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We evaluate the most important tree-level contributions connected with the b ! u �ud� transition to the

inclusive radiative decay �B ! Xd� using fragmentation functions. In this framework the singularities arising

from collinear photon emission from the light quarks (u, �u, and d) can be absorbed into the (bare) quark-

to-photon fragmentation function.We use as input the fragmentation function extracted by theALEPHgroup

from the two-jet cross section measured at the large electron positron (LEP) collider, where one of the jets is

required to contain a photon. To get the quark-to-photon fragmentation function at the fragmentation scale

�F �mb, we use the evolution equation, which we solve numerically. We then calculate the (integrated)

photon energy spectrum for b ! u �ud� related to the operators Pu
1;2. For comparison, we also give the

corresponding results when using nonzero (constituent) masses for the light quarks.
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I. INTRODUCTION

Rare B-meson decays are known to be a unique source
of indirect information about physics at scales of several
hundred GeV. To make a rigorous comparison between
experiment and theory, one needs precise theoretical pre-
dictions for them.

The first estimate of the �B ! Xs� branching ratio within
the Standard Model (SM) at the next-to-next-to-leading
logarithmic (NNLL) level was published some years ago
[1]. The branching ratio of the �B ! Xs� decay has been
measured at the B factories [2]. Both theory and experi-
ment have acquired a precision of a few percent.

Another interesting process is �B ! Xd�. In Ref. [3] its
decay rate was calculated in next-to-leading logarithmic
(NLL) order (earlier in Ref. [4] a partial NLL result was
found). Since then, not much theoretical work was done
on �B ! Xd� because the corresponding measurement
seemed very difficult. A few years ago, however, the
BABAR collaboration managed to measure this branching
ratio [5,6], yielding the CP-averaged result Br½ �B!
Xd��E�>1:6GeV¼ð1:41�0:57Þ�10�5 [7,8]. Extrapolation

factors [9] were used to get from the experimental data to
this result, which, as indicated by the notation, corresponds
to a photon energy cut of 1.6 GeV.

Nonperturbative contributions related to u-quark loops
are not Cabibbo-Kobayashi-Maskawa suppressed in �B !
Xd� (unlike in �B ! Xs�) and therefore potentially limit the
theoretical precision. It was, however, realized recently that
most of these uncertainties drop out in the CP-averaged
branching ratio [10,11]. This implies that the SM prediction
for �B ! Xd� can in principle be calculated with similar
accuracy as �B ! Xs�. To fully exploit the information
from �B ! Xd�, we plan to derive in the near future a
NNLL prediction of its CP-averaged branching ratio.

When going to this precision with the b ! d� transition,
one has to take into account also the contributions from

the tree-level transitions b ! u �ud�, which lead to a non-
negligible contribution to the inclusive photon energy
spectrum in �B ! Xd� in the considered photon energy
window. Analogous tree-level contributions were consid-
ered some time ago for the full-inclusive photon energy
spectrum of B decays [12] and more recently for the �B !
Xs� decay in Ref. [13]. In the calculation of the Feynman
diagrams singularities arise which are related to collinear
photon emission from one of the light quarks q (q ¼ u, �u
or d), leading to single logarithms of the form ln ðm2

b=m
2
qÞ.

In the references just mentioned, the current quark masses
mq are replaced by a common constituent mass, providing

an effective treatment of the collinear configurations.
In the present paper, we evaluate the mentioned tree-

level transitions to �B ! Xd� associated with the operators
Pu
1 and P

u
2 [see Eq. (1.1)], using the fragmentation function

approach. In this framework the singularities arising from
collinear photon emission from the light quarks (u, �u,
and d) can be absorbed into the (bare) quark-to-photon
fragmentation function.
Using this framework, one often starts with a nonpertur-

bative initial condition for the fragmentation function at a
low scale �F ¼ � (� of order �QCD) and then evolves

it up to the scale �F ¼ mb, using the inhomogeneous
evolution equation. When using a zero initial condition,
the (leading logarithmic) evolution equation resums the
terms ½�s log ðm2

