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(Received 16 June 2013; published 10 October 2013)

We study the process dependent nuclear k? broadening effect by employing the transverse momentum

dependent (TMD) factorization approach in combination with the Mclerran-Venugopalan model. More

specifically, we investigate how the parton transverse momentum distributions are affected by the process

dependent gauge links in cold nuclear matter. In particular, our analysis also applies to the polarized cases

including the nuclear quark Boer-Mulders function and the linearly polarized gluon distribution. Our main

focus is on the nuclear TMDs at intermediate or large x.
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I. INTRODUCTION

The detailed understanding of the properties of hot and
cold nuclear matter is one of the topical problems of QCD,
in particular, in connection with high energy heavy-ion
experiments at RHIC, LHC, and the future EIC. Initial/final
state multiple parton rescattering in a large nucleus plays an
important role in revealing the properties of cold nuclear
matter, as it leads to various physical effects, such as trans-
verse momentum broadening of the propagating parton,
parton energy loss due to induced gluon bremsstrahlung,
and nuclear dependence of azimuthal asymmetries.

Much efforts have been devoted to the study of trans-
verse momentum broadening in eA and pA collisions.
A number of different approaches developed to describe
this phenomenon were formulated within different theo-
retical frameworks, such as the eikonal approximation [1],
twist-4 collinear factorization [2] and the resummation of
higher twist contributions [3,4], dipole approach [5,6], the
BDMPS formalism [7–9], diagrammatic Glauber multiple
scattering [10], color glass condensate effective theory
[11,12], transverse momentum dependent factorization
(TMD) [13], and soft collinear effective theory [14–17].
The energy dependence of nuclear k? broadening has also
been investigated in Refs. [18,19].

Within the TMD factorization approach [20,21], we
identified the gauge link appearing in the matrix element
definition for nuclear TMDs as the main source of leading
nuclear effects [13]. The formalism we developed in [13]
was used to study k? broadening as well as the nuclear
dependence of azimuthal asymmetries [22–24] in semi-
inclusive DIS (SIDIS) off a large nucleus. In SIDIS nuclear
TMDs contain a future-pointing gauge link describing the
final state interactions, while a past-pointing gauge link
shows up in the nuclear TMDs associated with the
Drell-Yan process in pA collisions due to initial state
interactions. The contributions to k? broadening from the
future- and past-pointing gauge links are identical as this is
a T-even observable. In the processes involving more
complicated color flow, parton transverse momentum dis-
tributions can be affected by both initial and final state

interactions, and thus could significantly differ from these
in SIDIS and Drell-Yan (DY) processes. The initial/final
state interactions leading to k? broadening in eA and pA
collisions can be encoded in the various process dependent
gauge links [25]. The purpose of this paper is to investigate
the process dependent nuclear TMDs at intermediate or
large x following our general method described in [13]. As
a byproduct, one can readily deduce k? broadening simply
by computing the k2? moment of nuclear TMDs.

As a matter of fact, the process dependent nuclear TMDs
at small x have been studied in both the unpolarized
[26–28] and polarized cases [29,30]. In general, small
x nuclear TMDs associated with different hard scattering
processes recover the same well-known perturbative tail
1=k2? in the dilute medium limit, while they could differ

significantly in the dense medium case where initial/final
multiple rescattering plays a more important role for parton
transverse momentum spectra. One remarkable example is
the difference between two widely used small x gluon
TMDs in saturation physics: the Weizsäcker-Williams
(WW) gluon distributions and the dipole gluon distribu-
tion. As pointed out in [27,28], the WW gluon distribution
contains a future- or past-pointing gauge link in the adjoint
representation while the dipole distribution contains a
closed loop gauge link. Both gluon distributions can be
probed in different hard scattering processes [27,28].
In the present paper, we are aiming to extend the analy-

ses [26–30] to the intermediate or large x region. At small
x, TMDs are perturbatively calculable due to the presence
of a semihard scale (the so-called saturation scale), gen-
erated dynamically in high energy scattering. In contrast,
nuclear TMDs at intermediate or large x cannot be com-
puted perturbatively. However, for the same reason, one
can calculate contributions from initial/final state interac-
tions encoded in process dependent gauge links in the
Mclerran-Venugopalan (MV) model. By doing so, we are
able to express nuclear TMDs as the convolution of the
corresponding nucleon ones and process dependent small x
gluon distributions. k? broadening is obtained as a byprod-
uct from the relation between the nuclear TMD and the
nucleon TMD in a specific hard scattering process.
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At this point, we would like to briefly comment on
the factorization properties of the relevant processes.
Factorization in terms of TMDs containing process depen-
dent gauge links is often referred to as generalized transverse
momentum dependent (GTMD) factorization [25]. In the
framework of GTMD factorization, the modified gauge links
are obtained by resumming longitudinally polarized gluons
into parton correlation functions on each nucleon side sepa-
rately. However, recent work has shown that it is impossible
to do so for dijet production in pp collisions because the
initial/final state interaction will not allow a separation of
gauge links into the matrix elements of the various TMDs
associated with each incoming proton. This has been explic-
itly illustrated by a concrete counter-example in Ref. [31]. In
pA collisions, if one only takes into account the interaction
between the active partons and the background gluon field
inside a large nucleus while neglecting the longitudinal
gluons attached to the proton side, the type of graph (for
example Fig. 11 in [31]) which can produce a violation of
generalized TMD factorization disappears. After neglecting
the extra gluon attachment on the proton side, multiple gluon
rescattering between the hard part and the nucleus can be
resummed to all orders in the form of a process dependent
gauge link. As a result, the predictive power of the theory is
partly restored in pA collisions.

