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A variant of variationally optimized perturbation, incorporating renormalization group properties in a

straightforward way, uniquely fixes the variational mass interpolation in terms of the anomalous mass

dimension. It is used at three successive orders to calculate the nonperturbative ratio F�=
�� of the pion

decay constant and the basic QCD scale in the MS scheme. We demonstrate the good stability and

(empirical) convergence properties of this modified perturbative series for this quantity, and provide

simple and generic cures to previous problems of the method, principally the generally nonunique and

nonreal optimal solutions beyond lowest order. Using the experimental F� input value we determine
��nf¼2 ’ 359þ38

�25 � 5 MeV and ��nf¼3 ¼ 317þ14�7 � 13 MeV, where the first quoted errors are our estimate

of theoretical uncertainties of the method, which we consider conservative. The second uncertainties come

from the present uncertainties in F�=F and F�=F0, where F (F0) is F� in the exact chiral SUð2Þ (SUð3Þ)
limits. Combining the ��nf¼3 results with a standard perturbative evolution provides a new independent

determination of the strong coupling constant at various relevant scales, in particular ��SðmZÞ ¼
0:1174þ:0010

�:0005 � 0:001� 0:0005evol and ��
nf¼3

S ðm�Þ ¼ 0:308þ:007
�:004 � 0:007� 0:002evol. A less conservative

interpretation of our prescriptions favors central values closer to the upper limits of the first uncertainties.

The theoretical accuracy is well comparable to the most precise recent single determinations of �S,

including some very recent lattice simulation determinations with fully dynamical quarks.

DOI: 10.1103/PhysRevD.88.074025 PACS numbers: 12.38.Lg, 12.38.Cy

I. INTRODUCTION

In the massless quarks, chiral symmetric, limit of QCD,
the strong coupling �Sð�Þ at some reference scale � is the
only parameter. Equivalently the renormalization-group
(RG) invariant scale

�� nf � �e
� 1

�0�Sð�0�SÞ
� �1

2�2
0ð1þ � � �Þ; (1.1)

in a specified renormalization scheme,1 is the fundamental

QCD scale. As indicated in Eq. (1.1) ��nf also depends on
the number of active quark flavors nf, with nontrivial

(perturbative) matching relations at the quark mass thresh-

olds [1,2]. Values of ��Sð�Þ in the MS scheme have been
extracted at various scales frommany different observables
confronted with theoretical predictions, and its present
world average is impressively accurate [1]:

� SðmZÞ ¼ 0:1184� 0:0007: (1.2)

However, this averaged value with combined uncertainties
is largely dominated by a combination of a certain class of
lattice results [3,4]: ��SðmZÞ ’ 0:1185� 0:0007, with cen-
tral value and uncertainty that coincide both with the 2010
and the present world average. So (1.2) actually hides
much larger departures among single determinations

from different methods and observables, most having
uncertainties rather in the range 0.0016–0.004. A statistical
combination, however sophisticated, of all those different
determinations, remains difficult. Indeed there are long-
standing tensions with values extracted from deep inelastic
scattering [5]: ��SðmZÞ ’ 0:114� 0:002, and even recently
[6]: ��SðmZÞ ’ 0:1134� 0:0011.
Over the last years, determinations of �S from various

different methods based on lattice simulations have been
the subject of intense activities. One may actually distin-
guish two rather different classes of lattice determinations
of �S: the first very precise one mentioned above [3,4] is
essentially based on calculating short distance quantities
(heavy quark current correlators, Wilson loops, etc.) from
lattice simulations, matched to perturbative evaluations,
thus with direct access to �S in the perturbative regime.
The second class is rather based on nonperturbative calcu-

lations of the basic QCD scale ��, (see e.g. [7–12]). For
both classes much progress was made recently with the
advent of fully dynamical quark simulations for nf � 2

flavors, and the present accuracies achieved by the
various lattice determinations are overall impressive [13].
However, some differences and systematic uncertainties
remain, due to the needed nontrivial extrapolation to the
chiral limit, using input from chiral perturbation theory
[14], and from matching pure lattice results to �SðmZÞ, in
the treatment of the truncation of perturbation theory and
in different assumptions on nonperturbative (power) cor-
rection contributions.

1In (1.1) �0, �1 are (scheme-independent) one- and two-loop
RG beta function coefficients, and ellipses denote higher orders
scheme-dependent RG corrections as will be specified below.
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It is thus of interest to provide further independent

determinations of �� and �S from other observables, and
also from other theoretical methods, especially if possible
to access the infrared, nonperturbative QCD regime for
nf ¼ 2, where a perturbative extrapolation from �SðmZÞ is
unreliable. In the present paper we pursue our previous
exploration [15] of a different route to estimate such quan-
tities. As will be clear below, our approach is more

logically to be compared with the above �� lattice deter-
minations. Our calculation builds up on a standard pertur-
bative result, but is modified in a way able to grasp the
nonperturbative phenomenon of dynamical chiral symme-
try breaking (DCSB) due to the light u, d (and s) quarks.
The main order parameters of chiral symmetry breaking,
namely the pion decay constant F� and the chiral quark
condensate h �qqi, should be entirely determined by the

unique scale �� in the strict chiral limit, and F� at least is
unambiguously and precisely known experimentally.
However, conventional wisdom usually considers the
above intrinsically nonperturbative parameters not calcu-
lable in any ways from perturbative QCD, so that one has
to appeal to truly nonperturbative methods like lattice
simulations. Perhaps the most intuitive reason is the ex-
pected nonperturbative regime at the relevant DCSB scale

close to ��, implying a priori large �S values invalidating
reliable perturbative expansions. Another often mentioned
argument in the literature, typically for the chiral conden-
sate, is that the standard QCD perturbative series at arbi-
trary orders are anyhow proportional to the (light) quark
masses mq, q ¼ u, d, s (up to powers of lnmq), so trivially

vanish in the strict chiral limit mq ! 0. On top of these,

other more sophisticated and generally accepted argu-
ments, related to the problem of resumming presumed
factorially divergent perturbative series at large orders
[16,17], seem at first sight to further invalidate any pertur-
bative approach to calculate the order parameters. We will
see that at least the first two arguments above can be
circumvented by a peculiar modification of the ordinary
perturbative expansion in �S, the so-called optimized
perturbation (OPT), which may be viewed in a precise
sense as performing a much more efficient use of the
purely perturbative information. Our recent version of the
method essentially supplements the OPT consistently with
renormalization group properties [15,18] in a straightfor-
ward way, that also appear to give substantial improve-
ments of the convergence properties of the OPT modified
series, as is supported by comparison with exact results
in models simpler than QCD and empirically exhibited
in QCD.

Our more general goal is thus to improve the RGOPT
approach of [15,18] to possibly determine with a realistic
accuracy some of the chiral symmetry order parameters in
QCD or similar quantities in other models. Wewill propose
a simple cure to the principal issues encountered previ-
ously with nonreal optimization solutions, and also clarify

a number of previously conjectured general features of the
RGOPT, which we believe provides now a well-defined
and relatively simple prescription to deal with renormaliz-
able asymptotically free models.

We concentrate here on F�= �� because it is connected to
one of the best known QCD perturbative series at present,
up to four-loop order. This gives us an opportunity to study
the eventual stability/convergence properties of the OPT at
three successive nontrivial orders, in a full QCD context.
As a byproduct our result provides a new independent

determination of �� and �Sð�Þ.
Our method has been applied previously in [18] for the

D ¼ 2Gross-Neveu (GN)Oð2NÞmodel [19], which shares
many properties withD ¼ 4QCD: it is asymptotically free
and the (discrete) chiral symmetry is dynamically broken
with a fermion mass gap. The exact mass gap is known for
arbitrary N, from the thermodynamic Bethe ansatz [20],
allowing accurate tests of the method. Using only the
two-loop ordinary perturbative information, we obtained
approximations to the exact mass gap at the percent or less
level [18], for any N values. Moreover, in the simpler
large-N limit, the convergence is maximally fast since
the RGOPT gives the exact result already at first order
and at all higher orders. These results not only give us some
confidence on the reliability of the method, but the analogy
goes further, as we will explain, since the main properties
which can be confronted with exact results in the GN
model are very similar for the relevant QCD quantities
we consider here.
The paper is organized as follows. In Sec. II we review

the main features of the OPT and our RGOPT version
incorporating renormalization group requirements. In
Sec. III, we clarify and extend some general properties of
the RGOPT, that were hinted to before [15,18], with illus-
trations in the simpler case of the GN Oð2NÞ model where
those properties can be compared with exact results as a
useful guideline for subsequent QCD considerations. We
give general arguments why the RGOPT can give reliable
nonperturbative approximations in asymptotically free re-
normalizable models. In the main Sec. IV we apply the
RGOPT to the pion decay constant, starting from a well-

defined standard perturbative expression, to extract F�= ��
values to be compared at three successive RGOPT orders
for nf ¼ 2 and nf ¼ 3. After examining in some details

the principal problem of generally nonreal optimized so-
lutions, we provide a natural and generic cure from
appropriate perturbative renormalization scheme changes.

In view of realistic determinations of �� and �S we pay a
particular attention to the delicate issue of estimating
realistic theoretical uncertainties of the method.
Section V presents our final results with the extrapolation
determining �Sð�Þ values at different scales with theoreti-
cal uncertainties. Finally some conclusions and prospects
are given in Sec. VI and the appendix collects relevant RG
and perturbative expressions.
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II. RENORMALIZATION GROUP
OPTIMIZED PERTURBATION

A. Optimized perturbation and variations

The basic feature of the optimized perturbation method
(which exists in the literature under many names and
variations [21,22]) is first to introduce an extra unphysical
parameter, 0< �< 1 within the relevant Lagrangian, in
order to interpolate between Lfree and Linteraction, in such a
way that the mass (here the quark massmq) becomes a trial

or ‘‘variational’’ parameter. In its simplest form,

LQCDðmq; �SÞ ! LQCDðmð1� �Þ; �S�Þ; (2.1)

where in our contextLQCDðmq; �SÞ stands for the standard
complete QCD Lagrangian, and mq originally is a current

quark mass relevant for chiral symmetry breaking. In the
following in practice we shall consider basically the cases
of two or three (degenerate) light quark flavors u, d, or u, d,
s, thus with corresponding SUð2ÞL � SUð2ÞR ! SUð2ÞV
or SUð3ÞL � SUð3ÞR ! SUð3ÞV dynamical chiral symme-
try breaking (incorporating the explicit chiral symmetry
breaking from the light quark masses in a later stage; see
below).

This procedure is consistent with renormalizability [23],
and gauge invariance, provided that the above redefinition
of the QCD coupling �S ! ��S is performed consistently
for all counterterms and interaction terms appropriate for
renormalizability and gauge invariance. At the Lagrangian
level it is perturbatively equivalent to taking any standard
mass-dependent perturbative series in g � 4��S for a
physical quantity Pðm; gÞ, after all required mass, coupling
etc. renormalizations have been performed, and to perform
the substitution:

m ! mð1� �Þa; g ! �g: (2.2)

Compared with (2.1) we introduced an additional parame-
ter a, whose role will be explained below, but which can be
thought of as being fixed at a ¼ 1 for simplicity at the
moment. One then reexpands Pðm; g; �Þ in �, and takes
� ! 1 afterwards. The exact result in the chiral limit
should not depend on the trial mass m artificially intro-
duced, but any finite order in �k gives a remnant m depen-
dence. Thusm plays the role of an arbitrary trial interaction
parameter, adjustable order by order. Avery often used and
convenient prescription is to fix m at a given order k by
optimization (OPT) or ‘‘principle of minimal sensitivity’’
(PMS) [24]:

@

@m
PðkÞðm; g; � ¼ 1Þjm� ~m � 0: (2.3)

One expects optima at successive higher orders to be
gradually flatter, as indeed confirmed in many applications
where higher orders can be worked out [18,21,22].

Other prescriptions are also possible [21,22,24], like
typically looking for plateaus in the m dependence, or

imposing ‘‘fastest apparent convergence’’ (requiring, at a
given order k, the kth coefficient of the modified perturba-
tive expansion to vanish). But the latter two prescriptions
often need knowing the original series at relatively high
orders to work efficiently. Moreover we shall see below
that the OPT prescription Eq. (2.3) is particularly well
suited when incorporating consistently RG properties, as
it simplifies considerably the RG requirements.
Because of the originally massless limit, the interpola-

tion form (2.2) is suited to the study of the chiral symmetric
limit in fermionic models, but it can be easily generalized
to scalar field theories and to initially massive theories in
addition to the trial mass parameter [21]. In fact the
procedure may be viewed as a particular case of
‘‘order-dependent mapping’’ [25], which has been proven
rigorously to converge [26,27] (exponentially) fast for the
energy levels of the D ¼ 1 g�4 anharmonic oscillator
model, exploiting large order and analyticity properties
of the oscillator energy. The convergence holds even for
the double-well oscillator in the strong coupling regime
[26], where the standard perturbative series is non-Borel
summable. In very simplified terms the convergence relies
on the fact that the perturbative expansion for the oscillator
energy is a power series in g=!3, that makes it possible to
adjust the trial frequency ! order by order such as to
essentially compensate the factorial growth of the (stan-
dard) perturbative coefficients at large orders.
In renormalizable D> 1 models, the situation is evi-

dently not so clear, as renormalization gives a more in-
volved � series and mass dependence with logarithmic
terms etc. and no rigorous result exists at present on the
convergence issues of the new series. Although the (linear)
� expansion (for a ¼ 1) was shown [28] to also damp
substantially the generally expected factorial growth of
perturbative coefficients at large orders [16,17], it rather
appears to delay the ultimate factorial growth. In any case
such qualitative large order results are of limited practical
use to make precise predictions for relevant physical quan-
tities, since in many interesting renormalizable models
only the very first few perturbative orders are known ex-
actly. However, we will give here a simple, both intuitive
and RG-consistent argument, supported precisely by exact
results in the simpler Gross-Neveu model case, to under-
stand the empirical stability/convergence OPT properties
in renormalizable asymptotically free models.
OPT practionners often adopt a more pragmatic attitude,

noting that it allows one to obtain well-defined approxi-
mations to nonperturbative quantities beyond the mean
field approximations, which often appear (empirically)
quite good at the first few perturbative orders, when results
can be confronted to other nonperturbative methods,
typically lattice simulations. The OPT has also the
advantage of being based on ordinary perturbative expres-
sions, with well-defined modified Feynman rules and cal-
culations without the eventual complications of other
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nonperturbative approximations. It is thus adaptable to
various models [21–24,29–37], including the study of
phase transitions at finite temperature and density.

Now, perhaps a major practical drawback of the method
is that the optimization procedure generally introduces
more and more solutions, many being complex, as the
perturbative order increases. In cases where there is no
further insight or constraints from other nonperturbative
methods, it may be difficult to choose among the rather
numerous solutions at higher orders, and the generally
complex solutions remain embarrassing.

Related to this problem, we come now to discuss the
additional parameter a introduced in the basic Eq. (2.2): in
most applications [21], a is set to 1 and the procedure in
Eq. (2.2) is dubbed the linear � expansion. However, apart
from simplicity and economy of parameters, there is no
deeper justification for this canonical a value,2 and other a
values may reflect an a priori large freedom in the modified
interpolating Lagrangian. One can even generalize the
interpolation (2.2) to introduce several interpolation pa-
rameters [35] at successive orders, depending on the
model. The simple optimization prescription above should
be generalized accordingly to fix the extra variational
parameters. One may at first naively expect that the proce-
dure will ultimately converge for different a values, or
different interpolating forms, but alternatively it is also
conceivable that the convergence rate could be optimal
only for specific values of a, depending on a given model.
Indeed, in several models, further technical or physical
considerations do impose specific a � 1 values beyond
the mean field approximation. For the Bose-Einstein con-
densate (BEC) critical temperature shift, evaluated from
the OPT approach in different variations [31–35] in the
framework of the D ¼ 3 OðNÞ �4 model [38,39], the
freedom of the interpolating form and extra variational
parameters were used [35] to cure the generic problem of
complex optimization solutions, imposing systematically
real solutions. This reality constraint fixes uniquely a and
drastically improves the convergence, with results very
close to lattice simulation results. Moreover the a value
turns out to be related to the anomalous mass dimension
critical exponent of the model. At least this connection can
be identified exactly in the large-N case, and is consistent
with results independently obtained by an alternative in-
terpolating form directly inspired by critical exponent
considerations [22,33,34]. In fact, due to the super-
renormalizability of the D ¼ 3 �4 model, the dependence
on the (dimensionful) coupling is trivial and the relevant
perturbative series for the temperature shift,�Tc / h�2i, is
a power series in g=m, somewhat like the oscillator energy
series. The idea of modifying the a parameter to impose
real optimization solutions has been also used in theOð2NÞ

GN model case [18] for low N values, where at second
order in � it provides results approaching the known exact
mass gap below the percent level.