b=�
2Þ�n. This resummation was done in

Ref. [14] in connection with the P8 contribution to �B !
Xs�. It was found that the effect of resummation suppresses
the corresponding single logarithm present in lowest order
perturbation theory for E� > 1:6 GeV, which is the rele-

vant range in our application. In Ref. [15], dealing also with
the P8 contribution, a model based on vector meson
dominance was used for the initial condition of the quark-
to-photon fragmentation function [16]. As in our applica-
tion, the logarithmic term (at lowest order) is numerically
not much larger than the nonlogarithmic one, and because
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the two contributions have a different sign, we have some
doubts to get reasonable predictions along these lines. This
feature related to size and sign can also be seen in Table II
of Ref. [13].

As we will describe in detail in Sec. II, we use as input
the fragmentation function extracted by the ALEPH group
from the two-jet cross section measured at the LEP, where
one of the jets is required to contain a photon [17]. The
theoretical framework needed for the extraction of the
fragmentation function at the scale mZ is described in
Ref. [18]. Radiative corrections are considered in
Refs. [19–21]. To get the quark-to-photon fragmentation
function at the fragmentation scale �F �mb, we use the
(inhomogeneous) evolution equation [21,22], which we
solve numerically. We then calculate the (integrated) pho-
ton energy spectrum for b ! u �ud� related to Pu

1;2. Then,

for comparison, we also give the corresponding results
when using nonzero (constituent) masses for light quarks.

As just mentioned, we consider in this paper the con-
tributions to �B ! Xd� originating from the four-quark
operators Pu

1 and Pu
2 ,

Pu
1 ¼ ð �dL��T

auLÞð �uL��T
abLÞ;

Pu
2 ¼ ð �dL��uLÞð �uL��bLÞ; (1.1)

appearing in the effective weak Hamiltonian for the
process �B ! Xd�

H weak¼�4GFffiffiffi
2

p
�
�t

X8
i¼1

CiPiþ�u

X2
i¼1

CiðPi�Pu
i Þ
�
; (1.2)

with �t ¼ VtbV
�
td, �u ¼ VubV

�
ud. The other operators can

be found in Ref. [13]. While �t and �u are numerically of
the same order, the Wilson coefficients of the four quark
operators Pi, (i ¼ 3; . . . ; 6) are smaller than those of Pu

1;2.

We therefore only use the latter for our estimate.
The paper is organized as follows. In Sec. II we provide

some details about our calculation and present our analytic
result for the Pu

1;2 contribution to the (integrated) photon

energy spectrum, using the fragmentation function ap-
proach. In Sec. III we give the corresponding results
when using nonzero (constituent) masses for the light
quarks. Finally, we present our conclusions in Sec. IV.

II. FRAGMENTATION FUNCTION APPROACH TO
ESTIMATE THE Pu

1;2 CONTRIBUTIONS

In this section we work out the upper end of the photon
energy spectrum (typically above 1.6 GeV) resulting from
the tree-level transitions b ! u �ud� associated with the
operators Pu

1 and Pu
2 . The corresponding Feynman dia-

grams are shown in Fig. 1. The kinematical configurations
in which the photon is emitted (almost) collinear with d, u,
or �u lead to uncancelled singularities. This signals that
there is another, nonperturbative contribution. Indeed, the
photon energy spectrum d�ðb ! u �ud�Þ=dE� (in short-

hand notation d�=dE� in the following) can be written as

d�

dE�
¼ d�̂

dE�

þ X
q¼u; �u;d

Z d�̂

dEq

dEqdz�ðE� � zEqÞDq!�ðzÞ;

(2.1)

where the first term comes from the diagrams in Fig. 1,
while the second term involves the inclusive fragmentation
functions Dq!�ðzÞ for the partonic transitions q ! q�, as

well as the energy spectrum d�̂
dEq

of the parton q in the

process b ! u �ud. The argument z of the fragmentation
function Dq!� denotes the energy fraction of the photon

relative to the energy of the parent parton q.
To make the paper self-contained, we briefly show in

Sec. II A that the mentioned collinear singularities in the
first term of Eq. (2.1), which we regulate dimensionally
(d ¼ 4� 2"), can be factorized into the fragmentation
function. Doing so, we closely follow the formalism in
Ref. [18]. We then give the result for d�ðb ! u �ud�Þ=dE�

in a way in which the singularities are manifestly can-
celled. Sec. II B then deals with the details of the fragmen-
tation functionDðz; �FÞ. Finally, in Sec. II C the numerical
results for the (integrated) photon energy spectrum are
given.

