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We explore the possibility of experimentally detecting a predicted h1½IGðJPCÞ ¼ 0�ð1þ�Þ� state of

hidden charm made out from the D� �D� interaction. The method consists in measuring the decay of

Xð4660Þ into �D� �D� and determining the binding energy with respect to the D� �D� threshold from the

shape of the D� �D� invariant mass distribution. A complementary method consists in looking at the

inclusive Xð4660Þ ! �X decay and searching for a peak in the X invariant mass distribution. We make

calculations to determine the partial decay width of Xð4660Þ ! �h1 from the measured Xð4660Þ !
�D� �D� distribution. This estimation should serve in an experiment to foresee the possibility of detecting

the h1 state on top of the background of inclusive events.
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I. INTRODUCTION

The world of heavy quarks, charm, and beauty is expe-
riencing rapid development. A rich spectrum of new states
is being found in present laboratories by the collaborations
BABAR, CLEO, BELLE, and BES [1–4]. The coming
facility of FAIR will certainly add new states, correspond-
ing to quantum numbers which are not accessible with
present machines. The states capturing more attention are
those that do not fit within the standard picture of mesons
as q �q or baryons as qqq, and which require more complex
structures, like tetraquarks, meson molecules, or hybrids
including possible glueballs for mesons, or pentaquarks
and meson baryon molecules for baryons. Some of these
states—which are heavy but have no open charm or
beauty—would be candidates for quarkonium (q �q pairs
with heavy quarks), but they do not fit within the ordinary
spectrum of such states and they have been called X, Y, Z
states. The search for more states and theoretical work to
understand their structure is a thriving field at present.

The possible existence of more sophisticated states than
q �q for mesons or qqq for baryons—such as the multiquark
states, hybrid mesons and mesonic molecules—was pre-
viously discussed within quark models [5–8]. More re-
cently, the discovery of the X, Y, Z states has stimulated
much work in this direction [9–15].

One of the methods that has proved efficient to study
such states is the use of effective field theories. Long
before the X, Y, Z states were discovered, effective field
theories were used to study the interactions of mesons
among themselves or mesons with baryons. In many cases
it was found that the interactions between these hadrons
were attractive and strong enough to generate bound
states or resonances—which were called dynamically

generated—leading to certain molecular states of two
hadrons. The use of chiral Lagrangians with the application
of unitary techniques in coupled channels led to the chiral
unitary approach (which nowadays is broadly used),
which was very successful in describing the interaction
of hadrons and making predictions for bound states and
resonances that have been verified experimentally (see
Ref. [16] for a review of this issue).
The existence of heavy-meson molecules was predicted

almost 40 years ago by Voloshin and Okun [17]. In the
charm sector, the field of meson molecules has been much
studied [12,18–34] and many of the observed states with
hidden charm and open charm are shown to be consistent
with the molecular interpretation, with a good reproduction
of the different observables of these states.
One of the important steps in this direction was the

realization that some of the X, Y, Z states could be inter-
preted in terms of vector-vector molecules with hidden
charm [35]. This work follows the work on the �� inter-
action of Ref. [36] using the local hidden gauge approach
[37–39], where the f2ð1270Þ and f0ð1370Þ states were
interpreted as quasibound �� states.1 The work was ex-
tended to the SU(3) sector in Ref. [41] and more reso-
nances were found, most of which could be associated
to known resonances. One of the resonances predicted in
Ref. [41] was an h1 resonance with quantum numbers
IGðJPCÞ ¼ 0�ð1þ�Þ and mass around 1800 MeV, which
couples to K� �K�. This resonance is not cataloged in the
Particle Data Group (PDG) [42] and there are reasons for
this, namely that due to its negative C parity it cannot
decay into pairs of ��, !! and equally does not couple
to ��. For reasons of parity, since it comes from
two vectors in L ¼ 0 it does not decay into a pair of
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1For a different interpretation of the f0ð1370Þ as a component
of an unmixed scalar octet see Ref. [40].
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pseudoscalar mesons either. This largely limits the number
of decay channels, rendering the K� �K� as the channel to
use to search for it. However, since the state lies around the
K� �K� threshold, a neat peak might be difficult to see and
would be distorted by the limited phase space around the
threshold. Nevertheless, it was very recently found [43]
that a peak around the K� �K� threshold, seen in the J=c !
�K�0 �K�0 reaction observed at BES [44], was naturally
interpreted as a signature of the h1 resonance predicted
in Ref. [41].

