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At large number of colors, N. quarks in baryons are in a mean field of definite space and flavor
symmetry. We write down the general Lorentz and flavor structure of the mean field, and derive the Dirac

equation for quarks in that field. The resulting baryon resonances exhibit a hierarchy of scales: the crude
mass is O(N,), the intrinsic quark excitations are O(1), and each intrinsic quark state entails a finite band
of collective excitations that are split as @O(1/N,). We build a (new) theory of these collective excitations,
where the full dynamics is represented by only a few constants. In a limiting (but unrealistic) case when
the mean field is spherically and flavor symmetric, our classification of resonances reduces to the SU(6)
classification of the old nonrelativistic quark model. Although in the real world N.. is only three, we obtain
a good accordance with the observed resonance spectrum up to 2 GeV.
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L. INTRODUCTION

There are currently two main classes of baryon models:
three-quark models with certain interactions between
quarks, and models where baryons are treated as nonlinear
solitons of bosonic fields, such that quarks are implicit.
Both points of view have their strong and weak points. The
main shortcoming of the three-quark models is that they
ignore the phenomenologically important admixture of
quark-antiquark pairs (QQ) in a baryon, and therefore
they are essentially nonrelativistic. A consistent relativistic
picture can be only field theoretic.

This is the advantage of the solitonic approach that
stems from the Skyrme model [1,2] and includes its more
recent incarnation in the holographic QCD [3,4]. Models of
this kind effectively take care of QQ pairs in baryons [5].
However, an obvious shortcoming is that they do not
possess explicit quarks, and therefore it is difficult to
address many important issues such as, for example, the
quark and antiquark (parton) distributions in nucleons.

In this paper, we suggest an approach that is a bridge
between the two models. On the one hand, we operate in
terms of quarks and keep contact with the traditional three-
quark models. On the other hand, we do not restrict our-
selves to the valence quarks only but allow for an arbitrary
amount of additional QQ pairs. Our formalism is relativisti-
cally invariant. The key ingredient of our construction is the
mean bosonic field for quarks, which, in fact, is nothing but
the “‘soliton” of the second approach.

As in any other solitonic picture of baryons, we formally
need to consider the number of colors N, as a large algebraic
parameter. When N, is large the N, quarks constituting a
baryon can be considered in a mean (nonfluctuating) field
that does not change as N, — oo [6]. Quantum fluctuations
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about a mean field are suppressed as 1/N,. While in the
real world N, is only three, we do not expect qualitative
differences in the baryon spectrum from its large-N,. limit.
The hope is that if one develops a clear picture at large N,
and controls at least in principle 1/N, corrections, its im-
print will be visible at N, = 3.

From the large-N,. viewpoint, baryons have been much
studied in the past using general N, counting rules and
group-theoretic arguments; for reviews see Refs. [7-9] and
references therein. In this framework, many relations for
baryon resonances have been derived, with no reference to
the underlying dynamics. The key new point of this paper
is that we suggest a simple underlying physical picture that
results in these relations and discloses the meaning of the
otherwise free numerical coefficients therein. We also
derive new relations that are valid in the large-N, limit.

This work is in line with our previous chiral quark—
soliton model [10], which successfully describes quark
and antiquark distributions in nucleons [11] and other
properties. In this paper we remove the previous limitation
that the mean field is exclusively the pseudoscalar one, and
focus on baryon resonances rather than on the ground state.

The advantage of the large-N, approach is that at large
N, baryon physics simplifies considerably, which enables
one to take into full account the important relativistic and
field-theoretic effects that are often ignored. Baryons are
not just three (or N,) quarks but contain additional QQ
pairs, as is well known experimentally. The number of
antiquarks in baryons is, theoretically, also proportional
to N, [5], which means that antiquarks cannot be obtained
from adding one meson to a baryon: one needs O(N,)
mesons to explain O(N,) antiquarks, implying in fact a
classical mesonic field.

At the microscopic level quarks experience only color
interactions, but gluon-field fluctuations are not suppressed
if N, is large; the mean field can be only “colorless.” An
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example how color interactions were originally Fierz-
transformed into interactions of quarks with mesonic fields
is provided by the instanton liquid model [12]. A non-
fluctuating confining bag is another example of a “color-
less” mean field. A more modern example of a mean field
is given by the five- or six-dimensional “‘gravitational”” and
flavor background field in the holographic QCD models.

Since quarks inside baryons are generally relativistic,
especially in excited baryons, we shall assume that quarks
in the large-N, baryon obey the Dirac equation in a back-
ground mesonic field. In fact, the Dirac equation for quarks
may be nonlocal. All intrinsic quark Dirac levels in the mean
field are stable in N,. All negative-energy levels should be
filled in by N, quarks in the antisymmetric state in color,
corresponding to the zero baryon-number state. Filling in the
lowest positive-energy level by N, “valence’ quarks makes
a baryon. Exciting higher quark levels or making particle-
hole excitations produces baryon resonances. The baryon
mass is O(N,), and the excitation energy is O(1). When one
excites one quark the change of the mean field is O(1/N,),
which can be neglected to the first approximation.

Moreover, if one replaces one light (u, d, or s) quark in
light baryons by a heavy (c, b) one, as in charmed or bottom
baryons, the change in the mean field is also O(1/N.).
Therefore, the spectrum of heavy baryons is directly related
to that of light baryons. This fact is well known for low-
lying multiples (see, e.g., Ref. [13]), and has been recently
discussed for a more general situation in Ref. [14].

Our approach can be illustrated by the chiral quark—
soliton model [10,15] or by the chiral bag model [16],
but actually the arguments of this paper are much more
general. We argue that the mean field in baryons of what-
ever nature has a definite symmetry, namely that it sponta-
neously breaks the symmetry under separate SU(3)pay0r
and SO(3)4pyce rotations but does not change under simul-
taneous SU(2);go1space Totations in ordinary space and a
compensating rotation in isospace [14,17].

If the original symmetry (i.e., flavor and rotational sym-
metry) is spontaneously broken, it means that the ground
state is degenerate: all states obtained by a rotation have
the same energy. In quantum mechanics the rotations must
be quantized, which leads to the splitting of the ground
state—as well as all one-quark excitations—by the quan-
tized rotational energy. It implies that each intrinsic quark
state, be it the ground state or a one-quark excitation in the
Dirac spectrum, generates a band of resonances appearing
as collective rotational excitations of a given intrinsic state.
The quantum numbers of these resonances, their total num-
ber, and their splittings are unequivocally dictated by the
symmetry of the mean field. In this paper we present, for the
first time, the theory of the rotational bands stemming from
a given intrinsic one-quark excitation. Assuming the
SU(2)iso+space Symmetry of the mean field, we obtain the
resonances observed in nature. Moreover, certain relations
between resonance splittings that are satisfied with high
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accuracy are dynamics independent but follow solely
from the particular symmetry of the mean field.

In this paper, we do not consider any specific dynamical
model but concentrate mainly on symmetry. A concrete
dynamical model would express the intrinsic relativistic
quark spectrum in baryons. It may get it approximately
correct, or altogether wrong. Instead of calculating the
intrinsic Dirac spectrum of quarks from a model, we ex-
tract it from the experimentally known baryon spectrum by
interpreting baryon resonances as collective excitations
about the state and about the one-quark transitions.
However, we show that the needed intrinsic quark spec-
trum can be obtained from a natural choice of the mean
field satisfying the SU(2)is0 + space Symmetry.

In summary, we show that it is possible to obtain a
realistic spectrum of baryon resonances up to 2 GeV, start-
ing from the large-N, limit. This means that we are able to
find candidates for all rotational SU(3) multiplets gener-
ated around intrinsic quark levels and to check large-N,
relations between their masses. However, this is not the end
of the story, as SU(3) multiplets in nature are split due to
the nonzero mass of the strange quark. These splittings are
not small and not all members of SU(3) mutliplets are
known. For this reason even the contents of the lowest
SU(3) multiplets is under discussion. We will follow the
analysis of Ref. [18] (see also Ref. [19]).

We will assume that the mass of the strange quark is
small enough and construct perturbation theory in m, valid
at large N,.. The question of its validity is under discussion
as well (see, e.g., Ref. [20]), but we consider the success of
relations following from this theory (classical Gell-Mann-
Okubo or Guadagnini ones [21]) as an argument in favor of
this approach. We derive a number of new relations valid at
large N which are fulfilled with a good accuracy. We note
that our approach gives essentially more relations than
were derived in the framework of the approach used in
Ref. [22]. (For mass relations and other aspects of broken
SU(3) symmetry, see Ref. [23].) Also, we give the dynami-
cal interpretation of the constants entering mass splittings
and provide the formulas which allow one to calculate
splittings provided that the underlying dynamical model
is fixed.

The notion of baryon resonance implies that its width is
small. For excited baryons at large N,. this is not granted: the
width of the baryon is O(1). The width is small compared to
the total mass of the baryon [O(N,.)], but it appears to be of
order the distance between quark levels. This width is due to
transitions between different quark levels with the emission
of mesons (e.g., one pion decay to the ground level), which
is not suppressed by N.. We will show below that in the
leading order the width is universal for all rotational bands
belonging to a given quark level. A nonzero width for the
resonance also leads to some shift in its position. In spite of
the fact that this shift is O(1), it is also universal for rota-
tional bands and does not ruin rotational spectra.
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The mean-field approximation cannot be applied di-
rectly to unstable quark levels. The correct definition of
the baryon resonance comes from the consideration of the
meson-baryon scattering amplitude. The baryon resonance
manifests itself as a pole in the complex plane of the energy
with the imaginary part being half of the resonance width.
The scattering amplitude at large N,. can be found from the
meson quadratic form, which can be obtained by integrat-
ing out quark degrees of freedom.

We performed this program for exotic pentaquark states
in Ref. [5] in the framework of the Skyrme model, but it
looks to be too complicated for the general case of baryons
considered in this paper. We will use the fact that only
resonances with relatively small widths can be observed and
neglect the widths of resonances in order to describe their
positions. Moreover, as we do not consider any dynamical
mechanism, the positions of quark levels play the role of
phenomenological parameters. At this point our approach is
close to that of the quark model which also neglects the
influence of the resonance’s width on its position.

The widths of baryon resonances also have some hier-
archy in N,. Decays with a transition from one quark level
to another are O(1), while decays inside the same rotational
band are O(1/N?2). In particular, the total widths of the
baryons belonging to the rotational band of the ground
state (like the A resonance) are only O(1/N?), while the
total widths of all excited baryons are O(1). These widths
are the same for all excited baryons belonging to the given
band up to corrections of O(1/N,), which can nevertheless
be significant at N. = 3 (to say nothing about corrections
to the mass of the strange quark).

One can try two approaches for adjusting large-N, limit
results to the real N, = 3 world. The calculation of physi-
cal quantities can be divided typically into two stages:
translating the original quantity to some effective rota-
tional operator, and calculating the matrix element of the
effective operator with wave functions of rotational states
representing the given baryon. The first stage requires the
limit of large N, in order to avoid the mess of strong
interactions. The second is, in fact, trivial and leads to
some SU(3) Clebsch-Gordan coefficients, which are cal-
culable at any N,.. The approach pioneered in Ref. [22]
requires the strict limit N, — oo at both stages. On the
other hand, in Ref. [10] and subsequent papers we applied
another approach: we used the limit N. — oo but replaced
the Clebsch-Gordan coefficients by their values at N, = 3.
The same logic was, in fact, also used in the original paper
[2]. This approach has at least the same accuracy as the first
one but allows one to avoid large corrections related to the
change of the Clebsch-Gordan coefficients from N, = o
to N, = 3. In this paper we will discuss both approaches,
but we mainly use the second one.

The paper is organized as follows. In Sec. II we discuss
the possible symmetry of the mean field and come to the
conclusion that it should be a hedgehog one. This is one of
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the main features distinguishing our model from the quark
model (which can also be considered at N, — o). The
quark model assumes that the mean field inside the baryon
has central symmetry. (In a majority of the versions it is just
the confinement potential.) We believe that this assumption
contradicts the data and that the mean meson field (e.g.,
mean field of the pion) is at least equally important.

In Sec III we derive Dirac equations in the general
hedgehog meson field. One has to find intrinsic quark
levels in this mean field. To determine the self-consistent
meson field, it is necessary to also know the meson part of
the Lagrangian. This can be done in the concrete dynami-
cal model. We give the classification of quark levels and
discuss the possible order of levels in the mean field.

In Sec. IV we construct the general theory of the rota-
tional state around intrinsic quark levels. Previously this
theory was discussed for the ground-state baryons; we
extend it to arbitrary excited baryon states. We derive
formulas for baryon masses and obtain the contents of
the SU(3) multiplets entering the rotational bands. We
also discuss their rotational and quark wave functions.

Section V considers the relation between the SU(3)
multiplets at N. — oo and SU(6) multiplets of the quark
model. We explain that there is a one-to-one correspon-
dence between the quark model and one-quark excitations
in the mean field at N, — oo for negative-parity baryons.
This is not true for positive parity: SU(6) multiplets of the
quark model correspond mainly to two-quark excitations.
Meanwhile, one-particle excitations still exist and have the
same structure as in the sector with negative parity. We
prefer to use excitations of this type in order to describe
experimental data as they should have smaller masses and
be narrower than two-particle ones. We leave the quark-
model picture for the positive-parity sector and arrive at a
unified description for both parities: in order to describe
experimental baryon spectra we need six levels with grand
spin K = 0*, 1*, 2*. We confront this simple picture of
the data in Sec. VI and see that it can accommodate the
experimental baryon spectra up to 2 GeV. At the same time
it does not predict extra states, which are typical for the
quark model. Section VI is devoted to the mass splitting
inside SU(3) multiplets. This question can be important for
identifying original SU(3) multiplets. We concentrate
mainly on general relations that are model independent.
We formulate our conclusions in Sec. VII.