A. Analytic results for d�ðb ! u �ud�Þ=dE�

For the following it is useful to decompose the first term
in Eq. (2.1) according to

d�̂

dE�

¼ d�̂uu

dE�

þ d�̂ �u �u

dE�

þ d�̂dd

dE�

þ d�̂bb

dE�

þ d�̂int

dE�

; (2.2)

where d�̂uu

dE�
corresponds to the self-interference of diagram

1 in Fig. 1, i.e., with photon emission from the u quark; d�̂
�u �u

dE�

corresponds to the self-interference of diagram 2; etc.
When summing over the transverse polarizations of the
photon, we used the general expression

X2
r¼1

�r;��r;� ¼ �g�� þ
t�k� þ k�t�

k � t � t2k�k�

ðk � tÞ2 ; (2.3)

FIG. 1. Tree level Feyman diagrams corresponding to the
transition b ! u �ud�. The white square symbolizes the operators
Pu
1;2.
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where the polarization vectors �r, the momentum k of the
photon, and the arbitrary vector t are chosen such that

�r �k¼0; �r ��r0 ¼��rr0 ; �r � t¼0 ðr;r0 ¼1;2Þ: (2.4)

The vector t is then identified with the momentum of the b
quark, i.e., t ¼ pb ¼ mbð1; 0; 0; 0Þ. It turns out that in this
setup, the collinear singularities are contained in the con-

tributions d�̂uu

dE�
, d�̂

�u �u

dE�
, and d�̂dd

dE�
, whereas the sum of the other

two terms define the nonsingular (ns) contribution d�ns

dE�
,

d�ns

dE�
¼ d�̂bb

dE�

þ d�̂int

dE�

: (2.5)

As a consequence of this specific singularity structure, it is

useful to consider the combinations d�qq

dE�
(with q ¼ u, �u, d)

defined as

d�qq

dE�

¼d�̂qq

dE�

þ
Z d�̂

dEq

dEqdz�ðE��zEqÞDq!�ðzÞ: (2.6)

To be concrete, we work out in the following d�uu=dE�

(the other two quantities can then be obtained by obvious
replacements). Defining s ¼ ðpu þ p�Þ2, we can split the

perturbative part d�̂uu=dE� according to

d�̂uu

dE�

¼ d�̂uu;res

dE�

þ d�̂uu;coll

dE�

; (2.7)

where the resolved (collinear) contribution corresponds to
s > smin (s < smin ). Needless to say, the double differential

decay width d�̂uu

dsdE�
needs to be worked out to obtain this

splitting. The resolved part is finite for each smin > 0. If
smin is sufficiently small, the collinear piece can be worked
out using the collinear approximation of the matrix ele-
ment and the phase space, leading to

d�̂uu;coll

dE�

¼
Z d�̂

dEu

dEudz�ðE� � zEuÞ
�
� 1

"

�
4��2

smin

�
"

� ½zð1� zÞ��"

�ð1� "Þ
�e2u
2�

PðzÞ
�
; (2.8)

where the d-dimensional splitting function PðzÞ reads

PðzÞ ¼ 1þ ð1� zÞ2 � "z2

z
: (2.9)

From the explicit structure of d�̂uu;coll

dE�
, we see that the 1="

pole can be factorized into the bare fragmentation function

Du!�ðzÞ at the fragmentation scale �F such that in theMS

scheme

Du!�ðzÞ¼Du!�ðz;�FÞþ1

"