One can guess that the h1 state made out of K� �K� could
have an analogue in the D� �D�, and indeed this is the case,
as was found in Ref. [35]. There such a state was found
around 3945 MeV which couples mostly to D� �D� and less
strongly to D�

s
�D�
s . The same state, with mass 3955�

16 MeV, was obtained using heavy-quark spin symmetry
in Refs. [27,28]. For the same reasons as before, this state
does not couple to any other pair of vector mesons, except
K� �K�, but even then it is with such a tiny coupling that it
makes investigations in this channel fruitless. Once again
we have to resort to the D� �D� channel, with the added
problem that now it is a bound state in this channel and
the D� has a very small width. Yet, as we shall see, it is
possible to find a signature of the resonance by looking at
the D� �D� spectrum in the Xð4660Þ ! �h1 and Xð4660Þ !
�D� �D� reactions. The choice of the Xð4660Þ is made in
order to find a similar reaction as the one of Ref. [44],
replacing the J=c by the only analogous vector which has
enough energy to produce the reaction. The Xð4660Þ is
cataloged in the PDG as a ??ð1��Þ state. Yet, the G parity
should be negative since it decays into c ð2SÞ�þ��, and
the theoretical papers written on this state also attribute
zero isospin to it [45–47].

Another way to find the predicted resonance would be to
search in the inclusive Xð4660Þ ! �X reaction, where X is
undetermined,2 while looking at the X invariant mass
distribution determined from the observation of the �
alone. This might not be easy if one has a large background
of Xð4660Þ ! �X events, since one must look for a (proba-
bly) small signal over a relatively large background. It is
then most convenient to know the rate expected before
planning the experiment. This is one additional piece of
information that we provide here. We show that the knowl-
edge of the Xð4660Þ ! �D� �D� partial decay width allows
us to determine the partial decay width for Xð4660Þ!�h1.
The rates obtained for these two decay modes are of
comparable size, and the strength of the Xð4660Þ ! �h1
is concentrated in a narrow window of invariant masses of
h1, i.e., its small width. Thus, provided that the integrated
Xð4660Þ ! �D� �D� width is of the order of the background
of the Xð4660Þ ! �X reaction, the probability that a neat

peak in the Xð4660Þ ! �X inclusive reaction can be seen
is large. The theoretical study of the Xð4660Þ ! �D� �D�
and Xð4660Þ ! �h1 reactions is the topic of the present
paper, with the purpose of providing information that
motivates the experimental search for this otherwise
elusive resonance.

II. FORMALISM

In studying the Xð4660Þ ! �h1 and Xð4660Þ !
�D�0 �D�0 decay processes, we shall follow the formalism
of Ref. [43], which closely follows the idea of Refs. [48,49]
in the J=c ! �f0ð980Þ decay. The formalism is suited to
study the decay of a particle into a spectator and a dynami-
cally generated resonance. Since the latter is produced via
the interaction of a pair of particles, the mechanism con-
sists of a primary decay into the spectator and the pair of
particles (without interaction), followed by the interaction
of the pair to generate the resonance. For the particular case
that we study here, the corresponding Feynman diagrams
are depicted in Fig. 1. However, we shall differentiate
between two situations. In the first one, the I ¼ 0 D�0 �D�0
pair is explicitly present in the final state [Fig. 1(a)]. In the
second one, the � and the h1 resonance are produced,
regardless of which decay channel is used [Fig. 1(b)].
This situation is faced when the inclusive Xð4660Þ ! �X
decay is studied, and one looks for a peak in the square of
the invariant mass distribution ðPXð4660Þ � p�Þ2.
The h1 which is the subject of this work is dynamically

generated in the D� �D� interaction in I ¼ 0. To write the
amplitude t for this process, we shall make use of the on-
shell factorized form of the Bethe-Salpeter equation [50],

tðsÞ ¼ vðsÞ þ vðsÞGðsÞtðsÞ ¼ vð1þGtÞ ¼ ðv�1 �GÞ�1;