B. RG optimized perturbation

Leaving aside for the moment those reality require-
ments, while considering more recently the RGOPT prop-
erties [15] for the perturbative series relevant for F�, a very
welcome feature appeared: requiring the RG optimized
solutions of the (modified) series to be consistent with
asymptotic freedom (AF) imposes an essentially unique
value a � �0=ð2b0Þ � 1, directly related to the anomalous
mass dimension (see the appendix for RG coefficients �0,
b0 conventions). This is not a peculiar feature of the series
relevant for F� but, as will be explained below, a more
general property of AF models. However, unlike the super-
renormalizable BEC case, it does not give at the same time
real optimized solutions [15]. Reciprocally, if trying to
impose the reality of optimized gðln ð�= ~mÞÞ solutions by
appropriate a values, following the procedure successful in
the BEC case, real solutions do not necessarily occur at a
given order, or whenever they occur the corresponding
optimized solutions are incompatible with AF. In other
words the requirements of optimized solutions being both
consistent with AF and real for a given interpolation (2.2)
appear mutually incompatible. From general properties
and the guidance of the behavior of exact solutions in the
Gross-Neveu model, we will show that the compelling AF
requirement, completely determining the critical a ¼
�0=ð2b0Þ value, is also crucial for better RGOPT conver-
gence. In a way that will be specified below, one can see the
OPT modification with critical a as an efficient way to
extract a maximal information even from lowest orders,
valid to all orders thanks to RG properties. We then pro-
pose a more natural way to impose real optimization
solutions at arbitrary OPT orders, always compatible with
the latter AF properties simply by well-defined renormal-
ization scheme changes.
We now recall the main steps of the RGOPT construc-

tion [15,18] for self-containedness. One considers an ordi-
nary perturbative expansion for a physical quantity
Pðm; gÞ, after applying (2.2) and expanding in � at order
k. In addition to the OPT Eq. (2.3), we require the
(�-modified) series to satisfy a standard RG equation:

�
d

d�
ðPðkÞðm; g; � ¼ 1ÞÞ ¼ 0; (2.4)

where the usual homogeneous RG operator

�
d

d�
¼ �

@

@�
þ �ðgÞ @

@g
� �mðgÞm @

@m
(2.5)

gives zero to Oðgkþ1Þ when applied to RG-invariant quan-
tities (see the appendix for our definitions and conventions
on RG functions). Even if the original standard perturba-
tive series to be considered may be (perturbatively) RG

2For bosonic models, the linear interpolation is evidently
m2 ! m2ð1� �Þ instead of Eq. (2.2).
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invariant, it is worth noting that Eq. (2.4) provides an
independent constraint, not automatically fulfilled, be-
cause of the nontrivial reshuffling of a part of the pertur-
bative mass to interaction terms, as implied by the
interpolation (2.2). Next note that, combined with
Eq. (2.3), the RG equation takes a reduced form:�

�
@

@�
þ �ðgÞ @

@g

�
PðkÞðm; g; � ¼ 1Þ ¼ 0; (2.6)

and Eqs. (2.6) and (2.3) completely fix [for a given a value
in Eq. (2.2)] optimized values m � ~m and g � ~g since one
has two constraints for two parameters. A further final
simplification occurs, when considering instead of

PðkÞðm; gÞ the ratio PðkÞðm; gÞ=ð ��Þn with n the mass dimen-

sion of the operator PðkÞðm; gÞ: it is then easy to show that
Eq. (2.6) is completely equivalent to

@

@g

�
PðkÞðm; g; � ¼ 1Þ

ð�ðgÞÞn
�
¼ 0; (2.7)

since by definition ��ðgÞ obeys the same equation as (2.6) at
a given perturbative order. Thus we end up with the quite
remarkable fact that, combining the OPT Eq. (2.3) with the
RG equation on the dimensionless ratio of the relevant

quantity to �� amounts to optimizing with respect to the
two parameters of the model, m and g.3

In summary our RGOPT version involves two important
ingredients with respect to most standard OPT studies [21],
where essentially only the mass optimization (2.3) (or
some other prescription on the trial mass) is performed:
first, the extra constraint from the perturbative RG equation
(2.4) on the modified series, which in turn, upon requiring
perturbative compatibility with asymptotic freedom as we
will see, will imply a strong restriction on the interpolation
form (2.2), with a unique critical a value dictated by the
anomalous mass dimension. Before proceeding it may be
useful at this point to briefly compare qualitatively our
present approach with the version we investigated years
ago [29,30] to estimate some of the QCD chiral order
parameters. One major difference was that, instead of
requiring Eq. (2.4) perturbatively as an extra constraint,
in [23,29,30] we had constructed the resummed pure RG �
dependence in Eq. (2.2) (but for the linear case with a ¼ 1)
as an integral representation, combined with Padé approx-
imants (PA) suitably constructed to reach the chiral limit
m ! 0 without optimizing the mass. In contrast our new
approach only relies on the (modified) purely perturbative
information, solving the RG and OPT Eqs. (2.6) and (2.3)
without extra ‘‘knowledgeable input’’ beyond the pertur-
bative level such as different PA forms. This is not only
practically more intuitive and simpler to generalize to
perturbative expansions for other physical quantities in

QCD or other models but, as we will examine, the basic
interpolation with the critical a value will be much more
efficient, exhibiting better empirical stability and conver-
gence properties.

III. GUIDANCE FROM THE GN MODEL

We now make a digression by considering the main
RGOPT features in the case of the GN model in the
large-N limit to illustrate in this simpler context some
remarkable properties of the RGOPT, that are crucial
guidelines for the more involved applications in QCD
below. The case of the mass gap is essentially a brief
reminder of the content of Ref. [18] while the important
case of the vacuum energy was not considered before.

A. The GN mass gap

The GN Oð2NÞ model with massless fermions m ¼ 0 is
invariant under the discrete chiral symmetry � ! �5�,
spontaneously broken so that the fermions get a nonzero
mass [19]. At leading 1=N order, the mass gap is simply

MN!1 ¼ � � �e�
1

gð�Þ (3.1)

in terms of the renormalized coupling4 gð�Þ in the MS
scheme at the renormalization scale �. The result (3.1) in
the large-N limit can be obtained in different ways by well-
known standard calculations. However, for the time being
let us assume that the only information in the model would
come from the purely perturbative expansion of the pole
mass, in the version incorporating an explicit Lagrangian
mass term m, and see how the above RGOPT prescription
works. The (renormalized) perturbative expansion of such
a mass can be generated to arbitrary perturbative order in
the large-N case from the compact implicit form [23]:

Mðm; gÞ ¼ m

�
1þ g ln

M

�

��1
; (3.2)

wherem � mð�Þ and g � gð�Þ are the renormalized mass

and coupling in the MS scheme. Despite its apparent
simplicity, Eq. (3.2) generates nontrivial perturbative series
at given orders gn, for instance up to third order:

Mðm; gÞð3Þ ¼ m

�
1� gLþ g2ðLþ L2Þ

� g3
�
Lþ 5

2
L2 þ L3

��
; (3.3)

where L � lnm=�. From properties of the implicit MðmÞ
defined from (3.2) and its reciprocal function mðMÞ, one
can establish [23] that MðmÞ ! � for m ! 0, which pro-
vides a consistent bridge between the massive and massless

3In practice using either (2.6) or (2.7) makes no difference, as
long as the same RG perturbative order coefficients bi are used
consistently in the defining convention for �� in (2.7).

4The original GN model coupling, defined by

ð1=2Þg2GNð ���Þ2, is conveniently rescaled in the following as
g2GNN=� � g.
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case. But this needs the knowledge of the all order ex-
pression (3.2), only known exactly in the large-N limit.

Now alternatively, performing substitution (2.2) (fixing
a ¼ 1 at the moment) on (3.2), expanding at a given
�k order and taking � ! 1, (2.6) has the nontrivial
solution [18]

~g ¼ �1=L �
�
ln
�

m

��1
(3.4)

already at first order. At arbitrarily high perturbative order
k the RG equation factorizes to a form such that g ¼
�ðLÞ�1 is always a solution. Equation (3.4) reminds us
of the perturbative expression of the running coupling g for
� � m [the exact running coupling for N ! 1 being
given by Eq. (3.4) but with m ! �]. Moreover, injecting
this RG perturbative behavior solution directly into

MðkÞðm; g; � ¼ 1Þ simply gives at arbitrary order k

MðkÞðm; g; � ¼ 1Þ ¼ m (3.5)

without any extra correction, having not yet used at this
stage the OPT equation determining m. Then using (3.4)
the OPT equation (2.3) gives at arbitrary order k:

~L � ln
~m

�
¼ �1: (3.6)

Thus the exact mass gap is obtained already at the very first
RGOPTorder, as well as ~m ¼ �, which together with (3.4)
also gives the known exact running coupling.

However, starting at third order extra spurious solutions
appear in either OPT or RG equations: for example the RG
equation has an extra solution:

g ¼ �ð2þ 5Lþ 2L2Þ�1 (3.7)

having clearly the wrong RG behavior for large L, and

leading to a very odd result for the mass gap [18]:M=� ¼
�e�ð25=2Þ=324. At even higher orders all kinds of spurious
solutions appear, most being complex not surprisingly.

The important remark is that all those spurious solutions
at higher order can be easily rejected, even if not knowing
the correct exact result, on the basis that they do not have
the correct perturbative RG behavior, with the right coef-
ficient for AF. This compelling requirement can be directly
translated into a similar one for the QCD case [15], as we
will detail below.

This exact coincidence between the mass-gapM and the
(originally perturbative) mass ~m after OPT is performed,
meaning that there are no further perturbative corrections,
is certainly a peculiar feature of the large-N limit, but
nevertheless a nontrivial direct consequence of the
RGOPT construction, not obvious from the original per-
turbative expansion of Eq. (3.2). Indeed truncating at arbi-
trary finite order the standard perturbative series (3.2), one
only finds the trivial result Mðm; gÞ ! 0 for m ! 0, while
the correct result can only be obtained by having the
possibility, in this simple case, of extracting the m ! 0

limit from the properties of the all order series defined
from (3.2). In that sense the RGOPT appears to perform an
efficient shortcut, using a minimal amount of information
from perturbation to obtain the correct result already at first
order.
One may suspect at first sight that the above properties

are only a consequence of the peculiar mathematical prop-
erties of expression (3.2), related to the relatively simple
large-N properties of the GN model. For arbitrary N val-
ues, where the equivalent of (3.2) is only known perturba-
tively to lowest orders, instead of the simple result in (3.5)
one obtains [18] for the optimized mass after RGOPT
~m ¼ cðNÞ� with cðNÞ a constant relatively close to 1
(the closer as N increases). We will see that most of those
features survive analogously, approximately, in a more
general AF model like QCD.
The extra parameter a in (2.2) was fixed to a ¼ 1 in

these considerations. If one takes other values of a, the
property of getting the exact large-N mass gap at any order
is lost, as it appears that any value a � 1 is not compatible
with the exact RG solution (3.4). Forcing nevertheless
a � 1, the behavior of solutions is more obscure but em-
pirically seems to still converge, much more slowly. So for
the GN mass gap in the large-N limit, taking a ¼ 1 gives
the fastest optimal convergence rate. Before inferring gen-
eral statements from this very particular case, however, we
shall see next the case of the vacuum energy which is a
little more subtle.

B. The GN vacuum energy

The GN model vacuum energy EGN can be evaluated in
the chiral symmetric and large-N limit, and reads [40]

EGN ¼ �
�
N

4�

�
�2: (3.8)

Alternatively its perturbative expansion can be expressed,
after all necessary renormalizations, in the following com-
pact form [23] in terms of the explicit massm and the mass
gap Mðm; gÞ defined in Eq. (3.2):

EGN ¼ �
�
N

4�

��
M2ðm; gÞ þ 2

m

g
Mðm; gÞ

�
: (3.9)

Again the purpose here is to examine what can be obtained
from the RGOPT when starting from purely perturbative
information, truncating (3.2) and (3.9) at a limited order g.
Similarly to the mass gap case above, the remarkable
feature is that after performing (2.2) expanded to any
arbitrary order �k, setting � ¼ 1 etc., Eq. (2.6) always
gives the exact solution (3.4), leading also to the OPT
solution (3.6) and to the exact result (3.8), together with
m ¼ �. Also similarly, using solely Eq. (2.6) and its
solution (3.4) within the �-modified perturbative series of
the vacuum energy, at any orders it already entails EGN ¼
�N=ð4�Þm2 without any perturbative extra corrections.
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However all these results are obtained when taking
a ¼ 1. For arbitrary a, the RG equation (2.6) at orders �k

happens to give a solution gðlnm=�Þ only compatible with
AF for integer and half-integer a � 1 values, the larger
values appearing successively at increasing orders:

RGðg ¼ �L�1Þ / �k
i¼0

�
a� 1� i

2

�
� 0; (3.10)

i.e. Eq. (2.6) is only compatible with g ¼ �L�1 for a ¼ 1
or a ¼ 3=2 at order �; for a ¼ 1, 3=2, 2 at order �2, and
so on.

The result (3.10) is in fact the particularN ! 1 limit for
the GN model of a more general one, first noticed for the
QCD perturbative series relevant for F� [15]: as will be
explained in more details below, the RG equation at order
�k gives a solution gðLÞ compatible for g ! 0 with AF,

~gð� � ~mÞ � ð�2b0LÞ�1 þOðL�2Þ; (3.11)

only if a takes specific discrete values, appearing at suc-
cessive orders:

RG / �k
i¼0

�
a� �0

2b0
� i

2

�
� 0: (3.12)

In the GN model �0=ð2b0Þ � ðN � 1=2Þ=ðN � 1Þ ! 1 in
the large-N limit.

However all other values a � �0=ð2b0Þ appearing at
higher orders lead to some pathological behavior: either
the OPT equation (2.3) cannot be satisfied [while it is
always compatible for a ¼ �0=ð2b0Þ], or when both RG
and OPTequations are compatible, the final result is wrong
by a large amount in the GN model case. For example, at
order �2, for a ¼ 3=2, g ¼ �L�1 ¼ 1=2 is a unique solu-
tion, but it gives EGN ¼ 1=2EGNðexactÞ. Similarly, for
a ¼ 2, still at order �2, g ¼ �L�1 ¼ �1=2 is a unique
solution, but gives EGN ¼ �EGNðexactÞ. Moreover, even if
relaxing the AF constraint g ¼ �L�1, one can then find
solutions at successive orders for those other a � 1 values,
but most are complex, and though some solutions have
small imaginary parts and seem to converge very slowly to
the correct vacuum energy result, their general trend is not
conclusive. Hence, this is a strong indication that the value
a ¼ �0=2b0, the only one valid for all �k orders, should
give the best convergence rate.

C. General properties and guidance for QCD

In a more involved theory like QCD it seems at first
more difficult to guess a right optimized RG solution
among many appearing at higher and higher orders from
a blind optimization. But a crucial guidance is the rejection
of most a priori spurious optimized solutions if requiring
[15] the RG solution of (2.4) to have the correct perturba-
tive RG behavior compatible with AF (3.11), which is only
possible for a critical value of a in the interpolation (2.2):

a ¼ �0

2b0
¼ 12

33� 2nf
; (3.13)

where the relevant value in QCD is a ¼ 12=29 ð4=9Þ for
nf ¼ 2 (respectively, nf ¼ 3). The maximally fast conver-

gence for (3.13) can be inferred from a general argument as
we examine now.
Coming back to the vacuum energy expression (3.9), one

notices that after performing (2.2) with a ¼ 1 and using the
optimized solutions, the second term, / m, vanishes iden-
tically at any order, thus giving no contribution to the
optimized energy. This GN result is in fact a special case
of a more general one. Let us consider [23,28,30]

Mðm;gÞ �m

�
1þ 2b0g ln

M

�

�� �0
2b0 � m̂

�
ln

M

�0

�� �0
2b0 (3.14)

definingMðm; gÞ implicitly, where we introduced the stan-

dard scale invariant mass m̂ � mð2b0gÞ��0=ð2b0Þ and scale

�0 � �e�1=ð2b0gÞ	 consistent at first RG order to make the
RG invariance of (3.14) explicit. This is the straightforward
generalization of (3.2) in an AF model with arbitrary first
order RG coefficients b0 and �0, and which correctly
resums the lnm dependence to all orders. Now consider
the perturbative expansion for RG-invariant quantities for-
mally written as

Rp;qðm; gÞ ¼
�
m̂

M

�
p
2b0
�0 Mq ¼

�
ln

M

�0

�
p
Mq; (3.15)

where from (3.14) the two forms are completely equiva-
lent, and generalize for �0=ð2b0Þ � 1 the two terms in (3.9)
with q ¼ 2 and p ¼ 0, 1, respectively. Then performing
the OPTon expressions (3.15) with an arbitrary a in (2.2), it
can be shown after some algebra that
(i) for p ¼ 1, requiring AF compatibility (3.11), the

nonvanishing part of the RG equation for g ! 0 at
arbitrary �k orders takes a factorized form similar to
(3.12), thus necessarily requiring corresponding
critical a values. For p ¼ 0, the RG equation alone
appears AF compatible independently of a values,
but compatibility with the OPT equation also neces-
sarily requires uniquely a ¼ �0=ð2b0Þ. Note that the
constraints on a do not involve higher order RG
coefficients �i, bi for i � 1 appearing at higher
orders: the latter terms enter subleading logarithms,
while the previous properties, as far as concerns the
leading AF behavior (3.11), are fully determined
by the leading logarithm terms, which at any order
only depend on b0 and �0. Consequently a remains
solely determined by the first RG order coefficients.

