observables are computed in a subscheme SðNFÞ,
where NF ¼ 3, 4, 5, 6 is determined by the energy scale�.
We write this schematically as

Sð3Þ!�
ð4Þ
M
Sð4Þ!�

ð5Þ
M
Sð5Þ!�

ð6Þ
M
Sð6Þ: (1)

By construction, a VFNS satisfies heavy quark
decoupling (requirement 1) since this is respected by the

individual schemes SðNFÞ from which the VFNS is com-
prised. Furthermore, a VFNS is IR safe (requirement 2)
because it resums the �s ln ð�=mNF

Þ terms to all orders via

the contribution from the heavy quark PDFs; hence, it can
be reliably extended to the region �=mc;b ! 1.

The most delicate point to satisfy is the proper treatment
of the heavy quark mass (requirement 3) [29]:
(i) In the VFNS, since the UV counterterms are the

same as in the MS scheme, the evolution equations
for the PDFs and �s are exactly those of a pure

massless MS scheme with NF active flavors; there-
fore, the information on the heavy quark masses
enters the PDF evolution only via the matching
conditions between two subschemes.2

(ii) The VFNS formalism allows all quark masses to be
retained in the calculation of the Wilson coeffi-
cients. While it is common to neglect the masses
of the lighter quarks for practical purposes, this
simplification is not necessary for the application
of the VFNS; hence, the VFNS fully retains all
Oðm2=�2Þ contributions. Furthermore, multiple
heavy quark masses can be treated precisely without
loss of accuracy, and this result is independent of
whether the heavy quark masses are large or small;

2For details about the MS evolution of the heavy quarks see
Refs. [31,32].
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hence, we have no difficulty addressing contribu-
tions of mc and mb simultaneously in the VFNS.

(iii) Of course, the heavy quark masses can also be
retained in the calculation of the final state phase
space of a given partonic subprocess. Here, the
difficulty arises that ‘‘collinear’’ heavy quarks in
the evolution equations do not appear in the par-
tonic subprocesses and their effect on the phase
space is therefore not taken into account. For ex-
ample, in DIS, the second heavy quark produced by
a gluon splitting is ‘‘lost’’ in the leading order �? þ
c ! c subprocess and theoretical calculations in a
VFNS can overshoot the data close to the c �c pro-
duction threshold, i.e., at low Q2 and large x. The
problem can be overcome by incorporating the
kinematical effect of the second heavy quark via
a slow rescaling variable resulting in the ACOT�

scheme.3 Subsequently, this procedure has also
been adopted by the MSTW group [17].

(iv) The ACOT� prescription provides a practical solu-

tion for the purpose of improving the quality of
global analyses of PDFs in the VFNS since DIS
structure function data—forming the backbone of
such analyses—are better described at low Q2.

However, there are some shortcomings of the � pre-
scription: (i) The convolution variable (at LO, the slow-
rescaling variable) is not unique and different versions
have been investigated in the literature [33]. (ii) As a matter
of principle, production thresholds for more than one heavy
quark pair (say 2 or 3 heavy quark pairs) cannot be captured
with a single slow-rescaling variable. Numerically, however,
this will have negligible consequences (at NNLO precision).
(iii) Most importantly, a corresponding prescription has not
yet been formulated for the hadroproduction of heavy
quarks [34–37] or other less inclusive observables. Note,
these shortcomings of the � prescription do not apply to the
general ACOT prescription.

The problems satisfying requirement 3 can be over-

come/reduced by switching to the Sð4Þ scheme not at the
charm mass but at a larger scale. This possibility will be
discussed in the next section.

III. HYBRID VARIABLE FLAVOR
NUMBER SCHEME

The traditional VFNS introduced in the previous
section can be generalized by introducing, in addition to

the matching scales �ðNFÞ
M , separate switching scales �ðNFÞ

S .

The switching scale �ðNFÞ
S prescribes where the transition

from the scheme with NF flavors to the one with NF þ 1
flavors is performed. Below the switching scale

[�<�ðNFÞ
S ] physical observables are calculated in the

SðNFÞ scheme, and above the switching scale [�ðNFÞ
S < �]

they are calculated in the SðNFþ1Þ scheme. Thus, the
H-VFNS is a series of subschemes specified by

S ¼

8>>>>>><
>>>>>>:

Sð3Þ; � � �ð4Þ
S

Sð4Þ; �ð4Þ
S < � � �ð5Þ

S

Sð5Þ; �ð5Þ
S < � � �ð6Þ

S

Sð6Þ; �ð6Þ
S < �

: (2)

We refer to this scheme as the hybrid variable flavor
number scheme (H-VFNS) in order to clearly distinguish
it from the traditional VFNS in which the matching and the
switching (transition) scales are equal. Indeed, in all prac-
tical applications to date these scales have been identified

with the heavy quark masses:�ðNFÞ
M ¼ �ðNFÞ

S ¼ mNF
; while

this choice leads to considerable simplifications at the
technical level, it also brings some disadvantages which
we will discuss below.4 The theoretical basis for the im-
plementation of the presented H-VFNS follows the general
formulation of the ACOT scheme given (and proven) in
Ref. [29].
The essential technical step to implement the H-VFNS

is to add an explicit dependence on the number of active
flavors, NF, in both the PDFs faðx; �;NFÞ and the
strong coupling �Sð�;NFÞ. This concept is illustrated
notationally as

fiðx;�Þ ! fiðx;�;NFÞ; �sð�Þ ! �sð�;NFÞ;
and we illustrate this schematically in Fig. 1 where we
explicitly see the coexistence of PDFs and �S for different
NF values.5

Instead of a single PDF, we will have a set of four
coexisting PDFs, faðx;�;NFÞ with NF ¼ f3; 4; 5; 6g, that
are related analytically by theMSmatching conditions (see
Appendix A 2). Therefore, by knowing the PDFs for a
specific NF branch, we are able to compute the related
PDFs for any other number of active flavors.6 Likewise, we
have a set of four coexisting strong couplings, �Sð�;NFÞ

3The details of the ACOT� factorization scheme are in
Ref. [8], and the factorization proof for S-ACOT� was demon-
strated in Ref. [10].

