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The drag force and diffusion coefficients for a D meson are calculated in hot dense matter composed of

light mesons and baryons, such as formed in heavy-ion collisions. We use a unitarized approach based on

effective models for the interaction of a D meson with hadrons, which are compatible with chiral and heavy

quark symmetries. We study the propagation of the D meson in hadron matter in two distinct cases. On the

one hand, we analyze the propagation ofDmesons in matter at vanishing baryochemical potential�B, which

is relevant for high-energy collisions at the LHC or relativistic heavy ion collider. On the other hand, we show

the propagation ofDmesons in the hadronic medium following isentropic trajectories, appropriate at Facility

for Antiproton and Ion Research and Nuclotron-based Ion Collider Facility heavy-ion experiments. We find a

negligible baryon contribution to the transport coefficients at�B ¼ 0. However, at�B > 0 we obtain a large

correction to the transport coefficients with the inclusion of nucleons and � baryons. The relaxation time for

D mesons is reduced by a factor 2–3 in the latter case, producing a more thermalizedD-meson spectrum for

Facility for Antiproton and Ion Research physics than for the typical LHC energies. We finally present results

for the spatial diffusion coefficient of aDmeson in hadronic matter and the possible existence of a minimum

near the phase transition to the quark-gluon plasma at zero and finite baryochemical potential.
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I. INTRODUCTION

Many of the hadronic studies that have been developed
within the context of heavy-ion collisions are devoted to
the extraction of properties of the deconfined phase, the
quark-gluon plasma (QGP). This phase of QCD is pro-
duced after the rapid thermalization process which follows
the nucleus-nucleus collision. The search of some QGP
signature imprinted in the hadronic phase becomes of vital
importance if one wants to study the primordial phase from
what is actually tracked in the detector.

Some of the probes that carry information from the
initial stages of the expansion are, for example, direct
photons [1,2] and the jet quenching of high-pT hadrons
[3]. One of the cleanest hadronic probes of the post-
thermalization stage are heavy quarks. Due to their large
mass (mc ’ 1:3 GeV,mb ’ 4:3 GeV) in comparison to the
mass of the light-flavor quarks, they have large relaxation
times and, therefore, they cannot totally relax during the
fireball’s expansion (around ten Fermi for Pb-Pb collisions
at the LHC [4]). For these reasons, the heavy mesons (once
the c and b quarks have hadronized) are nowadays attract-
ing much interest in the hadronic physics community.

The electrons coming from the heavy-meson semilep-
tonic decays are taken as probes of the heavy-meson
dynamics; e.g., the heavy-meson drag and diffusion are
usually analyzed through the nuclear suppression factor
and elliptic flow of these electrons. Examples of these
observables at nearly vanishing baryochemical potential
can be found at both the relativistic heavy ion collider
(RHIC) [5] and the LHC [6]. However, it is also possible

to reconstruct heavy mesons from the decay products that
are seen in the detector. Focusing on the charm sector, to
which the present article is devoted, the nuclear suppres-
sion factor has already been extracted for D mesons by the
ALICE Collaboration in Ref. [7]. Also, the elliptic flow v2

has recently been obtained by the same collaboration [8].
Analogously to the case of the viscosities for the light

particles, these observables are strongly influenced by
the transport coefficients of the hadronic medium. The
present paper focuses on the theoretical calculation of the
D-meson transport coefficients at finite temperature and
baryonic chemical potential. In particular, we provide a
consistent method to calculate the drag force and diffusion
coefficients of D mesons from effective field theories.
The use of an effective theory incorporating both chiral

and heavy-quark symmetries to calculate the diffusion
coefficients was first implemented in Ref. [9]. However,
the validity of the results in that paper is quite limited in
temperature, roughly between 30 MeV< T < 80 MeV. In
Ref. [10] the drag and diffusion coefficients of D mesons
were obtained using parametrized interactions with light
mesons and baryons. Although their scattering amplitudes
are only valid close to the resonant states, the approach
captures the correct behavior of cross sections and provides
a fair estimation of the transport coefficients. In Ref. [11]
effective Lagrangians were used to obtain the scattering
amplitudes of D mesons with light mesons and baryons
at leading order. In this case, the scattering amplitudes
rapidly grow with energy and break the unitarity condition
for the scattering S matrix. Therefore, the transport
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coefficients turn out to be unphysically large. Finally, in
Ref. [12] the Lagrangian for the interaction of D mesons
with pions at next-to-leading order was developed together
with the implementation of a unitarization method. The
unitarization procedure provides a realistic interaction
between D mesons and pions up to temperatures of the
order of the pion mass. A similar effective Lagrangian with
an extension to kaons and � mesons was used for the
bottom sector in Ref. [13].

In this paper, we obtain the drag and diffusion coeffi-
cients for a D meson propagating in a meson gas which
contains the complete set of pseudo-Goldstone bosons
(pions, kaons and � mesons) as well as baryonic degrees
of freedom (nucleons and � baryons). Thus, we extend the
results of Ref. [12] to include the next relevant degrees of
freedom. All the scattering amplitudes are obtained from
effective Lagrangians consistent with chiral and heavy-
quark spin symmetries. Additionally, the amplitudes are
unitarized to restore the S-matrix unitarity, which was lost
due to the truncation of the perturbative expansion. This
leads to the appearance of resonant states which are
implicitly taken into account in the interaction’s descrip-
tion. This fact allows us to avoid unphysical amplitudes
and have a well-controlled energy dependence, essential
for the description of the transport coefficients.

We first present results for the transport coefficients at zero
baryochemical potential, i.e.,�B ¼ 0. The calculation of the
transport coefficients for�B ¼ 0 is relevant for high-energy
collisions, such as those at the LHC or RHIC (at its top
colliding energies). Next, we show our results for �B > 0
trajectories within the QCD phase diagram that are obtained
by fixing the entropy per baryon, i.e., fixed s=nB. The
future heavy-ion collision experiments at the Facility for
Antiproton and Ion Research (FAIR) or Nuclotron-based
Ion Collider Facility (NICA) facilities will explore the phase
diagram at finite temperature and baryochemical potential,
thus allowing to analyze the propagation ofDmesons in a hot
dense baryonic environment. As we shall see in the follow-
ing, in contrast to the �B ¼ 0 case, the contribution of the
D-meson scattering with nucleons to the transport coeffi-
cients is significant. Finally, we study the behavior of
the spatial diffusion coefficient in the hadronic phase for
�B ¼ 0, as well as for isentropic trajectories, and present a
few calculations in the quark-gluon plasma domain in both
cases.We analyze the possibility of a minimumof the spatial
diffusion coefficient at the deconfinement phase transition, in
particular, at finite baryochemical potential.