(ii) Taking thus a ¼ �0=ð2b0Þ, the RG Eq. (2.6) applied
to Rp;qðmð1� �Þa; �g; � ! 1Þ in Eq. (3.15) at arbi-
trary orders �k, takes the factorized form
RGðg; LÞ ¼ ð1þ 2b0LgÞfðg; LÞ thus with a unique
exact solution
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~g ~L ¼ � 1

2b0
(3.16)

plus other spurious solutions not consistent with AF
for small g (large jLj).

(iii) combining the RG solution (3.16) with the OPT
Eq. (2.3) gives a single (k-degenerate) solution

~L ¼ � �0

2b0
; ~g ¼ ��1

0 : (3.17)

(iv) Using (3.16) alone, substituting indifferently for ~g
or ~L, (3.15) gives simply ð�0Þq for p ¼ 0, while it
vanishes for p ¼ 1, at any �k order.

Moreover, very similarly to the GN case, values of a ¼
�0=2b0 þ k=2 for integers k � 0, are generally not com-
patible with the OPT Eq. (2.3) or give also rather patho-
logical or very unstable behaviors. Even in the absence of
pathological behavior, since we have at our disposal only a
few successive perturbative terms, it makes sense anyway
to follow and compare successive orders with the value
a ¼ �0=2b0 valid for any �

k orders. In contrast any other a
value does not lead to the simple and exact properties
above in (i)–(iv), rather giving relatively unstable opti-
mized solutions at successive orders with no obvious pat-
tern and convergent behavior.

The RG-invariant quantities in (3.15) may appear some-
what formal, but in the approximate world where only the
first RG order would contribute, the relevant perturbative
expansion at arbitrary orders of a physical quantity of mass
dimension q would be a linear combination of the two
simple RG-resummed forms in (3.15), for p ¼ 0, 1. We
will see below a concrete example for the actual perturba-
tive series for F�. The above results thus show that the
RGOPT performed with (3.13) would immediately select,
already at first order, the relevant ‘‘nonperturbative’’ pieces
/ �0 exactly while discarding the ‘‘spurious’’ purely per-
turbative terms that do not survive them ! 0 limit. In most
models the complete perturbative series take evidently a
more involved form when including higher orders, not only
the higher order RG dependence no longer takes the closed
form (3.14) but also the non-RG perturbative contributions
at successive orders should be included. Nevertheless,
since a series for a physical quantity is perturbatively RG
invariant, it is always possible in principle to reexpress it as
linear combinations of explicitly RG-invariant forms, ap-
propriately generalizing (3.14) at higher orders. For in-
stance this can be done explicitly [28,30] for the exact
two-loop RG dependence to all orders in a relatively
compact form. In fact, a consistent (RG-invariant) pertur-
bative series will automatically build order by order the
correct logarithmic and nonlogarithmic coefficients that
would be dictated from such explicitly RG-invariant re-
summation like (3.14), so the complete resummed
expressions are not even needed to perform the RGOPT
at low perturbative orders, often the only ones available in
practice.

But for such complete perturbative series incorporating
non-RG and RG terms beyond first order, applying the
RGOPT with (3.13) no longer gives the simple results
(3.16) and (3.17), not surprisingly. First, even the pure
RG dependence should involve the two-loop RG coeffi-
cients b1, �1. More importantly the nonlogarithmic con-
tributions at each perturbative orders imply anyway a
departure from this pure RG behavior. Nevertheless, the
properties in (i) above, completely determining a ¼
�0=ð2b0Þ from AF compatibility, remain exact, and at
arbitrary orders, since these only depend on the leading
logarithm behavior as explained above. Moreover,
although the other exact results (ii)–(iv) are lost, some
properties of the above simple picture remain approxi-
mately when performing ‘‘blindly’’ the OPT for an arbi-
trary series with the prescription (3.13). More precisely, for
a physical quantity of mass dimension q, defining formally
its perturbative series,

PðqÞðm; gÞ ¼ mqf

�
g; ln

m

�

�
; (3.18)

the RGOPT transmutes5 this series, which had a trivial
chiral limit m ! 0, into a series where mass and coupling

optimization give ~m ’ c �� with c of order 1 depending on
the details of the model, the RG and non-RG perturbative
coefficients. Coming back to the original motivation for the
OPT, this is quite satisfactory: one expects that the physical
result after modifying the series should depend as little as
possible on the artificially introduced mass m, and indeed,

the optimized mass is fully determined by the only scale ��
in the theory. Now in the present case if in addition the
optimized coupling ~g remains reasonably perturbative

(which is correlated with ~m remaining of order ��), the
optimized result cannot depart too much from its simple
one-loop form g ¼ �1=ð2b0 ~LÞ above. The departure is
entirely determined by the optimization and the remaining

‘‘perturbative’’ corrections to the bulk result PðqÞ ’ ~mq ¼
ðc ��Þq, entering in fð~g; ln ~m=�Þ in Eq. (3.18), are now
expected to be a moderate correction.
Since the above mechanism is quite generic, we expect

the same feature to occur in any renormalizable AF model,
whatever the details of the RG and other coefficients. This
is precisely what will happen for the series relevant to F�,
as we will explore in details at three successive orders,
where we will see that even for the complete perturbative
series the optimized solutions do not depart much from the
relation (3.16), with moreover a stabilization of the opti-
mized coupling and mass towards more perturbative values

5After having performed the RG or OPT (2.6) or (2.3), solved
for the mass, the resulting series may be intuitively viewed as
coming from perturbative Feynman graphs with original
masses replaced by dressed masses of order ��, having a non-
perturbative g dependence. But an explicit modified graph
picture is not necessary for any practical computation.
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as the order increases. These features give an intuitive key
argument for the empirically seen stability/apparent con-
vergence of the method to which we now come.

IV. THE PION DECAY CONSTANT

We now arrive at our main application of the RGOPTon
a perturbative series that is directly connected to the pion
decay constant F�. One very convenient definition of F� is
via its connection to the axial current-axial current corre-
lator, that is very familiar e.g. in the context of chiral
perturbation theory (ChPT) where it appears as the lowest
Oðp2Þ term [14]. More precisely,

ih0jTAi
�ðpÞAj

	ð0Þj0i � �ijF2
�g�	 þOðp�p	Þ; (4.1)

where the axial current is Ai
� � �q���5

�i
2 q for SUð2Þ [or

for SUð3Þ, �i ! 
i where 
i are the Gell-Mann matrices],
and in this normalization F� � 92:3 MeV [1]. Actually, to
be more precise, because of the chiral limit implied by the
OPT method, we should consider that after OPT we will
consistently obtain from (4.1) F� in the strict chiral limit,
e.g. for SUð2Þ F � F�ðmq ! 0Þ ’ 86 MeV [14]. We will

consider below recent determinations of F�=F [or simi-
larly F�=F0 in the SUð3Þ case] to be properly taken into
account in our analysis. Nevertheless we need to start from
a perturbative expression in terms of explicit quark masses
in order to apply the RGOPT. The obvious advantage of
using the above expression in our context is that the
standard QCD perturbative expression of the correlator in

Eq. (4.1) in the MS scheme is presently fully known
analytically up to four-loop (�3

S) contributions [41–43].

This welcome feature will allow us to compare the results
of our approach at three successive orders and thus provide
some definite outcome on the stability/convergence prop-
erties, in a full QCD framework. With a slightly adapted
change of normalization, it reads in our notations:

F2
�ðpertÞ¼3

m2

2�2

�
divð�;�SÞ�Lþ�S

4�

�
8L2þ4

3
Lþ1

6

�

þ
�
�S

4�

�
2ðf30L3þf31L

2þf32Lþf33Þ

þ
�
�S

4�

�
3ðf40L4þf41L

3þf42L
2þf43Lþf44Þ

�
;

(4.2)

where m is the running mass in the MS scheme, L � ln m
� ,

and the three-loop f3i and four-loop f4i coefficient expres-
sions, known for an arbitrary number of flavors nf, are

given in the appendix. A few representative Feynman
graphs contributions at successive orders up to three loops
are illustrated in Fig. 1 (there are evidently many more
contributions not shown here). Note that the one-loop order
is Oð1Þ ¼ Oðg0Þ and does not depend on �S. As a rather
technical remark, note that the originally calculated ex-
pressions in Refs. [41–43] are generally known for nh

massive quarks and nl massless quarks entering at three-
loop order, but are often given for the specific case nl ¼
nf � 1, nh ¼ 1more relevant in various QCD applications.

However, in our context m is the (nf-degenerate) light

quark mass and its precise mass dependence is what is
relevant for the optimization procedure, so one should
trace properly the full nl, nh dependence, to take then
nl ¼ 0 and nh � nf with nf ¼ 2ð3Þ for the SUð2Þ [respec-
tively, SUð3Þ] case.6 Now, anticipating on the results be-
low, we note that the optimization results are actually not
very sensitive to the detailed nf dependence entering at

three-loop and higher orders: as we will examine precisely,
even an arbitrary change of a factor �2 typically in the
three-loop coefficient f33ðnfÞ induces a change of 3%–4%

at most in the final optimized F= �� results.

A. Renormalization and RG invariance

There is however one subtlety at this stage: the calcu-
lation in dimensional regularization of (4.1) actually still
contains divergent terms needing extra subtraction after

mass and coupling renormalizations in theMS scheme,
formally indicated as divð�; �SÞ in Eq. (4.2), whose explicit
expression is given in the appendix. This is most simply
seen already at first order, where the only one-loop con-
tribution in Fig. 1, proportional to m2��

0 =� in dimensional

regularization with D � 4� �, is independent of g
and this divergence cannot be removed by the mass renor-
malization affecting only the next order, m0 ! mZm ¼
mð1þOðg=�ÞÞ. The correct procedure to obtain a
RG-invariant finite expression while subtracting those di-
vergences consistently is well known from standard renor-
malization of composite operators with mixing [47].
[Although to our knowledge it has been seldom applied
to the present series, as in most relevant applications (4.2)

x x x x x x

x x x x

FIG. 1. Samples of standard perturbative QCD contributions to
the two-point axial-vector correlator up to three loops. Crosses
denote axial current insertions.

6Some results in [41], partly in the on-shell scheme, need to be
converted in the MS scheme, using the two-loop [44] and three-
loop [45] pole-to-running mass relations. The coefficients fij in
the MS scheme of all the logarithmic terms Lk, k � 1 were
deduced consistently up to four-loop �3

S order from lowest
orders using also RG properties and explicitly cross-checked
with direct calculations [46]. At three-loop (and four-loop) order
one should also take care to extract the nonsinglet contributions
to the axial vector correlator, only relevant to (4.1).
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only enters in combinations where those divergences can-
cel out, like typically in the electroweak �-parameter
calculations [42,48], where up to an overall constant (4.2)
is related to the (nonsinglet) contributions to the Z-boson
self-energy, with m ’ mtop].

We can define [23,30] the needed subtraction as a per-
turbative series:

subðg;mÞ ¼ m2

g
HðgÞ � m2

g

X
i�0

sig
i; (4.3)

with coefficients determined order by order by

�
d

d�
subðg;mÞ � Remnantðg;mÞ

¼ �
d

d�
½F2

�ðpertÞjfinite	; (4.4)

where the remnant part is obtained by applying the RG
operator Eq. (2.5) to the finite part of (4.2), not separately
RG invariant. Thus the (finite) quantity,

F2
�ðpertÞjfinite � subðg;mÞ � F2

�ðpertÞjRG-inv:; (4.5)

is by construction RG invariant at a given order. Note that
(4.3) does not contain any lnm=� terms and necessarily
starts with an s0=g term to be consistent with RG invari-
ance properties, as the one-loop contribution in Eq. (4.2) is
of order 1. To obtain RG invariance at order gk, fixing sk in
(4.3), one needs knowledge of the coefficient of the L term
(equivalently the coefficient of 1=� in dimensional regu-
larization) at order gkþ1. This renormalization procedure is
completely similar for the GN model vacuum energy dis-
cussed above, where the required subtractions contribute to
the second term in Eq. (3.9). A familiar completely analo-
gous case is the so-called anomalous dimension of the
QCD vacuum energy, entering in the renormalization pro-
cedure of the mh �qqi operator due to mixing [49] with m41.
It can be derived consistently by following the very same
procedure as above. The si coefficients can be expressed in
terms of RG coefficients and other terms using RG prop-
erties. In more compact form they read

s0 ¼ 3

4�2ðb0 � �0Þ
¼ 4

1� 2
9nf

;

s1 ¼ 3

�
� 5

24�2
þ 1

2

�1 � b1
�0 � b0

�
¼ 1

16�2

ð237þ 17nfÞ
ð�9þ 2nfÞ ;

s2 ¼
ð�78777þ 369nf þ 619n2f þ 432ð9þ 38nfÞ
ð3ÞÞ

384�4ð�57þ 2nfÞð�9þ 2nfÞ
;

s3 ’ 3

ð�57þ 2nfÞð�45þ 2nfÞð�9þ 2nfÞ ð1:2569

� 0:6799nf þ 0:0451n2f � 8:510�4n3f � 3:110�5n4fÞ:
(4.6)

Equivalent results are obtained more formally by working
with bare expressions, establishing the required RG prop-
erties between bare and renormalized quantities. The sub-
tractionHðgÞ in Eq. (4.3) is then entirely determined by the
coefficient of the simple 1=� pole in (A12) (see the appen-
dix for more details).

B. RG optimization at successive MS orders

We are now ready to apply to Eqs. (4.2) and (4.3) the
procedure (2.2) and expand at order �k, then solve OPTand
RG Eqs. (2.3) and (2.6) [or equivalently (2.7)]. Before
embarking into higher orders, it is worth working out the
RGOPT successive steps at the simplest nontrivial �1

order, where everything is very transparent. Furthermore,
we shall consider the approximation where solely the first
order RG dependence b0, �0 is taken into account, sup-
pressing thus also nonlogarithmic contributions. This may
be considered a crude approximation but it will in fact
nicely illustrate the remarkable properties discussed in
Sec. III C. Extracting thus from (4.2) together with the
subtraction (4.3) the terms depending only on b0, �0 up
to (two-loop) order g one finds the following expression:

F2
�ðRG-1;OðgÞÞ ¼ 3

m2

2�2

�
�Lþ �S

4�

�
8L2 þ 4

3
L

�

�
�

1

8�ðb0 � �0Þ�S

� 5

12

��
; (4.7)

where the last two terms correspond to the subtraction with
coefficient s0, s1 in (4.6) [but s1ðRG-1lÞ ¼ �5=ð8�2Þ
being different now due to the approximation b1 ¼ �1 ¼
0, see Eq. (4.6)]. Performing (2.2) with (3.13) at order �, for
example for nf ¼ 2, straightforward algebra gives the

modified series

F2
�ðRG-1;Oð�ÞÞj�!1 ¼ 3

m2

2�2

�
� 102�

841�S

þ 169

348
� 5

29
L

þ �S

4�

�
8L2 þ 4

3
L

��
: (4.8)

In passing one sees here a general property of OPT, that at a
given �k order only lower orders gp, p < k are modified by
(2.2), while the order gk [the order �S in (4.7)] remained
untouched. The RG equation (2.6), consistently limited at
first order b0, gives two solutions, one being (3.16) exactly.
The OPT equation alone has more complicated solutions
LðgÞ, but combined with (3.16) simply gives the unique
solution (3.17):

~L ¼ � �0

2b0
; ~�S ¼ �

2
; (4.9)

fully confirming the general properties mentioned in
Sec. III after Eq. (3.15) for the concrete F� perturbative
series. Finally, substituting (3.16) either viewed as ~gðLÞ or
~LðgÞ within (4.8) gives
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F�ðRG-1;Oð�ÞÞð ~m; ~gÞ ¼
�

5

8�2

�
1=2

~m ’ 0:25�0; (4.10)

where we identified the basic scale ~m � �0 ¼ �e�1=ð2b0gÞ
at this first RG order. Actually the final ratio F�=�0 in
(4.10) is independent of nf, a peculiarity of this pure first

RG order approximation [the nf dependence enters only

via b0ðnfÞ in�0]. We also see here the announced property

that the optimized mass is of order ��, in fact exactly in this
approximation. Numerically this is already a quite realistic

value of F�= ��, though evidently at higher orders ��
should include higher RG orders. Note also that
Eq. (3.17) does not play any role, again a peculiarity of
this pure RG approximation. The optimized coupling
~�S ¼ 1=ð4��0Þ ¼ �=2 is relatively large for QCD, but it
does not matter in this approximation where there are no
further perturbative corrections to the relation (4.10). It is
instructive to see this result in terms of the more formal
explicitly RG-invariant forms introduced above in (3.15). It
is easily shown that the complete terms in the original
series (4.7) can be obtained from the perturbative reexpan-
sion to OðgÞ of two such invariants:

F2
�ðRG-1;OðgÞÞ ¼

�
� s0
2b0

R1;2ðm; gÞ � s1R
0;2ðm; gÞ

�
OðgÞ

:

(4.11)

Thus, using property (iv) after Eq. (3.15), one could have
derived directly that performing the RGOPT at any order
(in this approximation), only the last term survives, to give
F2
�ðRG-1Þ ¼ �s1�

2
0 [where b1 ¼ �1 ¼ 0 in s1 in (A22),

in agreement with (4.10)].
In fact the calculation based on pure RG dependence can

also be done exactly up to the next RG order, i.e. including
the two-loop RG coefficients b1, �1 consistently (but still
neglecting the nonlogarithmic terms) to order g in (4.2).
The RG equation (2.6) still has an exact relatively simple
solution, generalizing (4.9):

�2b0 ~L ~g ¼ 1; ~g�1 ¼ ð4�~�SÞ�1 ¼ �0 � �1 � b1
�0 � b0

;

(4.12)

with the first simple relation between the optimized
coupling and the mass still valid. Putting numbers, (4.12)
gives ~�S ¼ 6�ð9� 2nfÞ=ð255þ 13nfÞ ’ 0:33ð0:19Þ; ~L ’
�1:94ð�3:63Þ, respectively for nf ¼ 2ð3Þ. Thus including
the pure two-loop RG order dependence gives a drastic
reduction of the optimized coupling and related mass,
having more perturbative values. In contrast with the first
RG order, however, the OPT Eq. (2.3) cannot be fulfilled
exactly for (4.12), but gives a small remnant term, propor-
tional to ð�1 � b1Þ=b0 when normalized to one, thus for-
mally of higher order �1=ð16�2Þ. Plugging the solution
(4.12) within the corresponding F� expression at order �

gives F= �� ’ 0:2ð0:18Þ, respectively, for nf ¼ 2ð3Þ.