4The choice �ðNFÞ
M ¼ mNF

eliminates terms of the form
ln ð�=mNF

Þ in the matching conditions. Note, that we generally

prefer to choose �ðNFÞ
M � �ðNFÞ

S ; technically, we have the free-

dom to choose �ðNFÞ
M >�ðNFÞ

S , but this would require a numeri-
cally unstable DGLAP ‘‘backward evolution’’ from the matching

scale �ðNFÞ
M down to the switching scale �ðNFÞ

S .
5The use of the 6-flavor �S in the ratio in Fig. 1 at low scales is

just for illustration; for realistic calculations in the H-VFNS the

6-flavor �S is used only above the �ð6Þ
S switching scale. Also the

number of flavors used in �S and PDFs is always matched.
6This analytic relation is in contrast to, for example,

the CTEQ5M NF ¼ f3; 4; 5g flavor fits [38], where each NF

fit represents a separate phenomenological fit to the data set.
Separately, the MSTW NF ¼ f3; 4; 5g flavor fits of Refs. [39,40]
are related by MS matching conditions.
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for NF ¼ f3; 4; 5; 6g, that are also related analytically by

the MS matching conditions (see Appendix A 1).

A. Generating the PDFs and �s in the H-VFNS

These PDFs and �s are computed using the following
prescription.

(1) Parametrize the PDFs at a low initial scale �0 ¼
Q0 � 1 GeV; as this is below the mc;b;t thresholds,

this would correspond to NF ¼ 3. We also choose
an initial value for �sð�0; NF ¼ 3Þ at the same
scale.7

(2) Starting at an initial scale �0 with NF ¼ 3, we
evolve the PDFs using the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution
equations and �sð�;NFÞ with the renormalization
group equations up to �max . We thus obtain
faðx;�;NF ¼ 3Þ and �sð�;NF ¼ 3Þ for scales
� 2 ½�0; �max �.

(3) At � ¼ mc we use the MS matching conditions to
compute both the NF ¼ 4 PDFs and �s using
the NF ¼ 3 results. We then use the NF ¼ 4
evolution equations to obtain faðx;�;NF ¼ 4Þ and
�sð�;NF ¼ 4Þ up to �max .

(4) At � ¼ mb we again use the MS matching condi-
tions to compute both the NF ¼ 5 PDFs and �s

using the NF ¼ 4 results. We then use the NF ¼ 5
evolution equations to obtain faðx;�;NF ¼ 5Þ and
�sð�;NF ¼ 5Þ up to �max .

(5) At � ¼ mt this procedure can be repeated again
with NF ¼ 6 for the top quark.8

Because all the NF ¼ f3; 4; 5; 6g results for the PDFs
faðx;�;NFÞ and the strong coupling �Sð�;NFÞ are

retained, the user has the freedom to choose which NF to
use for a particular calculation.9 However, note that the
number of active flavors used in �S and in PDFs is always
the same.

B. Properties of the H-VFNS

Having generated a set of NF-dependent PDFs and
strong couplings, we highlight two important properties.
(1) The PDFs and strong couplings with different NF

flavors coexist simultaneously.
(2) The PDFs and strong couplings with one NF value

have a precise analytic relation to those with a
different NF value which is specified by the appro-

priate evolution equations and the MS boundary
conditions at � ¼ mc;b;t (cf., the Appendix).

Property (1) allows us to avoid dealing with an NF

flavor transition should it happen to lie right in the
middle of a data set. For example, if we analyze the
HERA Fcharm

2 data10 which covers a typical range of
Q� ½3; 8� GeV, if we were to use the traditional VFNS
then the NF transition between 4 and 5 flavors would lie
right in the middle of the analysis region; clearly this is
very inconvenient for the analysis. Because we can
specify the number of active flavors NF in the
H-VFNS, we have the option to not activate the
b-quark in the analysis even when �>mb; instead,
we perform all our calculations of Fcharm

2 using NF ¼
4 flavors. This will avoid any potential discontinuities in
the PDFs and �s in contrast to the traditional VFNS
which forces a transition to NF ¼ 5 at the b-quark mass.
Property (2) allows us to use the NF ¼ 4 PDF

fiðx; �;NF ¼ 4Þ extracted from the Fcharm
2 data set and

relate this to NF ¼ 5 and NF ¼ 6 PDFs that can be applied
at high � scales for LHC processes. In this example note
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FIG. 1 (color online). Schematic of a H-VFNS: PDF (left) and �S (right) vs � for a selection of NF values. The preferred range of
each NF branch is indicated by the thicker line. Thus, fiðx;�;NF ¼ 3Þ can be used slightly above the mc transition, but for very large
� scales the NF ¼ 4, 5, 6 branches are preferred as these resum the mc mass singularities.

7In practice, we obtain �sð�0; NF ¼ 3Þ by evolving the world
average [41] �sðMZ;NF ¼ 5Þ ¼ 0:1184 down to �0 using the
renormalization group equation as described in Appendix A 1.