The structure of the paper is as follows. In Sec. II we
introduce the transport coefficients relevant for heavy
meson dynamics. The details on the D-meson interactions
with light mesons and baryons are given in Sec. III, where
the effective Lagrangian and the unitarization method are
described for both meson and baryon sectors. We present
our results in Sec. IV, where the drag force and the diffu-
sion coefficients are displayed for zero baryochemical

potential as well as for isentropic trajectories. In Sec. V
we show results for the spatial diffusion coefficient in the
baryonic and quark-gluon plasma phases at zero and finite
baryochemical potential, analyzing the possible existence
of a minimum in the spatial diffusion coefficient in the
phase transition. Our conclusions and outlook are given
in Sec. VI.

II. DRAG AND DIFFUSION COEFFICIENTS
FOR D MESONS

The momentum-space distribution of D mesons out of
equilibrium obeys the Boltzmann equation [14]. The
Boltzmann equation reduces, however, to a much simpler
expression, the Fokker-Planck equation, in the limit where
the mass of the particle propagating in the thermal bath is
much greater than the mass of the surrounding particles as
well as the temperature of the heat bath. Thus, the
momentum-space distribution function of D mesons with
momentum p, fðt;pÞ, in a gas of light particles satisfies the
Fokker-Planck equation

@fðt;pÞ
@t

¼ @

@pi

�
FiðpÞfðt;pÞ þ @

@pj

½�ijðpÞfðt;pÞ�
�
; (1)

with i, j ¼ 1, 2, 3 the spatial indices. The microscopical
expressions for the quantities Fi and �ij result from the

matching with the Boltzmann equation [12,14] and are
given by

FiðpÞ ¼
Z

dkwðp;kÞki; (2)

�ijðpÞ ¼ 1

2

Z
dkwðp;kÞkikj; (3)

where wðp;kÞ is the collision rate for a D meson with
initial and final momenta, p and p-k, respectively, with k
the transferred momentum. We observe that Fi behaves as
a friction term or drag force representing the average
momentum change of the D meson, whereas �ij acts as a

diffusion coefficient in momentum space, forcing a broad-
ening of the average momentum distribution of the D
meson. The collision rate wðp;kÞ reads

wðp;kÞ¼gl
Z d3q

ð2�Þ9nF;BðElðqÞ;TÞ½1�nF;BðElðqþkÞ;TÞ�

� 1

2EDðpÞ
1

2ElðqÞ
1

2EDðp�kÞ
1

2ElðqþkÞ
�ð2�Þ4�ðEDðpÞþElðqÞ�EDðp�kÞ
�ElðqþkÞÞjM2j; (4)

where D labels the charmed meson and l represents the
light hadron belonging to the thermal bath. The quantity gl
stands for the spin-isospin degeneracy factor of the light
hadron, while the light hadron bath is taken to be at
equilibrium with the distribution function nF;BðEl; TÞ,
for Fermi-Dirac or Bose-Einstein particles, respectively.
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Indeed, for mesons we include the Bose enhancement
factor [1þ nBðEl; TÞ], whereas for baryons we consider
the Pauli blocking term [1� nFðEl; TÞ]. The invariant
scattering matrix element is given by M, which contains
the microscopical details of the collision.

Assuming an isotropic bath, the transport coefficients
FiðpÞ and �ijðpÞ can be written in terms of three scalar

functions as

FiðpÞ ¼ FðpÞpi; (5)

�ijðpÞ ¼ �0ðpÞ
�
�ij �

pipj

p2

�
þ �1ðpÞ

pipj

p2
: (6)

The explicit expressions for FðpÞ, �0ðpÞ and �1ðpÞ are then
obtained as a function of wðp;kÞ:

FðpÞ ¼
Z

dkwðp;kÞ kip
i

p2
; (7)

�0ðpÞ ¼ 1

4

Z
dkwðp;kÞ

�
k2 � ðkipiÞ2

p2

�
; (8)

�1ðpÞ ¼ 1

2

Z
dkwðp;kÞ ðkip

iÞ2
p2

; (9)

where the dynamics comes through the collision rates and,
hence, via the invariant scattering matrix elements M.
In the following section we present the details of the
interaction of a D meson with hadrons in a thermal bath.

III. D MESONS IN A HADRONIC THERMAL BATH

In order to obtain the invariant matrix elements M of
Eq. (4), we need to evaluate the scattering amplitudes T
for the interaction of D mesons with light mesons and
baryons. In both meson and baryon sectors, this amplitude
follows the standard multichannel scattering (integral)
Bethe-Salpeter equation,

T ¼ V þ VGT; (10)

where V is the potential resulting from the meson-meson
(meson-baryon) effective Lagrangian and G is the two-
particle meson-meson (meson-baryon) propagator.

The kernel V is a matrix that consists of all possible
meson-meson (meson-baryon) transitions. We focus on the
interaction ofDmesons with the pseudo-Goldstone bosons
(�, K, �K and �) as well as with the lightest baryons (N
and�). We make use of the effective model of Ref. [12] for
the interaction of D mesons with light mesons, which is
consistent with chiral symmetry and heavy-quark spin
symmetry (HQSS). For the scattering of D mesons with
baryons, we take into account two different schemes:
the SU(4) Weinberg-Tomozawa (WT) interaction model
of Ref. [15] and the SUð6Þ � HQSS WT scheme of
Refs. [16,17]. Similarly to the meson-meson sector,
both meson-baryon models fulfill chiral symmetry in the

light-quark sector, while heavy-quark spin symmetry con-
straints are respected in the heavy-quark sector. The main
features of all these models will be specified in the next
subsections.
The V kernel can be factorized in the on-mass shell [18],

so the scattering amplitudes T of Eq. (10) are the solutions
of a set of linear algebraic coupled equations,

Tij ¼ ½1� VG��1
ik Vkj; (11)

where i and j indicate the initial meson-meson (meson-
baryon) and final meson-meson (meson-baryon) systems,
respectively. This approach is practically equivalent to the
so-called N=D method [19]. In the on-shell ansatz, the
two-particle propagators—often called loop functions—
form a diagonal matrix G. The loop functions read

Grð
ffiffiffi
s

p Þ ¼ i�r

Z d4q

ð2�Þ4
1

ðP� qÞ2 �M2
r þ i�

1

q2 �m2
r þ i�

;