We relegate a few important questions to a series of
appendices. In Appendix A the simple exactly solvable
model is considered. This model was already investigated
in a number of papers; it helps us to illustrate the relations
obtained in the main text at N. — oo0. Appendix B is related
to the validity of the cranking approximation in the soliton
picture; this validity was doubt in some papers. We discuss
decays of baryon resonances in Appendix D. The full
theory will be published elsewhere. Here we only give
N, counting of the baryon widths due to the different
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decays and prove the universality of the width in the
leading order for the given rotational band. Appendices C
and E are devoted to some technical questions. In particu-
lar, in Appendix E we give the table of SU(3) Clebsch-
Gordan coefficients conforming at N, = 3 to the standard
conventions.

II. SYMMETRY OF THE MEAN FIELD

In the mean-field approximation, justified at large N,
one looks for the solutions of the Dirac equation for single-
quark states in the background mean field. In a most
general case the background field couples to quarks
through all five Fermi variants. If the mean field is sta-
tionary in time, it leads to the Dirac eigenvalue equation for
the u, d, s quarks in the background field, H ¢ = E, with
the Dirac Hamiltonian being schematically described as

H= y0<—i6,<yi + S(x) + P(x)iy> + V, (x)y*

£ AM07Y + T, (005 [y"]), n

where S, P, V, A, T are the scalar, pseudoscalar, vector,
axial, and tensor mean fields, respectively; all are matrices
in flavor. In fact, the one-particle Dirac Hamiltonian (1) is
generally nonlocal; however, this does not destroy symme-
tries in which we are primarily interested. We include the
current and the dynamically generated quark masses in the
scalar term S.

The key issue is the symmetry of the mean field. We
assume the chiral limit for u, d quarks, m, = m, = 0,
which is an excellent approximation. We consider exact
SU(3) flavor symmetry as a good starting point. It implies
that baryons appear in degenerate SU(3) multiplets
8,10, ...: the splittings inside SU(3) multiplets can be
determined later on as a perturbation in mg; see, e.g.,
Ref. [24] and Sec. VII.

A natural assumption, then, would be that the mean field
is flavor symmetric and spherically symmetric. However,
we know that baryons are strongly coupled to pseudoscalar
mesons (g,yy =~ 13). This means that there is a large
pseudoscalar field inside baryons; at large N, it is a clas-
sical mean field. There is no way of writing down the
pseudoscalar field (it must change sign under inversion of
coordinates) that would be compatible with the SU(3),, X
SO(3)space sSymmetry. The minimal extension of spherical
symmetry is to write the ‘“hedgehog” ansatz ‘“marrying”
the isotopic and space axes [25],

niF(r), n* =%, a=123,

m(x) =
0, a=14567,8.

2)
This ansatz breaks the SU(3)g,, symmetry. Moreover, it
breaks the symmetry under independent space SO(3);pace
and isospin SU(2);,, rotations, and only a simultaneous
rotation in both spaces remains a symmetry, since a rotation
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in the isospin space labeled by a can be compensated
by the rotation of the space axes. The ansatz (2) implies
a spontaneous (as opposed to explicit) breaking of the
original SU(3)gay X SO(3)space Symmetry down to the
SU(2)is0+space Symmetry. It is analogous to the spontaneous
breaking of spherical symmetry by the ellipsoid form of
many nuclei; there are many other examples in physics
where the original symmetry is spontaneously broken in
the ground state.

We list here all possible structures in the S, P, V, A, T
fields, compatible with the SU(2)is+space Symmetry and
with the C, P, T quantum numbers of the fields [14,17].
The fields below are generalizations of the ‘“hedgehog”
ansatz (2) to mesonic fields with other quantum numbers.

Since SU(3) symmetry is broken, all fields can be di-
vided into three categories:

(D) Isovector fields acting on u, d quarks:

pseudoscalar: P4(x) =n?Py(r),
vector, space part: V&(X) = €,,n Py (r),
axial, space part: AY(x) = 8, P,(r) + n,n;P3(r),

tensor, space part: T{;(x) = €,;;P4(r) + €p;;1,1, P5(r).

(3)
(1) Isoscalar fields acting on u, d quarks:
scalar: S(x) = Qy(r),
vector, time component: Vy(x) = Q;(r), )
tensor, mixed components: Ty;(x) = n;Q,(r).
() Isoscalar fields acting on s quarks:
scalar: S(x) = R(7),
vector, time component: V,(x) = R(r), o)

tensor, mixed components: Ty;(x) = n;R,(r).

The remaining fields and components are zero as they do
not satisfy the SU(2)is0 4 space Symmetry and/or the needed
discrete C, P, T symmetries. The 12 “profile”” functions
Py 123455 Qo.1.2,and Ry , should eventually be found self-
consistently from the minimization of the mass of the
ground-state baryon. We shall call Eqgs. (3)—(5) the hedge-
hog ansatz. However, even if we do not know these pro-
files, there are important consequences of this ansatz for
the baryon spectrum.

ML u, d, s QUARKS IN THE “HEDGEHOG” FIELD

Given the SU(2)i0 + space Symmetry of the mean field, the
Dirac Hamiltonian for quarks actually splits into two parts:
one for s quarks and the other for u and d quarks [17]. It
should be stressed that the energy levels for u, d quarks on
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the one hand and for s quarks on the other are completely
different, even in the chiral limit m, — O.

The energy levels for s quarks are classified by half-
integer values J”, where P is parity under space inversion,
and J = L + S is the quark angular momentum; all levels
are (2J + 1)-fold degenerate. The energy levels for u and d
quarks are classified by integer values K”, where K =
T + J is the “grand spin” (7T is isospin) and all levels are
(2K + 1)-fold degenerate.

All energy levels, both positive and negative, are proba-
bly discrete owing to confinement. Indeed, a continuous
spectrum would correspond to a situation where quarks are
free at large distances from the center, which contradicts
confinement. One can model confinement, e.g., by forcing
the effective quark masses to grow linearly at infinity,
S(x) — or.

The Dirac equation (1) for s quarks in the background
field (5) takes the form of a system of two ordinary
differential equations for two functions f(r), g(r) depend-
ing only on the distance from the center. The system of
equations depends on the (half-integer) angular momen-
tum and parity of the level under consideration. For
s-quark levels with parity P = (—1)/ 3, e.g., for the levels

JP =%+,%_,% * ..., the system takes the form

(6)

{Ef=—y—%%+RJ+RJ+R$

Eg=f + =23 = Rog + Rig + Ruf.
To find an s-quark energy level E with these quantum
numbers, one has to solve Eq. (6) with the initial condition
F(r) ~ 2, g(r) ~ r'*2 and with both functions decreas-
ing at infinity.

For levels with opposite parity P = (—1)"*3, e.g.,

JP=31" ,% *,3 7, ..., one has to solve another system,

{Ef=—y—%%+RJ+RJ+Rﬁ, o

—J+3
Eg=f'+—>f—Rog + Rig + R,f.

We note that in the absence of the R, , fields the energy
spectrum is symmetric under simultaneous sign changes of
parity and energy.

The Dirac equation for u, d quarks in the background
fields (3) and (4) is more complicated: one has here a
system of four ordinary differential equations. These equa-
tions are direct generalizations of the Dirac equations in
the “hedgehog”™ field of Ref. [10] and can be derived
similarly to the method used in that reference.

The system of Dirac equations for the radial functions of
the states with parity (—1)X*!, namely K* = 17,27, ...,
has the form

1+K
Ef=—g’—Tg'l'(Q0+Q1+P2+P4)f+(Q2—P1)g
Py— P, P3+ Ps .
- +byh)+ = +
K1 (g + bgh) KF1 (f + b)), (8
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K—1
Eg:f/_Tf+(Q]_QO_P2+P4)8+(Q2_Pl)f

B e
)
=7+ 20— 00— Py PO
+ (02— P))j +%(/ — bkf)
R O

. K .
E]:_h'+7h+(Q0+Q1+P2+P4)]+(Q2_P1)h

Py— P, Py + Ps
h—byg)——
TSR Uy o

where by = 24/K(K + 1). The radial functions f, g, h, j
refer to partial waves with L=K — 1, K, K, K+1,
respectively, and they behave at the origin as r*. To find
the energy levels for a given K”, one has to solve these
equations twice: once with the initial condition f(ry;,) ~
rK—1 with all the other functions set to zero at the origin,
and another time with the initial condition A(ry,) ~ &,
with all the other functions set to zero, rp;, — 0. By
numerically evolving the functions according to the equa-
tions up to some asymptotically large r,,, one finds two
sets of functions (f}, g1, iy, j;) and (f2, g2, Ay, j»). The
energy levels are found from the zeroes of two (equal)
determinants, f1h, — foh; = g1j» — &2J1-

For states with parity (—1)X, namely K = 17,2%, ...,
the system of Dirac equations is

1+ K
Ef = =g = S g+ Q1= 0y + Py~ P

—+

(= bk f), (In

+
Po X Piie + byh)

—(0s + P)g +
(02 18 K11

P3'_ P5

m(f + bgj), (12)

K—1
Eg:f'_Tf+(Qo+Q1_P2_P4)g

Po+ P, .
— (0, + P)f + +b
(Qz 1)f K+ 1 (f KJ)
P, + P+ 2P, + 2P
+ 3 52K+12 % (g + byh), (13)
. 2+ K .
Eh=j + p J+ Qo+ Q) — Py, — Pyh
. Py+ P .
— + — —
(Qr + Py)j 2K+1(] bk f)
P, + P:+2P, + 2P
PRI o
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2.0
P3(r) QO(r)
s 01(r)
Ps(r)
o Os(1)
Py(r)
0.5
R
SRl —

FIG. 1 (color online).
shown in the left panel.

, K .
E]=—h'+7h+(Q1—Q0+P2_P4)J_(Q2+P1)h

Py +P
2K +1

_P3_P5
2K +1

(h—bkg) (= bkf), 15)
where again f ~ rX71, g ~ K, h ~ rK, j ~ rK*1 and the
levels are found by the same trick. The fields O, , and Py 3
break symmetry with respect to simultaneous sign changes
of parity and energy.

The case K = 0 is special since the angular momentum
is restricted to only one value, J = K + % = % This means
that g = f = 0, and the system of equations (8)—(11) for
the KX = 0~ level reduces to two equations,

Ej=—h"+(Qo+ Qi+ Py = Py + Py — Ps)j

2
Eh=j+-j+(=Qy+ Q) —3P, — P; + 3P, + Ps)h
r
+ (Py — 2P, + Q))), (16)

with i ~ 7%, j ~ r!. Similarly, to find the K¥ = 0% levels
one has to solve only two equations,

Ej=—h"+(=Q0+ Q1+ Py, = P3— Py +Ps)j
— (Py + 2P, + O))h,

2
Eh=j+-j+(Qy+ Q) —3P, — Py — 3P, — Ps)h
r

— (Py + 2P, + Q))j. (17)

In Fig. 1 we show an example of quark levels obtained
from a “‘natural” choice of the external fields Qy_,, Py—s.
We take a confining scalar field S(r) = or with a standard
string tension o = (0.44 GeV)?, and a topological chiral
angle field P(r) = 2arctan (rj/r?) such that the profile
functions introduced in Egs. (3) and (4) are Qy(r) =
S(r)cos P(r), Py(r) = S(r) sin P(r); the other profile func-
tions decay exponentially at large distances. The external
fields are shown in the left panel of Fig. 1, and the resulting
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A E( GeV )
4 2-
- T
o* 1 1~
4 0~
405

0+

E=0

An illustrative example of intrinsic quark levels with quantum numbers K” (right) generated by the mean fields

quark levels with various K” are shown in the right panel.
These or similar levels dictate the masses of baryon
resonances.

According to the Dirac theory, all negative-energy
levels—for both s and u, d quarks—have to be fully occu-
pied, corresponding to the vacuum. This means that there
must be exactly N, quarks antisymmetric in color occupy-
ing all degenerate levels with J5 from —J to J, or K3 from
—K to K; they form closed shells. Filling in the lowest level
with £ > 0 by N, quarks makes a ground-state baryon; see
Fig. 2. A similar picture arises in the chiral bag model [16].
Excited baryons can be related to different one-, two-, and
three-quark excitations to the other levels. We will try to
advocate the point of view that known baryon resonances
below 2 GeV are related to one-quark excitations only.

The mass of a baryon is the aggregate energy of all filled
states, and being a functional of the mesonic field it is
proportional to N, since all quark levels are degenerate in
color. Therefore quantum fluctuations of the mesonic field
in baryons are suppressed as 1/N,. so that the mean field is
indeed justified.

K"=0" 75 =32
| k=1 J =127
I | :I(I):/OJr’// -
|t —-—"—"———=|=-—-—- - - E:O ____________ —
@0 @ o0o®
@0 @ B amam a
u,d s

FIG. 2 (color online). Filling u, d, and s shells for the ground-
state baryon. Excitations of one valence quark describe baryon
resonances.
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IV. ROTATIONAL BANDS ABOUT INTRINSIC
QUARK LEVELS

Every intrinsic level is accompanied by the rotational
band of the states. It appears as a result of the quantization
of the slow rotations in both flavor and ordinary space. The
theory of rotational bands over the ground state was devel-
oped years ago [10], but for excited states and for the
general case of the mean field there are some specifics to
consider.

The original symmetry of the theory in the chiral limit is
SU(3)g1ay X SO(3)space- Both symmetries are broken by the
“hedgehog” ansatz of the mean field, so the soliton trans-
forms under the space and flavor rotations nontrivially.
However, the energy of the rotated soliton is the same as
the original one. For this reason constant rotations are zero
modes and should be taken into account exactly.