8For maximum generality, we include the NF ¼ 6 case of the
top quark; in practice, even for LHC processes there is little need
to resum these contributions.

9Note that there is a residual dependence on the involved
matching and switching scales (which is also present in tradi-
tional VFNS). This is further discussed in Appendix A 2.
10Consider, for example, the data set of Ref. [42].

A. KUSINA et al. PHYSICAL REVIEW D 88, 074032 (2013)

074032-4



that all the HERA Fcharm
2 data (both above and below mb)

influence the NF ¼ 5 and NF ¼ 6 PDFs used for the LHC
processes.11

C. Challenges resolved

We can now see how this H-VFNS overcomes
the challenges noted above. While the traditional
VFNS forced the user to transition from NF ¼ 4 to
NF ¼ 5 at � ¼ mb (for example), because the
H-VFNS approach retains the NF information we have
the freedom to use the NF ¼ 4 calculation for � scales
even above mb.

The H-VFNS also shares the benefits of the FFNS in
that we can avoid a NF transition which might lie in the
middle of a data set. Furthermore, while the FFNS cannot
be extended to large scales due to the uncanceled logs, the
H-VFNS can be used at high scales (such as for LHC
processes) because we retain the freedom to switch NF

values and resum the additional logs where they are
important.

Additionally, the H-VFNS implementation gives the
user maximum flexibility in choosing where to switch
between the NF and NF þ 1 calculations. Not only can
one choose different switching points for different
processes (as sketched above), but also we can make
the switching point dependent on the kinematic
variables of the process. For example, the production
thresholds for charm/bottom quarks in DIS are given
in terms of the photon-proton center-of-mass energy
W2 ’ Q2ð1� xÞ=x; thus, we could use this to define
our switching scales.

An important operational question is, how far above
the � ¼ mQ can we reliably extend a particular NF

framework? We know this will have mass singular
logs of the form �s ln ð�=mQÞ, so these will eventually

spoil the perturbative expansion of the coefficient func-
tions. We just need to ensure that we transition to the
NF þ 1 result before these logs obviate the perturbation
theory. We will investigate this question numerically in
Sec. V.

D. Relation to previous work

In closing we want to note that many of the ideas that
we build upon here with the H-VFNS have been present
in the literature for some time. The proof of factoriza-
tion paper by Collins [29] incorporates the flexibility of

introducing separate matching and switching scales;
applications to the ACOT scheme were outlined in
Ref. [30]; and Ref. [26] provides a recent review of
the situation. The separate NF sets of the MSTW

Collaboration [39] are precisely defined by the MS
matching conditions [44] at Oð�sÞ. This is extended to
higher order for MSTW [40] and ABKM/ABM [22].
Additionally, the NNPDF group provides PDF sets with
different numbers of active flavors in Refs. [20,21] for
NLO and NNLO. The phenomenological implications
of coexisting NF PDF sets has been investigated in the
MSTW and NNPDF frameworks [45,46]. The extension
of the ACOT scheme beyond NLO, where the PDF and
�S discontinuities appear, was presented in Ref. [11].
Putting these pieces together, and including the explicit
NF dependence, allows us to construct a tractable
implementation of the H-VFNS with user-defined
switching scales.
Operationally, we are able to provide maximum flexi-

bility with only a minimal extension of the PDF. A fully
general framework as described in Ref. [30] would require
a separate PDF grid (and associated evolution) for each
data set with a distinct matching or switching scale. With
the implementation outlined in the H-VFNS we are able to
implement this economically with only three PDF grids for
NF ¼ f3; 4; 5g; this is possible for a number of reasons as
outlined below.

While we have imposed the choice �ðNFÞ
M ¼ mNF

, we

demonstrate in Appendix A 2 that when the matching
conditions are implemented correctly, particularly at
higher orders, the physical influence of this matching
condition is minimal. On physical grounds, the natural
choice for the switching scale is at or above the heavy

quark mass scale�ðNFÞ
S � mNF

. Additionally, it is generally

preferred to have the switching scale above the matching

scale �ðNFÞ
M � �ðNFÞ

S as this avoids the need for backward

evolution. Our implementation of the H-VFNS with

mNF
¼ �ðNFÞ

M � �ðNFÞ
S naturally accommodates these

choices.
Therefore, our H-VFNS implementation economically

requires only three PDF grids (for NF ¼ f3; 4; 5g), yet
provides the user flexibility to use any switching scale,

and the choice of the fixed matching scale �ðNFÞ
M ¼ mNF

has minimal impact on the physical results.

IV. NF DEPENDENCE OF THE PDFS AND �s

In this study we are using an initial PDF parametrization
based on the nCTEQ ‘‘decut3’’ set of Ref. [47]. We use
quark masses ofmc ¼ 1:3 GeV,mb ¼ 4:5 GeV, andmt ¼
175 GeV, with a starting scale of Q0 ¼ 1:2 GeV which
allows us to examine the charm threshold. The full set of
NF ¼ f3; 4; 5; 6g PDFs is generated as described above

using the MS matching conditions applied at the quark

11Conceptually, the HERA data above the bottom mass
(mb <�) on the NF ¼ 4 branch is ‘‘backward evolved’’
to the matching point �ð5Þ

M ¼ mb, and then ‘‘forward evolved’’
for NF ¼ 5 and NF ¼ 6. We outline this procedure in
more detail in Sec. VI. In particular, we show how such a fit
can be performed using only forward evolution, thus avoiding a
(potentially unstable) numerical backward evolution [43].
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mass values.12 The details of the matching are described in
Appendix A.