(12)

with the total four-momentum P related to the center-of-
mass squared energy s by s ¼ P2, and q being the relative
four-momentum in the center-of-mass frame. The quanti-
ties mr and Mr stand for the masses of the two particles
propagating in the intermediate channel r, i.e., two mesons
or a meson and a baryon. The factor �r has been introduced
to account for a possible different normalization of the
meson-meson and meson-baryon interactions. In fact, as
we will see in the following subsections, �r ¼ 1 for the
adimensional meson-meson V kernel, while for the meson-
baryon sector �r ¼ 2Mr, with Mr being the mass of the
baryon. The meson-meson (meson-baryon) loop functions
are divergent and are regularized by means of dimensional
regularization.
Once the scattering amplitudes Tij are computed, the

invariant matrix elements Mij are given by

Mijð
ffiffiffi
s

p Þ ¼ �1=2
i �1=2

j Tijð
ffiffiffi
s

p Þ: (13)

A. D-meson interaction with light mesons

The charm degree of freedom has recently been incor-
porated in meson-meson models [20–32] in order to
study the nature of many of the observed states with hidden
charm and open charm. In particular, the chiral Lagrangian
density that we will use to describe the interaction between
the spin-zero and spin-one D mesons and pseudoscalar
Goldstone bosons reads

L ¼ LLO þLNLO; (14)

where LO and NLO refer to the leading order and next-to-
leading order in the chiral expansion, always keeping
leading order in the heavy-quark expansion. The LO con-
tribution is given by [12,33–36]
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LLO ¼ hr�Dr�D
yi �m2

DhDDyi � hr�D��r�D
�y
� i

þm2
DhD��D�y

� i þ ighD��u�Dy �Du�D�y
� i

þ g

2mD

hD�
�u�r	D

�y
� �r	D

�
�u�D

�y
� i����	;

(15)

whereD ¼ ðD0; Dþ; Dþ
s Þ andD�

� ¼ ðD�0; D�þ; D�þ
s Þ� are

the SU(3) antitriplets of spin-zero and spin-one D mesons
with the chiral limit mass mD, respectively, while the
brackets denote the trace in flavor space. The LO
Lagrangian contains the kinetic and mass terms of the D
andD� mesons as well as two interaction terms. As done in
Ref. [12], we have used HQSS to relate the two interaction
terms using the same coupling constant g. The axial vector
field is

u� ¼ iðuy@�u� u@�u
yÞ; (16)

whereas the covariant derivative is defined as

r� ¼ @� � 1

2
ðuy@�uþ u@�u

yÞ; (17)

with u ¼ ffiffiffiffi
U

p
being the exponential matrix including all

Goldstone bosons,

U ¼ exp

� ffiffiffi
2

p
i�

f�

�
; (18)

with

� ¼

1ffiffi
2

p �0 þ 1ffiffi
6

p � �þ Kþ

�� � 1ffiffi
2

p �0 þ 1ffiffi
6

p � K0

K� �K0 � 2ffiffi
6

p �

0
BBBB@

1
CCCCA; (19)

and f� being the Goldstone boson decay constant in the
chiral limit, which we take to be f� ¼ 93 MeV.
The NLO chiral Lagrangian reads [12,33–36]

LNLO ¼ �h0hDDyih
þi þ h1hD
þDyi þ h2hDDyihu�u�i þ h3hDu�u�D
yi þ h4hr�Dr�D

yihu�u�i
þ h5hr�Dfu�; u�gr�D

yi þ ~h0hD��D�y
� ih
þi � ~h1hD��
þD�y

� i � ~h2hD��D�y
� ihu�u�i

� ~h3hD��u�u�D�y
� i � ~h4hr�D

��r�D
�y
� ihu�u�i � ~h5hr�D

��fu�; u�gr�D
�y
� i; (20)

where


þ ¼ uy
uy þ u
u; (21)

with 
 ¼ diagðm2
�;m

2
�; 2m

2
K �m2

�Þ being the mass
matrix. The NLO contribution contains twelve low-energy
constants (LECs), hi and ~hiði ¼ 0; . . . ; 5Þ, which need to be
fixed. The number of free LECs can be reduced, though,
working at LO in HQSS, where ~hi ¼ hi, and keeping the
lowest order in Nc counting so that one only needs to
consider odd LECs.

If we keep LO in the heavy-quark mass expansion, the
final expression for the tree-level scattering amplitude of a
D meson scattered with a light meson reads [12]

VIJSC ¼ C0

4f2�
ðs� uÞ þ 2C1h1

f2�
þ 2C2

f2�
h3ðp2 � p4Þ

þ 2C3

f2�
h5½ðp1 � p2Þðp3 � p4Þ

þ ðp1 � p4Þðp2 � p3Þ�; (22)

where p1 and p2 are the momenta of the incoming hadrons,
p3 and p4 are the outgoing momenta, s ¼ ðp1 þ p2Þ2 and
u ¼ ðp1 � p4Þ2. The labels I, J, S and C denote the
channel’s isospin, spin, strangeness and charm quantum
number, respectively (we restrict ourselves to C ¼ 1). The
first LEC is fixed to h1 ¼ �0:41 using the mass difference
between the D and Ds mesons [36], whereas h3 and h5 are
the two free LECs. The quantities Ci are the isospin
coefficients of the different scattering amplitudes of D
mesons with �, K, �K and � mesons, as shown in Table I.
Compared to Ref. [12], we consider not only the scat-

tering of D mesons with � but also with K, �K and �
mesons, in an analogous way to what was done in the
bottom sector in Ref. [13]. Moreover, we take into account
the nonvanishing inelastic amplitudeD� $ D�. Note that
this mixing only occurs at NLO because C0 ¼ 0, and,
therefore, it was neglected in Ref. [13] due to its small
effect. However, in this work we also incorporate the effect
of the (D�, D�) coupled-channel structure when unitariz-
ing the amplitude. We keep the same subtraction point for

TABLE I. Isospin coefficients of the scattering amplitudes for the D meson–light meson
channels with total isospin I.

Ci D�ð12Þ D�ð32Þ D �Kð0Þ D �Kð1Þ DKð0Þ DKð1Þ D�ð12Þ D� $ D�ð12Þ
C0 �2 1 �1 1 �2 0 0 0

C1 �m2
� �m2

� m2
K �m2

K �2m2
K 0 �m2

�=3 �m2
�

C2 1 1 �1 1 2 0 1=3 1

C3 1 1 �1 1 2 0 1=3 1
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the three channels but we slightly change the values of the
LECs with respect to those in Ref. [12] in order to fix the
pole position and width of the D0ð2400Þ resonance.
The procedure of fixing the LECs is extensively detailed
in Ref. [12]. The values of the LECs used in this work are
h3 ¼ 5:5 and h5 ¼ �0:45 GeV�2, which are in agreement
with the estimate from lattice-QCD data in Ref. [37].