A. Ground states

Rotations that slowly depend on time split the energy
level into the rotational band. It is convenient to describe
this effect with an effective Lagrangian that depends on the
collective coordinates, which are rotational matrices.

Let R(#) be an SU(3) matrix describing a slow rotation in
flavor space, and S(z) be an SU(2) matrix describing a slow
spatial (and spin) rotation. They rotate quark wave func-
tions ¢%(x) (@ = 1...3 is flavor and i = 1...2 are spin
indices) in the given mean field as

$i(x) = R4 (DSH (1) (0(1)x),

| (18)
Oult) = 5 Ti[S* (o S(t) o]

Then it is easy to see that the simultaneous transformation

of the meson fields

P(x) = 0,,[RIP*(O(S)x),
V(x) = 0,[RIO;[SIVPI(O(S)x), (19)
Aai(x) = Oah[R]Oij[S]Abj(O(S)x);

(and so on) leaves the Dirac equation invariant in the
mean field provided that the matrices R and S are constant
in time.

We now wish to integrate out the quarks. The effective
action of the theory is a sum of the meson Lagrangian and
the contribution of constituent quarks, which is the deter-
minant of the Dirac equation in the mean field,

Segp = f dtL(M) — iZSpoceupLog{i% — H [M]}. (20)

Here the sum is over color indices and Sp{...} is running
over all occupied states. Since the meson field M and the
Hamiltonian FH are color blind, the sum over color indices
produces the factor N, for the ground state. For the one-
particle excitations one term in this sum corresponds to a
particular filling of the levels.
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The slow rotations S(f), R(r) are the particular cases of
the quantum fluctuations of the general meson field M.
Usually quantum fluctuations are suppressed in the limit of
large N.. Rotations are not suppressed as they are zero
modes. Only their frequencies are small in N,.

Let us parametrize the general meson field as M =
M + 8M [where M(x) is a time-independent mean field
and SM(x, t) are quantum fluctuations] and calculate the
effective action (20) on the set of slowly rotated states (18)
and (19) [27],

Seff = fthmeson(M + 6M, Q, d))
) K. _ - o
- lgspoccupLog{lE_ H[M+ ‘SM] - Qata - wi]i}-

21

Here ﬂa and @, are flavor and angular frequencies in the
body-fixed frame,

O, = —iT{R*RA,], @, = —iTi{S*So;], (22)

(A, are Gell-Mann flavor matrices and o; are Pauli spin
matrices), and 7, and j; are one-particle operators of flavor
and total angular momenta,

1
2

Next we expand Eq. (21) in small 6M, _Q, @. The linear
term should be absent, as the mean field M(x) is a solution
of the equations of motion. There is a famous exclusion
from this rule, namely the Witten-Wess-Zumino (WZW)

term, which is linear in {)g and proportional to the baryon
charge B of the state,

1 . 0
t, = Aa, ji:Si+li:§0-i+islk1xka_xl' (23)

N, ~
S8 = — & fsz : 24
2\5 8 ( )
The second-order correction is, in general,
1 -
85% = 3 f d*xSMWSM + [ d*x(8M X4 Q,
. 1 - o~
+ OMKy @) = 5 [ al129a,Q,
+ 159706, + 19V 0,a,] (25)

Here the first term is a quadratic form for the quantum
fluctuations that are not rotations, the second term describes
the mixing of rotations and other quantum fluctuations,
and the third term is a generic quadratic form for space
and flavor rotations. All of the coefficients in
Eq. (25) (W, XK, I) are proportional to N,.. Thus the quantum
fluctuations are M = O(1/./N,). As for the frequencies
Q, @, we will see that they are O, @ = O(1/N.).

We are interested in the collective rotational Lagrangian,
i.e., the Lagrangian depending only on angular and flavor
frequencies. There are two sources for such a Lagrangian.
First, the Lagrangian comes from the immediate expansion
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of the original action (21). Second, in the presence of
mixing the rotation Lagrangian can arise as a result of an
integration over nonrotational quantum fluctuations of the
meson field M. Indeed, in the second case the correction
to the mean field,

SM = WX Q, + K, ;] (26)

is of the first order in frequencies and should be accounted
for in the leading-order rotational Lagrangian,

s =— [ dt[ 08,1990, + 10,15,

lt/

= QaI(a‘;’m” ]
(QQ) _ ;00 -
TOHY =19 + Ko w1 Kb,
10D =109 + 3¢, W K,
I =1+ ICEW Ky + KW K, @)

i.e., the mixing leads to the renormalization of the mo-
ments of inertia. It is essential that the terms arising from
mixing are of the same order in N, [as K ~ O(N,) and
W ~ O(N,)] and contribute to the collective action.

This phenomenon is well known from nuclear physics.
The approximation wherein the mixing is neglected is
called the cranking approximation [28]. The importance
of the mixing was pointed out by Thouless-Valatin [29].
The mixing of the rotations and quantum fluctuations,
however, is absent in many relativistic theories (at least
for models based only on pions; see Appendix B). In such
theories the cranking approximation is exact.

Cranked moments of inertia 1Y, I fj"””), 199 consist of
two parts: a fermion part and a meson part. To obtain the
meson part we substitute the rotated meson fields (19) into
the mean field approximation of the meson Lagrangian. If
the last Lagrangian contains some time derivative, we will
get some terms that are quadratic in the frequencies Q. &
(one should neglect higher terms), which are the contribu-
tions to the moments of inertia.

The quark part of the moments of inertia can be obtained
by expanding the fermion determinant of Eq. (21) in ), @.
The corresponding part of the moments of inertia is given
by the well-known Inglis expression [28],

¢m%__zmwmmm?t@mmwwm

n,m

(28)

(|n) are occupied one-quark states and |m) are nonoccupied

states), with analogous expressions for I(“”") and ](wﬂ)

given by replacing the flavor generator ¢, Wlth the total
quark angular momentum j;.

The hedgehog symmetry of the mean field leads to the
following relations between different moments of inertia:
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L8, ab=1..3

19 =1 16, ab=4..7  IY=-215,
0, ab=S8,

](ww) =1,6;; (29)

and hence the quadratic part of the rotational action
reduces to

3
I -~
so =~ [ary @, -
i=1

This fact does not depend on the origin of the rotational
Lagrangian. In particular, this result can be checked for the
quark part (28) (see, e.g., Ref. [10]).
The complete rotational Lagrangian
I
—w)2+z 202+ ‘Qg (31)

rot: Z \/—

is a Lagrangian for some specific spherical top in both
flavor and ordinary space. We then calculate operators of
the angular momenta J and flavor momenta T,

7
I, ~
@)% + 2:5293. (30)
a=4

= 1 1) 3L

J= ETrI:Sa'g:I o =I(w — Q),

-1 57 9Ly

R L
L(Q, - w,), a=1...3 (32)

= IZQa’ a=4...7,

N, _
Ve a=38.

We see that the following quantization rules apply to the
rotational bands of ground-state baryons:

] T T8:

N,

. 33
e (33)
The second equation is the celebrated Witten quantization
rule [2], which claims that the hypercharge in the body-
fixed frame is ¥ = %Tg = N_/3. It is completely the
result of the hedgehog symmetry and the fact that N,
valence quarks with the hypercharge Y = 1/3 are put in
some bound state in the sector of u and d quarks.

The Hamiltonian of rotations determined from Eq. (31)
should be expressed in terms of the momenta 7 and J,

TZ
ot 211 &2
T(T+1)-32Y TT+1
:CZ(r) ( )—3Y T( )‘ (34)
21, 21,

Here c,(r) = 3,72 is the Casimir operator in the SU(3)
representation r. It is also easy to determine the collective
wave function, which is an eigenfunction of the
Hamiltonian and the operators of momenta in the lab-fixed
frame,
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1 0 1
T,=—=Tr[ A,R = —T S 35
==yt k] s=—gmfess] 69
The wave function is a product of two Wigner D functions,
one for the SU(3) group and one for the SU(2) group,

V.o(R, S) = /dim (r)(2J + 1)

00
X __Z CTT;JJ YT T5:YTTs
1,15,

=\/dim(r)(—1)J“3D(Yr} SR, (36)

This function is an eigenfunction of spin J? = J?> = T2,
Js, isospin T? and T3, and hypercharge Y; the index (r)
labels the SU(3) representations with dimension dim (r).
According to Eq. (33) the hypercharge ¥ = N, /3. Finally,
the Clebsch-Gordan coefficient C(%OT3 ,7, causes the sum of

(R)D, | (S%)

the isospin T and the angular momentum J to be zero in
order to obey the quantization rule (33). In fact, the rota-
tional wave function depends only on the combination
RS*. This is natural because—owing to the hedgehog
symmetry—a flavor isospin rotation can be compensated
by a space rotation.

B. One-quark excited states

Let us now proceed with one-quark excitations, i.e.,
excitations where only one quark is taken from the ground
level and raised to some excited level. The effective
Lagrangian (21) is only slightly changed: one term in the
sum over N, quarks has a different scheme of occupied
levels. The other N, — 1 terms, however, remain the same.
This means that in the leading order in N, the mean field
does not change [the correction to the mean field is
O(1/N_)]. This is also true for the moments of inertia I,
and I,; they acquire O(1) corrections, as compared to the
leading-order O(N,). Therefore, the effective rotational
Lagrangian (31) is also valid in this case. However, addi-
tional linear terms in the frequencies () and w can appear.
The reason is that the mean field is only a solution of the
equations of motion for a ground state and not for excited
states. Hence, there is no reason why linear terms in a
perturbation (which is a rotation in this case) should be
absent. The corresponding linear terms are of the form

8 L., = (excited|(w - j + Q - t) + SM|excited), (37)

where the last term accounts for a possible change in the
contribution of the correction (26) to the mean field due to
rotations. This correction should also only be calculated in
the ground state (it is determined mainly by a rotation of
other N, — 1 quarks), and it is assumed that it is already
known. It is also linear in the frequencies & and Q.
Excited states are usually degenerate. Indeed, excita-
tions in the s-quark sector have 25 + 1 degeneracy (where
S = é ; ... 18 a total momentum of the state), and excita-
tions in the u- and d-quark sectors have 2K + 1 degener-
acy, where K is the grand spin of the state. Any of the
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degenerate states or their mixtures can be taken as an
excitation. We define

lexcited) = )" xk,|KK3JL) (38)
(we are now dealing with K # 0 excitations for definite-
ness). Here |KK3JL) is the wave function of some excited
state with grand spin K and projection K3, and yy, are
amplitudes for different values of the projection. The
energy does not depend on yg,. Hence it is a new zero
mode and should be considered as a collective coordinate
together with S and R. The effective rotational Lagrangian
for xg, should slowly change with time; evidently, the
complete Lagrangian is

.0
£excited[/\/r R, S] = ZXIZZE/\/K; + £r0t + 6£rot) (39)
K3

where L is the rotational Lagrangian for the ground state
[Eq. B1)I.
Plugging Eq. (38) into Eq. (37), we obtain

8L, ZXK,XK1[<KK3JL|(w j+ Q- t)IKK,JL)
K;K;, }
aSM
+ (@ = QUKKLILI % IKK3JL>.:| (40)
- w

Here we have used the fact that the fluctuation of the meson
field should depend only on the difference of flavor and
space frequencies due to the hedgehog symmetry of the
ground state: 6M ~ w — Q.

The one-quark flavor momentum ¢ and angular momen-
tum j are not conserved in the hedgehog field. Nevertheless,
since they transform as vectors under simultaneous flavor
and spin rotations their matrix elements should be propor-
tional to the matrix elements of the conserved quantity, i.e.,
the grand spin K,

(KK3jllt| KK, jl) = axg(K K3 jlI| KIKK i),
(KK3jlljIKK,jly = (1 — ag){KK5jIIK|KKSjI),  (41)

. 00M . . .
<KK3JZ|W|KK§JZ> = §K<KK3JI|K|KK§JI>

(the second relation follows from j + ¢ = K), where ag
and {y are some constants that are specific to a given excited
level. Using explicit expressions for the wave functions of
the levels with a given K, one can derive the following
relation for ag:

K+1—-cxK+1)

ag = ’
2K(K + 1) (42)
[ drP (R () + 72()
c
KT a2 (0 + 20+ &0 + £2(0)
where 4, j, f, g are radial wave functions, i.e., solutions of

the Dirac equation (8)—(11). The coefficient cx (0<cx<1)
measures the admixture of the state j = K + % in the wave
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function of the level with a given K (a complete wave
function consists of two states, =K =* é, see
Appendix C).

In general it is not possible to calculate the coefficient
{x. In particular, it depends on the form of the meson
Lagrangian. The coefficient {x renormalizes the value of
ag. Fortunately, the correction to the mean field 6 M is zero
in a wide class of theories.

Collecting all the terms, we obtain the collective
Lagrangian for one-quark excitations in the u- and
d-quark sectors,

d
‘EK[/\/:R;S]: X+3i - +[(1 d[()(l)"‘d[(ﬂ]
% 57 ot \/"
X Y Xk Xk (KK jIKIKKS D)
KK,
Il _ 2 12 2
+Z (Q @;)*+ Z Q
dKZaK—f. (43)

The quantization of yg, with the Lagrangian (43) is
trivial. Due to the presence of the collective variable y,
the quantity

> Xk xx(KK;jlKIKKSjl) = K (44)
KK}

behaves as a quantum operator of the angular momentum
K. Differentiating with respect to w and (), we obtain the
momenta in the body-fixed frame,

J=I1(w— Q)+ (1—-adk,
T=1,Q - w) + agk, T,=LQ, (a=4...3),

(45)

This leads to the following quantization conditions [instead
of Eq. (33)]:

T+J=K Y=

N,
e (46)

Constructing the Hamiltonian from the Lagrangian (43),
we obtain

2 aKK)
Hy = 212 Z(T )+ 21,
—d 7™\\2
2,2 Z(T P+ ’;(I{ O

The energy levels are

T(T+1)-3Y

C2(r) 4 1 ~
= + — +1
21 laxJ(J )

K 21,
+(1—ag)T(T+1)—ag(l—agpKK+1)].  (48)
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Here we have used the fact that J = J. The available
spins are determined by the quantization rule (46): J =
IT - K|...T +K.