A. NF dependence of the PDFs

We begin by illustrating the effect of the number of
active flavors NF on the PDFs, fiðx;�;NFÞ. One of the
simplest quantities to examine is the momentum fraction
½R1

0 xfiðxÞdx� carried by the PDF flavors as a function of

the � scale.
Figure 2 shows the gluon and heavy quark momentum

fractions as a function of the� scale. For very low� scales
all the curves coincide by construction; when �<mc;b;t

the charm, bottom, and top degrees of freedom will
‘‘deactivate’’ and the NF ¼ 4, 5, 6 results will reduce to
the NF ¼ 3 result.

As we increase the � scale, we open up new channels.
For example, when �>mc the charm channel activates
and the DGLAP evolution will generate a charm PDF via
the g ! c �c process. Because the overall momentum sum
rule must be satisfied ½Pi

R
1
0 xfiðxÞdx ¼ 1�, as we increase

the momentum carried by the charm quarks, we must
decrease the momentum carried by the other partons.
This interplay is evident in Fig. 2. In Fig. 2(a), we see
that for � ¼ 1000 GeV, the momentum fraction of the
NF ¼ 4 gluon is decreased by �4% as compared to the
NF ¼ 3 gluon. Correspondingly, in Fig. 2(b) we see that at
� ¼ 1000 GeV, the momentum fraction of the charm PDF
is �4%. Thus, when we activate the charm in the DGLAP
evolution, this depletes the gluon and populates the charm
PDF via g ! c �c process.

In a similar manner, comparing the momentum fraction
of the NF ¼ 5 gluon to the NF ¼ 4 gluon at � ¼
1000 GeV we see the former is decreased by �3%; in
Fig. 2(b) we see that at � ¼ 1000 GeV the momentum
fraction of the bottom PDF is �3%.

The gluon PDF is primarily affected by the heavy NF

channels as it couples via the g ! c �c, b �b, t�t processes. The
effect on the light quarks fu; d; sg is minimal as these only
couple to the heavy quarks via higher order processes
(u �u ! g ! c �c). This property is illustrated in Fig. 3 where
we display the u and �u quark momentum for different NF

values. While the NF variation yields a �8% momentum
fraction shift for the gluon, the total shift of the u quark is
only �1% of the momentum fraction.13

B. NF dependence of �s

The PDFs are only one piece of the full calculation;
another essential ingredient is the strong coupling con-
stant �Sð�;NFÞ. The running coupling is sensitive to
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FIG. 2 (color online). (a) Gluon momentum fraction;
(b) momentum fraction for cþ �c, bþ �b and tþ �t quarks.
The results have been obtained using NLO PDFs (MS) with a
2-loop �S.
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FIG. 3 (color online). Momentum fraction carried by the
(a) u quark and (b) �u quark in the 3-, 4-, 5-, and 6-flavor
schemes.

12These NF-dependent PDFs are available on the nCTEQ web
page at http://www.HEPForge.org.
13For example, in Fig. 3(a), we see the momentum fraction
change from �20% for NF ¼ 3 to �19% for NF ¼ 6.
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higher-order processes involving virtual quark loops;
hence, it depends on the number of active quarks, and
we make this dependence explicit with the �Sð�;NFÞ
notation. More precisely, the strong coupling depends
on the renormalization scale �R, in contrast to the facto-
rization scale �F. However, for this work we have set
�R ¼ �F ¼ �.

In Fig. 4 we display �Sð�;NFÞ vs � for different NF

values. We choose an initial �Sð�;NFÞ at a low � ¼ Q0

and NF ¼ 3, and evolve this to larger scales using the
NLO beta function. (See Appendix A 1 for details.) As
we saw in Fig. 2, the NF transitions are evident.

There are strong constraints on �Sð�;NFÞ at low scales
(��m�) from hadronic � decays, and at high scales
(��MZ) from LEP2 measurements [41]; thus, it is not
trivial to satisfy both limits for a fixed value of NF.

C. Interplay between �Sð�;NFÞ and gðx;�;NFÞ
If we could do an all-orders calculation for any

physical observable, this would be independent of NF

and �; for finite-order calculations, any residual � and
NF dependence is simply an artifact of our truncated
perturbation theory. Thus, the separate contributions of
the perturbative QCD result must conspire to compen-
sate the � and NF dependence to the order of the
calculation.

For example, when we activate the charm PDF,
we find the gluon PDF is decreased. Within the limits

of the perturbation theory, we would expect that
the decreased contribution from the gluon initiated pro-
cesses would be (at least partially) compensated by the
new charm initiated processes. This compensation
mechanism is clearly evident for the calculation of
Fcharm
2 ; additionally, we find that because the gluon

initiated and charm initiated contribution generally
have opposite renormalization scale dependence, the
resulting VFNS prediction is more stable in � as
compared to the FFNS result [6].
Another compensating mechanism is evident when com-

paring Figs. 2 and 4 where we note that the NF dependence
of �s is generally opposite to that of the gluon PDF; this
observation is particularly interesting as many NLO con-
tributions are proportional to the combination �S � xg. If
we consider the inclusive structure functions F123L, for
example, the LO contributions are proportional to the
electroweak couplings and the quark PDFs—both of
which are relatively invariant under changes in NF. Thus,
the primary effect of the NF dependence will be to modify
the NLO contributions which are dominantly proportional
to ��S � xg. For these contributions, the xg and �S

dependence will partially cancel each other out so that
the total result is relatively stable as a function of
NF [6,34].
To illustrate this mechanism, we show the combination