�
4��2

�2
F

�
" 1

�ð1�"Þ
�e2u
2�

Pð0ÞðzÞ;
(2.10)

where the four-dimensional splitting function Pð0ÞðzÞ reads

Pð0ÞðzÞ ¼ 1þ ð1� zÞ2
z

: (2.11)

The result for d�uu

dE�
is then

d�uu

dE�

¼d�̂uu;res

dE�

þ
Z d�̂

dEu

dEudz�ðE��zEuÞ

��e2u
2�

�
Pð0ÞðzÞln

�
sminzð1�zÞ

�2
F

�
þz

�

þ
Z d�̂

dEu

dEudz�ðE��zEuÞDu!�ðz;�FÞ: (2.12)

The treatment of the collinear phase space becomes
exact when we take the limit smin ! 0. After working
out the integral in the second term, we get in this limit
(using e� ¼ E�=mb)

d�uu

dE�

¼�e2u
2�

G2
Fm

4
bj�uj2

288�3

ð9C2
2þ2C2

1Þ
3

1

e�
½2ð24e2��10e�þ3Þlnðe�Þþð1�2e�Þð16e3��16e2�þ4e��3Þlnð�2

F=m
2
bÞ

�ð1�2e�Þð16e3��16e2�þ4e��3Þlnð1�2e�Þ�16e3�ð3þe�Þþe2�ð38þ48lnð2ÞÞþe�ð1�20lnð2ÞÞ�3þ6lnð2Þ�

þ
Z d�̂

dEu

dEudz�ðE��zEuÞDu!�ðz;�FÞ; (2.13)

where

d�̂

dEu

¼ G2
Fmbj�uj2 ð9C

2
2 þ 2C2

1Þ
3

E2
uð3mb � 4EuÞ

12�3
: (2.14)
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We notice that from this procedure, we could easily read off
the renormalization equation (2.10). Assuming that this uni-
versal equation is known already (which is of course the
case), we could have obtained the final result (2.13) without
separating the phase space into a resolved and a collinear

region, which has the advantage that the double differential

decay width (in E� and s) is not needed. Indeed, as a check,

we followed this procedure and got the same result.

In an analogous way, we obtain d��u �u

dE�
:

d��u �u

dE�

¼ �e2u
2�

G2
Fm

4
bj�uj2

96�3

ð9C2
2 þ 2C2

1Þ
3

1

e�
½2ð12e2� � 4e� þ 1Þ ln ðe�Þ � ð1� 2e�Þ2ð8e2� þ 1Þ ln ð�2

F=m
2
bÞ

þ ð1� 2e�Þ2ð8e2� þ 1Þ ln ð1� 2e�Þ � 4e3�ð5þ 6e�Þ þ 6e2�ð3þ 4 ln ð2ÞÞ þ e�ð1� 8 ln ð2ÞÞ � 1þ 2 ln ð2Þ�

þ
Z d�̂

dE �u

dE �udz�ðE� � zE �uÞD �u!�ðz;�FÞ; (2.15)

where

d�̂

dE �u

¼ G2
Fmbj�uj2 ð9C

2
2 þ 2C2

1Þ
3

E2
�uðmb � 2E �uÞ

2�3
: (2.16)

We note that in our approximation the fragmentation func-
tions Dq!�ðz;�FÞ are the same for q ¼ u, �u, d up to
obvious charge factors.

d�dd

dE�
is easily obtained as it is related to d�uu

dE�
through a

Fierz identity. One obtains

d�dd

dE�

¼ e2d
e2u

d�uu

dE�

: (2.17)

Finally, the explicit expression for the nonsingular part
d�ns=dE�, defined in Eq. (2.5), reads

d�ns

dE�

¼ �

2�

G2
Fm

4
bj�uj2

2592�3

ð9C2
2þ2C2

1Þ
3

ð1�2e�Þ
e�

�ð14e3�þ39e2��27e�þ14Þ: (2.18)

To summarize this subsection, the photon energy spectrum
d�ðb ! u �ud�Þ=dE� can be written as

d�ðb!u �ud�Þ
dE�

¼d�uu

dE�

þd��u �u

dE�

þd�dd

dE�

þd�ns

dE�

; (2.19)

where the individual terms are given in Eqs. (2.13), (2.15),
(2.17), and (2.18).