We also noticed that the process dependent k? broad-
ening effect has been studied within the twist-4 collinear
factorization approach [32–34]. The fact that the twist-4
collinear approach can be applied in the intermediate and
large x region allows us to directly compare our formalism
with the high-twist approach. It is shown that two ap-
proaches yield identical physical results for k? broadening
in different processes provided that the saturation scale
and the twist-four quark gluon correlation functions are
parametrized in a similar manner.

The paper is organized as follows. In Sec. II, we review
our general method developed in [13] and apply a modified
version to compute the nuclear enhancement of the trans-
verse momentum imbalance for quark pair production in
eA collisions and Drell-Yan dilepton production in pA
collisions. In addition, we establish relations between nu-
clear quark Boer-Mulders distributions and nucleon ones in

SIDIS and Drell-Yan using the same approach. In Sec. III,
we study nuclear k? broadening for photon-jet production
and quark pair production in pA collisions, respectively. In
Sec. IV, we compare our results with those obtained in the
collinear twist-4 approach and discuss the phenomenology
implications. We conclude the paper and summarize our
work in Sec. V.

II. NUCLEAR TMDS IN SIDIS AND
DRELL-YAN PROCESSES

In our original work [13], multiple gluon correlations
from the gauge link appearing in the definition of nuclear
quark TMDs are reduced to products of nucleon small x
gluon distribution in the so-called maximal two-gluon
correlation approximation. From such expression, we
obtained nuclear TMD as a convolution of a Gaussian
distribution and a nucleon quark TMD. The width of the
Gaussian is given by the gluon distribution density in the
nuclear medium. However, the evaluation of Wilson lines
in the MV model [35,36] has already reached a rather
sophisticated level. In the present work, we will, therefore,
compute the contribution from gauge links using the MV
model instead of the maximal two-gluon correlation ap-
proximation. Both the unpolarized nuclear TMDs and the
polarized TMDs (quark or gluon Boer-Mulders distribu-
tions) can be treated in the same framework. The resulting
expression of the gauge link contribution in SIDIS com-
puted in the MVmodel no longer has a Gaussian form once
the finite nuclear matter size effect is taken into account.
We start our derivation with the nuclear TMDs containing a
simple future- or past-pointing gauge link.

A. Semi-inclusive DIS scattering off a large nucleus

In this subsection, we investigate how the outgoing
quark transverse momentum spectrum is affected by final
state interactions encoded in the future-pointing gauge link
in the SIDIS process. The explicit relations between the
nucleon quark TMDs and the corresponding nuclear ones
are established.
Our starting point is the operator definition of quark

TMDs in an unpolarized nucleon,

MNðx; ~k?Þ ¼
Z dr�d2r?

ð2�Þ3 eixP
þr��i ~k?� ~r?hNj �c ðy�; y?ÞU½þ�c ðr� þ y�; r? þ y?ÞjNi

¼ 1

2
f1;DISðx; k?Þ6pþ 1

2k?
h?1;DISðx; k?Þ���k�p�; (1)

where k? is defined as k? � j ~k?j, and p� is the commonly
defined light cone vector. The average over coordinate y is
implied. jNi represents the nucleon state. f1;DISðx; k?Þ is
the normal unpolarized quark distribution function con-
taining a future-pointing gauge link which arises from the
final state interaction in the semi-inclusive DIS process.

The second parton distribution h?1;DISðx; k?Þ is commonly
referred to as quark Boer-Mulders function [37]. Note that
our convention for the quark Boer-Mulders function differs
from the literature [38–40] by a factor k?=MN , where MN

is target mass. Roughly speaking, the quark Boer-Mulders
function describes the strength of the correlation between
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the quark transverse polarization and its transverse mo-
mentum. Color gauge invariance is ensured by two (future-
pointing) gauge links in the fundamental representation,

U½þ� ¼ P e
�ig

R1
y� d��Aþð��;y?ÞP e�ig

R
r�þy�
1 d��Aþð��;r?þy?Þ:

(2)

We choose to work in the covariant gauge in which Aþ is
the dominant component. The transverse pieces of the
gauge link are suppressed and will be neglected in the
derivation presented below [41].