�ðNRÞ
S � xgðNFÞ vs x (in Fig. 5) and vs � (in Fig. 6).14 The

compensating properties are best observed in the ratio plots
[Figs. 5(b) and 6(b)].
For example, in Fig. 5(b) for � ¼ 5 GeV we see that

if we start with NF ¼ 3 for both �s and g (red line), the
effect of changing NF ¼ 5 for �s increases �S � xg by
6%; but, changing NF ¼ 5 for the gluon decreases
�S � xg by roughly the same amount. Hence, the com-
bination �S � xg is relatively stable under a change of
NF as we see by comparing the curves labeled f3; 3g
(red) and f5; 5g (cyan). This is an example of how the
perturbation theory adjusts to yield a result that is
(approximately) independent of NF at a given order of
perturbation theory.
In Fig. 6 we show �S � xg vs � for a choice of x

values f10�1; 10�3; 10�5g. While f3; 3g (red) and f5; 5g
(cyan) results are roughly comparable for lower � and
higher x values (10�1), for smaller x values and larger �
the shift in the gluon is not sufficient to compensate that
of �s.
Reviewing Fig. 5 in more detail, we observe that

the NF compensation works well for lower � values
�ð5; 10Þ GeV across a broad range of x. For � ¼
5 GeV, the curves labeled f3; 3g (red) and f5; 5g
(cyan) match within about �2% over much of the x
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FIG. 4 (color online). (a) 2-loop �S for different number
of flavors; (b) ratio of 3-, 4-, 5-, and 6-flavor �S to the 3-flavor
one.

14Note that we use here a 3(5)-flavor �S together with
5(3)-flavor PDFs only for illustrative purposes. In the actual
implementation of the H-VFNS we always keep NR ¼ NF.
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range. However, for larger � ¼ 100 GeV the compen-
sation between �S and g is diminished. We will
see this pattern again when we examine the physical

structure functions, and this difference is driven

(in part) by uncanceled mass singularities in the FFNS

result.

V. PHYSICAL STRUCTURE FUNCTIONS VS NF

Having examined the unphysical (but useful) combina-
tion�S � xg, we now consider the physical observables F2

and FL vs NF. In Fig. 7 we display F2 vs Q for a choice of
three x values; the absolute values are shown in the upper
figures, and the ratios in the lower figures. Figure 8 shows
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the corresponding plots for FL. Both F2 and FL were
calculated at NLO and N3LO [11] using 3- and 5-flavor
H-VFNS PDFs.15 We observe a number of patterns in
these figures.

A. Low Q: Q <m

At low Q values, the NF ¼ 3 and NF ¼ 5 results coin-
cide. This is by design as once we go below the thresholds
for NF ¼ 4, 5 the charm and bottom quarks are ‘‘deacti-
vated’’ and all NF calculations reduce to theNF ¼ 3 result.

At low Q values, we also observe there is a significant
difference between the NLO and N3LO results; this dif-
ference arises from a number of sources including the fact
that at lowQ the value of�s is large, hence the higher order
corrections are typically larger here.

B. High Q: Q � m

As we move to larger Q values, we notice two distinct
features.

First, at large Q we find the NLO and N3LO results
tend to coincide.16 Because �s is decreasing at larger Q,
the relative importance of the higher order corrections is
reduced.

Second, we see that the NF ¼ 3 and NF ¼ 5 results
slowly diverge from each other, both for the NLO and
N3LO cases. This difference can be traced to the uncan-
celed mass singularity in the NF ¼ 3 calculations which
is roughly proportional to �s ln ½Q=m�. In the NF ¼ 5
calculation, these logs are resummed into the heavy quark
PDFs; for the NF ¼ 3 calculation, these logs are not
resummed and the calculation will be divergent in the
limit Q=m ! 1.

C. Intermediate Q: Q ≳ m

We now come to the critical question: how far above the
charm flavor transition can we extend the NF ¼ 3 FFNS
calculation before the uncanceled logs �s ln ½Q=m� de-
grade the perturbation expansion. By examining Figs. 7
and 8 we can determine the extent to which theNF ¼ 3 and
NF ¼ 5 results diverge due to these logs. For scales� ¼ Q
a few times the quark mass (mc) the difference is small; but
for larger scales � ¼ Q� 10mc the difference can be in
excess of 10% depending on the specific x region. Also
note that while we are considering the inclusive F2;L, it is

only the heavy quark components which are driving the
difference at large � scales; for a less inclusive observable
(such as Fcharm

2 ) this effect would be even more prominent.

1. Recap

To recap, in the three kinematic regions of interest we
find the following.
Q<m In the low Q region, we find the NF ¼ 3 and

NF ¼ 5 results coincide; hence, in this region an NF ¼ 3
FFNS result will match with any VFNS result. Thus, we can
use either theNF ¼ 3 andNF ¼ 5 calculation in this region.
Q � m In the region of highQ, we find the NF ¼ 3 and

NF ¼ 5 results diverge logarithmically due to the uncan-
celed mass singularities, and in the limit Q=m ! 1 the
NF ¼ 3 calculation contains divergent terms. Hence, in
this region, we would expect the VFNS NF ¼ 5 result to
be most reliable.
Q ≳ m For Q scales which are a few times the quark

mass or less, the NF ¼ 3 and NF ¼ 5 results are compa-
rable; for larger Q scales, this difference will increase
logarithmically with the scale. Thus, we can use either
the NF ¼ 3 and NF ¼ 5 calculation in this region, but
as we move to larger scales we need to transition to the
NF ¼ 5 in the VFNS.
These conclusions are illustrated in Fig. 1, and now we are
able to make quantitative statements about the specific
regions of validity.
In summary, the NF-dependent PDFs provide us the

freedom to choose theNF transitions where it is convenient
for the analysis of specific data sets; however, this freedom
comes with the responsibility that we must be aware of the
mass singular logs and be sure not to extend a particularNF

FFNS calculation beyond its region of reliability.