B. D-meson interaction with N and �

Approaches based on coupled-channel dynamics have
recently been constructed in the meson-baryon sector with
charm [15,38–53], partially motivated by the parallelism
between the �ð1405Þ and the �cð2595Þ. In this work we
consider two coupled-channel schemes that have proven to
be successful in describing existing experimental charmed
states. On one hand, we make use of a model based on the
dominance of t-channel vector meson exchange for the
s-wave interaction between D mesons and baryons of
Ref. [15]. On the other hand, we take into account a recent
unitarized coupled-channel scheme that explicitly imple-
ments HQSS in the charm sector [16,17,54].

1. SU(4) Weinberg-Tomozawa model

The first transition potential for D mesons with baryons
that we use is based on a type of broken SU(4) s-wave WT
interaction, which results from the t-channel vector meson
exchange interaction in the t ! 0 limit [15]. The interac-
tion kernel is given by

VIJSC
ij ¼ 
cD

IJSC
ij

4f2
ð2 ffiffiffi

s
p �Mi �MjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mi þ Ei

2Mi

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mj þ Ej

2Mj

s
;

(23)

where i, j denote the initial and final meson-baryon states
formed by a pseudoscalar meson and a 1=2þ baryon. The
quantitiesMi and Ei are the mass and energy of the baryon
in a certain channel i, respectively, and

ffiffiffi
s

p
is the center-of-

mass energy, while the weak decay constant is fixed to
f ¼ 1:15f�. The structure coefficients for SU(4) symme-
try are given by (see [15] for the exact values). The SU(4)
symmetry is severely broken in nature, so we implement
a symmetry-breaking mechanism. The breaking comes
through the physical hadron masses as well as by means
of the factor 
c which indicates the suppression of the
charm-exchange transitions.

We are interested in the transitions involving D mesons
with nucleons. Thus, we focus on the nonstrange (S ¼ 0)
and singly charmed (C ¼ 1) sector which includes ��c,
DN,��c, K�c, K�

0
c, Ds� and �0�c for I ¼ 0, J ¼ 1=2;

and ��c, ��c, DN, K�c, ��c, K�
0
c, Ds� and �0�c for

I ¼ 0, J ¼ 3=2.
Given the transition potentials within the SU(4) WT

scheme, we can now solve the on-shell Bethe-Salpeter
equation in coupled channels so as to calculate the
scattering amplitudes. The loop function is regularized

using dimensional regularization so as to generate dynami-
cally the I ¼ 0 �cð2595Þ resonance. Simultaneously,
a new resonance in the I ¼ 1 channel, �cð2800Þ, is
obtained [15,42].

2. SUð6Þ �HQSS Weinberg-Tomozawa scheme

HQSS connects vector and pseudoscalar mesons con-
taining charmed quarks, as all types of spin interactions
vanish for infinitely massive quarks. Chiral symmetry fixes
the lowest order interaction between Goldstone bosons
and other hadrons in a model-independent way; this is
the WT interaction. Then, it is very appealing to have a
predictive model for four flavors, including all basic had-
rons (pseudoscalar and vector mesons, and 1=2þ and 3=2þ
baryons), which reduces to the WT interaction in the sector
where Goldstone bosons are involved and which incorpo-
rates HQSS in the sector where charm quarks participate.
Indeed, this is a model assumption which is justified
in view of the reasonable semiqualitative outcome of the
SU(6) extension in the three-flavor sector [55] and in a
formal plausibleness on how the SU(4) WT interaction in
the charmed pseudoscalar meson-baryon sector comes out
in the vector-meson exchange picture.
The model obeys SU(6) spin-flavor symmetry and also

HQSS [54]. This is a model extension of the WT SU(3)
chiral Lagrangian [16,17]. The extended SUð6Þ � HQSS
WT meson-baryon interaction is given by

VIJSC
ij ðsÞ ¼ DIJSC

ij

4fifj
ð2 ffiffiffi

s
p �Mi �MjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mi þ Ei

2Mi

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mj þ Ej

2Mj

s
:

(24)

Again, i (j) are the outgoing (incoming) meson-baryon
channels. The quantitiesMi, Ei and fi stand for the baryon
mass and energy, in the center-of-mass frame, and the
meson decay constant in the i channel, respectively.
DIJSC

ij are the matrix elements coming from the group

structure, while the symmetry breaking is now introduced
by using physical masses and decay constants.
We focus once more on the transitions involving D

mesons with nucleons. Moreover, the inclusion of 3=2þ
baryons allows us to study the interaction of D mesons
with �. The different channels involved in both cases c an
be found in Ref. [16]. The Bethe-Salpeter equation is then
solved in coupled channels by using the SUð6Þ � HQSS
WT interaction, while the loop function is regularized
by means of a subtraction point prescription [56]. The
�cð2595Þ is generated dynamically together with several
resonances in the C ¼ 1 and S ¼ 0, some of which
can be directly identified with existing experimental
states [16,17].
The vacuum �-decay width has been considered for the

determination of the dynamically generated resonances
and, thus, for the scattering amplitudes. This effect
is introduced in the unitarization procedure through a
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convolution of the D� propagator with the corresponding
spectral function of the � baryon. Only the resonances that
lie close to the D� channel, as compared to the � width,
and that couple strongly to this system will be affected.
Thus, we might expect changes in the D� scattering
amplitudes around the D� threshold.

There are several differences between the SUð6Þ �
HQSS WT scheme and the SU(4) WT model. One of
the main differences comes from the inclusion, on equal
footing, of heavy pseudoscalar and vector mesons as well
as baryons with JP ¼ 1=2þ and JP ¼ 3=2þ. Another
essential difference lies in the transition amplitudes.
According to Eq. (24) of the SUð6Þ � HQSS WT scheme,
the amplitudes scale with the inverse values of the meson
decay constants, whereas in the SU(4) model the decay
constants are all fixed to f ¼ 1:15f� and the charm-
exchange transitions are suppressed with a 
c factor.
Note, however, that both extensions of the SU(3) WT
respect HQSS constraints (see, for example, discussions
in Refs. [17,54,57]).