B. Parametrization of the fragmentation function

To obtain a numerical prediction for d�ðb!u �ud�Þ=
dE�, we need the nonperturbative fragmentation function

Dq!�ðz; �FÞ at a fragmentation scale �F, which is typi-

cally of order mb. As we are not aware that this function
has been directly extracted at the factorization scale
�F �mb, i.e., from B decays, we use as an input the
ALEPH measurement of the fragmentation function ob-
tained for �F ¼ mZ [17].

We should stress here that this measurement was
induced by a theoretical paper of Glover and Morgan
[18], who suggested to extract this function from the
normalized two-jet cross section

1

	had

d	ð2-jetsÞ
dz�

(2.20)

in eþe� collisions at the Z pole. To be more precise,
the photon is understood to be within one of the two jets
(E� > 5 GeV), carrying at least 70% of the total energy of

the jet. The fractional energy, z�, of such a photon within a

jet is defined as

z� ¼ E�

E� þ Ehad

; (2.21)

where Ehad is the energy of all accompanying hadrons in
the ‘‘photon jet.’’
For the extraction of the fragmentation function

Dq!�ðz; �FÞ at �F ¼ mZ, the experimental paper [17]

follows exactly the procedure described in full detail in
the theoretical work [18]. As a result, the ALEPH experi-
ment found that the simple ansatz

Dq!�ðz;mZÞ¼
�e2q
2�

�
Pð0ÞðzÞ ln

�
m2

Z

�2
0ð1�zÞ2

�
�1� ln

�
m2

Z

2�2
0

��
;

(2.22)

which contains a single parameter (�0), leads to a reason-
able description of the two-jet cross section (2.20) for

�0 ¼ ð0:14þ0:21þ0:22
�0:08�0:04Þ GeV: (2.23)

This analysis was done for values of z� > 0:7, which

means that the measurement of the fragmentation function
is restricted to values z > 0:7.
In our problem we need the fragmentation functions

Dq!�ðz; �FÞ at the low scale �b, where �b is of order

mb. To this end we solve the corresponding evolution
equation. In leading logarithmic precision (with respect
to QCD), Dq!�ðz;�FÞ satisfied the inhomogeneous inte-

grodifferential equation (see, e.g., Refs. [21,22]),
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�F

@Dq!�ðz;�FÞ
@�F

¼�e2q
�

Pð0ÞðzÞþ�sð�FÞ
�

Z 1

z

dy

y
Dq!�

�
z

y
;�F

�
Pð0Þ
q!qðyÞ;

(2.24)

where the Altarelli–Parisi splitting function Pð0Þ
q!qðyÞ reads

Pð0Þ
q!qðyÞ ¼ CF

�
1þ y2

1� y

�
þ

(2.25)

and the function Pð0ÞðzÞ is given in Eq. (2.11).
From the structure of this equation, it is clear that the

fragmentation functions Dq!�ðz0; �bÞ at a given value of

z0 only depend on the initial condition Dq!�ðz;mZÞ for
values of z satisfying z � z0. This is important because the
initial condition extracted from experiment is only known
above z > 0:7. This then means that we can determine
Dq!�ðz; �bÞ for values of z � 0:7, which is sufficient for

our application.
We solved this equation numerically, using Eq. (2.22) as

an initial condition. By doing so, we performed the inte-
gration with respect to�F using 4000 steps (at step 0�F ¼
mZ, and at step 4000 �F ¼ �b). After each step, we fitted
the z dependence to a set of 15 ‘‘basis functions.’’ At the
end of this procedure, we got the fragmentation function at
the low scale �b in a version where the z dependence is
given in a parametrized form.