VI. AN EXAMPLE: FROM LOW TO HIGH SCALES

We now finish with an example of how the H-VFNS
scheme could be employed for a simultaneous study of
both a low-scale process (��mb) at HERA17 and a
high-scale process (� � mc;b) at the LHC.

18

At HERA, a characteristic Q range for the extraction of
Fcharm
2 , for example, is �2<Q< 10 GeV and this spans

the kinematic region where the charm and bottom quarks
become active in the PDF. These analyses can be per-
formed using a NF ¼ 3 FFNS calculation as the scales
involved are not particularly large compared to the mc;b;

scales. Additionally, the extraction of the Fcharm
2 structure

function is often computed using the HVQDIS program
[51], and this explicitly works in a NF ¼ 3 FFNS. This

15As there is no complete N3LO massive calculation, we are
using the approximation of Ref. [11]; this is entirely sufficient
for the purposes of this study. Note that in Ref. [11], the PDF
evolution is performed at NNLO by the QCDNUM [43] code
which implements the MS matching conditions [44] which
includes the resulting discontinuities.
16The one exception is FL at large x values; this suggests that
the higher order corrections in this kinematic region are large.
Recall that in the limit m=Q ! 0 the LO contribution to FL

vanishes, so it is not entirely surprising that this has large higher
order contributions.

17A relevant data set could be the recent analysis [48] by the H1
experiment of D	
 meson production and the extracted Fcharm

2
structure function.
18A relevant data set could be, for example, high-mass dilepton
resonances [49] or dijet mass spectrum [50]; both analyses
extend beyond one TeV.
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approximation is entirely adequate in this kinematic region
as resummed logs are not particularly large in the relevant
Q region. The Fcharm

2 structure function extracted in [48] is

compared with predictions usingNF ¼ 3 FFNS PDFs from
CT10f3 [1] and MSTW2008f3 [40] and both yield good
descriptions of the data.

Conversely, at the LHC the � range for new particle
searches via the Drell-Yan process can be in excess of a
TeV. For this analysis, we would want to use NF ¼ 5 so
that the charm and bottom logs are resummed.19

Because the H-VFNS simultaneously provides NF ¼
f3; 4; 5; 6g, we can analyze the HERA data in a FFNS
NF ¼ 3 context while also analyzing the LHC data in a
NF ¼ f4; 5; 6g VFNS context.

Operationally, we could perform a PDF fit to both a
combination of HERA and LHC data by implementing
the following steps.

(1) Parametrize the PDFs at a low initial scale
� ¼ Q0 � 1 GeV, and generate a family of
NF-dependent PDFs as outlined in Sec. III A.

(2) Fit the HERA Fcharm
2 structure function data using

NF ¼ 3 ‘‘FFNS’’ PDFs, fiðx;�;NF ¼ 3Þ and
�sð�;NF ¼ 3Þ.

(3) Fit the high-scale LHC data using NF ¼ 4, 5, 6
‘‘VFNS’’ PDFs, fiðx;�;NF ¼ 4; 5; 6Þ and
�sð�;NF ¼ 4; 5; 6Þ.

(4) Repeat steps (1) through (3) until we have a suitable
minimum.

Note, because we generate all the PDFs and �s for all
NF ¼ f3; 4; 5; 6g flavors in step (1), the separate NF

branches are analytically related. Furthermore, this is
done using a ‘‘forward’’ DGLAP evolution; no ‘‘back-
ward’’ DGLAP evolution is required.

Also note that because we have access to all NF ¼
f3; 4; 5; 6g sets, there is no difficulty in performing
the HERA analysis of step (2) and the LHC analysis of
step (3) in different NF frameworks.

Finally, as we demonstrated in Sec. V, the user is now
responsible for ensuring each NF calculation is not used
beyond its range of validity. While it is now possible to
compute with NF ¼ 3 at high � scales, this does not
necessarily give a reliable result for the cross sections.

A. NF conversion factors

Finally, we demonstrate how to use the family of
NF-dependent PDFs to estimate the effect of changing
from NF ¼ 3 to NF ¼ 5 in a calculation such as the
extraction of Fcharm

2 discussed above. For example, the
HVQDIS program [51,52] works in an NF ¼ 3 FFNS
while many of the PDFs are only available for NF ¼ 4,
5. If we have access to both NF ¼ 3 and NF ¼ 5 PDFs, we
can simply use the correct NF PDF set, and the conversion
between the different NF sets is simply given by the
following identity:

fðNF¼5ÞðxÞ ¼ fðNF¼3ÞðxÞ
�
fðNF¼5ÞðxÞ
fðNF¼3ÞðxÞ

�
:

The term in brackets above represents the ‘‘correction fac-
tor’’ in converting between NF ¼ 3 and NF ¼ 5 PDF sets.
As we noted in Sec. IVA, the dominant effect of

changing from NF ¼ 3 to NF ¼ 5was to deplete the gluon
PDF which fed the charm PDF via the g ! c �c process.
Therefore, we can estimate this effect by comparing the
shift of the gluon PDF for NF ¼ 3 and NF ¼ 5. This effect
is shown in Fig. 9(a) where we plot the gluon PDF explic-
itly, and in Fig. 9(b) we plot the ratio. We see that even at
the lowest Q value displayed (10 GeV) the shift in the
gluon PDF is �6% and relatively insensitive to x, except
for the highest x values. Because the x dependence is
minimal, we can approximately extract this correction
factor from the convolution of the PDFs; thus, at scales
� & 10 GeV, we can estimate the effect of the NF ¼ 3 to
NF ¼ 5 conversion by simply rescaling the gluon PDF.
For example, if we are looking at charm structure

functions, this is driven by the �g ! c �c process, plus
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FIG. 9 (color online). (a) Comparison of 3-flavor (solid lines) and 5-flavor (dashed lines) gluon for Q ¼ f10; 100; 1000g GeV.
(b) Ratio of 3- to 5-flavor gluon for the corresponding Q values.