Note that the use of Weinberg-Tomozawa-like structure
is an approximation to the full analytical structure of the
D-meson-baryon interaction. However, to our knowledge,
these are the most up-to-date models used for the inter-
action of D mesons with baryons. Only very recent calcu-
lations with the Jülich exchange model [47,49] have dealt
with the more complicated analytical structure of the
interaction, including s-, t- and u-channel contributions
as well as higher partial waves. However, this latter model
is not consistent with heavy-quark spin symmetry, which is
a proper QCD symmetry in the limit of heavy masses, since
it does not include the vector-meson baryon channels. We
have thus chosen a more simplified interaction that is
consistent with this symmetry, the SUð6Þ � HQSS model,
and analyzed the effects with respect to a similar interac-
tion from the SU(4) scheme but where the HQSS con-
straints are not obeyed.

IV. RESULTS FOR TRANSPORT COEFFICIENTS

In this section we show our results for the drag force and
diffusion coefficients of Eqs. (7)–(9) as a function of
temperature and baryonic chemical potential. The required
multidimensional integrations are performed using a
Monte Carlo routine as explained in detail in Ref. [12].

The main uncertainty in the calculation comes from the
existence of an ultraviolet cutoff scale in the effective
theory description of the scattering amplitudes. The
Monte Carlo routine requires some momentum integra-
tions, whose upper limits are, thus, truncated according to
this cutoff in order to avoid an uncontrolled behavior of the
scattering amplitudes beyond that scale. The error intro-
duced by truncating the integral domain is minimal at low
temperatures, as the averagemomentum ismuch lower than
the ultraviolet cutoff. However, the error increases as we
move to higher temperatures. We have checked, though,

that for temperatures T ¼ m� � 140 MeV—close to the
transition temperature—the numerical error is negligible.
Moreover, for our calculations we take p ¼ 100 MeV

for the momentum of the D meson. This value effectively
corresponds to the so-called static limit, where the
D-meson momentum is sent to zero. This choice has a
threefold goal. First, this is the limit usually taken for the
calculation of the transport coefficients. Thus, we will be
able to compare our results to previous works. Second, we
can provide a consistency check of our results since only in
this limit does one have the property

lim
p!0

½�0ðpÞ � �1ðpÞ� ¼ 0; (25)

which results from Eqs. (8) and (9). Furthermore, the
Einstein relation between the drag force F and diffusion
coefficient in momentum space, � ¼ �0 ¼ �1, defined as

F ¼ �

mDT
; (26)

is fulfilled when p ! 0. Finally, in the static limit one has
access to the spatial diffusion coefficient, given by [12]

Dx ¼ lim
p!0

�ðpÞ
m2

DF
2ðpÞ : (27)

The spatial diffusion coefficient Dx appears in Fick’s dif-
fusion law, and it has been widely studied in the past [58].
The classical behavior ofDx for a nonrelativistic Brownian
particle with mass mD in a bath composed of particles of
mass ml is well known [59,60],

Dx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mD

þ 1

ml

s
T3=2

P�
; (28)

where � is the total cross section and P is the pressure,

P� T5=2m3=2
l e

��ml
T ; (29)

with� being the chemical potential of the light particles in
the bath. Using Eqs. (26)–(28) one can obtain the non-
relativistic expressions for the drag force and diffusion
coefficient in the static limit p ! 0 when ml � mD:

F� P�

ffiffiffiffiffiffi
ml

T

r
1

mD

; (30)

�� P�
ffiffiffiffiffiffiffiffiffi
mlT

p
; (31)

which also serve as a consistency check for our
computations.

A. Transport coefficients at �B ¼ 0

We start by considering the system at vanishing baryo-
chemical potential, so that the net baryon number is zero.
In this case, hadrons will be created after a high-energy
collision, like those at the LHC or RHIC (at its top collid-
ing energies).
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For highly energetic collisions we expect that light
mesonic species will mainly populate the thermal bath.
Thus, we first consider matter made of pseudo-Goldstone
bosons, such as pions, kaons, antikaons and � mesons. In
Fig. 1 we plot the drag coefficient F as a function of
temperature up to T ¼ 140 MeV—close to the transition
temperature—for a D meson with a momentum of p ¼
100 MeV when the different Goldstone bosons are
consecutively added. We observe that the dominant con-
tribution is the one associated with theD� interaction. The
contribution to the drag force coming from D mesons
interacting with pions was already studied in Ref. [12].
In this previous work, the higher-temperature values for the
drag coefficient slightly differ from the ones presented here
because, in that reference, the Einstein relation was used to
obtain the drag force in the static limit, while we now
perform the computation of the F coefficient directly
from its definition in Eq. (7), cf. Fig. 5. However, we obtain
identical results for the two diffusion coefficients, �0 and
�1, as in Ref. [12].

We now consider the effect on the drag force of the
presence of nucleons in the thermal bath. For that purpose,
we make use of the two models for the interaction of D
mesons with baryons discussed in Sec. III B. Both models
respect HQSS, but in the SU(4) WT scheme only 1=2þ
baryon are taken into account while for the SUð6Þ � HQSS
model 1=2þ and 3=2þ baryons are also present. In Fig. 2
we show the DN contribution to the transport coefficients
in both schemes. We observe that the results for the drag
force within the SU(4) model are systematically bigger
than for the SUð6Þ � HQSS case. This can be understood
from Fig. 3, as the isospin-averaged cross section for the
elastic DN interaction as a function of the energy in the
SU(4) scheme is larger than for the SUð6Þ � HQSS model.
For comparison, we also include here the results of
Ref. [10], where the scattering amplitudes of the fitted
resonances give cross sections quite similar to ours;
thus, the simple Breit-Wigner parametrization provides a

reasonable description of the DN-DN and D��D�
interactions. It is interesting to note that the values for
the drag force when only considering nucleons in the
thermal bath for all temperatures up to T � 140 MeV are
much smaller, by an order of magnitude, than when con-
sidering a bath populated by light mesons. For�B ¼ 0 and
T � 140 MeV, the nucleon density with respect to satura-
tion density, n0 ¼ 0:16 fm�3, is nN=n0 ’ 1:5� 10�2. The
low population of nucleons is responsible for the small
contribution to the drag coefficient.
In Fig. 4 we present the drag and diffusion coefficients at