At higher orders for a fully realistic determination the
OPTwill consistently incorporate RG (and non-RG) higher
order dependence specific to the F� series available from
(4.2), and Eq. (2.3) will now play a nontrivial role, produc-
ing a departure of the optimized ~g (or ~L equivalently) from
these pure RG values. Such properties are somewhat hid-
den in the calculational details but can be fully controlled
a posteriori (since exactly tractable solutions of polyno-
mial equations are involved), with the results that the
induced departure from the pure RG results will be a
reasonable perturbation. Indeed as we will see next, the
true optimized solutions for F� at higher orders lie some-
where in between the pure RG first order (4.9) and second
order (4.12) results, with decreasing and finally stabilizing
optimized coupling at increasing orders. This self-
adjustment of the coupling ~g with the order is indeed
welcome, as for example if naively plugging the solution
(4.9) within the complete series at higher orders �2 and �3,

one obtains badly too large values, e.g. F= ��ð�2Þ � 0:86,

F= ��ð�3Þ � 0:96 for nf ¼ 2, principally due to the rela-

tively large coupling ~� ¼ �=2 in (4.9).
At �k order, Eq. (2.6) is a polynomial of order kþ 1 in

L, thus exactly solvable up to third order, with full ana-
lytical control of the different solutions. One can solve both
RG and OPT equations numerically, but it also proves
particularly convenient to solve both equations exactly
for LRGðgÞ and LOPTðgÞ, and to look for intersections of
those two functions. Note that away from the common
intersection solutions, one has to consider the complete
RG Eq. (2.4) to obtain the right LRGðgÞ behavior. However,
the AF compatibility for g ! 0 may be required either
using Eq. (2.4) or the simpler (2.6) with the same results,
due to the asymptotic dominance of the relevant terms.
Whatever the procedure, at increasing � orders more and
more solutions appear as expected, many being complex in

the MS scheme [complex conjugate solutions since all
coefficients of (2.3) and (2.6) are real]. Of course not all
the solutions are complex at a given order: it is the case at
first order �, but at order �2 Eqs. (2.6) and (2.3) actually
give 8 different ~g, ~L solutions, 2 real and 6 complex
conjugate ones. Incidentally one of the two real solutions
has negative coupling, and the other one a very large
~�S ’ 4, perturbatively completely untrustable. But as mo-
tivated above we shall impose the compelling additional
constraint that the solutions should obey AF behavior for
g ! 0, which already uniquely fixes the critical a value
(3.13) for the basic interpolation (2.2).
At least up to the maximal available order �3 (four-

loop), only a single branch has the right AF perturbative
behavior, which provides a very clear selection procedure.
By simple inspection it is easily checked which solutions
are lying on the unique AF compatible branch. For ex-
ample in Fig. 2 we plot for the maximal available order �3

all the resulting different branches of the RG and OPT
solutions (2.4) and (2.3), Re½ln m

� ðgÞ	 as functions of the
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coupling g ¼ 4��S, in the MS scheme. The AF compat-
ible RG and OPT branches clearly appear, moreover all
other branches are nonambiguously discardable, having
typically the wrong sign for g ! 0, or a grossly different
coefficient from the correct AF one L� ð�2b0gÞ�1 for
g ! 0. It thus rejects in this way all spurious solutions of
(2.4) and (2.3) sitting on the other branches, indeed most

exhibiting an odd behavior, e.g. ~m 
 ��, or ~g < 0.7

Incidentally this is the case for the two real solutions

mentioned above occurring inMS at order �2, or similarly
for those seen in Fig. 2, actually lying on branches com-
pletely disconnected from the AF compatible ones, thus
unambiguously excluded even if one would not know any-

thing about phenomenologically reasonable F�= �� values.
Therefore we pick up the (unique) solution of Eqs. (2.6)
and (2.3) sitting on the AF compatible branches at succes-
sive orders.

Except for specific approximations explicit below, we
perform the optimization mostly using the RG equations
(2.6) or (2.7) at the naturally consistent perturbative order,
e.g. (kþ 1) loop at order �k. Indeed some caution is
needed with the perturbative order required for RG
consistency for the relevant F� series, even prior to the
OPT modification of the series, due to the subtraction

renormalization. Perturbative RG invariance typically in-
volves cancellations between contributions from the beta
function and the anomalous dimension coefficients bk, �k

of different orders. For the F� series starting with �s0=g,
the RG Eq. (2.4) at order gk includes consistently the
(kþ 1) loop beta coefficient bk: �2bkg

2þk@gð�s0=gÞ ¼
ð�2s0bkÞgk. The RG equation should also incorporate
more generally the leading and subleading logarithms
relevant at a given order gk.

One should also be careful to specify the �� convention:
to compare with most recent other determinations it will be
more convenient to use a standard four-loop perturbative
form [1], with b3 � 0:

��
ðnfÞ
4 ðgÞ � �e

� 1
2b0gðb0gÞ

� b1

2b2
0 exp

�
� g

2b0
�
��
b2
b0

� b21
b20

�

þ
�
b31
2b30

� b1b2
b20

þ b3
2b0

�
g

��
: (4.13)

Now, performing the RG equations (2.6) or (2.7) at order �k

rather involves the more natural scales at the consistent

kþ 1 loop order ��kþ1, given from (4.13) by taking b3 ¼ 0
(and b2 ¼ 0), respectively, at three loops (two loops). This
gives the results shown in Table I [15].8 Using (4.13) or

lower orders �� for ~g is simply a change of normalization
convention in the final optimized results, but not changing
the optimized values ~g, ~L.
Unfortunately, the unique AF-compatible RG solutions

in theMS scheme in Table I remain complex (conjugates).
As a crude approximation in [15], we had considered the

differences Re½FðkÞð ~m; ~gÞ	 � FðkÞðRe½ ~m	;Re½~g	Þ as indicat-
ing a conservative intrinsical theoretical uncertainty.
Indeed comparing second and first � orders in Table I,
one observes that the solution has a much smaller imagi-
nary part. Forgetting momentarily about imaginary parts,
Re~�S decreases to reasonably perturbative values as the �
order increases. One may also extract the corresponding

~m= �� values at successive orders from Table I: this gives

Re½ ~m= ��	 ’ 0:78, 0.91, 0.87, respectively at orders � to �3.
It confirms that the optimized mass ~m are well of order

Oð ��Þ, although it is partly obscured by the undesirable
imaginary parts. This illustrates our argument discussed
above for expecting a better convergence of the RGOPT.
At order �3, the g3s4 term in (4.3) needs the presently

unknown five-loop coefficient of L. As an approximation,
we have estimated s4 either with a Padé approximant
PA[1,2] constructed from the lower-order series of coef-
ficients s0 to s3, or alternatively simply ignoring this
unknown higher order term, s4 � 0, retaining only the
four-loop RG ln pðm=�Þ coefficients. The difference

15 10 5 5 10 15

4

2

2

4

g

L(g)

FIG. 2 (color online). The (real parts of) all different branches
at order �3 (four-loop) of the RG (thick curves) and OPT (dashed
curves) solutions LðgÞ � ln m

� ðgÞ, in the MS scheme (nf ¼ 2).

The (unique) intersection solution sitting on both RG and OPT
perturbative branches with AF behavior, L ! �ð2b0gÞ�1 for
Re½g	 ! 0þ, occurs at g ’ 7:4� 3:9i, L ’ �0:23� 0:04,
whose real parts are indicated approximately by a dot.

7Note that the pole seen in Fig. 2 for one of the spurious RG
branches LRGðgÞ, occurring at g ’ �12:02, is close but slightly
different from the perturbative RG fixed point (real) solution of
�ðgÞ ¼ 0 at four-loop order (g ’ �12:96 for nf ¼ 2). This shift

is due to the fact that LRGðgÞ � ln m
� ðgÞ � ln

��
� ðgÞ.

8The results in Table I appear slightly different from those in
Table 1 of [15], as we had used there rather a (Padé approximant)
three-loop form for F= ��, for convenience of comparison with
certain lattice results [9].
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between those two choices in Table I gives one estimate of
higher order uncertainties, and remains very small.

C. Tentative approximate real solutions

To attempt to cure the problem of nonreal solutions, we
can try to use again guidance from the GNmodel. In fact the
optimized GN mass gap solutions, at two-loop order in the

MS scheme, are real for anyN � 3, and a complex solution
occurs only for N ¼ 2 [18]. Then truncating the RG equa-
tion (2.6) by neglecting simply its highest g4 order at �2

order (noting that the RG equation for the mass gap at order
gk only needs to hold perturbatively up to terms of order
gkþ1), real solutions were recovered [18] for any N � 2,
with corresponding results departing from the exact ones by
less than a percent. So one expects similarly that truncating
the polynomial RG and OPT equation down to lower orders
in the coupling for the F� series will more likely give real
solutions. But it does not work sowell, as it requires a cruder
RG approximation than for the GN case: at the lowest order
� (two-loop), where the RG Eq. (2.6) is of maximal order
g3, real solutions are only recovered when truncating this
equation down to OðgÞ, neglecting all higher orders. The
corresponding results are given in Table II for nf ¼ 2ð3Þ.
Similarly at �2 (three-loop) order where (2.6) is of maximal
order g5, real solutions are recovered, for nf ¼ 2, when

truncating the RG equation down to Oðg2Þ. But the same
prescription does not work for nf ¼ 3, where the corre-

sponding solution is no longer real.
A slightly different approximation can beworked out, by

noting that the equivalence between the RG equation forms

(2.6) or (2.7) holds exactly only when the �� expression in
(2.7) is used at the same consistent order. Thus, reexpand-
ing perturbatively Eq. (2.7) and truncating it at some lower
order will not be fully equivalent to applying directly (2.6).
Real solutions are recovered also in this way, but only at
order �2 and perturbatively expanding Eq. (2.7) up to order
g2. The corresponding results are also given in the last two
lines in Table II for nf ¼ 2ð3Þ.
These different approximate results in Table II could

appear satisfactory at first sight, leading to already quite

realistic �� values, given the crude simplicity of the pre-
scriptions to recover real solutions. But there are several
problems: first, not surprisingly complex solutions reap-
pear anyway at higher order �3, whatever the approxima-
tion made, or when varying nf, so that such a prescription

is not robust. At order �2, if (2.6) is truncated at higher
orders gk, k � 3, complex solutions also reappear, close to
those in Table I. Moreover at order �2 the second type of
approximation gives two real solutions for nf ¼ 2, as

shown in the last line in Table II. But an even more serious
problem is that the corresponding solutions gðLÞ in Table II
no longer satisfy our compelling requirement (3.11); they
do not have an AF compatible branch. This can be traced to
the fact that AF compatibility requires incorporating all
leading logarithms gkLk �Oð1Þ, and truncating to too low
orders misses some of those, spoiling the overall RG con-
sistency. Not only AF compatibility should be considered a
crucial underlying requirement, but in practice if no solu-
tion fulfills it there is no really convincing other way to
disentangle ambiguous solutions like those appearing for
nf ¼ 2 at order �2. When taking either Eq. (2.6) or

Eq. (2.7) at order �2, but now truncating at the next order
g3, the AF behavior is recovered for a unique solution, but
again complex. So these approximations illustrate the gen-
erally expected incompatibility of AF consistency and
(crudely forced) reality. More generally for another pertur-
bative QCD series, or in another model, such simple trun-
cations may not even give any real solution at all. Even in
the simpler GN model, complex solutions occur anyway at
higher orders [18].
In summary, this calls for an AF compatible, more

generic and robust cure to obtain a more reliable

TABLE I. Combined OPTþ RG MS results at successive � order (nf ¼ 2 and nf ¼ 3).

�k, RG order ~L ~�S

FðkÞð ~m;~gÞ
��
nf
kþ1

�, RG-2l �0:45� 0:11i 1:01� 0:08i 0:266� 0:11i
nf ¼ 3: �0:48� 0:09i 0:94� 0:18i 0:266� 0:09i

�2, RG-3l �0:52� 0:69i 0:73� 0:02i 0:353� 0:03i
nf ¼ 3: �0:40� 0:19i 0:86� 0:16i 0:321� 0:015i

�3, s4 ¼ PA½1; 2	 �0:22� 0:04i 0:59� 0:31i 0:349� 0:08i
nf ¼ 3: �0:22� 0:008i 0:59� 0:30i 0:356� 0:07i

�3, s4, f44 ¼ 0 �0:13� 0:04i 0:61� 0:33i 0:349� 0:09i
nf ¼ 3: �0:21� 0:008i 0:60� 0:30i 0:356� 0:07i

TABLE II. Approximated (perturbatively truncated) OPTþ
RG MS results at orders � and �2, for nf ¼ 2 (respectively,

nf ¼ 3). X indicates that no real solutions were found.

�k, truncation ~L ~�S

FðkÞð ~m;~gÞ
��2ð3Þ
4

�, RG-2ljOðgÞ �1:31ð�1:31Þ 0.35(0.36) 0.252(0.264)

�, ½@gðF2

��2Þ	jOðg2Þ �0:99ð�1:08Þ 0.39(0.387) 0.278(0.280)

�2, RG-3ljOðg2Þ �0:87ðXÞ 0:47ðXÞ 0:292ðXÞ
�2, ½@gðF2

��2Þ	jOðg2Þ �1:28ð�1:43Þ 0.38(0.37) 0.260(0.257)

�0:56ðXÞ 0:56ðXÞ 0:322ðXÞ
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determination of �� or other similar quantities, also fully
exploiting the information available from higher order

calculations in (4.2). In view of realistic �� and thus �S

determinations, it is also desirable to incorporate a con-
vincing manner of estimating intrinsic theoretical uncer-
tainties of the method. We will see next that a standard
renormalization scheme change allows such a more natural
and systematic cure, but at the price of a slightly more
involved procedure due to the introduction of extra scheme
parameters. In fact even if the real solutions in Table II are
not strictly AF compatible nor robust, they happen to be
numerically not far from what will come out below from a
more generic and AF compatible prescription. This is
because they are in smoother continuity with their AF-
compatible corresponding solutions at higher orders, in
contrast with the grossly inconsistent branches in Fig. 2
having typically the wrong sign or a very different coeffi-
cient for g ! 0, that would give widely different results.

D. Renormalization scheme changes to real solutions

Clearly the occurrence of nonreal solutions, in particu-
lar, the AF-compatible ones, is simply a consequence of
the very familiar fact that polynomial equations of order
� 2 with general real coefficients have complex conjugate

solutions in general. For F�, and in the MS scheme, this
happens already at first � order, where the relevant RG and
OPT equations are quadratic in L, but it will also happen in
any other scheme or model at increasing orders sooner

(most likely) or later. Moreover the MS scheme is particu-
larly convenient and widely used in higher loop QCD
calculations, and the most standard usage for comparisons
of � and �S results.

In Fig. 3 we plot the OPT Eq. (2.3) and RG (2.6) in the

MS scheme (for nf ¼ 2) at orders � and �2, considered as

functions LðgÞ. Both equations are quadratic (cubic) in L at
order � (�2), and their (unique) common root consistent
with AF behavior (3.11) occurs for the complex optimized
values ~g, ~L given in Table I (the curves are plotted in Fig. 3
for real g� Re½~g	). One can see in Fig. 3 that at order �2

the OPT and RG equation curves cubic in L both have
inflection points not far from the real axis (the closest
for the OPT curve), respectively at ð�0:28; 0:021Þ and
ð�0:075;�0:11Þ. Thus one can expect that a slight modi-
fication of those coefficients would drive both curves to
intersect on the real axis, so that the corresponding com-
plex conjugate optimization solutions in Table I become

real. It is also clear that the imaginary parts ofMS solutions
depend much on nf values. Incidentally, as we will exam-

ine in more details below, theMS AF compatible solutions
are closer to being real for nf ¼ 3, and they even become

real (at orders � and �2) for nf ¼ 4.