(1)

where s � M2
inv is the invariant mass squared of the D� �D�

system. The function v in Eq. (1) is the potential for the
D� �D� interaction in I ¼ 0 and L ¼ 0. Two different forms
of the potential will be used in this work. The first one is

FIG. 1. Decay mechanism of the Xð4660Þ resonance. In (a), the
three-body decay Xð4660Þ ! �D�0 �D�0 is shown. In (b) we
represent the decay Xð4660Þ ! �h1, where the h1 is generated
by the D� �D� interaction.

2We denote with X whatever undetermined state appears as a
decay product together with the � meson. To avoid confusion
with the state Xð4660Þ, this one will always appear in this work
with its nominal mass between parentheses.
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the dynamical potential of Ref. [35], and the second one
is a constant potential. We will discuss both approaches
below. In Eq. (1), G is the one-loop two-point function for
the D� �D� system, conveniently regularized. In this work,
we use a once-subtracted form for this function. For the
case of equal masses running through the loop, G can be
written as

GðsÞ ¼ 1

16�2

�
að�Þ þ log

m2
D�

�2
� � log

�� 1

�þ 1

�
; (2)

with �ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

D�=s
q

. The parameter að�Þ is the

subtraction constant, and it depends on the regularization
scale � such that að�Þ � log�2 is independent of �, that
is, there is only one free parameter. The presence of the
function G in Eq. (1) ensures the elastic unitarity of the
amplitude t above the threshold,

ffiffiffi
s

p
> 2mD� ,

Im t�1ðsÞ ¼ �ImGðsÞ ¼ �ðsÞ
16�

: (3)

The state h1 appears as an I ¼ 0 bound state (with mass
Mh1 � ffiffiffiffiffiffi

sh1
p

< 2mD�) of theD� �D� system, that is, as a pole

in the physical Riemann sheet of the amplitude in Eq. (1),

t ¼ g2

s� sh1
; (4)

where g is the coupling of the state h1 to the D
� �D� system.

The quantity gG is related to the wave function around the
origin [51]. The coupling g can be calculated as the residue
of the amplitude at the pole s ¼ sh1 . However, from

Eq. (4), it can also be calculated as

1

g2
¼ dt�1

ds
¼ dv�1

ds
� dG

ds
; (5)

where the derivative is obviously evaluated at s ¼ sh1 . In

the case of small binding energies B ¼ 2mD� �Mh1 , this

derivative is driven by the unitarity term in Eq. (3) analyti-
cally extrapolated below the threshold, and it can be sim-
plified to give

g2 ¼ 64�mD�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4BmD�

p
; (6)

which is nothing but Weinberg’s formula for the coupling
of a weakly bound state [52,53].

Now we discuss the potential v for the D� �D� interaction
in I ¼ 0 appearing in Eq. (1). This potential can be calcu-
lated within the hidden gauge formalism, as in Ref. [35],
where the h1 state we are studying was predicted. The
expression for this potential is given by

v ¼
�
9þ b

�
1� 3s

4m2
D�

��
g2D� ; (7)

with gD� ¼ mD�=2fD� , fD� ’ 146 MeV, and where the
constant b is given in terms of the masses of the vector
mesons, having a value b ¼ 27:6. Since the potential is

fixed in this case, the only free parameter of the amplitude t
is the subtraction constant að�Þ. Hence, once this constant
is fixed, the amplitude is completely determined. In par-
ticular, the position of the bound state is also fixed. This
argument can also be reversed and for a given position of
the bound state there is a corresponding unique value of the
subtraction constant að�Þ.
We will also make use of a constant (energy-

independent) potential. This is a good approximation for
the limited range of energies Minv that will be studied in
this work. The use of such a potential also provides some
model independence to our calculation. Besides its sim-
plicity, a constant potential has other advantages, which
we discuss now. If there is a bound state, the potential is
such that