It is easy to construct the collective wave function. For
this case it depends on S, R, and .,

% ZCKK; (r)

TT3JJ3  YTTyYTT,
T.T5,05

(R)D, | (S,

(49)

This wave function is an eigenfunction of the hypercharge
Y, the isospin 7, and its projection T3, as well as the spin J
and its projection J3. In fact, it is completely fixed by the
symmetry and quantization requirements [Eq. (46)].

C. s-quark excited states

At last, let us describe excitations in the s-quark sector.
We consider a one-quark excitation where one quark is
taken from the ground state K = 0 and raised to the level of
the s-quark with some total angular momentum S. The
excited state is 2S5 + 1-fold degenerate, and we take the
mixture

lexcited) =

D xs,1S3), (50)
S3

where |S;) are one-quark wave functions with different
projections of S. The calculation of the matrix elements
gives [instead of Eq. (41)]

(S317185) = (S51S1S%), <53| |S3> {5(S518183), (5D

and the matrix elements of ¢ are zero since the s quark does
not carry isospin. Thus these matrix elements coincide with
Eq. (41) for ax = 0. The subsequent steps are straightfor-
ward. The quantization rule (46) changes to

N - A . N.—3
T+J=2S§, Yy =-—¢ .

(52)

The first rule repeats Eq. (46) with the evident replacement
K — S. The second rule appears because we substitute the
quark with hypercharge 1/3 (one of the u, d quarks in the
ground state) with one s quark (in the excited state) with
hypercharge —2/3. This rule can also be derived directly
by calculating the coefficient in front of the Witten-Wess-
Zumino term.
The energy levels for s-quark excitations are given by

7T _3y2
£ = c2(r) T(;: D=a¥ | 2Lll[u + )T+ 1)
=T+ 1)+ L(1+ £5)SS + 1)], (53)

which is Eq. (48) with the substiNtution K—S§ and
ag = 0. The available spins are J = [T — S|...T + S; the
collective wave function is an analogue of Eq. (49),
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Ys(R,S, x)

B [dim(r)(21+ 1)
B 25+1

x ¥ ¢ DY

2 T II T VT TS (RO)D; , (S xs,: (54)
7,75,53

To summarize: rotational bands around a given excited
intrinsic energy should be constructed in the following
way. One has to choose SU(3) multiplets that contain states
obeying the quantization rule for ¥, read off the value of T
corresponding to this ¥, and use formulas (34), (48), and
(53) for their rotational energy.

Quark wave functions in the mean-field approximation
are the product of one-particle wave functions of the filled
levels. One has to rotate them according to Eq. (18) and
then project to the collective wave functions obtained
above [see Egs. (36), (49), and (54)]. “Projection” means
that one has to multiply the rotated quark wave function by
the conjugated collective wave function and integrate in
the matrices R and S. This will produce quark wave
functions of the excited baryons with given quantum
numbers.

V. ONE-QUARK EXCITATIONS IN THE MEAN
FIELD AND THE QUARK MODEL

In the limit N, — oo the quark model becomes a par-
ticular case of the general soliton considered above.
Indeed, the mean-field approximation should work for
the quark model as well; any interquark potential can be
considered in this approximation. Since we are only dis-
cussing the symmetry properties of the quark states, the
details of the potential are not important.

The real difference between the quark model and the
picture considered above is a symmetry of the mean field.
The quark model insists on complete spherical symmetry
and the only mean field in the quark model is the scalar
field S(x). The excitations of the quark model arise as
SU(6) multiplets [to be more precise, multiplets of the
SU(6) ® O(3), with the O(3) group representing orbital
angular momentum]. All splittings of such multiplets are
considered as small perturbations. This should be com-
pared to the soliton approach where it is assumed that the
mean field has hedgehog symmetry and the departure from
SU(6) is not considered to be small; it is of order of unity
even at large N.. Nevertheless we should be able to repro-
duce multiplets of the quark model by taking the spheri-
cally symmetrical mean field.

Due to the Witten quantization rule the SU(3) multiplets
for large N, become large as well. The classification of
such multiplets was developed in Ref. [30].

Every SU(3) multiplet is characterized by two numbers
p and g. However, this is inconvenient for our purposes.
Let us label multiplets by (i) Y, the Witten condition
fulfilled by this multiplet; (ii) 7', the intrinsic isospin
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corresponding to this value; and (iii) the exoticness X,
which is defined as a minimal number of quark-antiquark
pairs in the wave function of the given baryon. The stan-
dard p and g numbers, the dimension of the multiplet, and
the Casimir operator can be expressed in terms of these
numbers as follows:

3 3
g=37+2X-T=0 (55

and
[ +1— . .
dim=u(§Y+l+2X—T)
>
3 )
X<5Y+2+X+T),
3 . 3. N
cz(r)=ZY(Y+2)+T(T+l)+X<EY+1—T)+X.

(56)

Plugging these expressions into the general formula for the
energy (48), we obtain

My = My + AE + %[dKJ(J + 1)+ (1 —ag)T(T+1)
1

—ag(l —ag)K(K +1)]

N 1+Xx)02+ 317)'

T (57)

We see that I, plays the role of the moment of inertia for
exotic states; their spectrum is equidistant and distances
between states are of order unity (we recall that I, ~ N,
and ¥ ~ N,). The moment of inertia /; governs ordinary
excitation splittings [30]. We will not consider the rota-
tional exotics here; exotic states have some specific prop-
erties related to the fact that their widths are ~O(1) [5,31].
Anyway, these states are separated from the normal rota-
tional band by the interval ~O(1).

Every excited state has a restricted number of nonexotic
states entering the rotational band with definite 7. They are
determined from the condition that p = 0 and ¢ = 0. In
particular, for excitations in the s-quark sector at N, = 3,
Y =0 we get only one state—a singlet with spins J =
S & 1/2 (where S is the spin of excited states)—and the
other multiplets are exotic. At larger N, s-quark excitations
form nontrivial rotational bands have energies given by
Eq. (57) and dg = —¢; [see Eq. (53)].

Excitations in the u- and d-quark sectors have richer
structures. For nonexotic states (X = 0) at N, = 3 and
Y =1, it follows from Eq. (55) that we have only two
possibilities: T = 1 and T'=3. In other words, they can only
arise as octets or decuplets. At larger N, other multiplets
become nonexotic. At K = 0 we obtain the rotational band
of J = T with the different spins changing in the limits % <
J< NT Their energies are given by the general formula
(57) with X = 0, dg = 0.
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At K =1 we have three possible series of rotational
bands: J =T — 1, T, and T + 1; at K = 2 there are five
series with J =T —2,...T + 2. The possible spins are
again determined from Eq. (55).

Let us compare this picture to the quark model (see, e.g.,
Ref. [32]). The lowest state of the quark model is a 56-plet
with orbital moment L = 0. This multiplet can be gener-
alized to arbitrary N_; its dimension is

dimu56” = E(NC + 1)(NC + 2)(NC + 3)
X (N, + 4)(N, + 5),
C,(SU(6)) = 5 2NN, +6) (58)

The analogue of “56” in the mean-field picture is the
rotational band around ground-state baryons. It is easy to
check that the dimension of the full rotational band of
ground-state baryons is

N(‘

> (27 + 1)dim (J, X=07Y= ?) = dim 5.
=

In other words, the rotational band around the ground state
completely coincides with the 56-plet. At N, = 3 it re-
duces to the familiar (56) = (8}) @ (103).

The next SU(6) multiplet is 70. Its dimension at arbitrary
N, is

1
dim“70” = ﬂ(Nc - 1)(NL + 1)(NL + 2)(Nc + 3)(Nc + 4)’

C2(SU(6))— ! N (5N, +18). (59)
It consists of the following five series of SU(3) multiplets:
H Three series of multiplets with Y =N_/3: T =
— 1 with J = T = J with J=1.—1,
andT J+ 1 with J = L
(2) Two series of multlplets w1th Y=(N,—-3)/3:T=
J —iwithJ = .Zf—landT—J+2w1thJ—
1N
3ot — 2.
It is easy to check using Eq. (56) that the total dimension of
all five series is equal to dim «q.

The contents of the SU(3) multiplets entering the 70-plet
imply that in the mean-field picture it consists of a one-
quark excitation in the s-quark sector with spin 1/2 and a
K =1 excitation in the u- and d-quark sectors. These
states become degenerate in the case of a spherically sym-
metrical mean field. However, there are more states in the
mean-field approximation: in this approximation all states
with % =T= NT are present. We will see that absent
states are spurious; they are forbidden by the Pauli pri-
nciple which is not accounted for in the mean-field
approximation.

The 70-plet is used in the quark model, e.g., in order to
describe baryons with negative parity [32]. It is assumed
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that these baryons are described by the (70, 3) representa-
tion of SU(6) ® O(3): the baryons have a relative orbital
angular moment of two quarks, L = 1. This provides
negative parity and makes the total baryon wave function
symmetrical (or antisymmetrical if one accounts for color)
under a simultaneous exchange of spin, flavor indices
[SU(6)], and coordinates. Adding L = 1 to the mean-field
multiplets obtained above, we see that these baryons
should be described by K =0, 1 2 excitations in the
u- and d-quark sectors and S = 5, % excitations in the
s-quark sector and their rotational bands. The difference
with the quark model is that these five sets of states are split
by O(1), due to the hedgehog (not spherical) symmetry of
the mean field from the very beginning.

Other multiplets of the quark model can also be analyzed
in the same way and one can find their interpretation in
terms of states appearing in the mean-field approximation.

The above series of five SU(3) multiplets—which at
large N, become the 70-plet of SU(6)—were first observed
in the remarkable paper by Cohen and Lebed [33]. In this
paper the approach is close in spirit to the approach of
Manohar et al. [23]. Additionally, the authors of Ref. [33]
proposed a relation between the masses of multiplets with
different grand spin K, which in our notation reads

AE(0—0) +3A8(0—1) + 5A8(0—2) =0. (60)

This relation looks surprising since it cannot be fulfilled for
an arbitrary external field. In particular, it is not fulfilled in
the exactly solvable model, which we consider in
Appendix A.

The situation in the sector with positive parity is com-
pletely different. The quark-model prediction for excited
baryons in this sector consists of five SU(6) ® O(3)
multiplets [34]: (56, 0) (radial excitation of the ground
multiplet), (56,2), (70,0), (70,2), and (20, 1). All these
multiplets should be nearly degenerate in the quark model
(they are degenerate in the oscillator limit of the model
[34]). The vast majority of the states in these multiplets is
not observed in nature.

Contrary to the situation with negative-parity baryons,
some quark-model multiplets in the parity-plus sector have
no interpretation as one-quark excitations in the mean field
at N, — oo. Instead they correspond to, at least, two-quark
excitations when two quarks from the ground level are
transferred to the excited levels (possibly with different
K). This is especially clear for the (20, 1) multiplet, where
the SU(6) wave function is completely antisymmetric. This
multiplet cannot fit the picture where N, — 1 quarks are
sitting on the same level (and thus have a completely
symmetric wave function) and only the last quark carries
angular momentum (to be more precise, nonzero K). The
same statement is true for (70, 0) and (70, 2), which also
have mixed symmetry. The one-quark excited multiplet
should be symmetric in the SU(6) index of the excited
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quark and hence it should be antisymmetric in the first two
quarks sitting in the ground state.

One can consider the two-particle excitations in the
mean field at N, — oo as well, keeping in mind, however,
that the 70 and 20 multiplets should be generalized to large
N, in a different way than that used for the negative-parity
baryons. We will not go into detail, but we mention that
the 20-plet at arbitrary N, has dimension & (N, — 2) X
(N, — D(N. + 1)(N, + 2)(N, + 3) and corresponds to
ten series of SU(3) multiplets with different spins [the
SU(6) Casimir operator is N.(5N, + 6)/12]. The dimen-
sion of the two-quark excited 70-plet with positive parity is
%(NC —2)(N. — 1)N,(N, + 2)(N. + 4) and it contains 40
series of SU(3) multiplets [the SU(6) Casimir operator is
3+ N.(5N, + 6)/12]. Of course, most of the states are
spurious at N, = 3. One can decompose these series to the
state corresponding to a different value of K and check that
they are, indeed, two-quark excitations (e.g., in the toy
model considered in Appendix A).

However, in this paper we would like to insist that even
positive-parity baryons can also be constructed as one-
quark excitations in the mean field. We believe that bary-
ons with two excited quarks are much heavier and have
larger widths than one-quark excitations. In other words,
we think that the quark model is misleading for the
positive-parity excited baryons [in particular, the SU(6)
group is completely broken], and its obvious success in
the sector with negative parity is explained by the fact that
negative-parity baryons are one-quark excitations. This
point of view is supported by the fact that a significant
portion of the quark-model states with positive parity has
never been observed. We will adopt the idea that they are
described by the same set of K = 0, 1, 2 levels as for the
negative-parity baryons. One can easily construct the wave
functions of these states directly and check that there is
only one spurious multiplet among them (for more details,
see the next section). Our classification, as was already
said, does not correspond to the quark model.