Now to make such perturbations of the various coeffi-
cients not an arbitrary deformation, but one fully consistent
with RG properties, a natural and relatively simple

prescription is to perform a (perturbative) renormalization
scheme change (RSC), defined as

g ! g0ð1þ A1gþ A2g
2 þ � � �Þ; (4.14)

m ! m0ð1þ B1gþ B2g
2 þ � � �Þ; (4.15)

which can generically affect the coefficients in the defining
perturbative series (4.2) (see also the appendix), opening
the possibility of real solutions. However the price to pay is
to introduce more parameters in the procedure, and various
possible such RSCs, so we should aim at defining a con-
vincing (and possibly fairly unique) prescription. On the
other hand the fact that there can be several RSC prescrip-
tions at a given order can allow firm estimates of theoreti-
cal uncertainties of the method, as we will see. For an
exactly known function of m and g, (4.14) or (4.15) would
be just changes of variable not affecting any physical
result. But for a perturbative series truncated at a given
order gk, its value in different schemes differs formally by
a remnant term of order Oðgkþ1Þ. Accordingly the differ-
ence between different schemes is expected to decrease
at higher orders, if the coupling is sufficiently small.

2 1 1 2
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RG(L,g)
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FIG. 3 (color online). RG (thick line) and OPT (dashed line)
Eqs. (2.6) and (2.3) in MS scheme (nf ¼ 2) as functions of L

for fixed (real) g. Top: order �, g ’ 12:74; bottom: order �2, g ’
9:15.
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The optimized coupling ~�S values relevant here for F� are
reasonably perturbative and decreasing at successive or-
ders, but not that small, with ~�S �Oð1Þ typically. Our
guideline is thus to recover real solutions if possible, but
at the same timewith a minimal departure from the original

MS scheme. Therefore we will define a minimal RSC by
the following prescriptions:

(i) the RSC incorporates as few extra parameters as
possible;

(ii) the RSC should also be minimal in the sense of
giving a real solution as near as possible to those

of the original MS scheme.
For (i) it appears sensible to consider a change only affect-
ing the mass, Eq. (4.15). This is motivated in the OPT
framework since the mass is already a trial parameter, and

also noticing from Table I that ~m in theMS scheme tends to
have larger imaginary parts than ~g (at least at orders � and
�2), so intuitively it may be more efficient to modify m.
[Incidentally, we have also tried for completeness to use
(4.14), but found no real, AF compatible perturbative
solutions at the relevant orders, which thus excludes this
possibility completely for the F� perturbative series.]
Another practical advantage of (4.15) is that it does not

affect the convention chosen for �� [see Eq. (A11)] [50],
nor the RG coefficients bi in (2.6).

Now, to explore the RSC parameter space in such a way

that the departure from the originalMS scheme is minimal,
for whatever choice in (4.15) we will also require (ii)
above, which can be explicitly controlled by looking for

the nearest-to-MS contact between the RG and OPT solu-
tions considered as two-dimensional curves RGðg; LÞ and
OPTðg; LÞ.

It is also sensible to minimize the amount of extra
parameters by considering only one RSC parameter at a
time in (4.15), essentially (though not necessarily) dictated
by the perturbative order considered. At a given gk, �k

order, a naturally preferable RSC parameter is thus one
which could give the smallest perturbative departure from

the MS scheme, while recovering real solutions. For a
standard series truncated at order gk the natural choice is
clearly to take Bk � 0 in (4.15), while a lowest order RSC
will affect many terms at higher orders, inducing quadratic
or higher Bk dependence, artificially producing spurious

solutions more likely far from the original MS scheme.
Now since the relevant F� series (4.5) starts with �s0=g,
Bk � 0 induces a quadratic Bk dependence at order gk,
while a next order Bkþ1 � 0 gives a linear dependence and
is more likely to induce a minimal departure.

Such a RSC is illustrated at first � order in Figs. 4 and 5:

increasing B2 from its MS value B2 ¼ 0, the OPT and RG

curves shown in Fig. 4 in the MS scheme move to have a
first contact between their real branches for a specific
unique B2 value, as illustrated in Fig. 5. More precisely

in Fig. 4 in theMS scheme, the (perturbative) branch of the
OPT LðgÞ solution (dashed curves) is real for g & 5:7,

while this real branch moves to larger g values for increas-
ing B2 until it reaches the real branch of the RG solution
LðgÞ in Fig. 5 at ~g� 11:06.
In practice to fulfill (ii) above one does not need to

explore the different solution curves in detail, the contact
point being simply determined analytically by the colli-
nearity of the vectors tangent to the two curves:

@

@g
RG

@

@L
OPT� @

@L
RG

@

@g
OPT � 0; (4.16)

where RGðg; L; BiÞ, OPTðg; L; BiÞ designate Eq. (2.6) and
(2.3). Thus a single RSC parameter is completely deter-
mined by the nearest contact requirement (4.16) solved
together with (2.3) and (2.6) determining the corresponding
optimized ~L and ~g values. The combined solutions of the
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1.0

0.5
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L(g,B2)

FIG. 5 (color online). Same as Fig. 4 at first � order for
B2 ’ 4:48 10�4 corresponding to the nearest from MS real con-
tact (for nf ¼ 2). Thick: RG solutions; thin dashed: OPT solu-

tions. The contact where both RG and OPT branches are real
happens at ~g ’ 11:06.
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FIG. 4 (color online). The (real parts of the) different RG and
OPT solution branches Re½ln m

� ðgÞ	 at first � order (two-loop) in

the MS scheme (for nf ¼ 2). Thick line: RG solution; thin

dashed line: OPT solutions (separating into two real branches
below ~g & 5:7).
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latter three equations for ~Bi, ~g, ~L are easily worked out
numerically with computer algebra codes [51], although a
blind numerical solving gives a plethora of spurious solu-
tions at order k � 2. Since the RG and OPT equations are
both polynomials of order kþ 1 in L, the two equations
can alternatively be solved exactly, up to the highest avail-
able �k, k � 3 (four-loop) order, such that one can easily
find their intersections numerically and cross-check which
solutions appear on the AF-compatible perturbative branch
solution of behavior (3.11). The explicit expressions of
those exact solutions are however quite involved and not
particularly illuminating, and anyway do not have a uni-
versal physical meaning, resulting from optimization for
one particular RGOPT modified perturbative expansion.
Consequently only the value of the RG invariant quantity

F= �� at their common optimized solution points, on the AF
compatible branches should be considered as physically
meaningful. The fact that we are using the exact LRGðgÞ,
LOPTðgÞ expressions at a given order �k to find real contact/
intersection solutions may be naively interpreted as incor-
porating some ‘‘nonperturbative’’ (in the sole RG mean-
ing) information, keeping in mind that those ‘‘exact’’
solutions are actually obtained from the (OPT modified)
perturbative series, with also perturbative RG acting at a
given order. This is justified by trying to use the complete
information available from the RGOPTmodified series at a
given order �k, since the latter is supposed to more effi-
ciently resum higher order RG dependence than the origi-
nal series. We can also give the respective perturbative
expansions of those solutions for illustration, only used
to identify the unique AF-compatible branches. For in-

stance at order �2 in the MS scheme they read

LRGðgÞ ¼ � 1

2b0g
þ 0:93ð0:96Þ þ 2:8ð2:3Þ10�2g

þ 6:3ð1:4Þ10�3g2 þOðg3Þ; (4.17)

LOPTðgÞ ¼ � 1

2b0g
þ 0:44ð0:51Þ � 6:5ð3:8Þ10�3g

þ 9:5ð�4:5Þ10�4g2 þOðg3Þ; (4.18)

respectively for nf ¼ 2ð3Þ. Note that these perturbative

expansions should not be confused with the standard per-

turbative expansion of ln�= �� obtained consistently e.g.
up to four-loop order from (4.13), which is different and
contains also lng terms. [The two expressions are trivially

related exactly as ln�= �� � lnm= ��ðgÞ � LðgÞ, and would
coincide only form � �� exactly, as is the case for the large
N limit in the GN model examined in Sec. III]

The above consideration favors usingBkþ1 � 0 in (4.15),
but since it is not a compelling prescription, we will more

conservatively compare the nearest-to-MS results from a
few different RSC choices, typically taking B2 � 0 or
B3 � 0 at �2 order, and similarly B3 � 0 or B4 � 0 at �3

order. For Bkþ1 � 0 at order �k we will generally find a

unique nearest-to-MS real solution, while for Bk � 0 the
quadratic dependence often gives two real solutions, but
one solution is rejected from being not continuously con-
nected with the AF branches. We have not explored all
possible combinations of RSC prescriptions, but according
to the previous arguments our criteria is to reject eventual
real solutions which would give too large Bkg

k ¼ Oð1Þ,
not perturbatively trustable and far from MS, while for
different RSC choices giving reasonably perturbative de-

parture from MS, we will include their relative differences
within our estimate of theoretical uncertainties.

Overall we find that the nearest-to-MS contact prescrip-
tion is very robust for various RSC choices, and also when
increasing the � order or varying nf. It gives thus a well-

defined and relatively simple procedure to recover real
optimized solutions while still preserving the consistency
of the OPT form (2.2) with a ¼ �0=ð2b0Þ, with compelling
RGAF properties of the solutions: the critical a ¼ �0=ð2b0Þ
is RSC independent, thus not disturbed by considering RSC.

For a given RSC the departure from MS of the optimized
solutions can be appreciated by the relative deviations in-
duced in the nonuniversal anomalous dimension coefficients

�i, i � 1. Moreover we define a ‘‘distance’’ from the MS
scheme in the RSC parameter space, simply as

�i � ln ðm=m0Þ ¼ ln ð1þ Big
iÞ: (4.19)

Their corresponding values can be tested for any real solu-
tion found, providing quantitative reliability criteria of the
optimization results.
Before switching to the concrete results for such RSC,

we note finally that an alternative prescription could be to
optimize with respect to the RSC parameters. But it is not
guaranteed to give real ~m, ~g solutions, and even if real RSC
optimization solutions may be found, they have no reasons

to be perturbatively close to the original MS scheme.
While the mass optimization is the essence of the OPT
method, and the additional coupling optimization (2.6) or
equivalently (2.7) is dictated by RG consistency, a RSC
optimization has less compelling motivations. We have
nevertheless explored this prescription for completeness,
but this RSC optimization is very unstable and not robust,
giving either no real solutions or much too large perturba-
tively unreliable results at increasing � orders.

1. Nearest-to-MS RSC: nf ¼ 2

We thus apply the nearest-to-MS real contact prescrip-
tions at successive orders �k, having performed the sub-
stitution (4.15) affecting both the nonlogarithmic and RG
perturbative coefficients9 within the original perturbative

9The substitutions (4.14) and (4.15) performed in the original
series (4.2) actually define the reciprocal RSC m0 �
mð1þP

iBig
iÞ�1, with respect to the one defined in the appen-

dix in Eq. (A10).
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series Eq. (4.2), prior to modifying it according to (2.2) and
subsequent RG and OPT optimizations. Note thus that the
mass optimization Eq. (2.3) is consistently performed in
the primed scheme, with respect to m0, while the (reduced)
RG Eq. (2.6) is unmodifed for the RSC in (4.15). As
already mentioned, we will take the full RG dependence
available consistently at the order considered, which is
supposed to incorporate maximal perturbative information.
This also guarantees that all the subleading logarithms
consistently needed at order �k are taken into account.
For comparison we will also give several results obtained
by using different approximations in the RG equation (2.6)
[as long as those approximations still fulfill the compelling
AF compatibility Eq. (3.11)] to illustrate the stability of the
optimization results. We show the optimization results at
the three successive �k, k ¼ 1, 2, 3 orders presently
available for nf ¼ 2 in Table III for two different RSC

prescriptions with the values of ~Bk, ~Bkþ1 giving the

nearest-to-MS real contact. The corresponding relative
changes in the anomalous mass dimension �i coefficients
at the relevant orders, according to Eq. (A10), are also
given. The values of ~Bi needed to reach a real solution
remain overall quite reasonable. For example at order �2 it
gives a relative change on �2 or �3 of the order of their

original MS values. The amount of the relative distance

from MS, �i in (4.19) is also reasonably perturbative, with
the best values obtained for Bkþ1 � 0 at order �k. Notice
the fact that j ~Bkþ1j 
 j ~Bkj at order �k is largely artificial
due to our normalization with g in (4.15): had we used �S

instead to normalize the RSC parameters Bi, these would
be 4� larger and approximately j ~Bkþ1j � j ~Bkj. Thus the

real quantitative criteria is the distance from MS, �i in
(4.19), and the reason for its systematically smaller value
for Bkþ1 � 0 is the systematically lower corresponding
optimized coupling ~�S.

We give the final ratio F= ��4 using the same four-loop
��4 reference scale expression (4.13) at the three successive

orders, but this is simply a normalization convention con-

venient for comparison with most other recent �� determi-

nations. In this normalization F= ��4 appears first to
substantially decrease from order � to �2, then slightly
increasing again at order �3. But the stability is more
transparent if using at order �k the normalization with

the scale ��kþ1 [taking bi ¼ 0 for i � k in (4.13)], which
is fully consistent with the RG information actually used
when performing Eq. (2.6). This is a substantial change at
two-loop order �, and minor at three loops. In this more
natural normalization the results at successive orders, in-
dicated in the second-to-last column in Table III, on aver-
age rather oscillate before stabilizing at orders �2 and �3,
which is a good empirical indication of convergence. This
behavior is more transparent for nf ¼ 3 below.

The results for the optimized mass ~m, coupling ~�S, and

corresponding optimized F= �� values appear empirically
convergent. One remarks the substantial regular decrease
of the optimized coupling ~�S to more perturbative values
as the order increases, correlated with ~L < 0 and j ~Lj
increasing, so that the RGOPTmodified sequence becomes
more and more reasonably perturbative. [The values of

~�= ��, easily obtained from ~�S using Eq. (4.13), corre-
spondingly increase to more perturbative values, ranging

from ~�= �� ’ 2:2, ’ 2:36� 2:92, ’ 3:15� 4 depending on
the RSC prescriptions, respectively, at orders � to �3.] We
insist, however, that neither the optimized coupling ~�S,
mass ~m, or scale ~� values have a direct physical meaning,
being specific results of optimizing the particular series for
F�. Only the (physical and RG-invariant) quantity

F= ��ð~�S; ~mÞ will be taken as a prediction. In particular,
the ~�S values in Table III (and other tables below) should
not be interpreted as specific �S predictions, but the per-
turbative behavior of ~�S and ~m is evidently relevant for the
stability/convergence properties of the OPT modified se-
ries. A remarkable feature indeed is the value of �2b0~g ~L
given in Table III, which at orders �2 and �3 becomes very

TABLE III. OPTþ RG solutions with nearest-to-MS real contact RSC ~Bi at successive �k orders for nf ¼ 2. The RG Eq. (2.6) is
solved including the consistent kþ 1 loop bk coefficients in (A3) at �k order. di � ð�0

i � �iÞ=�i and �i � ln ð1þ ~Bi~g
iÞ (with i ¼

2 . . . 3 depending on chosen RSC order Bi) both measure relative departures from the MS scheme. Values of other stability/
convergence criteria parameters are also given. ��kþ1 designates the natural MS invariant scale, i.e. defined at the same perturbative
kþ 1 loop order for a �k order calculation.

�k, prescriptions Nearest-to-MS RSC ~Bi
di ¼ �0

i

�i
� 1 ln ð1þ ~Bi~g

iÞ ~L0 ~�S �2b0~g ~L
0 ~m0

��kþ1

Fð ~L0;~gÞ
��kþ1

Fð~L0;~gÞ
��
nf¼2

4

�Rgkþ1

�, pure RG-1l MS (Bi � 0) 0 0 � �0

2b0
�
2 1 1

ffiffiffiffiffiffi
5

8�2

q
0.45

�, RG-2l, B2 � 0 ~B2 ¼ 4:48 10�4 d2 ¼ 0:77 5:310�2 �0:449 0.880 0.61 1.22 0.199 0:294 þ:1

�2, RG-3l, B2 � 0 ~B2 ¼ �1:24 10�3 d2 ¼ 0:6 �8:3 10�2 �0:982 0.638 0.96 0.92 0.271 0:269 �0:013

�2, RG-3l, B3 � 0 ~B3 ¼ 1:087 10�4 d3 ¼ �0:78 2:110�2 �1:531 0.460 1.08 0.63 0.214 0:213 þ0:019

�3
, s4 ¼ PA½1; 2	 ~B3 ¼ �5:72 10�4 d3 ¼ 4:11 �8:9 10�2 �1:483 0.422 0.96 0.72 0.2491 0:2491 �0:007

�3, s4 ¼ f44 ¼ 0 ~B3 ¼ �5:77 10�4 d3 ¼ 4:16 �9:10�2 �1:476 0.424 0.96 0.72 0.2495 0:2495 �0:007

�3, s4, f44, f43 ¼ 0 ~B3 ¼ �4:89 10�4 d3 ¼ 3:53 �7:6 10�2 �1:500 0.422 0.97 0.71 0.2460 0:2460 �0:006

�3, s4 ¼ PA½1; 2	 ~B4 ¼ 3:813 10�5 unknown ��4 1:37 10�2 �1:870 0.347 0.998 0.62 0.2224 0:2224 þ0:013

�3, s4, f44, f43 ¼ 0 ~B4 ¼ 3:39 10�5 unknown ��4 1:25 10�2 �1:864 0.349 1.00 0.62 0.2211 0:2211 þ0:012
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close to its ‘‘maximal convergence’’ value 1 in Eq. (3.16)
dictated by first RG order dependence. While the optimi-
zation including higher order RG and non-RG terms has no
reason to fulfill this first order pure RG result, the fact that
~g ~L departs very little from this simplest relation, argued in
Sec. III to play an essential role for the convergence, is
another empirical indication of the reliability of the results.