Generally speaking, the longitudinal polarized gluons
building up the gauge link may carry arbitrary collinear
nucleon momentum fractions, since the gluon pole is not
pinched. However, in this paper, we only focus on the
contribution from small x gluons, which can be computed
perturbatively due to the presence of a semihard scale Qs.
One might expect that the contribution to k? broadening
from gluons with large (or intermediate) longitudinal mo-
mentum fraction is suppressed as compared to that from

small x gluons because of the high gluon number density at
small x and the larger transverse momentum carried by
these gluons.
Following a standard procedure (see, e.g., Ref. [42] for

an overview), one first solves the classical Yang-Mills
equation and obtains

Aþ
a ðy�; y?Þ ¼ � 1

r2
?
�aðy�; y?Þ; (3)

where a is the color index. We proceed by inserting this
solution into the gauge link and averaging over the color
sources �ðx�; x?Þ with the Gaussian distribution W½��
[35]:

WA½�� ¼ exp

�
� 1

2

Z
d3y

�aðy�; y?Þ�aðy�; y?Þ
�Aðy�Þ

�
; (4)

where �Aðy�Þ is the density of the color charges at a given
y�. With this ansatz for the distribution of color sources,
the most elementary correlator is given by

hAþ
a ðy�; y?ÞAþ

b ðr�; r?Þi ¼ �ab�ðy� � r�Þ�Aðy? � r?Þ�Aðy�Þ �Aðk?Þ � 1

k4?
: (5)

By repeatedly using this elementary correlator, one evaluates a pair of Wilson lines stretching from y� þ R� to infinity
with R� being the nucleon radius,

h½Pe
�ig

R1
y�þR� d��Aþð��;y?ÞPe�ig

R
y�þR�
1 d��Aþðr?þy?;��Þ�abi ¼ exp

�
�CF�ðr2?Þ

Z 1

R�þy�
d���Að��Þ

�
�ab; (6)

where�ðr2?Þ � g2½�Að0?Þ � �Aðr?Þ� ’ g2
r2?
16� ln 1

r2?�
2
QCD

. Note that these two Wilson lines are connected in color space at

infinity. The resulting expression is a production of the unitary color matrix and an exponential. This procedure is
illustrated in Fig. 1.

Inserting this expression into the matrix element MN , one obtains,

MNðx; ~k?Þ ¼
Z dr�d2r?

ð2�Þ3 eixP
þr��i ~k?�~r?hNj �c ðy�; y?Þ �U½þ�c ðr� þ y�; r? þ y?ÞjNiexp

�
�CF�ðr2?Þ

Z 1

R�þy�
d���Að��Þ

�
:

(7)

Here, the gauge link �U½þ� is a short one and defined as

�U½þ� ¼ P e
�ig

R
R�þy�
y� d��Aþð��;y?ÞP e

�ig
R

r�þy�
R�þy� d��Aþð��;r?þy?Þ; (8)

which consists of two short Wilson lines connected in color space at point R� þ y�. Apparently, the density of the color
sources outside a nucleon is zero:

R1
R�þy� d�

��Að��Þ ¼ 0. Such a vanishing contribution from the gauge link outside a
nucleon has also been clearly seen in the lattice calculation [43]. As a result, the exponential factor in Eq. (7) becomes
unity. The TMD correlator is reduced to

FIG. 1. The ordinary future-pointing gauge link is reduced to a short one by evaluating part of the gauge link stretching from R� to
1 in the MV model, where R� is the radius of a nucleon.
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MNðx; ~k?Þ ¼
Z dr�d2r?

ð2�Þ3 eixP
þr��i ~k?� ~r?hNj �c ð0�; 0 ?Þ �U½þ�c ðr�; r?ÞjNi

¼ 1

2
f1;DISðx; k?Þ6pþ 1

2k?
h?1;DISðx; k?Þ���k�p�; (9)

where we have shifted the coordinate y to zero using translation invariance.
Note that the above derivation applies to both nuclear and nucleon targets and that all results have the same form. The

only difference is that for a large nucleus target, the struck nucleon is surrounded by cold nuclear matter, such that the
density of color sources outside the struck nucleon is no longer zero. Here, we further assume that the hadronization
process takes place outside the nucleus,

MAðx; ~k?Þ ¼
Z dr�d2r?

ð2�Þ3 eixP
þr��i ~k?�~r?hAj �c ðy�; y?Þ �U½þ�c ðr� þ y�; r? þ y?ÞjAiexp

�
�CF�ðr2?Þ

Z 1

R�þy�
d���Að��Þ

�

¼ 1

2
f1;DISðx; k?Þ6pþ 1

2k?
h?
1;DISðx; k?Þ���k�p�; (10)

where f1;DIS and h?
1;DIS denote the unpolarized quark and quark Boer-Mulders TMD distributions inside a large nucleus,

respectively. To proceed further, we make two assumptions:
(1) we neglect the correlation between different nucleons and assume the large nucleus as a weakly bound,

hAj �c ðy�; y?Þ �U½þ�c ðr� þ y�; r? þ y?ÞjAi ¼ hNj �c ð0�; 0?Þ �U½þ�c ðr�; r?ÞjNi
Z

dy�d2y?�A
NðyÞ; (11)

where jNi is understood as the nucleon state averaged over protons and neutrons inside a large nucleus, and �A
NðyÞ is the

spatial nucleon density normalized to the atomic number A;
(2) we further describe the large nucleus as a homogenous system of nucleons and color sources,

�A
NðyÞ ¼ �A

Nð0Þ; �Að��Þ ¼ �Að0�Þ: (12)

Implementing these two approximations, one has

MAðx; ~k?Þ ¼
Z dr�d2r?