19We could also use NF ¼ 6, but the difference with the
NF ¼ 5 case is minimal.
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higher order corrections. Since this process is linear in the
gluon PDF, the effect would be approximately a
constant overall shift; specifically, 6% for the case of
Q� 10 GeV.

Even if we do not have access to both the NF ¼ 3 and

NF ¼ 5 PDF sets, the combination ½fðNF¼5Þ=fðNF¼3Þ� is
driven by the DGLAP evolution and only mildly sensitive
to the detailed PDF; hence, the above technique can still
provide a rough approximation as to the correction factor
between the NF ¼ 3 and NF ¼ 5 PDFs.

VII. CONCLUSION

We have investigated the NF dependence of the PDFs
and proposed an extension of the traditional VFNS which
we denote the H-VFNS. In this scheme, we include an
explicit NF dependence in both the PDFs faðx;�;NFÞ and
strong coupling �Sð�;NFÞ; this provides the user the free-
dom, and responsibility, to choose the appropriate NF

values for each data set and kinematic region.
Our H-VFNS implementation economically requires

only four PDF grids (for NF ¼ f3; 4; 5; 6g), yet provides
the user flexibility to use any switching scale. For a prac-
tical implementation of the H-VFNS, we choose a fixed

matching scale �ðNFÞ
M ¼ mNF

and demonstrate that this has

minimal impact on the physical results.
The H-VFNS is able to simultaneously work with low

energy data (e.g., HERA data at lowQ2) in aNF ¼ 3 FFNS
framework, while also incorporating high-scale LHC data
in anNF ¼ f3; 4; 5; 6g framework. Additionally, this can be
implemented without any backward DGLAP evolution.

Although the PDFs and �Sð�;NFÞ are discontinuous
across flavor thresholds at higher orders, the H-VFNS
provides the user the flexibility to shift the NF transition
for individual data sets and kinematic regions to avoid
complications.

Thus, the H-VFNS provides a valuable tool for fitting
data across a wide variety of processes and energy scales
from low to high.
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APPENDIX: EVOLUTION AND
MATCHING CONDITIONS

1. �S evolution and matching conditions

The running of the �Sð�;NFÞ is given by the renormal-
ization group equation:

�2 d�s

d�2
¼ �ð�sÞ ¼ �ðb0�2

s þ b1�
3
s þ b2�

4
s þ � � �Þ:

At the NLO (2-loop) level, which we use in this work, we
obtain

�Sð�2; NFÞ ¼ 1

b0 ln
�2

�2

0
@1� b1

b20

ln
�
ln �2

�2

�

ln �2

�2

1
A; (A1)

where b0¼ð33�2NFÞ=12� and b1¼ð153�19NFÞ=24�2.
The NF dependence arises from the virtual quark loops
which enter at higher orders.
The relation of �s across flavor thresholds for NF and

NF þ 1 flavors is computed to be [41]

�Sð�2; NFþ1Þ

¼ �Sð�2; NFÞ
�
1þ X1

k¼1

Xk
‘¼0

ck‘½�Sð�2; NFÞ�kln l

�
�2

m2

��
;

where c10 ¼ 0 and c20 ¼ �11=72�2. Thus, even if we
perform the matching at � ¼ m we find

�Sðm2; NF þ 1Þ ¼ �Sðm2; NFÞ þ c20�
3
Sðm2; NFÞ

such that there is an Oð�3
SÞ discontinuity in �S.

In the above, the � scale appearing in the argument of
�S is more precisely the renormalization scale �R; this is
distinguished from the factorization scale �F appearing in
the argument of PDF. However, in this work, we choose to
set �R ¼ �F ¼ �.
Note also that there are in fact two versions of the FFNS

scheme, which are characterized by different treatments of
the number of active flavors entering �S (denoted here as
NR, to be distinguished from the number of flavors entering
PDF evolution NF). In the ‘‘classical’’ FFNS, NR ¼ NF. In
the modified version, NR is incremented across flavor
thresholds as in the VFNS while NF remains fixed.
Discussion of advantages and disadvantages of these two
formulations of FFNS can be found in [39,53]. In particu-
lar, allowing NR to vary can help the running �S accom-
modate experimental constraints from both high (�MZ)
and low (�m�) scales [41,54].

2. PDF evolution and matching conditions

The relation of the PDFs with NF þ 1 flavors to that of
NF can be computed perturbatively [44,55]. The explicit
form of these matching conditions can be found e.g. in
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Eqs. (2.37)–(2.41) and Appendix B of Ref. [44]. For the
purpose of further discussion we show here only a
symbolic form of the matching conditions

~fiðx;�;NF þ 1Þ ¼ Aij � ~fjðx;�;NFÞ; (A2)

where

Aij ¼ �ij þ �S

2�

�
aij1 þ bij1 ln

�
�2

m2

��

þ
�
�S

2�

�
2
�
aij2 þ bij2 ln

�
�2

m2

�
þ cij2 ln

2

�
�2

m2

��

þ � � � : (A3)

In the above equation ~fi can be a combination of light
parton densities (fi þ f�i), heavy parton densities
(fH þ f �H), the singlet combination of parton densities �,
or the gluon. Note that there is an implicit summation over
the above combinations. Coefficients aij; bij; . . . can be
computed perturbatively. While we have not indicated it
explicitly, all quantities on the right-hand side of Eq. (A2)
[including�SðNFÞ] are evaluated withNF flavors, and those
on the left-hand side are evaluated with NF þ 1 flavors.