Gðsh1Þ ¼ v�1 � Gh1 ; (8)

so that the amplitude in Eq. (1) can be simplified to

t ¼ 1

Gh1 �G
: (9)

It is worth noting that the difference in the denominator
does not depend on the subtraction constant að�Þ used in
the loop function G [Eq. (2)].3 In this way, the amplitude
is fully determined by means of just one parameter—the
mass of the bound state. Furthermore, the coupling g is also
entirely determined by the mass of the bound state, since
the derivative of the inverse of the potential in Eq. (5)
disappears. The coupling g is then given solely by the
derivative of the G function, which is independent of the
subtraction constant. In the end, this means that the whole
amplitude is determined by the bound-state mass and
unitarity.
We now discuss the decay processes depicted in Fig. 1.

Let us start with the three-body decay process of Fig. 1(a).
We shall assume that the primary production vertex for
Xð4660Þ ! �D� �D�, with the D� �D� pair in I ¼ 0, is of
short-range nature, that is, a constant in the field theory
formalism. We denote by VP this bare vertex. The full
amplitude ~TP for this process must take into account the
D� �D� final-state interaction, as shown in Fig. 1(a). The full
amplitude is then

~TP ¼ VPffiffiffi
2

p ð1þ vGþ � � �Þ ¼ VPffiffiffi
2

p ð1þGtÞ ¼ VPffiffiffi
2

p t

v
; (10)

where Eq. (1) has been taken into account. The factor 1=
ffiffiffi
2

p
appears because of the D�0 �D�0 component of the I ¼ 0
D� �D� system. Making use of Eq. (10), the differential
decay width for the process Xð4660Þ ! �D�0 �D�0 can be
written as

3If the loop function is regularized by means of a cutoff �,
then this difference is independent of the cutoff in the � ! 1
limit.

SEARCHING FOR A HIDDEN CHARM h1 STATE IN . . . PHYSICAL REVIEW D 88, 074027 (2013)

074027-3



d��D�0 �D�0

dMinv

¼ j ~TPj2
32�3

p� ~pD�

M2
Xð4660Þ

¼ jVPj2
64�3

p� ~pD�

M2
Xð4660Þ

��������
t

v

��������
2

; (11)

where p� is the � momentum in the rest frame of the

Xð4660Þ decaying into an � and a D�0 �D�0 pair with invari-
ant mass Minv,

p� ¼ �1=2ðM2
Xð4660Þ; m

2
�;M

2
invÞ

2MXð4660Þ
; (12)

and ~pD�0 is the D�0 momentum in the rest frame of the
D�0 �D�0 system,

~pD�0 ¼ �1=2ðM2
inv;M

2
D�0 ;M

2
D�0Þ

2Minv

: (13)

In Eqs. (12) and (13), �ðx; y; zÞ is the Kählen or triangle
function, �ðx; y; zÞ ¼ x2 þ y2 þ z2 � 2xy� 2yz� 2zx.

We now discuss the Xð4660Þ ! �h1 two-body decay
process, for which the the amplitude TP can be obtained
from Fig. 1(b),

TP ¼ VPGh1g; (14)

where Gh1 � GðM2
h1
Þ is the loop function calculated at the

mass of the h1 state. Then, the decay width for this process,
��h1 , can be calculated as

��h1 ¼
jTPj2
8�

p�;h1

M2
Xð4660Þ

¼ jVPj2
8�

p�;h1

M2
Xð4660Þ

G2
h1
g2; (15)

where p�;h1 is p� in Eq. (12) calculated for Minv ¼ Mh1 .