ð2�Þ3 eixP
þr��i ~k?�~r?hNj �c ð0�; 0?Þ �U½þ�c ðr�; r?ÞjNi

�
Z

dy�d2y?�A
Nðy�Þ exp

�
�CF�ðr2?Þ

Z 1

R�þy�
d���Að��Þ

�

� A
Z dr�d2r?

ð2�Þ3 eixP
þr��i ~k?�~r?hNj �c ð0�; 0?Þ �U½þ�c ðr�; r?ÞjNi 1� e�

r2?Q2
s;q

4

r2?Q
2
s;q=4

: (13)

In the second step of the above equation, the approximation
R1
R�þy� d�

��Að��Þ �
R1
y� d�

��Að��Þ valid for a large

nucleus target has been used. The quark saturation momentum Qs;q is given by Q2
s;q ¼ 	sCF ln

1
r2?�

2
QCD

R1
�1 d���Að��Þ.

Equation (13) can be reexpressed in momentum space as

MAðx; ~k?Þ ¼ A
Z

d2l?MNðx; ~l?ÞF DISðj ~k? � ~l?jÞ: (14)

Here F DISðj ~k? � ~l?jÞ is given by

F DISðj ~k? � ~l?jÞ ¼
Z d2r?

ð2�Þ2 e
�ið ~k?�~l?Þ�~r?4

1� e�
r2?Q2

s;q

4

r2?Q
2
s;q

; (15)

and is normalized to 1:
R
d2l?F DISðl?Þ ¼ 1. WhenQ2

s;q is small, the fact thatF DISðj ~k? � ~l?jÞ ’ �2ð ~k? � ~l?Þ allows us to
recover the usual nucleon TMDs. Inserting the decomposition of the matrix correlator into Eq. (14), it is easy to derive that
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f1;DISðx; k?Þ ¼ A
Z

d2l?f1;DISðx; l?ÞF DISðj ~k? � ~l?jÞ (16)

h?
1;DISðx; k?Þ ¼ A

Z
d2l?ðk̂? � l̂?Þh?1;DISðx; l?ÞF DISðj ~k? � ~l?jÞ: (17)

The unit vectors k̂? and l̂? are defined as k̂? � ~k?=k? and l̂? � ~l?=l?, respectively. From these relations between
nucleon TMDs and nuclear TMDs, one finds,

Z
d2k?f1;DISðx; k?Þ ¼ A

Z
d2l?f1;DISðx; l?Þ ¼ Af1ðxÞ; (18)

Z
d2k?k2?f1;DISðx; k?Þ ¼ A

Z
d2l?l2?f1;DISðx; l?Þ þ

1

2
Q2

s;qAf1ðxÞ; (19)

Z
d2k?k?h?

1;DISðx; k?Þ ¼ A
Z

d2l?l?h?1;DISðx; l?Þ ¼ �2�MNATð�Þ
F ðx; xÞ: (20)

f1ðxÞ is the normal integrated unpolarized quark distribu-
tion of a nucleon, while Tð�Þ

F ðx; xÞ (convention used in
Refs. [38,39]) is the twist-3 quark gluon correlation
function inside an unpolarized nucleon. In the last step
of Eq. (20), we used the well-known relation between
the moment of the Boer-Mulders function and Tð�Þ

F ðx; xÞ
[44]. It turns out that this relation is not affected by the
cold nuclear medium. Moreover, for the approximations
made in this paper, the unpolarized quarks inside a large
nucleus are redistributed in transverse momentum space
while the total probability to find a quark carrying a certain
longitudinal momentum fraction x remains unchanged. To
be more specific, the quark transverse momentum distri-
bution becomes broader and the transverse momentum
broadening squared is Q2

s;q=2.
In the semihard region where k2? is of the order Q2

s;q,

Eqs. (16) and (17) can be simplified by dropping the terms
suppressed by powers hl2?i=Q2

s;q where hl2?i is the average
squared parton intrinsic transverse momentum inside a
nucleon,

f1;DISðx; k?Þ ’ Af1ðxÞF DISðk?Þ; (21)

h?
1;DISðx; k?Þ ’ A2�MNT

ð�Þ
F ðx; xÞ 1

2

@F DISðk?Þ
@k?

; (22)

which is the main result of this section. We believe that the
main feature of multiple scattering in the cold nuclear
matter has been captured in the above equations though
various approximations were made in deriving them.

We conclude this subsection by emphasizing again the
important point that the derivation presented above is only
valid for nuclear TMDs at intermediate x or large x. In our
calculation, it was critical to assume that the hard scatter-
ing takes place locally inside a nucleon, i.e., r� � R�.
This is in sharp contrast to the dipole model where the
quark-antiquark pair coherently interacts with the whole
nucleus.