A different situation arises if one puts N. = 3 from the
very beginning. Then the identification of one-particle and
two-particle excitations becomes difficult. Indeed, after the
separation of the center-of-motion movement, the wave
functions are not the product of one-particle states.
Moreover, one can impose the SU(6) limit (a central sym-
metrical scalar mean field) and then proceed to the oscil-
lator limit of the interaction. Then all constructed K = 0,
1, 2 states should fall into one of the five SU(6) multiplets
mentioned above. (We recall that the mean-field approxi-
mation becomes exact for the oscillator model.) And they
do: one can directly construct wave functions of these
states with the help of the method described at the end of
the previous section and compare them to the SU(6) wave
functions built in Ref. [34] (Appendix B). Then one can see
that the completely antisymmetric SU(6) multiplet 20 re-
mains as a two-quark excitation even at N. = 3. The
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contents of K =0 and K = 2 states is completely ex-
hausted by the (56, 0) and (56, 2) multiplets. At last, all
one-quark K = 1 states are inside the multiplets of mixed
symmetry, i.e., (70, 0) and (70, 2).

To summarize: one-particle excitations in the mean
field at large N, with the lowest K =0, 1, 2 states are
only a small portion of the quark-model multiplets for
positive parity. However, as we shall see in the next
section, it is this portion which is observed in Nature
(at least below 2 GeV).

VI. COMPARISON WITH THE
EXPERIMENTAL SPECTRUM

We shall now look at the experimental spectrum of light
baryon resonances up to around 2 GeV, trying to recognize
among them the rotational bands about the one-quark
excitations from the ground state to the intrinsic quark
levels. We shall treat the quantities I, dg, and A€ entering
Eq. (57) as free parameters to be fitted from the known
masses, although in principle they are calculable if the
(self-consistent) mean field is known. Still, there are
much more resonances than free parameters, and therefore
the rotational bands are severely restricted by Eq. (57). As
we shall see these restrictions are well supported by ex-
perimental observations, despite the fact that in the real
world N, is only three.

Since at this time we do not take into account the
splittings inside SU(3) multiplets due to the nonzero
mg, Eq. (57) should be compared with the centers of
multiplets. For the octet, the center is defined as Mg =
(2my + 2mz + 3my + my)/8, and for the decuplet
it is Mg = (dmp + 3my- + 2mz- + mq)/10 = my-.
We take the phenomenological values for Mg, M,
from the paper by Guzey and Polyakov [18] who have
analyzed baryon multiplets up to 2 GeV.

A. Spurious states

Comparing the mean-field predictions (valid at large N,.)
with the data, it should be kept in mind that certain rota-
tional states are, in fact, spurious, as they are artifacts of the
mean-field approximation where the spatial wave function
is a product of one-particle wave functions. When averag-
ing over the center of mass is taken into account [which is
an O(1/N,) effect] the baryon wave functions depend only
on the differences of quark coordinates, which for some
states may contradict the Pauli principle. This effect has
been long known in both nuclear physics [35] and the
nonrelativistic quark model [32]. The simplest way to
identify spurious states is to continuously deform the
mean field to the nonrelativistic oscillator potential where
the wave functions are explicit. Again, they can be written
directly by projecting the rotated mean-field quark wave
functions with the collective wave functions constructed
here. If some state is absent in this limit, it cannot appear
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from a continuous deformation. An independent way to
check for spurious states is to deform the problem at hand
to the exactly solvable (0 + 1)-dimensional four-fermion
interaction model [36] where the large-N,. approximation
is also possible and reveals extra states (see Appendix A).

Specifically, in the parity-plus sector, the spurious state
is (10, 1/2%), arising from the rotational band about the
(0t — 21) transition. Such a state also arises from the
(0" — 1%) transition, but in that case it is not spurious.

In the parity-minus sector there are more spurious states:
the multiplets (10, 5/27) and (10, 7/27) stemming from the
(0" — 27) transition are spurious, two out of three multip-
lets (10, 3/27) arising from (0 — 07, 17, 27) transitions
are spurious, and one out of the two multiplets (10, 1/27)
stemming from (0" — 17,27) transitions is spurious as
well. As was already said, the remaining negative-parity
multiplets exactly coincide with octets and decuplets from
the (70, 1) multiplet of SU(6) ® O(3) of the quark model.

Spurious rotational states should be removed from the
consideration.

B. Parity-plus resonances

The two lowest multiplets, (8,1/2%,1152) and
(10,3/2",1382) (the last number in the parentheses is
the center of the multiplet), form the rotational band about
the ground-state filling scheme shown in Fig. 2. Fitting
these masses by Eq. (57), we find M, + 4% = 1090 MeV,
1/1, = 153 MeV.

Apart from the two lowest multiplets, there is another
low-lying pair with the same quantum numbers:
(8,1/2%,1608) and (10,3/2%,1732). Other parity-plus
multiplets are essentially higher. One needs a 07 — 0%
transition to explain this pair. Comparing the masses
one finds that the second K” = 07 intrinsic quark level
must be 482 MeV higher than the ground-state 0" level,
AE(0T — 0%) = 482 MeV. The moment of inertia ap-
pears to be considerably larger than for the ground-state
multiplets, 1/I; = 83 MeV. Although the difference is an
O(1/N.) effect, it may be enhanced if the radially excited
0% level has a much larger effective radius.

There is a group of five multiplets that are good candi-
dates for the rotational band around the 0" — 2 transi-
tion: (8,3/2%,1865), (8,5/2%,1873), (10,3/2%,2087),
(10,5/2%,2071), and (10, 7/2", 2038). Indeed, this is pre-
cisely the content of the rotational band for this transition
[the spurious multiplet (10, 1/2") excluded], and a fit to

the masses according to Eq. (57) gives a small \/? =
15 MeV. It should be kept in mind, however, that not all
members of all multiplets are well established [18], and
those that are have an experimental uncertainty in the
masses. It means that the “experimental” masses for the
centers of multiplets are known at best to an accuracy of
2040 MeV. We find from the fit 1/1; = 131 MeV,
AEOT — 2%) = 722 MeV. Therefore, the intrinsic 2%
level must be higher than the 0" one.
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The only relatively well-established multiplet that is left
in the range below 2 GeV is (8, 1/2", 1846). It can arise
from the rotational band about the 0% — 1% transition;
however, other parts of the band are poorly known. If one
looks into the nonstrange baryons that are left, one finds
N(1/2%,1710%%), N(1/2%,1900*), A(1/2", 1910*),
and A(5/2%, 2000™), with A(3/2%) missing. The quantum
numbers and the masses of these supposed resonances fit
(rather well) the hypothesis that they arise as a rotational
band about the 0" — 1% transition; however, their low
status prevents a definite conclusion from being drawn.
The intrinsic 17 level must be approximately 60 MeV
higher than the 2* quark level.

C. Parity-minus resonances

The situation here is similar to the parity-plus sector: one
needs intrinsic quark levels with KX =07, 17, 27 to
explain the resonances as belonging to rotational bands
about these transitions. Given that several rotational states
in the parity-minus sector are spurious, one expects to find
the following multiplets stemming from these transitions:
(81/27)x2, (83/27)x2, (85/27), (10,1/27),
(10,3/27). These are precisely the observed multiplets.

We know that all remaining multiplets are spurious, but
we do not know how to assign a specific K to the observed
one. We assign them according to Eq. (57), requiring that
no mixing can happen ({x = 0). There is only one way to
do this.

We assign the four lowest multiplets [(8, 1/27, 1592),
(8,3/27,1673),(10,1/27,1758), and (10,3/27, 1850)] to
the rotational band of the K = 17 level. The fit tells us that
the corresponding moment of inertia is 1/1; = 171 MeV
and the energy of the level AE(0* — 17) = 468 MeV is
close to AE(0" — 07). This does not look impossible.

The multiplet (8, 1/27, 1716) should be ascribed to a
0" — 0~ transition and the two remaining multiplets
(8,3/27,1896) and (8,5/27,1801) to a 0" —2~
transition.

These assignments produce reasonable values of the
mixing coefficients dx which can be explained without
mixing of rotations and other degrees of freedom in the
effective meson Lagrangian. Some other information (mass
splittings or resonance widths) should probably be used to
finally fix the attribution of multiplets to the rotational
bands. If the final scheme is different from the one assumed
here, it will show the large role of mesons other than the
pion mesons in the formation of negative-parity baryons.

To summarize, all parity-plus and parity-minus baryons
around 2 GeV and below can be accommodated by the
scheme, assuming that they all arise as rotational excita-
tions about the 0t — 0", 1, 2" and 0Ot —= 0™, 17, 2~
transitions; see Table I. There are no unexplained reso-
nances left, but there is an extra state A(3/2%, ~1945)
stemming from the 0" — 1% transition, which is so far
unobserved, and therefore this state is a prediction.
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TABLE I. Interpretation of all baryon resonances below 2 GeV as rotational excitations on top of intrinsic quark states.

quark levels rotational bands (I)7', MevV dg
KP = 0%, ground state (8, 1/2%,1152) (10,3/2%, 1382) 153
0t — 0% 482 MeV (8,1/2%,1608) (10,3/2%,1732) 83
(8,3/2%,1865) (8,5/2%, 1873)
0+ — 2+ 722 MeV (10,3/2*, 2087) (10,5/2*, 2071) 131 —0.050
(10,7/2+,2038)
N(1/2+,1710) N(3/2*, 1900)
0t — 1 ~780 MeV A(1/2+,1910) A(3/2+, ~1945)?
A(5/2%,2000)
i _ (8,1/27,1592) (8,3/27,1673)
0" — 17 468 MeV (10, 1/2-, 1758) (10,3/2-, 1850) 171 0.336
0" — 0~ 563 MeV (8,1/27,1716) 155(fit)
0t — 2~ 730 MeV (8,3/2",1896) (8,5/2~, 1801) 155(fit) —0.244

0" — 11— 254 MeV
0" — 35— 379 MeV

(1,1/27, 1405)
(1,1/27, 1520)

D. s quarks

As emphasized in Sec. III, s quarks are in a completely
different external field than u and d quarks, even in the
chiral limit. Only the confining forces which we model
by a linear rising scalar field are the same for all quarks.
The two excited levels for s quarks are shown in Fig. 3;
they are needed to explain the singlet A(1/27, 1405) and
A(3/27, 1520) resonances. The corresponding values of
A& are presented in the Table 1. No more singlet A’s are
known below 2 GeV, and therefore there should be no
intrinsic s-quark levels \with either positive or negative
parity in this range.

Following the standard logic of the quark model, in this
paper we describe all baryon resonances as excitations of
valence quarks (see Fig. 2). This is not necessary, however.
New resonances can appear due to transitions from the
levels which belong to the Dirac continuum. The main
configuration for such baryons will consist of five quarks
(three valence quarks plus a quark-antiquark pair), but this
does not mean that they should be exotic. In fact, it is just
the opposite; most of them would be ordinary octets and
decuplets.

_ P_3pn~
KP =0 JP=31
kP =0" JP=112"
KP= 0+ \2\ I+
_—t e - E=0 ____k ___P_ +
HO—@—@ @00 Jr=12
HO—@—@— HO— 0@
@@ HO— 0@
ud s

FIG. 3 (color online). (Color online) Possible transitions of the
s quark from the highest filled s level to excited s levels (/), and
to excited u, d levels (2).

For example, the intriguing question is the location of the
highest filled level of s quarks. Presumably, it must be a level
with quantum numbers J© = % ™, as it possesses maximal
symmetry. There can be one-quark excitations from that level
to both the s-quark excited levels§ ~and3 ~, and to the u, d
excited levels 0%, 07, ... ; see Fig. 3. Transitions of the first
type generate a rotation band consisting of (8,1/27) X2,
(8 1/27), (10,1/27), (10,3/27) X2, and (10,5/27).
Transitions of the second type are called—in the terminology
of nuclear physics—Gamov-Teller transitions, and they gen-
erate the exotic antidecuplet (10, 1/27), etc. [14]. It turns out
that it is difficult, if not impossible, to move the highest filled
level of s quarks % *_—which must satisfy Eq. (6) in a
“realistic” mean field—more than ~700 MeV below the
first excited level % ~ . Therefore, the parity-minus reso-
nances generated by the transition / in Fig. 3 must reveal
themselves in the spectrum below 2 GeV. We note that such
resonances will have a substantial five-quark component,
u(d)u(d)u(d)ss, since they require an s quark to be pulled
out of the filled level and put into an excited level. The real-
world resonances are probably certain mixtures of these
excitations with the u, d excitations described in the previous
section. This is a welcome feature as, for example, the well-
known resonance N(1/27,1535) has a surprisingly large
coupling to the n meson (see also Refs. [33,37]). The
Gamov-Teller transition 2 gives a natural explanation of
the exotic ®* resonance [38] at exactly the position where
it has been claimed by a number of experiments [14].

VII. MASS SPLITTINGS

The nonzero mass of the strange quark m, breaks the
SU(3) flavor group and splits SU(3) multiplets. Let us
calculate these splittings. Inserting the quark mass m (a
matrix in flavor) into the quark determinant (21) and ex-
panding up to the first order in m, we obtain
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OnS = _lZSpOCCupled{R mRy

The mass of the strange quark has both a singlet and an
octet part, m = myl + mgAg and mg = m,/~/3, and split-
tings are determined only by the octet part mg.