�B ¼ 0 as a function of the temperature for aDmeson in a
medium of light mesons, together with nucleons and �’s,
which are the lightest baryons. We make use of the
SUð6Þ � HQSS model to obtain the interaction of D
mesons with nucleons, as well as with 3=2þ � baryons.
As indicated before, the main contribution to the transport
coefficients comes from the pion gas, as it is the most
populated species in the medium. The other Goldstone
bosons give a sizable contribution only for T *
100 MeV, while N and � do not contribute substantially
to the transport coefficients.
Comparing the two plots for the diffusion coefficients,

we notice that �0 ¼ �1 of Eq. (25) is well satisfied in the
range of temperatures studied. Moreover, in Fig. 5 we show
the drag coefficient calculated using the Einstein relation
of Eq. (26), as well as by means of its definition from
Eq. (7). We observe that the Einstein relation is well
satisfied up to T � 100 MeV, presenting some small vio-
lations at high temperatures due to the cutoff effects in the
numerical computation of the transport coefficients.
Finally, in Fig. 6 we present our results for the spatial

diffusion coefficient at 100 MeV & T & 180 MeV in
order to compare with the outcome of Refs. [10,11]. We
observe a good agreement with the results of Ref. [10] and
substantial differences between our outcome and the one
from Ref. [11]. In Ref. [10] the interaction of D mesons
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F
 (

1/
fm

)

0
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0.02

0.03 η+K+K+π
K+K+π

+Kπ
π

FIG. 1. D-light-meson contribution to the drag force coeffi-
cient F as a function of temperature for a D-meson momentum
of p ¼ 100 MeV.
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FIG. 2. DN contribution to the drag force F as a function of
temperature for a D-meson momentum of p ¼ 100 MeV. The
unitarized scattering amplitudes are taken from the SU(4) and
SUð6Þ � HQSS WT Lagrangians.
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with pions was approximated by D� resonances, while
scattering off other hadrons, such as K, �, �, K�, N, �,
�N and ��, was evaluated from different microscopic mod-
els, parametrizing certain resonant states and, thus, mim-
icking the unitarized scattering amplitudes. As indicated in
that work, the scattering of D mesons with vector mesons

and antibaryons, as well as the inclusion of higher-mass
resonant states, does not play an important role in the
determination of the drag coefficient for the range of
temperatures studied. For example, there is not a known
resonant state that can be generated dynamically due to
D �N scattering, and the D �N contribution to the transport is
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FIG. 3 (color online). Left panel: Isospin averaged DN ! DN cross section for the SU(4) and SUð6Þ � HQSS models. The DN
elastic cross section for the SU(4) model is clearly bigger than the one for the SUð6Þ � HQSS scheme. This effect will result in a larger
drag coefficient for the former case. Right panel: Isospin averaged cross section for the D� ! D� scattering in the SUð6Þ � HQSS
model. For comparison, we also include the cross sections used in Ref. [10] from a Breit-Wigner parametrization of the resonances.
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FIG. 4. Drag force and diffusion coefficients for D mesons when all particle species are introduced.
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therefore suppressed (by a factor of 3) with respect to the

DN channel, whereas the D �� relaxation rate is about half
of the D� one. Thus, a good agreement is obtained
between the two approaches. On the contrary, the use of
NNLO scattering lengths for the scattering of D mesons
with mesons and baryons accounts for the very different
drag and diffusion coefficients and, hence, the spatial
diffusion coefficient of Ref. [61]. The temperature depen-
dence of the spatial diffusion coefficient can be inferred in
the static limit, making use of the nonrelativistic expres-
sions of Eqs. (28) and (29). In this case

TDx � e�
�B�ml

T ; (32)

showing that the combination TDx must decrease with
temperature for constant chemical potential (in particular,
for �B ¼ 0) as seen in our results.

B. Transport coefficients for isentropic trajectories

Heavy-ion collisions at the future facilities of FAIR or
NICA will run at lower beam energies than the LHC.

Collisions at FAIR will be produced with a beam energy
such that the hadronic trajectories will cross the phase
diagram through the finite baryochemical potential region.
However, the baryonic density will not be constant during
the evolution. The simplest realization of physical trajec-
tories for FAIR energies consists of nearly constant entropy
per baryon trajectories, s=nB ¼ constant. Although the
dissipative phenomena (transport coefficients) always
present entropy production in the system, an isentropic
trajectory is a good approximation for the physical evolu-
tion of the fireball. We will assume constant s=nB and
extract the associated baryochemical potential, �B ¼
�BðTÞ, according to this criterion. In particular, for FAIR
physics, the beam energy runs from

ffiffiffi
s

p ¼ 5–40A GeV,
which approximately corresponds to s=nB ¼ 10–30, with
some dependence on the thermal model used [62]. We
choose three characteristic values of s=nB ¼ 10, 20 and
30 and show the expected isentropic trajectories in Fig. 7.
For the specific trajectories of Fig. 7, we show in Fig. 8

the transport coefficients of a D meson embedded in a
thermal bath of light mesons, nucleons and �’s. Note
that the transport coefficients strongly depend on the isen-
tropic trajectory. In addition, by comparing the transport
coefficients of a D meson embedded in a bath of light
mesons of Fig. 4 with our results in the thermal bath for an
isentropic trajectory (and given that the contribution of
light mesons only depends on the temperature), we observe
that nucleons and �’s contribute significantly to the trans-
port coefficients for finite baryochemical potential. This is
mainly due to the fact that the density of nucleons has
increased significantly, the exact value depending on the
temperature and baryochemical potential at each given
isentropic trajectory.
It is worth mentioning that the D-baryon contribution to

F and � follows a very simple scaling with the fugacity:

FðT;�BÞ ’ FðT;�B ¼ 0Þe�B=T; (33)
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FIG. 6. Spatial diffusion coefficient for D mesons multiplied
by 2�T. Solid line: our work. Dotted line: results from Ref. [10].
Dashed line: results from Ref. [61].
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FIG. 5. D-meson drag force when all particle species are
introduced. We compare the result for this coefficient using
Eq. (7) and obtained from �0 in Eq. (8) using the Einstein
relation Eq. (26).

 (MeV)
B

µ
0 200 400 600 800

T
 (

M
eV

)

20

40

60

80

100

120

140

=10Bs/n

=20Bs/n

=30Bs/n

FIG. 7. Three characteristic trajectories for hadronic matter in
the QCD phase diagram. The entropy per baryon (s=nB) is
constant along those trajectories and its value is fixed for three
characteristic FAIR energies in the range
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p ¼ 5–40A GeV.
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�ðT;�BÞ ’ �ðT;�B ¼ 0Þe�B=T: (34)

These relations can be obtained from Eqs. (7)–(9) assum-
ing that the classical statistics can be used instead of the
Fermi-Dirac distribution. Notice that this contribution
should be added to the mesonic contribution, which does
not depend on �B [63]. We can thus conclude that the
presence of baryons enhances the stopping of the D
mesons in the finite baryochemical region of the QCD
phase diagram.