B. The Drell-Yan process in pA collisions

We now turn to k? broadening in the Drell-Yan process.
In a widely used hybrid approach (for a review, see [45]),
one utilizes ordinary integrated parton distributions for the
dilute projectile proton, while the transverse momentum
carried by a parton coming from a nucleus is left uninte-
grated. We adopted the same strategy when dealing with
pA collisions throughout this paper. As a consequence, at
lowest order, the obtained transverse momentum spectrum
of the produced virtual photon is directly related to the k2?
moment of the nuclear quark TMDs.
Quark TMDs appearing in Drell-Yan differential cross

sections contain a past-pointing gauge link,

U½�� ¼ P e
�ig

R�1
y� d��Aþð��;y?ÞP e�ig

R
r�þy�
�1 d��Aþð��;r?þy?Þ:

(23)

Following the procedure outlined in the previous subsec-
tion, one obtains the same relations between nucleon quark
TMDs and nuclear quark TMDs,

f1;DYðx; k?Þ ¼ A
Z

d2l?f1;DYðx; l?ÞF DYðj ~k? � ~l?jÞ;
(24)

h?
1;DYðx; k?Þ
¼ A

Z
d2l?ðk̂? � l̂?Þh?1;DYðx; l?ÞF DYðj ~k? � ~l?jÞ;

(25)

with

F DYðj ~k? � ~l?jÞ ¼ F DISðj ~k? � ~l?jÞ: (26)

Similarly, a shorter past-pointing gauge link emerges in the
matrix element definition for f1;DYðx; l?Þ and h?1;DYðx; l?Þ,
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�U½�� ¼ P e�ig
R�R�

0
d��Aþð��;0?ÞPe�ig

R
r�
�R� d��Aþð��;r?Þ:

(27)

In the above formula, the coordinate y has again been
shifted to zero by translation invariance. With this shorter
gauge link, using time reversal and parity invariance, one
may readily deduce,

f1;DYðx; l?Þ ¼ f1;DISðx; l?Þ;
h?1;DYðx; l?Þ ¼ �h?1;DISðx; l?Þ;

(28)

and therefore,

f1;DYðx; l?Þ ¼ f1;DISðx; l?Þ;
h?
1;DYðx; l?Þ ¼ �h?

1;DISðx; l?Þ:
(29)

We notice that the unique universality property of the
T-odd distribution h?

1 [46,47] is preserved under our
manipulation of gauge links. In the end, we would like
to mention that the transverse momentum broadening
for a virtual photon produced in pA collisions is also
parametrized by Q2

s;q=2.

C. Heavy quark pair production in eA collisions

We study the nuclear broadening of heavy quark-
antiquark pair momentum imbalance in eA collisions.
Heavy quark production in eA collisions is initiated by
the gluon channel,


� þ g ! Qþ �Q: (30)

The transverse momentum imbalance of a quark-antiquark
pair is defined as

~k? ¼ ~p1? þ ~p2?; (31)

where ~p1? and ~p2? are the transverse momenta of the
produced quark and antiquark, respectively. In TMD

factorization and at leading order, ~k? is identical to
the transverse momentum carried by the incoming gluon
simply because of momentum conservation. The matrix
element definition for nuclear gluon TMDs in SIDIS is
given in [48,49]

Mij
A ðx; ~k?Þ ¼

Z dr�d2r?
ð2�Þ3Pþ eixP

þr��i ~k?� ~r?hAjFþiðy�; y?Þ ~U½þ�LyF
þjðr� þ y�; r? þ y?ÞjAi

¼ �ij
?
2

xGDISðx; k?Þ þ
�
k̂i?k̂

j
? � 1

2
�ij
?

�
xh?g

1;DISðx; k?Þ; (32)

where ~U½þ� is the future-pointing gauge link in the adjoint
representation. GDIS and h?g

1;DIS stand for the unpolarized
gluon TMD and linearly polarized gluon TMD, respec-
tively. h?g

1;DIS is the only polarization dependent gluon TMD
for an unpolarized nucleon/nucleus, and therefore may be
considered as the counterpart of the quark Boer-Mulders
function. However, in contrast to the later, h?g

1;DIS is a time-
reversal even distribution, implying h?g

1;DIS ¼ h?g
1;DY. The

linearly polarized gluon distribution inside a large nucleus
recently attracted a lot of attentions. h?g in the saturation
regime was first derived using the MV model in [29]. Its
rapidity evolution was also investigated [50]. Many pro-
cesses in which h?g can be probed have been proposed
[29,30,50–52].

It is straightforward to extend our analysis for nuclear
quark TMDs to gluon TMDs. One thus obtains

GDISðx; k?Þ ¼ A
Z

d2l?GDISðx; l?ÞF g
DISðj ~k? � ~l?jÞ;

(33)

h?g
1;DISðx; k?Þ ¼ A

Z
d2l?½2ðk̂? � l̂?Þ2 � 1�h?g

1;DISðx; l?Þ

�F g
DISðj ~k? � ~l?jÞ: (34)

GDIS and h?g
1;DIS are corresponding gluon distributions in a

nucleon. F g
DISðj ~k? � ~l?jÞ is given by

F g
DISðj ~k? � ~l?jÞ ¼

Z d2r?
ð2�Þ2 e

�ið ~k?�~l?Þ� ~r?4
1� e�

r2?Q2
s

4

r2?Q
2
s

;

(35)

where Q2
s ¼ 	sNc ln

1
r2?�

2
QCD

R1
�1 d���Að��Þ is the gluon

saturation momentum. With these relations, it is easy to
further verify that

Z
d2k?k2?GDISðx; k?Þ

¼ A
Z

d2l?l2?GDISðx; l?Þ þ 1

2
Q2

sAGDISðxÞ; (36)

Z
d2k?k2?h

?g
1;DISðx;k?Þ¼A

Z
d2l?l2?h

?g
1;DISðx;l?Þ: (37)

Correspondingly, the quark-antiquark momentum imbal-
ance in eA collisions is again of order Q2

s=2.
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III. NUCLEAR TMDS IN PHOTON-JET AND
HEAVY QUARK PAIR PRODUCTION

IN PA COLLISIONS

Whenboth initial and final state interactions are present in a
hard scattering, a more complicated structure of gauge links
different fromsimple past- or future-pointing oneswill appear.
This results in the process dependent nuclear k? broadening.