We can now divide Eqs. (11) and (15) to get rid of the
unknown vertex VP, and express the differential decay
width of Eq. (11) in terms of known quantities,

d��D�0 �D�0

dMinv

¼ ��h1

8�2g2
p� ~pD�0

p�;h1

��������
t

vGh1

��������
2

: (16)

This is the final expression for the differential decay width
when one uses a dynamical potential, as in Eq. (7). Under
the assumption of a constant potential, however, this ex-
pression can be further simplified by means of Eqs. (8) and
(9) to

d��D�0 �D�0

dMinv

¼ ��h1

8�2g2
p� ~pD�0

p�;h1

��������
1

Gh1 �G

��������
2

: (17)

It is worth stressing that in this case, the differential decay
width depends only on the mass of the bound state (up to
the unknown width ��h1). Another useful quantity that we

can calculate is the following ratio:

R ¼ ��h1

��D�0 �D�0
; (18)

where ��D�0 �D�0 is the integrated differential decay width in

Eq. (16),

��D�0 �D�0 ¼
Z

dMinv

d��D�0 �D�0

dMinv

; (19)

where the integration runs over 2m�
D <Minv <MXð4660Þ �

m�, the available range of energies for the D
�0 �D�0 system.

III. RESULTS

In Fig. 2 we show the Xð4660Þ ! �D�0 �D�0 differential
decay width in terms of Minv for the four binding energies
B ¼ 100, 70, 40, and 10 MeV, denoted by solid, dashed,
dot-dashed, and double-dot-dashed lines, respectively. In
Fig. 2(a) results obtained with the dynamical-potential
approach [Eqs. (7) and (16)] are shown. Note that if there
is a bound state, there is a one-to-one correspondence
between the binding energy B and the subtraction constant
að�Þ. For the four cases represented in Fig. 2(a), the

FIG. 2 (color online). Differential decay width for the process
Xð4660Þ ! �D�0 �D�0. The solid, dashed, dot-dashed, and
double-dot-dashed lines correspond to binding energies B ¼
100, 70, 40, and 10 MeV, respectively. The shaded area stands
for a phase-space distribution. All curves are normalized so has
to have the same area. (a) Results obtained with the dynamical
potential [Eqs. (7) and (16)]. (b) Results obtained with the
constant potential [Eqs. (8) and (17)].
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subtraction constants are given in Table I. Analogously, the
results of Fig. 2(b) stem from using a constant potential
[Eqs. (8) and (17)]. In both cases, the curves are compared
with a phase-space distribution, proportional to p� ~pD�

[Eqs. (12) and (13)]. In order to have a meaningful com-
parison, all the curves are normalized so that the area
below them is the same. As we can see, even for large
binding energies of h1 the shape of the mass distribution
differs substantially from that in phase space. As the bind-
ing energy decreases, the differences become more signifi-
cant. It is clear that with reasonable statistics the shape can
be well determined and the binding energy can be obtained
from there by using any of the methods presented in this
work.

In Fig. 3 we plot the value of R [Eq. (18)] as a function of
the binding energy. As we can see, the values of R range
from 5 to 90 within the range of the considered binding

energies. It is interesting to see that the values of R are
relatively large. This means that the width of ��h1 is of the

same order or larger than ��D�0 �D�0 , the integrated differen-

tial decay width. However, when looking at the inclusive
reaction Xð4660Þ ! �X, ��h1 will be distributed in a small

range of the squared invariant mass of X, M2
inc ¼

ðPXð4660Þ � p�Þ2, which—given the small width of the

h1—will come mostly from the experimental resolution.
Summarizing how the results found in this work could

be experimentally used, the strategy to find the elusive h1
resonance is twofold:
(a) Measure d��D�0 �D�0=dMinv and, from the line shape,

determine the binding energy of h1, according to
Fig. 2.

(b) By integrating d��D�0 �D�0=dMinv, and using the theo-

retical ratio R [Eqs. (18) and (19)] of Fig. 3, deter-
mine ��h1 . By measuring d��X=dMinc in the

inclusive Xð4660Þ ! �X reaction, one would get a
size of the background in this inclusive reaction.
If ��h1 is not very small compared with this back-

ground, it would then be possible to observe a peak
associated to h1 on top of this background. The
bonus of this second part is that the h1 will now
appear as a narrow peak, allowing one to determine
its mass and width (unless the experimental resolu-
tion is bigger than the width of the h1), while in the
method (a) the mass would be only indirectly ob-
tained and no information on the width would be
provided.