As our application is rather sensitive to the fragmenta-
tion function near z ¼ 1, we also solved (as a check) the
evolution equation in moment space which we could basi-
cally do in an analytic way. Through this check, we are sure
that the purely numerical uncertainties in our prediction of
d�ðb ! u �ud�Þ=dE� are negligible.

With the fragmentation function at the low scale �F ¼
�b at hand, we can numerically evaluate, using Eq. (2.19),
the tree-level contributions of Pu

1 and P
u
2 to the (integrated)

photon energy spectrum. We are mostly interested in an
upper limit for these contributions, which amounts to using
a small value for �0 in Eq. (2.22). Therefore, we choose
�0 ¼ 0:02 GeV, which is still compatible with the range in
Eq. (2.23) obtained through the two-jet cross section at the
LEP. This compatibility is illustrated in Fig. 2.

The z dependence of the resulting fragmentation
function Dq!�ðz; �FÞ is shown in Fig. 3 for various values

of �F.

C. Numerical results

With Eq. (2.19) and the fragmentation function
Dq!�ðz; �FÞ at the low scale �F �mb, we have all the

ingredients to do the numerics for d�ðb ! u �ud�Þ=dE�

associated with the operators Pu
1 and Pu

2 . Unless stated
otherwise, we use the value �0 ¼ 0:02 GeV in Eq. (2.22)
because our aim is to give an estimate for the upper limit of

this contribution. For the other input parameters, we
use mb ¼ 4:68 GeV, j�uj2 ¼ 1:114� 10�5, j�tj2 ¼
7:530� 10�5, and for the Wilson coefficients in leading
logarithmic approximation (which are always taken at the
scale 2.5 GeV in this paper), we use, as in Ref. [13], C1 ¼
�0:8144, C2 ¼ 1:0611, and C7 ¼ �0:3688.
In Fig. 4 we plot the normalized photon energy spectrum

dRd=de�

0.70 0.75 0.80 0.85 0.90 0.95 1.00
0

1

2

3

4

5

6

FIG. 2. Two-jet cross section 1
	had

d	ð2-jetsÞ
dz�

for ycut ¼ 0:06. The
dots correspond to the ALEPH measurements [17] (see there
Fig. 5 and Table 2), while the dashed line shows the theory
prediction when using the central value �0 ¼ 0:14 GeV in the
parametrization (2.22) of the fragmentation function
Dq!�ðz; mZÞ. The solid line corresponds to �0 ¼ 0:02 GeV

(see the text).

0.75 0.80 0.85 0.90 0.95 1.00

0.0

0.5

1.0

1.5

2.0

FIG. 3. Dependence of the fragmentation function
Dq!�ðz; �FÞ (for eq ¼ 1) on z and �F. The dashed line shows

the fragmentation function for �F ¼ mZ as extracted from the
ALEPH data, using �0 ¼ 0:02 GeV. The thick (thin) solid lines
shows the corresponding fragmentation function for �F ¼ mb=2
(�F ¼ mb), obtained after solving the QCD evolution equation
(2.24) in leading logarithmic precision (see the text).
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dRd

de�
¼ 1

�0
7

d�ðb ! u �ud�Þ
de�

(2.26)

as a function of the rescaled photon energy e� (e� ¼
E�=mb). �

0
7 corresponds to the total b ! d� decay width

when only taking into account the tree-level contribution of
the magnetic dipole operator P7, i.e,

�0
7 ¼

G2
Fm

5
bj�tj2�C2

7

32�4
: (2.27)

The result for dRd=de� is shown by the solid line in Fig. 4;

the dashed line corresponds to the result when using con-
stituent masses for the light quarks, as will be discussed in
Sec. III.

In Table I we consider the corresponding integrated
quantity Rcut

d

Rcut
d ¼

Z 1=2

ecut�

dRd

de�
; (2.28)

for ecut� ¼ 0:342 (which corresponds to a photon energy cut

of 1.6 GeV), using two different values for the fragmenta-
tion scale �F. As in Fig. 4, we also show in Table I the
corresponding results when using a common constituent
mass m for the light quarks, as discussed in Sec. III.