A. Nuclear TMDs in photon-jet production

We first study the nuclear enhancement of the transverse
momentum imbalance for photon-jet production in pA
collisions,

pðP0Þ þ AðPÞ ! 
ðp1Þ þ Jetðp2Þ þ X; (38)

where P0 and P are the momenta of incoming proton
and nucleus (per nucleon), and p1, p2 are the momenta
of the produced photon and jet, respectively. The
transverse momentum imbalance ~q? is defined as
~q? ¼ ~p1? þ ~p2?.
For the q �q ! 
g channel, the corresponding gauge

link is built up by both initial state and final state
interactions. The resulting nuclear quark TMDs are
give by [25]

MAðx; ~k?Þ ¼
Z dr�d2r?

ð2�Þ3 eixP
þr��i ~k?�~r?hAj �c ðy�; y?Þ

�
9

8Nc

U½þ� Trc½U½h�y� � 1

8
U½��

�
c ðr� þ y�; r? þ y?ÞjAi

¼ 1

2
f1;q �q!
gðx; k?Þ6pþ 1

2k?
h?
1;q �q!
gðx; k?Þ���k�p�; (39)

where U½h� ¼ U½þ�U½��y ¼ U½��yU½þ� emerges as a Wilson loop. The technique for evaluating multiple point corre-
lation functions in the MV model has been systematically developed in Ref. [53]. The main strategy is to repeatedly use

the Fierz identity taijt
a
kl ¼ 1

2�il�jk � 1
2Nc

�ij�kl in order to resolve the color structure when gluon links connect different

gauge links. By closely following the method presented in [53], we compute part of the gauge link U½þ�U½þ�y in the MV
model,

h½P e
�ig

R1
y�þR� d��Aþð��;y?ÞP e�ig

R
y�þR�
1 d��Aþðr?þy?;��Þ�ij½P e

�ig
R1

y�þR� d��Aþð��;y?ÞPe�ig
R

y�þR�
1 d��Aþðr?þy?;��Þ�ylmi

¼ 1

Nc

½1� e
�Nc�ðr2?Þ

R1
R�þy� d���Að��Þ��im�jl þ e

�Nc�ðr2?Þ
R1

R�þy� d���Að��Þ�ij�lm; (40)

where i, j, l, and m are color indices. It is worthwhile to mention that two different topologies show up as illustrated in

Fig. 2. The gauge links U½�� and U½þ� have also been calculated in the previous section. Inserting these results into
Eq. (39), one obtains

MAðx; ~k?Þ ¼
Z dr�d2r?

ð2�Þ3 eixP
þr��i ~k?� ~r?

Z
dy�d2y?�A

Nðy�Þ
�
hNj �c ð0�; 0?Þ 98

�U½þ� Trc½ �U½h�y�
Nc

c ðr�; r?ÞjNi

� e
��ðr2?Þ½CF

R
y��R�
�1 d���Að��ÞþNc

R1
y�þR� d���Að��Þ�

þ hNj �c ð0�; 0?Þ 18
�U½��c ðr�; r?ÞjNie�CF�ðr2?Þ

R
y��R�
�1 d���Að��Þ½1� e

�Nc�ðr2?Þ
R1

y�þR� d���Að��Þ�

� hNj �c ð0�; 0?Þ 18
�U½��c ðr�; r?ÞjNie�CF�ðr2?Þ

R
y��R�
�1 d���Að��Þ

�
: (41)

FIG. 2. The gauge link U½þ�U½þ�y is reduced to two short ones with different color structures by evaluating part of the gauge link
stretching from R� to 1 in the MV model, where R� is the radius of a nucleon.
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The short Wilson loop appearing in the above equation consists of a short future-pointing and a short past-pointing

gauge link: �U½h� ¼ �U½þ� �U½��y. By approximating the large nucleus as a homogenous system of color sources, we are
able to carry out the integration over y� and y?. One then ends up with

MAðx; ~k?Þ ¼
Z dr�d2r?

ð2�Þ3 eixP
þr��i ~k?�~r?AhNj �c ð0�; 0?Þ

�
9

8
�U½þ� Trc½ �U½h�y�

Nc

� 1

8
�U½��

�
c ðr�; r?ÞjNi

2
4 e

�Q2
s r

2
?

4 � e�
Q2
s;qr

2
?