In order to have a quantitative measure of the stopping
and, hence, the degree of thermalization ofDmesons in the
medium, we can calculate the typical time associated with
the relaxation of D mesons in a thermal bath.

In the Langevin approach, F appears as a deterministic
drag force, while � measures the strength of the stochastic
force ðtÞ:

dp

dt
¼ �Fpþ ðtÞ: (35)

For constant F one can formally solve the equation

pðtÞ ¼ p0 e
�Ft þ e�Ft

Z t

0
d�eF�ð�Þ (36)

and consider the solution for the averaged momentum:

hpðtÞi ¼ p0 e
�Ft: (37)

Therefore, one can define a relaxation time �R as the
inverse of the drag force coefficient, �R ¼ 1=F.
In Fig. 9 we show the relaxation time �R as a function of

temperature for the three characteristic isentropic trajecto-
ries together with the �B ¼ 0 case. The values for the
relaxation times at T ¼ 140 MeV for the s=nB ¼ 10, 20,
30 and �B ¼ 0 trajectories are also presented in Table II,
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FIG. 8. Drag force and diffusion coefficients of a D meson in a hadronic gas for the three isentropics detailed in Fig. 7.
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FIG. 9. D-meson relaxation time as a function of temperature
for the �B ¼ 0 and the three isentropic trajectories.
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where we also display the associated baryochemical
potential �B and the corresponding net baryonic
density n=n0.

We observe that for �B ¼ 0 the relaxation time at T ¼
140 MeV reads �R ¼ 33 fm. In fact, when only pions are
considered in the thermal bath, we obtain �R ¼ 40 fm, as
in Ref. [12]. The more species the thermal bath has, the
more collisions the D meson suffers and the shorter the
equilibration time is. Moreover, we see that the relaxation
time grows with decreasing temperature following the
inverse behavior of the drag force coefficient. It is also
interesting to see from Fig. 9 that the �B ¼ 0 case can be
recovered for s=nB ! 1. The bigger the value of s=nB,
the smaller the baryochemical potential is and, then, the
bigger the value of the thermal relaxation time becomes, as
indicated in Table II.

This relaxation time needs to be compared to the
duration of the fireball expansion. The freeze-out time
for a central Pb-Pb collision at the LHC (obtained by
performing pionic Hanbury-Brown-Twiss interferometry)
is around 10–11 fm [4]. Therefore, by looking at the
�B ¼ 0 trajectory obtained for LHC energies, we can
conclude that the D mesons are only slightly thermalized
in these collisions (note that the time scale from the
hadronization until the freeze-out is even shorter). We
also observe that, by comparing the trajectories at
�B ¼ 0 for the LHC and s=nB ¼ 10 for the lowest FAIR
energies, the relaxation time is reduced by 60% due to
medium effects.

V. MINIMUM OF 2�TDx AT
THE PHASE TRANSITION

In this section we analyze the behavior of the spatial
diffusion coefficient Dx around the deconfinement phase
transition. This study is motivated by the fact that previous
works on viscous coefficients, such as the shear and bulk
viscosities, show an extremum close to the phase-transition
temperature. The shear viscosity, when normalized to the
entropy density, seems to present an absolute minimum at
the QCD phase transition [64,65]. A plausible argument
to this claim—at least for vanishing baryochemical
potential—is given by the results in the asymptotic
limits, i.e., the hadronic gas at T < Tc [65] (where �=s

rapidly decreases when temperature is increased) and the
perturbative quark-gluon plasma at T > Tc [66] (where
�=s slowly increases with temperature). This minimum
is also supported by other examples of different physical
systems like the liquid-gas phase transition [64,65] or cold
Fermi atoms close to unitarity [67]; and models like the
linear sigma model [68,69] or the Nambu-Jona-Lasinio
model [70]. Also, a maximum of the bulk viscosity over
entropy density �=s is found close to the critical tempera-
ture of several models [68,71,72]. The breaking of confor-
mal invariance (to which the bulk viscosity is highly
sensitive) is maximal at the critical temperature, giving a
peak of �=s at Tc. There exist some indications that a
similar maximum of �=s may happen to QCD [73,74].
In an analogous way, we can study the behavior of the

adimensional number 2�TDx near the deconfinement
temperature in order to check whether there is also an
extremum. In Fig. 10 we plot 2�TDx as a function of
temperature around the crossover temperature at �B ¼ 0.
For the hadronic side we plot our results for vanishing
chemical potential. For the quark-gluon plasma phase we
show the result of Ref. [75], where a lattice-QCD-based
potential for the light quark–c quark scattering is used to
construct the T matrix. The T matrix contains the medium
effects and it is supplemented by a perturbative QCD
calculation for the gluon—c quark scattering. None of
these calculations are reliable close to Tc. In order to get
some hints of the evolution of 2�TDx around the phase
transition, we use an adaptation of the recent lattice-QCD
results of Ref. [76]. In that work the diffusion coefficient is
extracted using the quenched approximation; i.e., there are
no thermal light quarks and only dynamical gluons are
considered. According to the authors of Ref. [76], the
adimensional number 2�TDx can directly be taken for
real QCD (with dynamical light quarks) when considered
as a function of T=Tc. For real QCD we fix the crossover
temperature at Tc ¼ 160 MeV. This number is consistent

TABLE II. Baryochemical potential, net nuclear density and
relaxation time at T ¼ 140 MeV for the trajectories shown in
Fig. 7. The normal nuclear density is denoted by n0 ¼
0:16 fm�3.

Trajectory �B (MeV) n=n0 �R (fm)

�B ¼ 0 0 0 34.5

s=nB ¼ 30 286 0.11 28.3

s=nB ¼ 20 361 0.20 24.3

s=nB ¼ 10 536 0.68 13.4
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FIG. 10 (color online). Spatial diffusion coefficient for D
mesons multiplied by 2�T in the hadronic phase below Tc ¼
160 MeV and the QGP phase above Tc. For the QGP side, we
show the results given in Refs. [75,76].
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with recent estimates of the crossover temperature in lat-
tice QCD [77,78].

In spite of the mentioned caveats for each computation,
an impressive agreement among the three calculations can
be seen. A clear minimum of 2�TDx appears at the phase
transition temperature.

We can also analyze the possibility of a minimum in
2�TDx close to the phase transition in the case of an
isentropic trajectory. Within our approach, we can easily
obtain the value of 2�TDx in the hadronic phase. However,
we are not aware of an analogous calculation within the
quark-gluon plasma. The simplest estimate for the spatial
diffusion coefficient at high temperatures comes from per-
turbative QCD. We thus generalize the results in Ref. [79]
for the diffusion coefficient at nonzero chemical potential.
Although the validity of this calculation at physical
temperatures is questionable, it can give a qualitative
understanding of the �B dependence.