We want to calculate the mass splitting in the zeroth and
the first order in the angular and flavor frequencies @ and
). For ground-state baryons this calculation was carried
out in many papers (see, e.g., Ref. [39]). The result reads

% fdtl:z z D(S)(R (n]A,¥°|n)

a occup

5,8 =

3
+ 2K, z @g)(R)(Q; - J’i)

i=1
7
+2K, Y ngZ)(R)Qa:I. (62)
a=4

Here the first term is of the zeroth order in frequencies,
while the second and the third terms represent the first-
order corrections. K; and K, are some constants analogous
to the moments of inertia (28) (again, n runs over occupied
levels and m runs over free levels in the mean field),

(nly 1, lm)(mly 1, ln) + (nly°1,lm)(mly°1,|n)
NZ Y Y be Y Y ip Y

Kab -

(63)

(if there is a mixing of rotations with 6M this expression
should be modified). The tensor K, has a structure analo-
gous to the structure of the moment of inertia,

K18ab a,b=1...3,
Kab = K26ab a,b = 47, (64)
0, a=>b=28.

Equation (62) is valid for rotational bands above the
ground-state and one-particle excitations. The first term for
the ground-state baryons is nonzero only at a = 8; it can be
expressed through an experimentally known quantity
called the > -term,

3 S (nlagyln) = —%z,
¢ occup d (65)
oM

E = (mu + md)m

Here we have used the fact that all valence levels are
located in the u- and d-quark sectors. Below we will imply
only this case. Indeed, we have seen that at N. = 3 one-
particle excitations in the s-quark sector (from the ground
state) are singlets, so there is no mass splitting present for
this type of excitation.
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1
— HWM + M) — Q1, (:),-j,-i' ®1)

In the u- and d-quark sectors there is also another
possibility, namely a = 1, 2, 3, for the excited level,

yOlexcited) = dgx > X X (KSIKG LK), (66)
K3 K

(excited |

where dy is some constant which is determined by the
wave function

_ +/d [ 2(r) fz(r)

where a plus sign stands for the states with parity (—1)K
and a minus sign for the states with parity (—1)X*!. The
calculation of dg is analogous to the calculation of the
coefficient cg (see above).

The first-order terms in the frequencies in Eq. (62) can
be simplified as well. We replace the frequencies with the
operators T, according to Eq. (45). Using the relation

W (r) = (1)
2(K +1)

], 67)

8
Ty = Y DY RT,,
a=1
one can express the last term in Eq. (62) in terms of the sum

with a = 1, 2, 3 and hypercharge Y = 273/ \/5 For the
Hamiltonian we obtain

3
H,, = aDY(R) + BY + 3y Y DYRT,
i=1

+43 52 DY(RK,, (68)
=1
where
2 m Kz

=--_3 3+
@ 3 m + de m 12 ﬁ

_ 2m, (Kl _Kz) ( K ) (69)
YW\, L) “K

We see that mass splittings are determined by four
possible structures. Only the last term is novel; the other
three are known for ground-state baryons. Moreover, the
constants «, B, y up to corrections of order 1/N, are
the same for all levels. As for 8, it is determined by the
properties of the excited level and is unique for a given
level. Nevertheless, 6 is the same for all rotational bands
of the given level. [Note also that @ ~ O(N,), while B, vy,
6~ 0(1).]

Mass splittings are determined by the average of
the Hamiltonian (68) in the collective wave functions
(36) and (49). The resulting expressions, of course, respect
the Gell-Mann-Okubo formula. We parametrize the masses
of the particles in the octet as

074030-16



THEORY OF BARYON RESONANCES AT LARGE N,

PHYSICAL REVIEW D 88, 074030 (2013)

TABLE II. Mass splittings for octet and decuplet particles for different values of K.
K Rep J M(lg) /J’(zg) M(IO)
a 3 @ 5
0 8 2 i “§TAtR i S
10 3 s BT
a 11 a 55
8 3 BT —§ BT ;Tsy %
: ~+ 5+ 8 -§-p-%-¢ .
1 ! “§TRTHETY
10 % —4—pg+2r 42
E 3y _ 95 25y 4 158 TETATRR
< 3 710 “§TBFT Y
5 @ ) a 25
3 R TitY —§B-H ¥ oy o
) 3 “§TBtR Y
3 a 13 38
—_—a + =7 + 20
10 3 Al 19 . 5
. “§T Bt E Tt
7T s 3 3 For K = 1 (negative parity) we get two relations,
MN=M8_ZM(1)_IU“(2)’ My =My = uy’,
70) 1 3 3
3 ( (o) 2 (8) _) — (10)(_)
8 8 8 7 +3 10 ,
:MEZMS"‘M(] ! :ME=M8+1M(1)+#(2)’ # (2) H2 (2 2 (74)
3 1 1
and the masses of the decuplet particles as 5,10 (§> +3 ,ués)(5> =gu0 (E)
My =M — M(lo), Ms = M, (71)

Mz = Mo + 112, Mg = Mg + 219,

This parametrization obeys the Gell-Mann-Okubo formula
automatically. In Table IT we give the values of w in terms
of a, B, vy, 6 for different values of K and the spin of the
multiplet J.

The expressions for the mass splittings give rise to the
number of relations between the masses of the particles
entering the same rotational band. These relations are simi-
lar to the well-known Guadagnini relation, which is valid
for the ground-state octet and decuplet (see, e.g., Ref. [38]).
Let us itemize these relations for the K = 2 rotational band
of the baryons with positive parity: for octets and decuplets,

3 5 3
5M(28)<§> n 9/L(10)<§) - 14M(1O><§),

5 3 5 (72
5 (8)(—)+11 <10><—)=16 <1°><—),
) ) ~ ) M 3
and for decuplets only
7 3 5
o)) - )
)T V)
5 1 3 (73)
w5 )
) 7R )T

(we put in parenthesis the spin of the particles). All these
relations work with an accuracy better than 10% and some
even with an accuracy of 1-2%.

While the first is fulfilled with an accuracy of 2%, the
second is fulfilled only at the 10% level.
The last relation for K =0 (which is precisely

Guadagnini’s one but for excited baryons) reads !0 (%) =

#(28) (%) This relation—which works rather well for the
ground-state octet and decuplet—is broken surprisingly
strongly for K = 0" excited state.

The situation changes in the strict limit N, — oo, in the
approach advocated in Ref. [22]. According to the last
approach one should consider Clebsch-Gordan coefficients
in the same limit N, — oo. The required isoscalar factors
are collected in Appendix E to make the calculations
straightforward.

The recalculated results demonstrate different N, count-
ing. It appears that the mass splittings are not O(m,N,), but
rather only O(my). Both constants a and B enter the
leading term, while 7y and & appear in the O(m,/N,)
corrections. This picture is probably more satisfactory
from the general point of view. Let us note that it coincides
with the N, counting developed in Refs. [22,23] and all the
mass relations derived there are also automatically
fulfilled.

The Gell-Mann Okubo relations still appear to be valid.
This is not trivial, especially for “decuplets,” where not
one but two final states at arbitrary N, are available (and
therefore it is possible to talk about the F- and D-schemes
for “decuplets”’). However, at large N, the Gell-Mann-
Okubo relations are restored, up to the order O(1/N,)
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TABLE III.
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Isoscalar factors for 8, ® “8”p — “8”p at arbitrary N. = 2v + 1. In the table two isoscalar factors for the antisym-

metrical (F) and symmetrical (D) cases are presented. Any value from the table should be divided by a universal factor
V5v? + 16w + 9, which we omit for brevity. The definitions of the isoscalar factors corresponds to the conventions of Ref. [46]

and reduces to the usual ones at N, = 3

nN — N aN — N K3 — N KA — N KN —3 N —3
F 3R +3v+1) 245049 (11+4v) /v VB2r+3) _ w(l1+4w) (1-)(8+3v)
2(v+2)(v+4) 2(v+2)(v+4) 2(v+2)(v+4)) 2(v+4) 3(v+2)(v+4) 3(v+2)(v+4)
D L +2) ~3,fr (v +2) 355 T -% ~3Z+ ) (3 — v)yf252
T — 2 mA— 3 KE— 3 KN — A nA— A T2 — A
F Vr+a(v+5) (1-v)J/¥ 7v+8 V32v+3) 32-v—12) (N
o2 Nz ENpE 4 2(r+2)(r+4) V20+4)
_ 32+v) 8 _ 2w+l _ _ w5 _ 3
b ) v+ D L V3 o VECRRY
KE — A K> — 2 A—FE ngE—E T2 — B
54/v(r+2) Tv+8 _ S5\ /[vlv+ (8=3v)Vr+2 (16— v)Vr+2)
Vrtd 6(v+4) 2(v+ 2Vv+4 34/2(v+4)
D 3 _ (2V+])\/§ 3 3—5p—1?2 v2+3v+5
v+2 2v 2(v+2) 2v(r+2) 2v(r+2)
TABLE IV. Isoscalar factors for 8, ® “10”p — “10”p at arbitrary N. = 2» + 3. Two factors for the antisymmetrical (F) and

symmetrical (D) cases are given. The table values should be divided by a factor of

312 + 16w + 15. The definitions of the isoscalar

factors corresponds to the conventions of Ref. [46] and reduces to the usual ones at N. = 3. In particular, at N, = 3 only the

symmetrical representation survives.

K3*— A nA — A 7A — A K=" — 3* 73— 3 Ny — 3F
F /5(v+4)(3r+2) 52 +5v+3) 2+Tv+15 24/5(v+3)2r+3) 52 +5v+12) _ Se+3)
2./ (v+2)(v+6) \/2(V+2)(V+6) \/2(1/+2)(1/+6) 34/ (v+2)(v+6) 2+/3(v+2)(v+6) \2(v+2)(v+6)
D _ _ [r(vt+4) 5u(v+4) _ 24/v(v+3) (194507 (v+5)J7
2 2 2 N 2/v+4 (r+4)
KA — 3* 7B — B ngE*— E* KQ — EB* K3 — B* KE*—Q
F A/5(r+4)2v+3) V52 +3v+9) V5B-v—1?) V502r+3) A/10(r+3)2r+3) V502v+3)
\/3(v+2)(v+6) 3./2(v+2)(v+6) \/2(v+2)(v+6) \/2(v+6) 3(v+2)(v+6) Vr+6
D _ _ (Sv+18) ENEONA _ [v(v+2) _ 2v(v+3) _ [v(v+2)
nQ _)39 3./2(v+4) D(v+4) 2(v+4) 3(v+4) v+4
(B—v)/5(r+2)
\/2(v+6)
D _ (V+7)ﬁ
\/2(v+4)

inclusive (they are not exact in N,.!). To save space we
will not fill up the complete table of masses analogous
to the table at N, = 3. Instead we write down only
the mass relations that are independent of the concrete
model (some portion of them were already known). For

K=0,
3 1 1 1
aof2\_ &Y _ 1 &1
r (2) 122) (2) 4:“1 (2),

which replaces Guadagnini’s relation derived at N, = 3
(see above). We see that the accuracy of this relation is less
than that of the original one. This is not surprising, as the
continuation of the Clebsch-Gordan coefficient introduces
a new source of inaccuracy. At K = 1 we have the follow-
ing relations:

(75)

3 3 3 1
12,u(28)(§) - 3,u(18)<§) + 14,LL(10)<§) = 26,LL(10)<§),

1 1 3 1
12,LL(28)(5) - 3,u(18)<§) + 2O,LL(1O)<§) = 32,u(10)<§).

(76)
And at last, for K = 2,
5 5 3 5
®(2) _ 5,02 & 44,00(2) = 64,00(2
20K2 (2) oK (2) e (2) ot <2)
3 3 3 5
®(2) _ 5,02 4 34,00(2) = 54,00(2
2043 (2) Sk (2) u (2) Au <2)
(77)

(the relation for the decuplets is the same as at N, = 3).
These relations are valid in the linear order in m, and up to
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the order O(1/N,.) inclusive. In general, they are not
obeyed as well as the original ones at N, = 3.

VIII. CONCLUSIONS

If the number of colors N, is treated as a free algebraic
parameter, baryon resonances are classified in a simple way.
At large N, all baryon resonances are basically determined
by the intrinsic quark spectrum, which takes a certain
limiting shape at N, — oo. This spectrum is the same for
light baryons (g . . . gq with N light quarks ¢) and for heavy
baryons (g ...qQ with N, — 1 light quarks and one heavy
quark Q), since the difference is a 1/N, effect [13].

One can excite quark levels in various ways, called either
one-particle or particle-hole excitations; in both cases the
excitation energy is (O(1). On top of each one-quark or
quark-antiquark excitation there is generically a band of
SU(3) multiplets of baryon resonances, which are rotational
states of a baryon as a whole. Therefore, the splitting
between multiplets is @(1/N,). The rotational band is
terminated when the rotational energy reaches O(1).

In reality N, is only 3, and the above idealistic hierarchy
of scales is somewhat blurred. Nevertheless, an inspection
of the spectrum of baryon resonances reveals certain a
hierarchy, schematically summarized as follows.

(i) Baryon mass: O(N,), numerically 1200 MeV, the

average mass of the ground-state octet.

(i) One-quark and particle-hole excitations in the
intrinsic spectrum: O(1), typically 400 MeV, for
example the excitation of the Roper resonance.

(iii) Splitting between the centers of SU(3) multiplets
arising as rotational excitations of a given intrinsic
state: O(1/N.,), typically 133 MeV.

(iv) Splitting between the centers of rotational multip-
lets differing by spin, which are degenerate in the
leading order: O(1/N?), typically 44 MeV.

(v) Splitting inside a given multiplet owing to the
nonzero strange quark mass: O(mN,), typically
140 MeV.

In practical terms, we have shown that all baryon reso-
nances up to 2 GeV made of light quarks can be understood
as rotational excitations about certain transitions between
intrinsic quark levels. The quantum numbers of the reso-
nances and the splittings between multiplets belonging to
the same rotational band are dictated by the quantum
numbers of the intrinsic quark levels, and appear to be in
good accordance with the data. The content and the split-
ting of the lowest charmed (and bottom) baryon multiplets
are also in accordance with their interpretation as a rota-
tional band about the ground-state filling scheme.