4

ðQ2
s;q �Q2

sÞr2?=4

3
5;

(42)

where Q2
s ¼ 	sNc ln

1
r2?�

2
QCD

R1
�1 d���Að��Þ is the gluon saturation momentum. To arrive at the above equation, we

have made one further approximation,
Ry��R�
�1 d���Að��Þ þ

R1
y�þR� d���Að��Þ �

R1
�1 d���Að��Þ, which is valid for

a large nucleus. One can readily transform this expression to momentum space,

f1;q �q!
gðx; k?Þ ¼ A
Z

d2l?f1;q �q!
gðx; l?ÞF q �q!
gðj ~k? � ~l?jÞ; (43)

h?
1;q �q!
gðx; k?Þ ¼ A

Z
d2l?ðk̂? � l̂?Þh?1;q �q!
gðx; l?ÞF q �q!
gðj ~k? � ~l?jÞ; (44)

with F q �q!
gðk?Þ being given by

F q �q!
gðj ~k? � ~l?jÞ ¼
Z d2r?

ð2�Þ2 e
�ið ~k?�~l?Þ� ~r? e

�Q2
s r

2
?

4 � e
�Q2

s;qr
2
?

4

ðQ2
s;q �Q2

sÞr2?=4
: (45)

Correspondingly, the k? moment of nuclear TMDs readZ
d2k?k2?f1;q �q!
gðx; k?Þ ¼ A

Z
d2l?l2?f1;q �q!
gðx; l?Þ þ

�
1

2
Q2

s;q þ 1

2
Q2

s

�
Af1ðxÞ; (46)

Z
d2k?k?h?

1;q �q!
gðx; k?Þ ¼ A
Z

d2l?l?h?1;q �q!
gðx; l?Þ ¼ �2�MNA
N2

c þ 1

N2
c � 1

Tð�Þ
F ðx; xÞ; (47)

where the nontrivial color factor ðN2
c þ 1Þ=ðN2

c � 1Þ originates from the T-odd nature of the quark Boer-Mulders
distribution. In the semihard region where the imbalance of the photon-jet produced in pA collisions is of the order Qs 	
�QCD, after neglecting the terms suppressed by the power of �2

QCD=Q
2
s , we have

f1;q �q!
gðx; k?Þ ’ Af1ðxÞF q �q!
gðk?Þ; (48)

h?
1;q �q!
gðx; k?Þ ’ A2�MN

N2
c þ 1

N2
c � 1

Tð�Þ
F ðx; xÞ 1

2

@F q �q!
gðk?Þ
@k?

: (49)

The nuclear quark Boer-Mulders function can manifest itself through cos 2� asymmetries as can be seen by convoluting

with the function Tð�Þ
F from the proton side. Moreover, if the incoming proton is transversely polarized, the quark Boer-

Mulders function can couple with the transversity distribution of the proton and give rise to the single transverse spin
asymmetry. Such an observable in pA collisions was also studied from different points of view in the papers [54–57].

Photon-jet pair can also be produced through three other channels: �qq ! 
g, qg ! 
q, and gq ! 
q. The associated
nuclear TMDs contain different gauge link structures in the different channels. By evaluating the gauge links in the MV
model, it is straightforward to establish the relations between nucleon TMDs and nuclear TMDs in these processes.
However, for simplicity, we only list the k? momenta of the corresponding nuclear TMDs,

Z
d2k?k2?�f1; �qq!
gðx; k?Þ ¼ A

Z
d2l?l2? �f1; �qq!
gðx; l?Þ þ

�
1

2
Q2

s;q þ 1

2
Q2

s

�
A �f1ðxÞ; (50)

Z
d2k?k2?f1;qg!
qðx; k?Þ ¼ A

Z
d2l?l2?f1;qg!
qðx; l?Þ þ

�
1

2
Q2

s;q þ 1

2
Q2

s

�
Af1ðxÞ; (51)
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Z
d2k?k2?Ggq!
qðx; k?Þ

¼ A
Z

d2l?l2?Ggq!
qðx; l?Þ þQ2
s;qAGðxÞ; (52)

where �f1 denotes the antiquark distribution.
The average squared transverse momentum imbalance is

given by

hq2?i ¼
�Z

d2q?q2?
d�

dP :S:d2q?

��
d�

dP :S:
; (53)

where dP :S: ¼ dy1dy2d
2p? stands for the phase space

with y1, y2 being the produced photon and jet rapidities,
respectively. The nuclear broadening of the photon-jet
imbalance is defined as

�hq2?i ¼ hq2?ipA � hq2?ipp: (54)

Putting all these together, within the TMD factorization
framework the nuclear enhancement of the photon-jet
squared transverse momentum imbalance is given by

�hq2?i ¼ �hk2?i
¼ 1

2
Q2

s;q þ 1

2
Q2

s

� ½12Q2
s � 1

2Q
2
s;q��aH

a
gq!
q

�a½Ha
qg!
q þHa

gq!
q þHa
q �q!
g þHa

�qq!
g�
;

(55)

where a runs all quark flavors. The partonic hard scattering
differential cross sections read [58]

Ha
qg!
q ¼ e2q

1

Nc

�
� ŝ

t̂
� t̂

ŝ

�
fa1ðxÞGðx0Þ; (56)

Ha
gq!
q ¼ e2q

1

Nc

�
� ŝ

û
� û

ŝ

�
GðxÞfa1 ðx0Þ; (57)

Ha
q �q!
g ¼ e2q

N2
c � 1

N2
c

�
t̂

û
þ û

t̂

�
fa1ðxÞ �fa1ðx0Þ; (58)

Ha
�qq!
g ¼ e2q

N2
c � 1

N2
c

�
t̂

û
þ û

t̂

�
�fa1ðxÞfa1 ðx0Þ: (59)

Here, ŝ, û, and t̂ are the usual partonic Mandelstam vari-
ables. The collinear momentum fraction is fixed by the
kinematical constraint,

x0 ¼ p?ffiffiffi
s

p ðey1 þ ey2Þ; x0 ¼ p?ffiffiffi
s

p ðe�y1 þ e�y2Þ; (60)

where s ¼ ðPþ P0Þ2 is the center-of-mass energy squared.