Following closely the derivation of the diffusion coeffi-
cient in the static limit in Ref. [79], and using their scat-
tering amplitudes for quarks and gluons coming from the
t-channel gluon exchange, we find the following expres-
sion for the momentum diffusion coefficient �:

� ¼ 8

9�
�2
s

Z 1

0
dkk2

Z 2k

0
dq

q3

½q2 þm2
DðT;�fÞ�2

�
"XNf

f

eðk��fÞ=T

ðeðk��fÞ=T þ 1Þ2
�
2� q2

2k2

�

þ 3
ek=T

ðek=T � 1Þ2
�
2� q2

k2
þ q4

4k4

�#
; (38)

with �2
s ¼ g2=4� the running strong coupling and Nf the

number of light flavors. The first term inside brackets
comes from the light-quark scattering, and it carries the
quark chemical potential �f in the Fermi-Dirac function.

The second term comes from the gluon scattering (with
Nc ¼ 3), and it contains the Bose-Einstein distribution.
Then, Dx is calculated using Eqs. (26) and (27):

Dx ¼ T2

�
: (39)

We also include the effect of the finite quark chemical
potential in the Debye mass [80,81]:

m2
D ¼ g2

"�
1þ Nf

6

�
T2 þXNf

f

�2
f

2�2

#
: (40)

To extract the entropy per baryon we use the equation of
state for an ideal gas of massless quarks and gluons at
lowest order in the perturbative expansion. The pressure
for Nf light flavors reads [80]

PðT;�fÞ ¼ 7�2

60
T4 þXNf

f

��2
fT

2

2
þ �4

f

4�2

�
; (41)

where we take Nf ¼ 3 with �u ¼ �d ¼ �B=3 and

�s ¼ 0. The entropy per baryon is simply obtained as

s

nB
¼ ð@P@TÞ�B

ð @P@�B
ÞT
; (42)

which is fixed to the same characteristic values of the
hadronic trajectories viz. s=nB ¼ 10, 20, 30.
In Fig. 11 we show the coefficient 2�TDx around the

transition temperature for the hadronic gas and the pertur-
bative QCD calculation. We observe that the dependence
of the 2�TDx on the entropy per baryon is similar in both
phases: As long as one increases the entropy per baryon
(higher beam energies), the coefficient augments in both
phases. The possible matching between curves in both
phases for a given s=nB seems to indicate the possible
existence of a minimum in the 2�TDx at the phase
transition. However, we obtain that the transition is not
continuous. We might not expect a smooth crossover
between both phases but a first-order transition, where
the transport coefficients (and other thermodynamical
quantities) present a finite discontinuity at Tc. However,
it is known that the perturbative approach overpredicts this
coefficient above Tc at vanishing chemical potential by
almost an order of magnitude [75,76,82]. Thus, a non-
perturbative calculation for the quark-gluon-plasma diffu-
sion coefficient at finite chemical potential, in line with
the one performed for vanishing chemical potential in
Refs. [75,82], would be most welcome. Work along this
line is in progress.

VI. CONCLUSIONS AND OUTLOOK

We show our results for the D-meson drag and diffusion
coefficients in a hot dense medium. We make use of a
unitarized approach that takes, as a building block, an
effective-field-theory description of the interaction of
D mesons with light mesons, nucleons and �’s, which
is compatible with chiral and heavy quark symmetries.
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FIG. 11. Spatial diffusion coefficient for D mesons multiplied
by 2�T in the hadronic phase and the perturbative quark-gluon
plasma phase at finite chemical potential.
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We provide results in two different regimes. On one hand,
we analyze drag and diffusion coefficients for vanishing
baryochemical potential, �B ¼ 0, which is relevant for
high beam energies like those reached at the LHC or
RHIC. On the other hand, we study isentropic trajectories
in the QCD phase diagram, expected at heavy-ion collision
experiments at FAIR and NICA.

At �B ¼ 0 the main contribution to the drag and diffu-
sion coefficients comes from the interaction of D mesons
with pions, as the thermal bath is mainly populated by
them, a fact which was already seen in Refs. [10–12].
Compared to previous works, our results are in good
agreement with the estimate in Ref. [10] where the authors
include effectively the most dominant resonant states in the
meson and baryon sectors. However, our outcome differs
greatly from the results of Ref. [11], mostly due to the lack
of unitarization in that reference.

Once we fix an isentropic trajectory, we find that the
inclusion of N and � baryons produces sizable effects in
the D-meson drag force and diffusion coefficients as
compared to the �B ¼ 0 case. This is due to the fact
that the net abundance of baryons augments with increas-
ing baryochemical potential. Thus, for the lowest beam
energies at FAIR, we find that at T ¼ 140 MeV the drag
force increases by a factor of 2–3 with respect to its value
at the same temperature for LHC energies. In fact, we
observe that the relaxation time grows with decreasing
temperature, as expected from the behavior of the drag
force coefficient. The comparison between the obtained
relaxation times and the typical fireball-expansion scale
in heavy-ion collisions indicates that D mesons are only
partially equilibrated in the hadronic phase. This can be
tested, for example, in the future heavy-ion experiment
Compressed Baryonic Matter at FAIR [83].

We also present results for the spatial diffusion coeffi-
cient of a D meson in hadronic matter and the evolution to
the quark-gluon phase at zero and finite baryochemical

potential. We analyze the plausibility of a minimum at
the phase transition as an isentropic trajectory from the
hadronic to the quark-gluon phase is followed, in a similar
manner as for the �B ¼ 0 case [75,82]. Further studies, in
particular, in the quark-gluon domain, are needed in order
to verify our claim.
The transport coefficients obtained here are key

parameters for the understanding of charm suppression
and diffusion in the hadronic medium. Characteristic ob-
servables are the nuclear suppression factor RAA and the
elliptic flow v2. These have been obtained from Langevin
calculations [75,84,85] in both quark-gluon plasma and
hadronic phases. Our results for FðpÞ and �0ðpÞ, �1ðpÞ
as a function of temperature and chemical potential can be
well accommodated to such approaches in order to im-
prove the dissipative description in the hadronic evolution.
Both observables have recently been extracted in the
ALICE experiment at the LHC [7,8]. Recent predictions
for FAIR physics using the Langevin approach have been
presented in Ref. [86]. It would be interesting to check
whether the pure hadronic medium effects are as signifi-
cant for FAIR physics as we describe in this work.
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