Note that the QCDNUM [43] program includes the
NNLO evolution with the discontinuous and NNLO
matching conditions.

In the MS scheme the aij1 term is computed to be zero,

while the aij2 term is nonzero. Because aij1 ¼ 0, if we

perform the matching between NF and NF þ 1 flavors at
� ¼ m, the ln ð�=mÞ terms vanish and we find at NLO
[Oð�S

1Þ] that fiðx;� ¼ m;NF þ 1Þ ¼ fiðx;� ¼ m;NFÞ;
that is, the PDFs are continuous. This is why, at NLO,
the VFNS implemented the matching automatically at� ¼
m. Because aij2 � 0, at NNLO and beyond the PDFs will
acquire discontinuities of Oð�S

2Þ; therefore, there is no

longer any special benefit obtained by forcing the NF

transition at � ¼ m.
For example, the discontinuity of the b-quark PDF is

shown in Fig. 10(a), and curiously this yields a slightly
negative value just above the transition point for fbðx;� ≳
m;NF ¼ 5Þ. There is a corresponding discontinuity in the

gluon PDF (not shown) which has a positive shift, as it
must to ensure the PDF sum rules are satisfied.
These discontinuities exhibit themselves in the physical

observables such as the structure functions as shown in
Figs. 10(b) and 10(c). These discontinuities are formally
higher order, and will be reduced order by order as we
extend the perturbation theory. It is interesting to note that
FL for the larger x value (10�3) has a slightly positive
discontinuity while at the smaller x value (10�5) the dis-
continuity is negative. This reflects the shift between the
(positive) gluon and the (negative) quark contributions in
the different x regions. It is this mixture of the gluon and
the quark terms which will ensure the physical observable
is continuous up to the specified order of perturbation
theory, while the PDF will always remain discontinuous
at Oð�S

2Þ.
In the presented H-VFNS, we choose to compute the

matching between NF and NF þ 1 flavors at � ¼ m
(because the logs vanish); however, since we retain both
the NF and NF þ 1 PDFs for � � m, the user has the
choice to compute in either the NF or NF þ 1 framework,
whichever is more suitable. Because the traditional VFNS
did not provide PDFs for NF flavors at � � m, this was
previously not an option.
The matching conditions of Eqs. (A2) and (A3) essen-

tially represent a perturbative expansion of the DGLAP

evolution equations, up to an additional constant term aijk .
We observe that if we choose to perform the matching

not at� ¼ m but instead at a higher scale such as� ¼ 2m,
the PDF boundary condition for the heavy quark is not
fcðx;�;NF ¼ 4Þ ¼ 0. Instead, the correct condition at
NLO is

fcðx;�;NF ¼ 4Þ

’ 0þ �Sð�;NF ¼ 3Þ
2�

� ln

�
�2

m2
c

�
Pqg � gðx;�;NF ¼ 3Þ þ � � � : (A4)

Note, the left-hand side uses NF ¼ 4 PDFs and the
right-hand side uses NF ¼ 3 PDFs.
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FIG. 10 (color online). (a) Discontinuity in the b-quark PDF fbðx;�Þ at NNLO vs � for x ¼ f10�3; 10�4; 10�5g. (b),
(c) Discontinuity for FL vs Q for x ¼ f10�3; 10�5g (left to right) at NNLO in the region of the bottom mass, mb ¼ 4:5 GeV, as
computed in Ref. [11].
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These matching conditions are displayed in Fig. 11
where we compare these to the DGLAP evolved PDF
distribution at NLO. We see for scales near the matching
point ��m, the differences are small. However, if the
matching is performed away from the ��m region, then
the differences are larger. This is because the matching
of Eq. (A4) is only computed to NLO, so it only includes a
single partonic splitting, while the DGLAP evolution
resums an infinite tower of partonic emissions. The differ-
ence comes from the missing second-order splittings
which are proportional to �S

2 ln ð�=mÞ. If we repeat this

exercise and compute the matching to NNLO,20 then we
will include the �S

2 ln ð�=mÞ contributions, but miss the

�S
3 ln ð�=mÞ. Thus the curves in Fig. 11 will remain

comparable for a larger range of � ≳ m.

In this analysis, our matching scale is always taken to be

the quark mass, �ðNFÞ
M ¼ mNF

. This provides us the benefit

that the PDF with NF active flavors is defined for all values
above � ¼ mNF

without invoking backward evolution.

In the traditional VFNS, the switching scale �ðNFÞ
S was

forced to be equal to the matching scale, which was set to

the quark masses:�ðNFÞ
S ¼ �ðNFÞ

M ¼ mNF
. For the H-VFNS,

the switching scale �ðNFÞ
S is not predefined by the PDF set

but can freely be chosen by the user.
The resulting PDFs will, to some extent, depend on the

matching scale �ðNFÞ
M , but as Fig. 11 demonstrates this

effect will be insignificant so long as �ðNFÞ
M �mNF

.

Likewise, resulting observables will, to some extent, de-

pend on the switching scale �ðNFÞ
S , but as Figs. 7 and 8

demonstrate, this effect will be insignificant so long as we

do stay within the region of validity.
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