As mentioned above, the results in Table I for the
fragmentation function approach are based on using the
value�0 ¼ 0:02 GeV in Eq. (2.22) and should therefore be
considered as an upper limit for Rcut

d . For the central value

�0 ¼ 0:14 GeV [see Eq. (2.23)], one gets Rcut
d ¼ 0:0549

for �F ¼ mb=2 and Rcut
d ¼ 0:0291 for �F ¼ mb.

One sees from Table I that these upper limits are close to
the results when using a common constituent quark massm
(with m=mb ¼ 1=50) for the light quarks. These contribu-
tions are not very small; therefore, it will be necessary to
take them into account when deriving a NNLL prediction
of the CP-averaged branching ratio for �B ! Xd�.

III. RESULT WHEN USING CONSTITUENT
QUARK MASSES

Another possibility to effectively treat the collinear
regions connected with photon emission from light quarks
is to provide the latter with constituent masses [13].
Making use of Ref. [23], where useful ingredients for

computing the phase space integrals with massive particles
in the final state are given, we easily get the spectrum

d�ðmÞðb ! u �ud�Þ=dE� associated with the operators Pu
1

and Pu
2 . Providing all light quarks with the same constitu-

ent mass m and keeping the m dependence only in loga-
rithmic terms, we obtain

d�ðmÞðb ! u �ud�Þ
dE�

¼ G2
Fm

4
bj�uj2�

32�4

ð9C2
2 þ 2C2

1Þ
3

ð1� 2e�Þ
972e�

�
�
6ð272e3� � 176e2� þ 44e� � 27Þ

�
�
2 ln

m

mb

� ln ð1� 2e�Þ
�
þ 4316e3�

� 2138e2� þ 422e� � 399

�
: (3.1)

In this formula the charge factors eu ¼ 2=3 and ed ¼
�1=3 are inserted, and e� stands again for the rescaled

photon energy (e� ¼ E�=mb). The numerical results of

this approach can be seen in Fig. 4 and in Table I.

IV. SUMMARYAND CONCLUSIONS

Using data from the two-jet cross section (where one of
the jets is required to contain a photon) measured by the
ALEPH experiment at the LEP [17], the quark-to-photon
fragmentation function was extracted (with the help of the
theoretical work [18]) at the fragmentation scale �F ¼
mZ. Using this input, we determine the fragmentation
function at the scale �F �mb by numerically solving the
corresponding evolution equation. Using the so-obtained
fragmentation function, we worked out the upper limit
of that contribution to the (integrated) photon energy

0.35 0.40 0.45 0.50

0.5

1.0

1.5

2.0

FIG. 4. Normalized photon energy distribution (2.26) due to
b ! u �ud� associated with the operators Pu

1;2 for the two differ-

ent approaches. Solid line: fragmentation function approach with
fragmentation scale �F ¼ mb=2; dashed line: introducing a
common constituent quark mass m for the light quarks, taking
m=mb ¼ 1=50.

TABLE I. The ratio Rcut
d [see Eq. (2.28)] for Ecut

� ¼ 1:6 GeV
for different values of fragmentation scale �F and different
values of the common constituent mass m of the light quarks.

�F ¼ mb=2 �F ¼ mb
m
mb

¼ 1
50

m
mb

¼ 1
10

Rcut
d 0.107 0.0683 0.126 0.0188
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spectrum for �B ! Xd�, which stems from the tree-level
transitions b ! u �ud� associated with the operators and
Pu
1;2. This upper limit is close to the result when using a

common constituent quark mass m (with m=mb ¼ 1=50)
for the light quarks. We conclude that these contributions
are not very small, and therefore it will be necessary to take
them into account when deriving a NNLL prediction
of the CP-averaged branching ratio for �B ! Xd�.
Needless to say, it would be useful to have a determination
of the quark-to-photon fragmentation function which
directly uses data from B-meson decays. This would

obviously lead to a more precise prediction of the
b ! u �ud� transition.
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