In case the h1 resonance width is smaller than the
experimental resolution, a bound on the width can be
provided. Still, provided the h1 peak is visible on top of
the background, the mass could be well determined, and
the consistency with the mass found with method (a) could
be tested. In this case, the mass determined with method
(b) would be more precise than the one determined with
method (a).
In the present work we have only considered the D� �D�

channel. However, if we look at the work of Ref. [35] we
see that the coupling of the h1 to the D�

s
�D�
s channel is

smaller than to D� �D� but not negligible (see Table III of
Ref. [35]). The ratio of the couplings is

gh1;D�
s
�D�
s

gh1;D� �D�
¼ 0:47: (20)

However, as one can see in Fig. 1(b) [see also Eq. (10)],
what matters in the production of the resonance is the
product Gj � gh1;j to each channel j. Since G for D� �D� is

complex above the threshold, while G for D�
s
�D�
s is real,

there is not much interference, and by using values of G
from Ref. [35] we find that the ratio

��������
GD�

s
�D�
s
� gh1;D�

s
�D�
s

GD� �D� � gh1;D� �D�

��������
2

TABLE I. Coupling of the h1 state to D� �D�. For each binding
energy (first column) used in Fig. 2 to calculate the differential
decay width of the Xð4660Þ ! �D�0 �D�0 process, we give the
coupling as calculated with Eq. (5) for a dynamical potential
(Dyn.) [Eq. (7)] (second column), or with a constant potential
(Cons.) [Eq. (8)] (third column). We also show the coupling as
calculated with Weinberg’s formula, Eq. (6) (fourth column).
The subtraction constant að�Þ (for � ¼ 1 GeV) needed in the
loop function G when the dynamical potential is used to repro-
duce the binding energy is shown in brackets in the second
column.

B (MeV)

g (GeV)

[að�Þ] (Dyn.)
g (GeV)

(Cons.)

g (GeV)

(Weinberg)

100 21.2 [�2:1] 21.5 19.0

70 19.1 [�2:0] 19.3 17.4

40 16.3 [�1:9] 16.4 15.1

10 11.1 [�1:7] 11.2 10.7

FIG. 3 (color online). The ratio R [Eqs. (18) and (19)] as a
function of the binding energy B of the h1 state. The blue solid
line shows the results for the dynamical-potential approach
[Eqs. (7) and (16)]. The red dashed line, in contrast, is obtained
with a constant potential [Eqs. (8) and (17)].
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is of the order of 5%. Taking into account the interference,
the consideration of the hidden strange channel, when
adding it to the D� �D� one, affects the results at the level
of 10% and we can disregard it in the present study.

IV. CONCLUSIONS

In this work we have studied the Xð4660Þ ! �D� �D� and
Xð4660Þ ! �h1 reactions, where h1 is an axial vector state
[0�ð1þ�Þ] which is theoretically predicted as a bound state
from the D� �D� interaction. The h1 states made from
vector-vector interactions are very elusive since they do
not decay into other pairs of vectors than those from which
they are built. Also, for reasons of parity, they do not decay
into pairs of pseudoscalar mesons. This could justify why
the predicted h1 state has not yet been detected and thus the
relevance of finding suitable reactions where they can be
found.

In the present work we have shown that a measurement
of the D� �D� invariant mass distribution in the Xð4660Þ !
�D� �D� reaction allows one to determine the h1 mass.

On the other hand, we also explored a complementary
method of analysis by looking for a peak in the X mass
distribution in the inclusive Xð4660Þ ! �X reaction. We
have shown that one can determine the rate for the
Xð4660Þ ! �h1 decay from the integrated spectrum of
the Xð4660Þ ! �D� �D� reaction. This knowledge, and a
comparison with the background of the inclusive

Xð4660Þ ! �X reaction, will give the chances that one
has to detect a neat peak for the h1 on top of this back-
ground. This latter procedure allows one to determine with
precision the mass and width of the h1 state, or at least a
bound for the width if the experimental resolution exceeds
the value of the width.
The interest of the hadron community in finding meson

states that do not fit the standard q �q structure, together with
the information provided in the present work, should
stimulate the implementation of the reactions suggested
which can be carried out at some present and future
facilities.
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