Finally ~m= �� remains relatively close to one in all cases, as
expected from general arguments discussed in Sec. III.
Overall from Table III the various stability criteria are
increasingly satisfied at higher orders �.

2. nf ¼ 3

Since (4.2) is known for arbitrary nf, we can calculate

similarly F0= ��
nf¼3, where F0 � F�ðmu;md;ms ! 0Þ. It

is of theoretical interest to compare at this stage the nf ¼ 2

and nf ¼ 3 results in this strict chiral limit, where the

effects from explicit quark masses are switched off by
construction in the RGOPT framework. The optimization
results for nf ¼ 3 are given in Table IV. We find a rela-

tively mild variation, as the relevant series coefficients and
corresponding optimized solutions are not strongly depen-
dent on changing from nf ¼ 2 to nf ¼ 3. But the overall

stability and convergence appears better than in the nf ¼ 2

case. The differences between different RSC at a given
order and corresponding uncertainties, as well as the dif-
ferences between �2 and �3 orders, are systematically
milder than in the nf ¼ 2 case. This appears to be due to

the systematically smaller distance to real solutions for

nf ¼ 3 in the originalMS scheme, as is clear by comparing

the different values at successive orders �k of the distance

to MS �i ¼ ln ð1þ ~Bi~g
iÞ, and deviations induced on �0

i.
Basically it originates from the nf dependence of the

respective RG and OPT polynomial L equations coeffi-
cients, such that typically at orders � and �2, the RG and

OPT curves in the MS scheme, like those illustrated for
nf ¼ 2 in Fig. 3, are closer to each other and to the real axis

for nf ¼ 3, by factors of 2 to 3. Thus the required RSC

change to reach a real contact solution between the two
curves is a more perturbative deviation, and therefore more

stable. We note that the corresponding real values F0= ��

[and similarly F= ��ðnf ¼ 2Þ] are substantially different

(systematically lower) than what one would obtain by
naively taking the real parts [15] of the complex results
in Table I, which is not quite surprising since the latter
results have relatively large imaginary parts.
As a side remark we also mention that the RGOPT

results in Tables III and IVappear more stable and realistic

than those we had obtained years ago [29,30] for F�= ��
from a basically different OPT version, briefly recalled
above in Sec. II B.10

3. Cross-checks from nf ¼ 4

As is clear from previous considerations, the proximity

of the MS AF-compatible solutions to real ones depends

substantially on nf values. Indeed these MS solutions

become real for nf ¼ 4 (at orders � and �2) as we shortly

examine now. Evidently nf ¼ 4 is of no direct physical

interest since the SUð4ÞL � SUð4ÞR chiral symmetry is not
relevant in any crude approximation to the real world, but it
indicates useful features and cross-checks concerning the
expected accuracy of the RSC prescriptions for the more
relevant nf ¼ 2, 3 values. At first order �, the direct

optimization results in MS for nf ¼ 4, for the AF compat-

ible branch, has the unique solution

~� S ’ 0:395; ~L ¼ �1:68;
F4

��ð4Þ
4

’ 0:200; (4.20)

and at order �2 there are in fact two real solutions sitting on
the (unique) AF-compatible branch:

TABLE IV. As in Table III for nf ¼ 3.

�k, prescriptions Nearest-to-MS RSC ~Bi
di ¼ �0

i

�i
� 1 ln ð1þ ~Bi~g

iÞ ~L0 ~�S �2b0~g ~L
0 ~m0

��kþ1

F0ð ~L0;~gÞ
��kþ1

F0ð~L0;~gÞ
��
nf¼3

4

�Rgkþ1

�, pure RG-1l MS (Bi � 0) 0 0 � �0

2b0
�
2 1 1

ffiffiffiffiffiffi
5

8�2

q
0.41

�, RG-2l, B2 � 0 ~B2 ¼ 2:38 10�4 d2 ¼ �0:13 2:110�2 �0:523 0.757 0.57 1.02 0.205 0:271 þ0:07

�2, RG-3l, B2 � 0 ~B2 ¼ �5:14 10�4 d2 ¼ 0:29 �2:7 10�2 �1:167 0.572 0.96 0.81 0.254 0:255 �0:003

�2, RG-3l, B3 � 0 ~B3 ¼ 3:39 10�5 d3 ¼ �0:32 8:7 10�3 �1:368 0.507 0.99 0.73 0.235 0:236 þ0:014

�3
, s4 ¼ PA½1; 2	 ~B3 ¼ �2:52 10�4 d3 ¼ 2:37 �3:7 10�2 �1:551 0.416 0.92 0.75 0.2546 0:2546 �0:003

�3, s4 ¼ f44 ¼ 0 ~B3 ¼ �2:53 10�4 d3 ¼ 2:37 �3:7 10�2 �1:552 0.416 0.92 0.75 0.2545 0:2545 �0:003

�3, s4, f43, f44 ¼ 0 ~B3 ¼ �2:12 10�4 d3 ¼ 1:99 �3:0 10�2 �1:573 0.415 0.94 0.73 0.2499 0:2499 �0:0025

�3, s4 ¼ PA½1; 2	 ~B4 ¼ 1:51 10�5 unknown ��4 7:3 10�3 �1:760 0.374 0.94 0.70 0.2409 0:2409 þ0:012

�3, s4, f43, f44 ¼ 0 ~B4 ¼ 1:25 10�5 unknown ��4 6:3 10�3 �1:753 0.377 0.95 0.69 0.2389 0:2389 þ0010

10However, it is opportune to signal an unfortunate trivial

mistake in Ref. [30] of an overall factor
ffiffiffi
2

p
for F�= ��, due to

a confusion with the normalization convention using f� �ffiffiffi
2

p
F� � 131 MeV, affecting Eqs. (3.6), (3.11), (3.12) of [30].

The corrected F�= �� values in [30] (thus reduced by 1=
ffiffiffi
2

p
)

appear in retrospect somewhat more realistic, although with
much larger uncertainties than the present results from RGOPT.

JEAN-LOÏC KNEUR AND ANDRÉ NEVEU PHYSICAL REVIEW D 88, 074025 (2013)

074025-18



~�S ’ 0:327; ~L ¼ �1:96;
F4

��ð4Þ
4

’ 0:2276;

~�S ’ 0:657; ~L ¼ �1:54;
F4

��ð4Þ
4

’ 0:2277;

(4.21)

with thus very close final results, despite the very differ-
ent respective ~�S values. The fact that there are two real
solutions on the AF branch should not be surprising, since

even if MS solutions are directly real in that case, there is
no reason that for nf ¼ 4 these solutions would coincide

with an exact contact between the OPT and RG LðgÞ
curves; rather, the two solutions correspond to two inter-
sections of those curves. At order �3, the AF-compatible

solutions become complex in the MS scheme, which can
be treated with a RSC similar to the ones for nf ¼ 2, 3 to

recover real solutions. Now one may also introduce RSC
parameters at order �2, to explore the domain, perturba-

tively close to MS, where real AF-compatible solutions

occur, varying between a contact solution and the MS
intersection solutions (4.21). These results vary between

F4= ��
ð4Þ � :26–:2276 for B2 � 2:10�4–0, and between

F4= ��
ð4Þ � :27–:2276 for B3 ��1:1310�5–0 (where note

now that the contact solutions give the real solutions the

most distant from MS). The corresponding values of the

distances to MS, �i in Eq. (4.19), are of the same order as
those for nf ¼ 3 above. This gives a quantitative cross-

check, knowing in that case the originalMS real solutions

at order �2 and controlling at will the distance from MS
with Bi � 0, of what accuracy to expect from the approxi-
mated real contact solutions.

4. Theoretical uncertainties

Coming back to the real world with nf ¼ 2, 3, we have

first studied the stability of the optimization results against
some well-defined approximations in the RG dependence
(but still preserving the AF compatibility of the solutions),
or slightly different prescriptions, for both physically rele-
vant nf ¼ 2, 3 values. More precisely, at order �2 and �3

we have solved Eq. (2.6) after truncating it by one order in
g, or neglecting the highest four-loop RG coefficient b3 at
order �3. Also, we studied the effect of neglecting the
subtraction term s3 at order �2: since sk appears at order
gk�1 it should normally be included for consistency at this
order, but strictly speaking sk is required for the RG
equation consistency at the next order gk. This is only
relevant for the RSC with ~B2 � 0, since for ~B3 � 0 at
order �2 it only modifies the Oðg2Þ nonlogarithmic terms,
so the series only depend on a linear combination 8B3 þ s3
(and similarly at order �3 when considering only B4 � 0).
Thus the optimization results taking B3 � 0 will be iden-
tical for s3 ¼ 0 or s3 � 0 at order �2, with a trivial shift of
the unphysical parameter ~B3. Indeed neglecting s3 appears
to have a minor effect (and similarly if neglecting s2 at the
lower order �).11 Overall the optimized RG solutions are
very stable with respect to such approximations on the
known RG dependence, at the level of a few percent (see
Tables V and VI, respectively, for nf ¼ 2 and nf ¼ 3).

Finally at the maximal available four-loop order �3, un-
certainties are estimated by taking the unknown s4 coeffi-
cient as either zero or estimated by a Padé approximant PA
[1,2]; the difference is almost negligible as one can see in
Tables III and IV.
Now a more delicate but important issue is how to

estimate realistic theoretical uncertainties of our method,
given the results in Tables III and IV, in order to compare

with other �� determinations (and to propagate this theo-
retical uncertainty in subsequent �S determinations). In
standard perturbative calculations such uncertainties can
be estimated from approximations on the neglected higher
orders. The very negligible difference in Tables III and IV

TABLE VI. As in Table V for nf ¼ 3.

�k, approximation RSC ~Bi
~L0 ~�S

F0ð ~L0;~gÞ
��ð3Þ
4

�, RG-2l(g3 ¼ 0) ~B2 ¼ 2:4 10�4 �0:49 0.87 0.278

�2, RG-3l, s3 ¼ 0 ~B2 ¼ �6:3 10�4 �1:09 0.60 0.263

�2, RG-3l(g5 ¼ 0) ~B2 ¼ �4:7 10�4 �1:14 0.58 0.259

�2, RG-3l(g5 ¼ 0) ~B3 ¼ 2:7 10�5 �1:29 0.53 0.246

�3, RG-3l(b3 ¼ 0) ~B3 ¼ �2:0 10�4 �1:46 0.43 0.264

�3, RG-3l(b3 ¼ 0) ~B4 � 0: no sol. X X X

TABLE V. Main optimized values as in Table III for different approximations on RG dependence (nf ¼ 2).

�k, approximation RSC ~Bi
~L0 ~�S

Fð ~L0;~gÞ
��ð2Þ
4

�, RG-2l(g3 ¼ 0) ~B2 ¼ 4:46 10�4 �0:40 1.104 0.329

�2, RG-3l, s3 ¼ 0 ~B2 ¼ �1:24 10�3 �1:001 0.631 0.267

�2, RG-3l(g5 ¼ 0) ~B2 ¼ �1:43 10�3 �1:05 0.618 0.259

�2, RG-3l(g5 ¼ 0) ~B3 ¼ 9:3 10�5 �1:452 0.480 0.221

�3, RG-3l(b3 ¼ 0) ~B3 ¼ �4:4 10�4 �1:391 0.443 0.261

�3, RG-3l(b3 ¼ 0) ~B4 ¼ 3:1 10�5 �1:774 0.363 0.231

11Note that the si, appearing very small in our chosen normal-
ization with g in (4.6), are of the same magnitude as the
corresponding nonlogarithmic coefficients fii in (4.2) at the
same orders.
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at the highest order �3 between neglecting or approximat-
ing the unknown coefficient s4 (that translates into an

uncertainty of less than 1 MeV on ��) illustrates an excel-
lent stability at order �3, but presumably largely under-
estimates the true theoretical errors of the method. On the
other hand, the differences at orders �2 or �3 from truncat-
ing the RG dependence in various manners also illustrates
stability, but incorporating these within theoretical uncer-
tainties is unjustified, since in all those cases a part of the
available consistent RG information is lost. (For example
the truncations at order �2 with results in Tables V and VI
are actually missing some pieces of the next-to-next-to-
leading logarithmic dependence, normally required at this
three-loop order.)

An advantage of using appropriate RSC to obtain real
solutions is that it naturally incorporates reasonably con-
vincing uncertainty estimates. First, the differences between
reasonably perturbative but nonequivalent RSC prescrip-
tions at different orders, as illustrated in Tables III and IV,
can be expected to give a fair estimate of the theoretical
uncertainties. Moreover, one can easily quantify their re-

spective departure from the MS scheme, from the parame-
ters di and �i given for the different prescriptions in
Tables III and IV. As motivated previously a linear RSC
with ~B3 � 0 appears more natural at �2 order, and indeed
fulfills in the best way all stability criteria as explained

above, concerning the values of ~�S, ~m= ��, �8�b0 ~�S
~L,

and a minimal perturbative departure from the original

MS scheme �i. Yet, since the relative departures from MS
for different ~Bi � 0 are not so drastically different, there is
no compelling reason to really favor one prescription. We
will thus incorporate these RSC differences within a con-
servative theoretical uncertainty estimate, but will also in-
dicate the results obtained if giving a stronger preference to

the RSC with the minimal departure from MS. All these
features are further confirmed from the nf ¼ 4 example

above, where the comparison of directly real MS with the
other real solutions obtained from perturbative RSC allows
us to quantify more precisely the associated uncertainties.
Actually, for the RSC with B3 � 0 and s4 approximated
with a PA[1,2], we did not find a (real) AF compatible
solution at order �3, which may confirm the intuitively
less robust RSC choice with Bk rather than Bkþ1 at order
�k. We remedied this by discarding in this case only the
highest order g7 in the RG Eq. (2.6), recovering real (AF
compatible) solutions given in the sixth lines in Tables III
and IV. Given the very small differencewith the other results
for s4 ¼ f44 ¼ 0 we consider this an acceptable drawback,
in order to keep results from different RSC choices to be
included within uncertainties.

Complementarily, a crude standard estimate of intrinsic
RSC uncertainties may be obtained from the higher order
remnant terms, implied for a given RSC, rooted in the
perturbative RSC definition (4.15): when truncating the
series at order gk, one has

FMSð �m; g; �fijÞ ¼ Fðm0; g; f0ijðBiÞÞ þ gkþ1rðBiÞ: (4.22)

It is straightforward to estimate such remnant terms from

the originalMS perturbative series expanded to order gkþ1

for a given RSC in (4.15) and corresponding real ~�S, ~L
values in Tables III and IV (of course ignoring the known
order g3 in (4.2), when estimating for instance the RSC

remnant at order �2). The corresponding numbers �Rgkþ1 �
gkþ1rðBiÞ= ��ðgÞ are given for illustration in the last column
in Tables III and IV, giving a rough idea of the expected
intrinsic uncertainties if different RSC prescriptions were
not available for comparison. As expected, these uncer-
tainties decrease substantially as the order increases.
Indeed at order �2 and �3 they lie well within the range
spanned by the two different RSC prescriptions, bringing
these closer (even almost agreeing for nf ¼ 3). It is also

very consistent with the true results at order �3, again
specially for nf ¼ 3. The similar remnant terms at first

order � are also given for illustration, but are not very
useful since the next order �2 is exactly known, indeed they
overestimate the true uncertainties, better quantified by the
smaller differences with the next order �2. (Incidentally, it
may seem at first counterintuitive that the smaller
j ~Bkþ1j 
 j ~Bkj at orders �k give systematically larger rem-
nant terms �Rgkþ1 . As mentioned above, the relative

Bkþ1=Bk order of magnitude is artificial, coming from a
specific normalization. Moreover since Bk is defined one
order earlier than Bkþ1, and the RSC cancellations are
exact up to order gk, those cancellations are still partly
operating at the next order gkþ1 for Bk but not as well for
Bkþ1.) It could be tempting to consider the results corrected

by those remnant terms as being closer toMS (as indeed is

the case for nf ¼ 4 when comparing to the true MS real

solutions). But it is more reasonable to take these as only a
crude indication of a theoretical uncertainty. Thus if more
conservatively not giving a particular prior to any one of
the RSC prescriptions, we can take our results as four
different uniformly distributed available predictions at or-
der �2 (and six at order �3), which allows a reasonable
averaging procedure. Accordingly we keep also conserva-
tively the full range spanned by the two different RSC (thus
with unsymmetrical uncertainties) at a given order for the

final determination of F= ��. For nf ¼ 2 such a flat averag-

ing gives

F

��ð2Þ
4

ð�2Þ ¼ 0:243þ:026
�:030;

F

��ð2Þ
4

ð�3Þ ¼ 0:237þ:012
�:015:

(4.23)

Finally we can take the average of the �2 and �3 results in
(4.23), combining linearly their uncertainties, thus includ-
ing within the theoretical uncertainties the differences
��ð�3Þ � ��ð�2Þ. This is perhaps overconservative, as one
may rather naturally take the presumably more precise
result at the maximal available order �3. But it is worth
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keeping in mind that the order �3 results partly rely on
some approximations on the unknown coefficient s4, even
if this appears very stable.