In this paper, we have concentrated on the algebraic
aspect of the problem, leaving aside the dynamical aspects.
Dynamical models should answer the question of why the
intrinsic quark levels for u, d quarks with K = 0%, 1%, 2*

— 1% 3=

and the s-quark levels with J” 5 5, etc., have the

particular energies summarized in Table I. However, we
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feel that it is anyway a step forward: instead of explaining
two hundred resonances, one now needs to explain the
positions of only a few intrinsic quark levels. Figure 1
illustrates that approximately the needed intrinsic spectrum
can be achieved from a reasonable set of mean fields [40].

The proposed scheme for understanding baryon
resonances has numerous phenomenological consequences
that can be investigated even before real dynamics is
considered. Namely, the fact that certain groups of SU(3)
multiplets belong to the same rotational band related to
one and the same one-quark transition implies relations
between their couplings, form factors, splittings inside
multiplets owing to the nonzero m,, and so on.
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APPENDIX A: TOY MODEL

Our approach can be illustrated by the simple but still
instructive model suggested in Ref. [36]. The model is one
of the class considered first in the context of nuclear
physics in Ref. [41] and is exactly solvable. It describes
zero-dimensional quarks with spin, flavor, and color which
interact by means of a four-fermion color-blind potential.
We consider a specific case of the potential and write the
Lagrangian of the model in an already bosonized form,

L= 5 o0+ 9, = ypiata) .

(AD)

Here o; are Pauli matrices acting on the spin indices of
quarks and A? are Gell-Mann matrices from the SU(3)q,vor
group; the sum in color indices is implied. This model is of
the type considered in the main text; in the limit N, — oo it
can be considered in the mean-field approximation. The
symmetry of p¢ is analogous to that of the octet of vector
mesons.

Integrating over p¢, we arrive at the Lagrangian with a
four-fermion interaction,

Ly=y io g + o= (0 A o) (4 Ao,
_ Y + ac +\a (AZ)
H = =5 WX No)

which has SU(3)gayor ® SU(2)pin Symmetry.
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It is convenient to unite the spin and flavor indices in the
one SU(6) index and classify the states of the model as
SU(6) multiplets. However, these multiplets are split by the
potential, which is not SU(6) symmetric. Let us introduce
generators T, of the SU(6) group and generators T, (S) for
the SU(B)ﬂavor [SU(Z)spin] group,

Ly Ly —Lye
To=59 A, Ta=g0" A, Si=5d o,
(A3)

where A, (a = 1...35) are Gell-Mann matrices for SU(6).
Using the Fierz identities for the SU(6), SU(3), and SU(2)
groups, the Hamitonian (A2) can be identically rewritten as

_Y _ _4
3 f——[4(Ta)2 2T, 3(S,)z].

N, (A4)

The first term contains the Casimir operator for the SU(6)
group, the second contains the operator for the SU(3)g,y0r
group, and the third contains the operator for the SU(2),
group.

According to the Pauli principle the allowed colorless
states for N, quarks should be completely symmetric under
an exchange of SU(6) indices. There is only one SU(6)
multiplet which obeys this condition: a symmetric spinor
of N th rank. Its dimension is given by Eq. (58) in the main
text (the 56-plet at N, = 3). The SU(3)gayor ® SU(2)5pin
contents of the 56-plet is discussed in the text and consists
of the series of multiplets with § = 1/2...N,./2. Their
energies are given by Eq. (A4),
3N, 10

+9—
2 3N,

5“56” = ’y( S(S + 1)) (AS)
[where we have used Eq. (58) for C, and Eq. (56) for ¢,
with ¥ = N./3, X = 0, T = J]. The first term here is the
classical energy, the second is the quantum correction, and
the third is the rotational energy. These formulas coincide
with those obtained in Ref. [36] for a more general case.

The states (AS5) exhaust the spectrum of the model [36]
only because this model is too poor. One can easily gen-
eralize the model by adding to the quarks some internal
parameters (indices) and assuming that the potential re-
mains the same and does not depend on these ‘““hidden”
parameters. In this case the Pauli principle does not dictate
a unique symmetry wave function. In a generalized model
the flavor-spin wave function can have any symmetry as
long as its product with a wave function of the “hidden”
parameters is totally symmetric, as required.

The first excited state of the model corresponds to the
SU(6) multiplet, with all SU(6) indices completely sym-
metric except one pair which is antisymmetric. Its dimen-
sion is determined by Eq. (59) of the text; at N, = 3 it
corresponds to the 70-plet. Using once more the expres-
sions for the SU(6) and SU(3) Casimir operators, we obtain
from Eq. (A4) that
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_ 3N, 4 2
gl=3) — [—C+5— SS+1——TT+1],
20 Y3 3Nc( ) N ( )

(A6)

where for three different series of rotational excitations
T=S-1,8,S + 1. These three series correspond, as we
shall see, to excitations in the - and d-quark sectors. There
are also two series with energies

B 3N, 4 2 3
gW) — [—C+6— S(S+1)——TF(T+1)+ ]
0 =Y N S D= T D+ 5

(A7)

where T = S + % We recognize exactly the five series of
SU(3) ® SU(2) which were described in the text. Other
excited states of the model can also be constructed.

Now we are going to reproduce Eqs. (A6) and (A7)
in the mean-field approximation. We solve the Dirac equa-
tion and the consistency equation following from the
Lagrangian (Al),

ploAd = e,

We are looking for the mean field as an SU(2) “hedge-
hog”: p¢ = pé¢ for a = 1...3 and zero otherwise. There
are three solutions of the Dirac equation,

ai — Sai i — 1 saj(a-a);
0 0 ’ 1(a) \/5 0 ’

(27 R— 1 0
s(a) \/z Sia :

Here ¢§' (where « is the isospinor index and i is the spinor
index) is the wave function with K = 0 and energy g, =
—3yp,and ¢‘1"(’a) are (three degenerate) wave functions of the

pia = d)grounda-i/\a d)ground- (A8)

(A9)

states with K = 1 and energy €; = 7yp in the u- and d-quark
sectors. At last, ;*(‘a ) is a wave function of the (doubly

degenerate) level in the s-quark sector with energy £, = 0.

We obtain the ground-state filling level g, by N, quarks;
then, the consistency equation gives p = — 1. The classical
part of the mass (proportional to N,) is obtained by sub-
stituting the ground-state wave function into the
Hamiltonian (A2). The O(1) part of the energy implies
the calculation of quantum corrections (it comes from the
one-loop diagram in the quantum field p¢) and is not
interesting for us (see Ref. [36]). However, the difference
between the energy of the ground state and the excited ones
is calculable, and indeed it is determined by the difference
between one-quark levels,

- 1
Elg) = Ese = €1 — 89 + 0<F) =47,
‘ (A10)

- 1
5‘(“;0”5) —Ese =8y — g T 0(—) = —3y.
N,

(We have to choose y < 0.)
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Turning to the rotational energy [O(1/N,.)], we see that
in all cases it is determined by Eq. (57) of the text with the
moment of inertia

PHYSICAL REVIEW D 88, 074030 (2013)

and the mixing coefficient Gx = 2/5 for the excitations in
both the u- and d-quark sector [Eq. (A6)] and the s-quark
sector [Eq. (A7)].

The moment of inertia /; does not coincide with the

7= — 3 (A1) Inglis [28] moment of inertia /43 Obtained in the cranking
: 20y ¢ approximation,
J
N <0 Q- A+@-)m><mli(@-A+d-0)0> 1 .

Ert == 2 k = Ipgis(Q = @2 Igis=———N,.  (Al2
rot ) mzzﬁee €, — £ ) Inglls( w) Inglis 8’)/ c ( )

This was noticed for the first time in Ref. [36]. Hence, in wi N o ali

this model there is a nonzero mixing of rotations with other Syt = - 20 \/—("’l (‘71)1 "+ Q (A%,

quantum fluctuations of the p{ field.

To account for the effect of this mixing in the rotational
energy we have to find the correction 6 p¢ to the mean field.
We solve the Dirac equation with the rotational correction
and self-consistency equation,

. P . 1< r
8¢“'=P?(/\“)§(0'l)}¢al +§w1(0'1)§r¢m +§Qz()\z)g/¢a1,

:¢+Ui)\a¢»

in the leading order in spin frequency w,; and flavor fre-
quency (¢ (we restrict ourselves to @ = 1...3, which are
only relevant at the moment), and obtain

(A13)

Olydpirio; +1 (Q A+ @ o)|lmXm|ySpirio; + %(ﬂ A+ @ 0)|0) N YN,

(A14)
dpf = B @, - a).
10y

The last equation here gives the change of the mean field
we are looking for. Due to the hedgehog symmetry 8p
depends only on the difference of the flavor and spin
frequencies. The correction to the energy due to rotation
is (here the first term is a second-order expansion of the
quark determinant in rotation and the change of mean field
6p and the second is the change of the pure meson
Lagrangian)

N.
Erotzf Z

m=free

which is, indeed, the rotational energy with moment of
inertia ;. Let us stress again that the fact that this expres-
sion is different from the cranking approximation (A12) is
completely due to the mixing of rotational degrees of
freedom with other quantum fluctuations. Let us note that
this mixing is absent if the flavor group is SU(2). In
general, the mixing appears because the model is non-
relativistic (see Appendix B).

There are two types of one-quark excitations: in the
sector with u, d-quarks (wave function ¢;) and in the
s-quark sector (wave function ¢ ;). The mixing coefficients
ag are determined by linear terms in the frequencies (see
Sec. IV). We have

Srot = /dt

+ (m|8p§‘/\“0'l-|m>]

[<m| @A+ 0 0)m)

m= exc1ted

= - jdt[(l —ap)@x K+ apQy - K] (Al6)

Em — €0

<(8pf)?

1

(A15)

For the K =1 level in the u- and d-quark sector we
introduce the wave function of the excited level as

ZXK3¢1(K )a then

excned
(excited| = (9. A + @ - 0)|excited)
=3 Z (K5(Q + @) - KIK3)xy xx,
K3.K}
and

(excited|8p? ;A |excited)

1

= 15 2 (K@ — @) - KIK3)x{ Xk,

K3}

(A17)

Comparing this with the Eq. (A16), we see that in this case
ag = % — L =2 1In terms of Sec. IV, we can say that
cg =0 (this is the consequence of the fact that in our theory
there is no orbital momenta) and the mixing coefficient

¢ =1/10.
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For excitations of s-quarks the wave function is
/ - / . 1 .
DSied = 2 X ¢(;,)» Where j = 3 is the total momentum
of the s-quark excitation. Then

1 -
(excited| 3 (Q A+ @ o)lexcited)
= D (hla - jlix; X,
Jandy

(excited| 8 p? oA, lexcited)

2 S N
=3 2 G = @) - jljx; X
JanJy

(A18)

From the second of these expressions we obtain again the
mixing coefficient g = % (the role of K is played now by j).

Thus the mean-field approximation correctly reproduces
the exact formulas for energy [Eqs. (A6) and (A7)] in all
cases.

APPENDIX B: MIXING OF THE SLOW
ROTATIONS IN RELATIVISTIC THEORIES

Rotational degrees of freedom can mix with other quan-
tum fluctuations. This phenomenon is well known in nu-
clear physics [29]. As we show below, this phenomenon is
absent for solitons constructed within the mean-field ap-
proximation (at N, — o0) with the help of a relativistically
invariant meson Lagrangian. This statement is true, at
least, for solitons made of pions, e.g., in the Skyrme model
[2] or quark-soliton chiral model [10].

Indeed, let us consider in the Skyrme model a flavor
rotation R(r) together with some other quantum fluctua-
tions 677“. The general pion field is presented as

7,(x, )A, = R@)[7(x) + 87(x, )] A, R (1), (B1)

where 7,(x) is the time-independent mean field. We have
to substitute Eq. (B1) into the Skyrme action or the action
obtained by an integration over quarks in the quark-soliton
model and analyze the contribution of the fluctuations &
to the effective Lagrangian.

A mixing of the rotations with other quantum fluctua-
tions implies terms of the form 87 (x, 1) K}, where ) is
the flavor frequency and XK is some operator. The appear-
ance of () means that the mixing can arise only from those
terms of the effective chiral Lagrangian which contain time
derivatives. However, in the relativistic theory there is
usually an even number of time derivatives and there are
typically at least two of them. On the other hand, in the
leading order in N, we can consider the frequency () to be
constant in time. Therefore, the second derivative should
be applied to 877, so K is at least linear in time derivatives.
However, all such terms are full derivatives and can be
omitted.

The noticeable exclusion from this rule is the Witten-
Wess-Zumino term which is linear in time derivatives. We
have to apply this derivative to R(#) in order to obtain the
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flavor frequency. Using the independence of ) on the
coordinates we arrive at (see, e.g., Ref. [10])

N.
oL = < [dtQ ]d3x8i' Tr{ A U+8,-U
48\/57T2 8 jk [ 8(( )

X (U*9;U) U0, U)], (B2)

where U = exp i(7° + 87“(x, 1)) A? is the pion mean field
together with quantum fluctuations. The quantity

1
0, =m]CZ}X«‘%/’/{Tf[/\g(U+35U)(U+ 9;U)U"9,U)]

(B3)

is the topological charge of the field U and cannot be
changed by the small fluctuations of the pion field. In other
words,

60

Sm(x, 1) =0 B4)

Hence the mixing of rotations with quantum fluctuations is
absent in the Skyrme model.

The situation is similar in the quark-soliton model [10].
Mixing can appear only from the so-called ‘“‘imaginary
part” of the effective 7-meson action. This part of the
action starts with a Witten-Wess-Zumino term, but in
principle it is an infinite series in gradients of the pion
field. However all these terms are full derivatives and the
sum reduces to the complete baryon charge of the state.
This quantity is determined by the number of valence
quarks and cannot be changed by the small fluctuations
of the pion field.