Similarly for nf ¼ 3 our theoretical uncertainty is taken

as the combination of the differences between different
RSC, their intrinsic uncertainties, and also the orders �2

and �3 difference. A flat average over the different deter-
minations gives

F0

��ð3Þ
4

ð�2Þ ¼ 0:248þ:007
�:012;

F0

��ð3Þ
4

ð�3Þ ¼ 0:251þ:004
�:010;

(4.24)

where like for nf ¼ 2, the uncertainties conservatively

span the full range of values from the different RSC
prescriptions, and the central value is averaging over four
available values at order �2 and six values at order �3. The
resulting uncertainties are seen to be substantially milder
than for nf ¼ 2, as a direct consequence of the much more

stable different results specially at order �2.
Now a less conservative but logical interpretation of our

RSC prescriptions is to give a stronger ‘‘theoretical prior’’

to the RSC prescriptions giving the minimal nearest-to-MS
scheme at a given order, being presumably the most per-
turbative and stable deviation. An extreme such interpre-
tation simply favors the lower limits in (4.23) and (4.24),

which systematically give the minimal distance toMS. But
perhaps a compromise to put such a prior while keeping a
realistic uncertainty estimate is rather to use a weighted
average over the different determinations, with (linear)
weights j�ij�1 simply given by the inverse of the well-

defined distances to the MS �i for the different RSC
prescriptions given in Tables III and IV. This gives instead
of (4.23)

F

��ð2Þ
4

ð�2Þ ¼ 0:231þ:038
�:018;

F

��ð2Þ
4

ð�3Þ ¼ 0:232þ:017
�:010;

(4.25)

and instead of (4.24)

F0

��ð3Þ
4

ð�2Þ ¼ 0:246þ:009
�:010;

F0

��ð3Þ
4

ð�3Þ ¼ 0:249þ:006
�:008;

(4.26)

where we conservatively kept the same upper and lower
limits, from the unweighted uniform ranges. As one can
see these weighted averages tend to give slightly lower

central values of F= �� and F0= ��, making the errors less
symmetrical for nf ¼ 2 but more symmetrical for nf ¼ 3.

For nf ¼ 2 it also gives a substantially better agreement

between orders �2 and �3.
Examining the results in Tables III and IV it is clear that

the recently calculated four-loop results for the basic per-
turbative series [41,43] in (4.2), that necessitated years of
developments, is very important to establish empirical

stability and convergence of the RGOPT procedure in
this concrete example. Now, a useful investigation is to

examine to what extent the final results (especially for ��ð3Þ
and �S) crucially depend on such an involved high order
calculation. To this purpose, we have performed another
approximation, applying the RGOPT at �3 order but in-
cluding solely the three-loop information, i.e. neglecting
all genuine four-loop coefficients f44, f43, and s4 in
Eq. (4.2) (the order g3 coefficients f4i for i � 2 being
entirely determined from lower three-loop results from
RG properties). The corresponding results are indicated
in Tables III and IV. For both nf values one can see that

neglecting the genuine four-loop contributions has a very

moderate effect, inducing differences on �� of 1%–2% at
most. Though this may be relevant for very precise �S

determinations, it further illustrates the very good stability
reached at three-loop order, and is a welcome feature in
view of possible applications in other models with less
elaborate higher order calculations. It is also worth stress-
ing that already at first nontrivial � order, the results in
Tables III and IVare quite realistic. Especially for nf ¼ 3 it

is about less than 10% from the average of the orders �2

and �3 three- and four-loop results. The calculation at this
� order entirely relies on a couple of two-loop graphs as the
one illustrated in Fig. 1, which is a straightforward calcu-
lation. As argued in Sec. III and supported by exact results
in other models, we are confident that this good conver-
gence already at lowest orders is not an accidental feature
of the relevant series for F�, but a more generic property of
RGOPT.
All results in Tables III and IV are actually to be under-

stood in the strict chiral limit mu, md, ms ! 0, for F= ��ð2Þ

and F0= ��
ð3Þ. It is of interest to compare at this stage the

values obtained for nf ¼ 3 and nf ¼ 2, before switching

on the effects from explicit chiral symmetry breaking from
nonzero quark masses which are evidently more important
for nf ¼ 3. Then the difference F� F0 only originates

from the nf dependence in the RG and perturbative coef-

ficients fij, si in Eqs. (4.2) and (4.6), and clearly F ¼ F0 in

the large Nc limit. Thus this difference is expected to be
moderate: indeed for the pure RG one-loop approximation

(4.9) gives simply F0=F ¼ e��0=2ð1=b0ð3Þ�1=b0ð2ÞÞ ’ 0:97. At
higher orders, comparing Tables IV and III at the same
order �k and for the same RSC, the trend is not very clear,
being the result of a rather involved balance between the nf
dependence itself and the differences it induces in the
relevant ~Bi, ~L, ~�S values. Note that if the optimized cou-

plings were identical for both nf, the ratio F= �� would be

increasing with nf (for fixed F), since �� in (4.13) is smaller

for nf ¼ 3 than for nf ¼ 2 for fixed coupling within the

relevant range �S & 0:88, with a larger increase for
smaller couplings. This effect is even more pronounced if
~�Sðnf ¼ 3Þ< ~�Sðnf ¼ 2Þ for the same prescription at a

given order. But this ��ðnfÞ behavior can be largely
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compensated by the behavior of F0=Fð ~Bi; ~L; ~�SÞ: for

example at order �2 and for B2 � 0, ��ð2Þ= ��ð3Þ � 1:11

but F0=F� 0:85, so that ðF0= ��
ð3ÞÞ=ðF= ��ð2ÞÞ ¼

0:255=0:269� 0:95. Nevertheless the nf ¼ 2, 3 differ-

ences appear to stabilize at the highest order �3, with

F0=F & 1 and ��ð2Þ= ��ð3Þ * 1 but closer to one in average
over the two different RSC prescriptions. Taking the final
average values in (4.23) and (4.24), there is a slight ten-

dency that F0= ��
ð3Þ is smaller than F= ��ð2Þ by a few percent,

but this is not significant due to the relatively large F= ��ð2Þ
RSC uncertainties. Similarly, performing as above a flat
average over the different RSC results with no particular
prior, we obtain F0=F ’ 0:99� 0:09, thus with a relatively
large RSC uncertainty mostly due to the one affecting F.

E. Subtracting explicit chiral breaking

Now, to obtain a more precise determination of ��, while
combining all the relevant results above with theoretical
uncertainties, we must consistently subtract out the explicit
chiral symmetry breaking effects from mu, md, ms � 0. In
principle it should be possible to incorporate those effects
within the variational framework, but it would be quite
involved, in particular the simplicity of having only poly-
nomial equations in L to solve will be lost, so that only
numerical solutions could be handled. Thus for the time
being we will rather rely on other more precisely known
results. For the nf ¼ 2 case, we will take the rather con-

servative most recent combination of different lattice
results [52]:

F�

F
� 1:073� 0:015; (4.27)

although more precise results have been obtained by next-
to-leading order ChPT with dispersive analysis: F�=F ¼
1:0719� 0:0052 [53]. This non-negligible �7% shift in

extracting consistent �� values from Eq. (4.27) is taken into

account in the final ��ðnf¼2Þ numerical values given below,
with propagation of the uncertainty in (4.27). We obtain

��
nf¼2

4 ’ 359þ38
�26 � 5 MeV; (4.28)

where the central value and first errors correspond to the
flat averaging discussed above with combined conservative
theoretical uncertainties, taking values spanned by the
different RSC, and the averaging over orders �2 and �3

results in Table III. The second uncertainty comes directly
from the one in Eq. (4.27). This additionnal �1:5% uncer-
tainty is smaller, in the SUð2Þ case, than our conservative
theoretical error. In any case it is legitimate to separate
clearly the two sources of uncertainties in the final results,
as they are unrelated, and improvements in the latter may
be foreseen in the future. Note that if using less conserva-
tively only the results at the maximal available order �3 in

(4.23), one obtains instead of (4.28): ��
nf¼2

4 ’ 363þ25
�17 �

5 MeV.

For nf ¼ 3, the effect of explicit chiral symmetry break-

ing due to the strange quark mass ms is clearly much more
important than in the nf ¼ 2 case, moreover with still

relatively large uncertainties, and discrepancies between
different lattice results [52]. We take the recent available
MILC collaboration result in [54], which includes ChPT
fits at the next-to-next-to leading (NNLO) order [55]. The
equivalent of the relation (4.27) for SUð3Þ reads

F�

F0
� 1:172ð3Þð43Þ; (4.29)

where the first uncertainty is statistical and the last one is

systematical. Our �� result for nf ¼ 3 is thus indirectly

affected by those uncertainties, but this is partly compen-

sated by the overall much more precise and stable F0= ��
ð3Þ

in (4.24) than the corresponding nf ¼ 2 case in (4.23).

From (4.29) and (4.24), we derive

��
nf¼3

4 ’ 317þ14�7 � 13 MeV; (4.30)

where the first error is our combined conservative theoreti-
cal uncertainty as explained, and the second comes from
the explicit chiral breaking uncertainty Eq. (4.29). Again if
rather using only the results at the maximal available order

�3 in (4.24), one obtains instead of (4.30): ��
nf¼3

4 ’
315þ13

�5 � 13 MeV. As one can see, even if ��
nf¼2

4 is af-

fected by relatively larger uncertainties, there is a clear

tendency that ��nf¼2 * ��nf¼3. As discussed above, in the

strict chiral limit there is a slight tendency that F0= ��
ð3Þ is

smaller than F= ��ð2Þ by a few percent, but not quite sig-
nificantly within theoretical uncertainties, so the effect on
�� appears mainly due to the explicit breaking in (4.27) and
(4.29), reducing F0 with respect to F�.

At this stage one may compare our results for ��nf¼2;3

with different classes of lattice calculations based on very
different methods, specially for the nf ¼ 2 case not usually

accessible from standard perturbative extrapolation. First
the approach of the Schrödinger functional scheme [7]

gave ��nf¼2 ¼ 245� 16ðstatÞ � 16ðsystÞ MeV. But this
result has been more recently reappraised (mainly due to
a substantial change [56] in the static potential parameter

r0 setting the overall physical scales) to ��nf¼2 ¼ 310� 30

[8]. Next for Wilson fermions [9], ��nf¼2 ¼ 261� 17�
26 MeV. Another approach using twisted fermions is
based on the determination of the ghost-gluon coupling
and also includes nonperturbative power corrections in the

analysis [10]: the result is ��nf¼2 ¼ 330� 23�
22�33 MeV. Finally another recent independent calcula-

tion relies on the evaluation of the staticQQ potential, with

the result [11]: ��nf¼2 ¼ 315� 30. The remaining differ-
ences between those different lattice results may be partly
related to different dynamical quark mass values in differ-
ent lattice calculations, and also different chiral extrapola-
tion methods (see e.g. the discussion in [10]). Comparing
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those results with (4.28), our determination appears quite
compatible, within theoretical uncertainties, particularly
with the results of [10], although our central value appears
somewhat higher.

Concerning ��nf¼3, most lattice studies rather present
results directly in terms of �SðmZÞ after perturbative evo-
lution (see for a recent review [13]) that are thus more
appropriately to be compared with our �SðmZÞ determina-

tion below, obtained from ��nf¼3 in (4.30). For instance the
HPQCD Collaboration obtained [3] �SðmZÞ ¼ 0:118�
0:0008ðsystÞ. Apart from other already mentioned lattice
determinations entering the latest [1] world average (1.2),

there is a more recent result for nf ¼ 3 from the static QQ

potential [57]: �Sð1:5 GeVÞ ¼ 0:326� 0:019, resulting in
�SðmZÞ ’ 0:1156� 0:002. Finally there are also recent

lattice results from the ETM Collaboration for ��nf¼4 in-
cluding dynamical charm quark [12], which tend to give a
somewhat higher �SðmZÞ.

V. EXTRAPOLATING �Sð�Þ AT
HIGHER SCALES

To extract �Sð�Þ at perturbative scales one can now

follow a standard procedure: taking as input ��ð3Þ for
nf ¼ 3 (4.30), one can calculate �Sð�Þ by (perturbatively)
inverting Eq. (4.13), at the next (charm quark) threshold
scale � ’ mc, where one performs the matching using
four-loop (or three-loop for comparison) perturbative rela-
tions [2] to determine �Sð��mcÞ and corresponding
��nf¼4. Then we proceed similarly up to �SðmZÞ, having
crossed meanwhile the b-quark mass threshold. From our
��nf¼3 result we can also provide a determination of
�Sðm�Þ, to compare with other independent determinations
[1,58–60] extracted from the hadronic �-lepton decays,
which have been the subject of intense experimental and
theoretical activities over the recent years.

As far as we are aware, there is no perturbatively safe

way of exploiting the ��ð2Þ determination to link it to an �S

determination, because of the intrinsically nonperturbative
threshold effects from the strange quark mass ms. In par-
ticular, the matching relations (5.1) are only valid at scales
not too far from heavier quark mass thresholds �mð�Þ such
that both � � �� and �mð�Þ � �� hold. In any cases our
��ð3Þ results are more precise than the ��ð2Þ ones, for reasons
explained above, which is welcome for the determination
of �S.

Explicitly the four-loop matching relations [2], at the
same scale �, read

�
nfþ1

S ð�Þ ¼ �
nf
S ð�Þ

�
1� 11

72
a2s þ ð�0:972057

þ :0846515nfÞa3s þ ð�5:10032

þ 1:00993nf þ :0219784n2fÞa4s
�

(5.1)

with as � �
nf
S =�. We use for the relevant input the most

recent data [1]:

�m cð �mcÞ ¼ 1:275� 0:025; �mbð �mbÞ ¼ 4:18� 0:03;

(5.2)

where masses are in GeV, andm� ¼ 1:7768,mZ ¼ 91:187.
We thus obtain finally

�� SðmZÞ ¼ 0:1174þ:0010
�:0005 � :0010� :0005evol (5.3)

and

��
nf¼3

S ðm�Þ ¼ 0:308þ:007
�:004 � :007� :002evol; (5.4)

where again the first uncertainties originate from the
RGOPT theoretical uncertainties, as above, while the sec-
ond originate from the one in F�=F0 in Eq. (4.29). The last
evolution uncertainty in (5.3) comes for the remaining
matching scale uncertainties, principally around c-quark
mass threshold, and perturbative RG evolution truncation,
somewhat similar to typical such estimates when evolving

from ��
nf¼3

S ðm�Þ to ��SðmZÞ [1,2,58].
We remark that our determination of ��SðmZÞ is rather

consistent with the most recent world average in (1.2),
although our central value, relying on (4.29), is somewhat
lower. If considering the less conservative interpretation of
our RSC prescriptions as discussed above, giving a

stronger prior to the really minimal nearest-to-MS RSC
prescription, the agreement with the world average is
improved. One may also compare (5.4) with the average
of various different determinations, as performed in [1]:

��
nf¼3

S ðm�Þ ¼ 0:330� 0:014, corresponding to ��SðmZÞ ¼
0:1197� 0:0016, although some recent studies with an
improved treatment of nonperturbative effects find slightly
lower values [61] (see also the discussions and various
approaches in [59,60,62]).
However, one should keep in mind that our central ��S

value sensitively depends on the F�=F0 value (4.29), rely-
ing on the analysis in [54] with NNLO ChPT [55] fits, and
somewhat higher or lower values have been obtained by
other lattice collaborations [52]. As discussed e.g. in [52],
the overall present status of lattice results for parameters
related to the chiral SUð3Þ limit is not quite clear due to
difficulties in extrapolating to the exact chiral limit, with a
hinted slower convergence of SUð3Þ ChPT. Indeed there
can be important cancellations between the NLO and
NNLO ChPT contributions [55,63] to F�=F0. Also it has
been theoretically advocated [64] and more recently rean-
alyzed in [65] that F0 could be substantially more sup-
pressed than F due to the special role of the strange quark
mass in the SUð3Þ ChPT case. Thus if F�=F0 happens to be
somewhat larger (smaller) with better accuracy in the
future, clearly our �S central value in (5.3) will be corre-
spondingly smaller (larger) (approximately by�� 0:0004
for a shift of �0:02 in F�=F0).

�S FROM F� AND RENORMALIZATION GROUP . . . PHYSICAL REVIEW D 88, 074025 (2013)

074025-23



Now since our calculation is basically a determination of

F0= ��, one may use it alternatively, taking the world aver-
age �S value in (1.2) as input for the RGOPT predictions
(4.24) to determine F�=F0. This gives

F�

F0
’ 1:12þ:05

�:025jth;rgopt � :03�w:a:
S

� :02evol; (5.5)

with the uncertainties from different origins separately
shown (the first upper bound corresponding to the really

minimal nearest-to-MS RSC prescription).

VI. CONCLUSIONS AND PROSPECTS

In this paper we have developed a rather straightforward
implementation of RG properties within a variant of the
variationally optimized perturbation, initiated in [15,18],
using only perturbative information at the first few orders.
The role of RG in the OPT for renormalizable models was
hinted to long ago [23,29,30] but restricted to the linear
interpolation a ¼ 1 case in (2.2), and in a previously not
very transparent formalism difficult to handle and to
generalize.

Here we summarize the main results and properties in
our present approach:

(i) First, a crucial difference with most previous OPT
considerations is that the compelling AF compatibil-
ity requirement (3.11) with the perturbatively modi-
fied RG properties generically and uniquely fix the
variational mass interpolation (2.2) in terms of the
universal, first order RG coefficients: a � �0=ð2b0Þ.
This result is valid at arbitrary orders, since higher
RG orders and nonlogarithmic coefficients are all
subleading as far as the AF behavior is concerned.