This does not mean that the mixing is always zero. First,
it can appear in more general meson Lagrangians. Second,
it can arise if the frequencies of the rotations are not small.
For example, the properties of rotational exotic states [at
Q4567 ~ O(1)] can be described as a mixing of rotations
and quantum K-meson states belonging to the continuum
spectrum. This means that the width of these states is
~O(1). However, the rotational theory in this case should
be modified anyway, since the Wess-Zumino-Witten-term
rotations in the strange directions turn into small oscilla-
tions (see, e.g., Refs. [5,20,42]).

APPENDIX C: MATRIX ELEMENTS
OF ONE-PARTICLE OPERATORS

The Dirac equation in the u- and d-quark sector con-
serves the grand spin K. The angular part of the wave
function of the state with a given K is a spherical spinor-
isospinor,

Sgi i(n) = (C1)

KKj; i
j ijg;%a(l /().
3

Jis
Here « is the isospinor index, i is the spinor index, and () is

a spherical spinor with total angular moment j (projection
J3) and orbital momentum /; the Clebsh-Gordan coefficient
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C- joins j and the isospin ¢ (t = l) into the grand spin K.
The total angular momentum can be j= K * 1 . The
spherical spinor ) is constructed from the spin of the
quark s (s = 5) and the orbital momentum /,

ZCZM ,Y 15 (1), (C2)

stl(n)

where Y, (n) are usual spherical harmonics.

We are looking for the solution of the Dirac equation,
eV = H W, with the Dirac Hamiltonian (1) which is a
bispinor {¢, x} in the form

et f— 7
i ( g(r)'_‘?K k-tx t h(r)':'?K;,K%,K

i N ) (C3)
f(r)‘_'KK K-LK-1 +](r):1<1<3,1<+%,1<+1

This state has a “natural parity” (—1)X. Indeed, the parity
transformation is ¢(r) — ¢(—r), x(r) — —x(—r) and
hence parity is determined by the value of /. The state
with parity (—1)X*! comes from the exchange of ¢ and y
in this expression. At K = 0 the wave function is deter-
mined by only two functions: A(r) and j(r).

We want to calculate the matrix elements of ¢. Since it
acts only on isospinor indices « and the spherical spinors
) are orthonormal, we obtain

(KK = S (Cl5 )l BiCtr,

apB.j.js

X [(1 - CK)5]~K_% + C](aj]ﬁ—%y] (C4)

with cg defined by Eq. (42) and (a|t|B) are the usual
generators of isospin %

Substituting the Clebsh-Gordan coeffients, we arrive at
Eq. (41). In particular, if ¢ — #; the matrix elements are
diagonal in @, B and hence diagonal in K3, K}. The matrix
element
> —|cfE ?)

1.1 1
K3ty

(Ksl131K5) = (|CKK2

L11
222

X [(1 = CK)‘SJ'K—% + CK(S/'K+%’] (C5)

and by using the expressions for the Clebsch-Gordan co-
efficients we obtain

1_CK Ck
K;|4;|K3) = K - .

(Co)

This is a particular case of Eq. (41).

APPENDIX D: DECAYS OF EXCITED BARYONS

Calculations of the widths of excited baryons are outside
the scope of this paper; however, in this appendix we
present only a general discussion of the baryon decays.
The calculation procedure for the ground-state baryons is
known: it was constructed for the Skyrme model in Ref. [2]
and for the quark-soliton model in, e.g., Refs. [10,24,39].
Finally, in the limit N, — oo the decay constants in the
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approach of Ref. [22] were calculated in, e.g., Refs. [43,44]
and in other, already cited papers.

Typical decays of excited baryons below 2 GeV are of
the type B; — B;M with one emitted meson; at least, such
decays always give the essential part of the width. To be
specific, we will talk about decays into 77 mesons. Let us
estimate the width in the limit of large N.. [This estimate is
already known: we are close here to the approach of J. L.
Goity in Ref. [8] (see also Ref. [44]).] The one-pion decays
of the excited baryons are described by the effective
Lagrangian of the type

L= [d%‘l’g)yﬂys—‘lf(l)& . (D1)

Here W\ and WY are the fields of the initial and final
baryons, 7 is the 7-meson field with flavor a, A, is the
corresponding Gell-Mann matrix, and g, is the transitional
axial coupling constant. The width I'f; of the partial decay
to B is proportional to the coupling constant squared and
the phase volume

i
(see, e.g., Ref. [5]), where A = M; — M is the difference
of the mass of the initial and final baryons.
The coupling constant can be calculated as a matrix
element of the corresponding quark operator between the
mean-field initial and final states,

(D2)

g0~ [ @xttnliysy, p@lime. ©3)
The role of the quark operator is played by the axial current
for decays with 77 mesons, the vector current for decays into p
mesons, etc. Equation (D3) already implies the N, — oo
limit, as baryons are considered to be heavy [with mass
O(N,)] nonrelativistic objects. [Equation (D2) is also written
in this limit.] The plane wave e’** represents the wave func-
tion of an emitted meson, with £ being its momentum, and
lin) and |fin) are the mean-field approximations for the initial
and final baryon quark wave functions, respectively. They are
products of all one-quark wave functions—solutions of the
Dirac equation in the mean field—for all filled levels. In
general, here one has to write wave functions rotated by
matrices R and S in order to take into account the degeneracy
of the mean field. After the calculation of the matrix element
(D3), we obtain some operator depending on the collective
coordinates. Averaging this operator with the collective wave
functions of the initial and final baryons, we obtain the
coupling constant for some specific decay.

In fact, Eq. (D3) is only the first term of the expansion in
the time derivatives of the collective coordinates. The next
terms can be obtained in the same manner as was done for
corrections to m; in the main text. Due to the limit N, — oo
all collective coordinates are slowly varying functions of
coordinates, so the expansion in time derivatives is an
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expansion in 1/N,, with Eq. (D3) being its leading term.
For ground-state baryons and for decays into pions the
corresponding formulas were presented in Ref. [39].

Decays of excited baryons are possible for either bary-
ons belonging to the same rotational band or baryons
which have a different filling of intrinsic quark levels
(e.g., to ground-state baryons). In the first case the coupling
constant is large [O(N,)]. An example is the transitional
axial constant g,(A — N7) [2]. In the second case the
coupling constant is always smaller. This difference is
clearly seen from Eq. (D3).

. A¢
8(R.S) ~ [ xS 7sysSR" 5 R (KIx) D,

This expression is written a bit schematically. The wave
functions ¢; and ¢ ; are the initial and final wave functions
of the excited quark, R is a rotational matrix in flavor space
and S is a rotational matrix in ordinary space, D, m, (S) is
the Wigner function, Y, are ordinary spherical harmonics
(a summation over all possible m,’s is implied), and j;(kr)
is a spherical Bessel function. This appears (together with
spherical harmonics) as a result of the expansion of a plane
wave in Eq. (D3) into the set of spherical waves. If the
momentum of an emitted meson is small, ka << 1 (a is the
scale of the wave functions ¢; ;, which coincides with the
characteristic size of the baryon), it is sufficient to account
for only the lowest angular momentum, / = O (the angular
momentum of the emitted pion is 1).

The axial constant (D4) is an operator in the space of
collective coordinates (derived in the leading order in N,.).
To obtain the coupling constant responsible for the decay
of a concrete baryon to another one, we have to average
Eq. (D4) with the collective wave functions,

gm~ﬁ=[wwwwmw&mSWWR&
(D5)

Despite the fact that the coupling constants are smaller,
the widths of the decays to the different quark levels are
typically largerin N,.. The reason is that the phase volume in
this case is always larger. The mass differences are O(1/N,.)
for decays inside the same rotational band, but they are O(1)
for transitions with a change in the intrinsic state of the
excited quark. As a result the widths of the decays inside the
rotational band are suppressed as O(1/N?), while the de-
cays of excited baryons with a discharge of the excitation
are always O(1) (and decays to the other levels are sup-
pressed). In particular, the total width of ground-state bary-
ons (decuplet with spin 3) is only O(1/N?), while all
remaining baryons have a total width of O(1).

In practical terms only decays to the ground octet or
decuplet are observable. For all baryons they have partial

,mz(S)Ylmz(
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Indeed, when the configuration of levels is the same for
the initial and final stats the coupling constant is a sum of
N, one-particle matrix elements corresponding to all N,
quarks. If an excited quark changes its intrinsic state then
only one of the N, contributions would survive, namely the
overlap one-particle matrix element between the initial and
final states of the quark (all other contributions are zero due
to the orthogonality of the wave functions). However, if the
final state is the ground state an additional factor /N,
appears, which is due to the different normalization of
the initial and final wave functions,

N. i, f = sameband,

)

1 i = excited, f = excited’.

X = excited, f = ground, (D4)

x|

|
widths independent of N, up to corrections in 1/N,, which
can still be essential at N. = 3. Let us prove the theorem
that the widths of all baryons belonging to the same rota-
tional band are the same in the leading order in N..
Indeed, the mass differences of all baryons entering the
same rotational band are the same in the leading order in
N.. Hence

. A3
Moo= DTG —f) = o 38— f) =T (D6)
f f

However, the sum of axial constants squared over all
possible final states does not depend on the initial state
of the band. According to Eq. (D5) the axial constant
squared contains two integrals in R, S and R’, S’. The
completeness of final baryon rotational functions,

Zz/f}mt)*(R, s) {ﬂ;rOt)(R/, S =8(R—R)S(S — 8,
f

leads to R = R’ and S = §'. Then the sum in all possible
flavors of pseudoscalar mesons and directions of axial
current gives an expression which does not depend on R
and S due to the Fiertz identities. The dependence on the
matrices remains only in the initial wave function. The
integral over R and S becomes the normalizing integral for
the initial collective wave function and the dependence on
the initial state disappears completely. The obtained total
width has a sense of the complete width of the intrinsic
quark level and is universal for the whole rotational band
around it.

The theorem proved above is broken strongly in nature.
There are many reasons for this, such as corrections in N,
and the mass of the strange quark mg to the coupling
constants, the mixing of multiplets, etc. Perhaps the stron-
gest source of the deviations is simply the difference in the
phase volumes [which is an O(1/N,) effect] for different
baryons entering the same rotational band.

The fact that the widths of excited baryons are not sup-
pressed in the large-N,. limit—as was mentioned in the

074030-24



THEORY OF BARYON RESONANCES AT LARGE N,

B.
j = B,

FIG. 4. Self energy correction to the excited baryon mass.

Introduction—prevents these baryons from being well de-
fined. One can only count on the numerical smallness of
the width not related to N,.. In such a situation baryon
resonances can be defined only as poles in the complex
plane of the meson-nucleon scattering amplitude. This
approach was applied in Ref. [5] to the problem of the
pentaquark (which also has a width that is independent of
N,) for the Skyrme model, but in the general case it looks
too complicated. If the width is small one returns to the
self-consistent field description presented here.

It seems that the width of the baryon, which is not
suppressed at N. — oo, poses the greatest danger to our
approach in general. Indeed, due to unitarity a nonzero
width implies not only the imaginary part of the pole but
also a shift in the real part, i.e., it leads to a change in the
baryon mass. It can be small numerically, but it is O(1) in
N,.. If it is different for the baryons entering the same
rotational band, our formulas for the mass splittings inside
the rotational band would become nonsensical.
Fortunately, this is not the case.

Corrections to the mass due to decays into the 77 mesons
are presented by a self-energy diagram in Fig. 4. The
imaginary part of this diagram gives the width of B; —
B¢M decay, while the real part gives the shift in mass. The
point is that the mass shift does not depend on the baryon
B; in the same rotational band,

_ d*k gali— f)
aM ;f @mF K2(8 + k)

as was proved above. Hence we arrive at the conclusion that
mass shifts are universal for all baryons inside the rotational
bands. It can be included in the general shift of the intrinsic
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level and it does not affect the mass relations in the O(1/N,.)
order derived in the text. Next-order corrections in N, due to
the finite width of the resonance also do not destroy these
relations. However, they can renormalize the moment of
inertia /;. An example of such a situation is given by the
pentaquark in the Skyrme model [5].

APPENDIX E: ISOSCALAR FACTORS FOR N, —

Clebsch-Gordan coefficients for large N -baryon mul-
tiplets were calculated in a number of studies [22,31,45].
Two methods can be used for this calculation, based on
either the decomposition the SU(3) spinor with a large
number of indices [22,45] or the application of lowering
and raising generators in the given representation to the
state with the highest weight [31].

However, the tables of Clebsch-Gordan coefficients in the
above references are usually incomplete and do not corre-
spond to the conventions of Ref. [46] [which serves as a
common standard for the SU(3) group], but rather differ from
this standard by a unitary transformation. This is inconven-
ient and for this reason we give here the complete tables
(Tables III and IV) for isoscalar factors at arbitrary N,.

During the refereeing we were informed that the com-
plete tables of isoscalar coefficients were presented in
Ref. [47]. The tables presented here are analogous and differ
only by the method of calculation. Nonetheless, we present
here the tables for the completeness of the description. We
thank the referee for drawing our attention to this fact.

Consulting with the tables, one can see that the change
of Clebsch-Gordan coefficients from N, — oo to N. = 3
is, indeed, rather large. In particular, one can note the cases
when the isoscalar factor changes sign during this transi-
tion. Moreover, for the “decuplet” there are two possible
final multiplets at N, = 5, so one can discuss the F'/D ratio
for the “decuplet.” The corresponding multiplet dies out as
N, =3.

On the other hand, Clebsch-Gordan coefficients can be
easily taken into account at any N, and this source of
inaccuracy can be avoided. For this reason we prefer to
use isoscalar factors at N. = 3.
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