(ii) Furthermore this is demonstrated to improve dras-
tically the convergence and stability of the method,
as supported by exact results in the GN model, and
more generically by exact results in the pure first
RG order approximation for an arbitrary AF model,
as shown in Sec. III C, with maximal convergence in
this case.

(iii) For a general perturbative series at higher orders,
due to the dependence on higher RG order and non-
RG coefficients, the optimized RG and OPT solu-
tions depart from the generic first RG order ones
(3.16) and (3.17), but due to the previous properties
both the RG and OPT equations have a unique AF-
compatible branch solution. Up to the highest avail-
able (four-loop) order for F�, the solutions and
their properties are fully analytically controllable,
from polynomial equations up to fourth order, and
their common solutions do not depart much from
the first RG order relation (3.16), with the welcome
property that the optimized coupling ~�S appears
empirically to rapidly stabilize towards more
‘‘perturbative’’ values. However those solutions
are nonreal in general, resulting from solving

exactly polynomial equations of order � 2 in L �
lnm=� with general real coefficients. For the rele-

vant perturbative series for F�, and in the MS
scheme, this happens already at first order � (where
the relevant equations are quadratic in L, but it will
also happen for other quantities in any other
scheme or model at increasing orders).

(iv) To recover real physical optimized solutions, we
thus proposed a simple cure, by considering pertur-
bative renormalization scheme changes, at the price
of introducing more parameters, however fixed by

the well-defined criteria (4.16) of the nearest-to-MS
RSC. For the obtained solutions the discrepancies

from the original MS scheme are seen to decrease
consistently at increasing orders, as expected from
general RSC arguments, and provide also a well-
defined measure of the theoretical uncertainties of
the method.

(v) In practice our F�= �� calculation at first � order
gives already very reasonable approximations,
about 10% from realistic determinations from other
nonperturbative methods, principally lattice ones.
At second and third orders our results exhibit a
remarkable stability, and the RGOPT accuracy ob-
tained, with conservative uncertainty estimates,
gives a new independent theoretical �S determina-
tion well comparable to the most precise recent
single determinations of �S, including some very
recent lattice determinations with fully dynamical
quarks. We expect this not to be a mere accidental
feature of the relevant F� series, but a more generic
property rooted in the remarkable RG resummation
shortcuts operated by the RGOPT.

The mostly used linear version of the OPT, with a ¼ 1 in
(2.2), often gives at the first orders empirically reasonable
nonperturbative approximations beyond the large N or
mean field approximations in renormalizable models, but
due to technical limitations most of those studies were
restricted until now to the first or second OPT orders in
realistic D> 2 models, specially when including finite
temperature effects.12 We have seen that for the GN model
the linear OPT is recovered consistently strictly in the
large-N limit, and we suspect this may be the case for a
large class of models with a OðNÞ or related symmetry,
although we have not checked this systematically [it
amounts simply to check the values of �0=ð2b0Þ or its
equivalent for large N, whenever it is defined]. [Note
however that in QCD �0=ð2b0Þ � 1 for large Nc:
�0=ð2b0Þ ! 9ðN2

c � 1Þ=ð22N2
cÞ ! 9=22 for Nc ! 1, but

12An exception is the so-called ‘‘screened perturbation theory’’
or ‘‘hard thermal loop resummation’’ [66], closely related to the
OPT basic idea [21] in the thermal QCD context, where calcu-
lations up to three loops have been performed [67], although
mainly in the high temperature expansion approximation.
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the large-Nc limit in QCD involving planar graphs is
evidently more involved than for simpler OðNÞ models;
an investigation in the OPT context is beyond our present
scope.] Beyond the large-N approximation, and for models
having both nontrivial mass and coupling renormaliza-
tions, our results strongly indicate that the linear OPT is
expected to converge very slowly at higher orders, or even
not to converge, for certain quantities related to composite
operators with extra renormalization, like the series used
here for F� typically.

A more general and deeper unsolved question is whether
the OPT or RGOPT version really ultimately converges at
higher orders in a renormalizable theory. It appears un-
likely that the relatively simple trick of reshuffling the
interaction terms with a variational mass could really
circumvent the well-established fact that in higher dimen-
sional renormalizable models the perturbative series are
very likely only asymptotic, due to the factorially divergent
perturbative coefficients at high orders with an associated
essential singularity at the origin in the complex coupling
plane [16,17]. While the convergence of our prescription is
generic and maximally fast for the pure RG dependence (as
explicitly shown in Sec. III C), it is also known that the
higher order perturbative singularities in an AF theory like
QCD, the infrared renormalons, are actually originating
from the non-RG dependence of the perturbative series at
high orders [17]. The (linear) � expansion for a ¼ 1 was
shown [28] to damp those renormalons at intermediately
large orders, but the factorial growth of coefficients
appears to ultimately overcompensate this behavior.
However, in principle asymptotic series have a minimal
truncation error at some order, difficult to determine in
general except for very simple models. What we can con-
jecture here is that even if probably not ultimately con-
vergent, the RGOPT AF-compatible version may be such
that the optimal truncation order is relatively low, as is
empirically supported by our results for the relevant F�

series, where the stability clearly happens at order �2 to �3.
A more general investigation of this conjecture is evidently
beyond the scope of the present work and left for the future.

Leaving aside those general considerations, one can
have more pragmatic prospects, first by investigating fur-
ther the physics of dynamical chiral symmetry breaking in
QCD. Our next logical step will be to estimate from our
RGOPT version the other main chiral symmetry breaking
order parameter, the quark condensate. We also plan to
estimate some of the low-energy constants of ChPT [14], at
least in a first stage the few ones which are directly
accessible in the exact chiral limit. To go further our
approach needs to implement consistently the explicit
chiral symmetry breaking terms from the u, d, s quark
masses (which would allow us, in particular, to address the
evaluation of F�=F, F�=F0 directly in terms of the light
quark masses within the RGOPT, to be compared with
ChPT predictions [14,55]). Incorporating those effects

within the OPT framework is formally straightforward,
but the whole RGOPT procedure will become more in-
volved, typically the simple form of the RG and OPT
equations (2.6) and (2.3) polynomial in L will be lost, so
that only purely numerical solutions may be available.

APPENDIX A: RG AND PERTURBATIVE
EXPRESSIONS

1. RG conventions and expressions

Our normalization convention for the beta function and
anomalous mass dimension entering the standard RG op-
erator in Eq. (2.5) is

�ðgÞ � dg

d ln�
¼ �2g2

X
i�0

big
i; (A1)

�mðgÞ � � d lnm

d ln�
¼ g

X
i�0

�ig
i; (A2)

where for QCD g � 4��S. The QCD bi and �i coeffi-

cients, known up to four loops [68], read in theMS scheme
in our conventions

ð16�2Þb0¼ 11�2

3
nf;

ð16�2Þ2b1¼ 102�38

3
nf;

ð16�2Þ3b2¼ 2857

2
�5033

18
nfþ325

54
n2f;

ð16�2Þ4b3¼
�
149753

6
þ3564z3

�
�
�
1078361

162
þ6508

27
z3

�
nf

þ
�
50065

162
þ6472

81
z3

�
n2fþ

1093

729
n3f; (A3)

and

�0¼ 1

2�2
;

ð16�2Þ2�1¼404

3
�40

9
nf;

ð16�2Þ3�2¼2

�
1249�

�
160

3
z3þ2216

27

�
nf�140

81
n2f

�
;

ð16�2Þ4�3¼2

�
4603055

162
þ135680

27
z3�8800z5

þ
�
�91723

27
�34192

9
z3þ880z4þ18400

9
z5

�
nf

þ
�
5242

243
þ800

9
z3�160

3
z4

�
n2f

þ
�
�332

243
þ64

27
z3

�
n3f

�
; (A4)

where zi � 
ðiÞ are the Riemann Zeta functions.
For a general perturbative change of renormalization

scheme, according to
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g ! g0 � fgðgÞ ¼ gð1þ A1gþ A2g
2 þ � � �Þ; (A5)

m ! m0 � mfmðgÞ ¼ mð1þ B1gþ B2g
2 þ � � �Þ; (A6)

the expressions of the RG coefficients in the primed
scheme in terms of the original scheme are easily
obtained at arbitrary orders from RG properties, resulting
formally in

�0ðg0Þ ¼ �ðgÞ
�
1þ g

@

@g

�
fgðgÞ; (A7)

�0
mðg0Þ ¼ �mðgÞ � �ðgÞ @

@g
ln fmðgÞ: (A8)

As is well known b0, b1, and �0 are scheme invariant, and
for the first few higher order coefficients, explicitly one has

b02 ¼ b2 � A1b1 þ ðA2 � A2
1Þb0;

b03 ¼ b3 � 2A1b2 þ A2
1b1 þ ð4A3

1 � 6A1A2 þ 2A3Þb0;
(A9)

�0
1 ¼ �1 þ 2b0B1 � �0A1;

�0
2 ¼ �2 þ 2B1b1 þ 2ð2B2 � B2

1Þb0 � �0A2 � 2A1�
0
1;

�0
3 ¼ �3 � A3�0 � ðA2

1 þ 2A2Þ�0
1 � 3A1�

0
2

þ 2b0ðB3
1 � 3B1B2 þ 3B3Þ � 2b1ðB2

1 � 2B2Þ
þ 2b2B1; (A10)

and so on. A well-known consequence [50] is that for an

AF theory, �� to any order is only affected by the first order
term in (A5):

�0 � �� exp

�
A1

2b0

�
: (A11)

2. Perturbative F� and related expressions

The original standard perturbative series for F� up to �3
S

four-loop order Eq. (4.2) may be written as

F2
0ðpertÞ ¼ 3

m2

2�2

�
divð�; �SÞ þ f10Lþ f11

þ �S

4�
ðf20L2 þ f21Lþ f22Þ

þ
�
�S

4�

�
2ðf30L3 þ f31L

2 þ f32Lþ f33Þ

þ
�
�S

4�

�
3ðf40L4 þ f41L

3 þ f42L
2

þ f43Lþ f44Þ
�
; (A12)

where L � ln m
� andm is theMS scheme running mass. The

coefficients of the L terms and of the nonlogarithmic terms
at successive �S order, with explicit nf dependence enter-

ing at�2
S three-loop order are given in this normalization as

f10¼�1; f11¼0; f20¼8; f21¼4

3
; f22¼1

6
;

(A13)

f30 ¼ � 304

3
þ 32

9
nf;

f31 ¼ 136

3
� 32

9
nf;

f32 ¼ 8z3 þ 149

9
þ 10

9
nf;

f33 ¼ � 53

3
� 4

3
B4 þ 6z4 þ 80

3
z3

� nf

�
14

9
z3 � 25

9

�
;

(A14)

f40¼�16

27
ð57�2nfÞð45�2nfÞ; f41¼32

81
ð3438�441nfþ8n2fÞ;

f42¼ 4

81
ð�4977þ4860z3þ2nfð897þ20nfþ972z3ÞÞ;

f43¼ 1

1458
ðð20736a4þ864ln22ðln22��2ÞÞð�45þ2nfÞ

þ4nfð47181�2345nf�198�4þ54ð�507þ38nfÞz3Þþ9ð�98839þ900�4þ95304z3þ28080z5ÞÞ;

f44¼�25:62696915�8:147150256nf�0:08246295965n2f
4

;

(A15)

with B4 ¼ 16a4 þ 2
3 ln

22ðln 22� �2Þ � 13
180�

4 ��1:762800087, a4 ¼ Li4ð1=2Þ. Note that apart from the four-loop non-

logarithmic terms f44 known only in numerical (but accurate) form, all other coefficients have been calculated fully
analytically for arbitrary colorsNc, nh massive and nl massless quarks [41,43]. (Here we took consistently nh � nf, nl ¼ 0

since the mass dependence of the nf-degenerate lightest quarks plays a determinant role in the optimization.) For

completeness we also give explicitly the divergent contribution divð�; �SÞ remaining after mass and coupling renormal-

ization in the MS scheme [41,46]. Using dimensional regularization with D � 4� � in our normalization, it reads
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div ð�; �SÞ ¼ 1

�
þ �S

4�

�
� 8

�2
þ 10

3�

�
þ

�
�S

4�

�
2
��24z3 þ 910

3 � 16nf

9�
þ�132þ 40

9 nf

�2
� f30

�3

�
þ

�
�S

4�

�
3
�
X3

�
þ � � �

�
;

(A16)

where the most relevant Oð�3
SÞ simple pole ��1 term is

X3 ¼ 144737

324
þ �4

3
� 9770

27
z3 þ 260

3
z5 þ

nfð92595� 29210nf � 1188�4 þ 1620ð79þ 2nfÞz3Þ
7290

(A17)

(the higher ��p powers being as usual determined from
lowest orders from RG properties).

To determine the subtraction terms in Eq. (4.3), the
simplest way, as explained in the main text, is to find the
remnant of the action of the homogeneous RG operator
(2.5) on the finite part of (A12), and to match it order by
order with the RG acting on (4.3) to determine the coef-
ficients si. Using RG properties (on those finite expres-
sions) as usual at a given order gk the fk;k�1 coefficient of

the lnm term and the nonlogarithmic fkk coefficient have
to be calculated, while other leading and subleading loga-
rithmic coefficients fk;0; . . . ; fk;k�2 are entirely determined

by lower orders. More precisely, rewriting the finite part of
Eq. (A12) in the more convenient normalization:

F2
� � m2

X3
k¼0

gk
Xkþ1

p¼0

akþ1;p

�
ln

�
m

�

��
kþ1�p

(A18)

with straightforward connection between the akp and fkp
coefficients of (A12) (a10 ¼ �3=ð2�2Þ ¼ 3f10=ð2�2Þ,
etc.), one obtains the following useful relations:

a20 ¼ ��0a10;

a21 ¼
�
�1 � b1
�0 � b0

�
a10 � �0ða10 þ 2a11Þ:

(A19)

a30 ¼ � 2

3
ð�0 þ b0Þa20;

a31 ¼ ��1a10 � �0a20 � ðb0 þ �0Þa21;
a32 ¼

�
�2 � b2
�0 � b0

�
a10 � �1ða10 þ 2a11Þ

� �0a21 � 2ðb0 þ �0Þa22:

(A20)

a40¼�ðb0þ�0=2Þa30;
a41¼�2

3
ðb1þ�1Þa20��0a30�2

3
ð2b0þ�0Þa31;

a42¼��2a10��1a20�ðb1þ�1Þa21��0a31

�ð2b0þ�0Þa32;
a43¼

�
�3�b3
�0�b0

�
a10��2a10�2�2a11��1a21

�2ðb1þ�1Þa22��0a32�2ð2b0þ�0Þa33:

(A21)

Including the subtraction terms si, i � 1 as defined in
Eq. (4.3) simply changes the nonlogarithmic coefficients
in those relations by aii ! aii � si. The si can be ex-
pressed in terms of RG coefficients, but beyond the first
two terms it is not particularly transparent. They read
explicitly:

s0 ¼ 3

4�2ðb0 � �0Þ
;

s1 ¼ 3

�
� 5

24�2
þ 1

2

�1 � b1
�0 � b0

�
;

s2 ¼
3ð�26259þ 123nf þ 619=3n2f þ 144ð9þ 38nfÞz3Þ

384�4ð57� 2nfÞð9� 2nfÞ
;

s3 ¼ �3

4976640�6ð57� 2nfÞð45� 2nfÞð9� 2nfÞ
�

�
810ð23404073þ 6156�4 þ 8192244z3 � 25485840z5Þ

þ 216nfð�12485305þ 95634�4 � 31990245z3 þ 25617600z5Þ � 27n2fð148085þ 61728�4 � 17165440z3

þ 6249600z5Þ þ 6n3fð817165þ 5472�4 � 1685520z3Þ � 146300n4f

�
: (A22)

Alternatively a slightly more involved procedure to determine the si is to start from the complete divergent expression
(A12), evaluated initially from RG invariant bare quantities. One then adds to it an explicitly RG invariant perturbative
series, constructed in terms of the bare mass and coupling m0, g0, as
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F2
�;0ðpertÞ �

m2
0

g0

X
i�0

hi�
i � F2

�ðpertÞjfinite �m2

g
HðgÞ:

(A23)

One determines the hi perturbatively by canceling the
remaining divergences [23], in such a way that the result-
ing finite contribution, expressed in terms of renormalized
mass m0 ¼ Zmm and coupling g0 ¼ Zgg�

�, obeys the

homogenous RG equation (2.4). The Zg, Zm counterterms

in the MS scheme are easily related to (A1) and (A2) as
usual. In fact using RG properties, the subtraction defined
in Eq. (4.3) is determined solely by the 1=� coefficient in

Eq. (A12) [30], by solving perturbatively the following
equation:

�
n�mðgÞ þ �ðgÞ

�
1

g
� @

@g

��
HðgÞ ¼ �g

@

@g

�
g

m2
c1ðgÞ

�

(A24)

in our normalization, where n ¼ 2 is the relevant dimen-

sion for F2
�, HðgÞ is defined in Eqs. (4.3) and (A23), and

c1ðgÞ is the coefficient of 1=� in Eqs. (A12) and (A16). The
two procedures are strictly equivalent, with some simple
correspondences between the hi in (A23) and si in (A22).
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