By noticing Q2
s ¼ CA

CF
Q2

s;q, the nuclear broadening of the

photon-jet imbalance varies from 1 5
8Q

2
s;q toQ

2
s;q depending

on the specific kinematical variables.

B. k? broadening in heavy quark pair production

Quark-antiquark pair production in high energy pA col-
lisions is dominated by the gluon initiated parton subpro-
cess,

gpðx1P0Þ þ gAðx2PÞ ! Qðp1Þ þ �Qðp2Þ: (61)

The nuclear enhancement of the quark pair transverse
momentum imbalance ~q? ¼ ~p1? þ ~p2? is directly sensi-
tive to nuclear gluon TMD distributions. The color flow in
this subprocess is more complicated than that for photon-
jet production in pA collisions. The nuclear gluon TMDs
associated with different Feynman diagrams contain differ-
ent gauge link structures. Here we show two examples:

Ma
A / hAjTrc

�
Fþ?

�
9

8

Trc½U½h�y�
Nc

U½��y � 1

8
U½þ�y

�
Fþ?U½þ�

�
jAi; (62)

Me
A / hAjTrc

�
Fþ?U½��yFþ?U½þ�

�
Trc½U½h�y�

Nc

� 1

Nc

Trc½Fþ?U½h�y�Trc½Fþ?U½h��jAi; (63)

where gauge links appearing in Ma
A and Me

A originate from initial/final state interactions in the Feynman diagrams
Figs. 3(a) and 3(e), respectively. All other gauge links appearing in this hard scattering process are given in [25]. One can
compute the transverse momentum spectrum of the gluon distribution associated with each Feynman diagram following a
similar method as introduced in the previous subsections. With the derived nuclear gluon TMDs, we obtain

Z
d2k?k2?G

a
gg!Q �Q

ðx; k?Þ ¼ A
Z

d2l?l2?G
a
gg!Q �Q

ðx; l?Þ þ
�
1� 1

2

1

N2
c � 1

�
Q2

sAGðxÞ; (64)

Z
d2k?k2?G

b
gg!Q �Q

ðx; k?Þ ¼ A
Z

d2l?l2?G
b
gg!Q �Q

ðx; l?Þ þ
�
1� 1

2

1

N2
c � 1

�
Q2

sAGðxÞ; (65)
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Z
d2k?k2?G

c
gg!Q �Q

ðx; k?Þ ¼ A
Z

d2l?l2?G
c
gg!Q �Q

ðx; l?Þ þ 3

2
Q2

sAGðxÞ; (66)

Z
d2k?k2?G

d
gg!Q �Q

ðx; k?Þ ¼ A
Z

d2l?l2?G
d
gg!Q �Q

ðx; l?Þ þQ2
sAGðxÞ; (67)

Z
d2k?k2?G

e
gg!Q �Q

ðx; k?Þ ¼ A
Z

d2l?l2?G
e
gg!Q �Q

ðx; l?Þ þQ2
sAGðxÞ; (68)

Z
d2k?k2?G

f

gg!Q �Q
ðx; k?Þ ¼ A

Z
d2l?l2?G

f

gg!Q �Q
ðx; l?Þ þQ2

sAGðxÞ: (69)

It is easy to verify that the hard coefficient computed from
the Feynman diagram Fig. 3(c) is suppressed by the factor
of 1=N2

c as compared to the contributions from other dia-
grams in the large Nc limit. Thus, we conclude that the
nuclear k? broadening for quark-anitquark pair production
in pA collisions is Q2

s in the large Nc limit.

IV. PHENOMENOLOGYAPPLICATIONS

In this section, we discuss phenomenology applications
of our results and compare our formalism with the higher
twist collinear approach. We start from numerically eval-
uating nuclear k? broadening for jet production in eA
collisions. The analytical result for this observable takes
a simple form,

�hk2?i
�q!q ¼ Q2
s;q=2: (70)

However, in deriving the above result, we only took into
account the contributions to the gauge link from color
sources outside of the nucleon to which the struck parton
belongs. To remedy this problem, the above equation
should be slightly modified as follows:

�hk2?i
�q!q ¼ A1=3 � 1

A1=3
Q2

s;q=2; (71)

where we adopt the parametrization for the saturation

momentum used in the GBW model [59]: Q2
s ¼

A1=3Q2
0ðx0=xgÞ� with Q2

0 ¼ 1 GeV2, x0 ¼ 3� 10�4,

and � � 0:3. For lead or gold targets, A1=3 � 1 is ap-
proximately equal to 5.
The natural next step is to fix xg. At first glance, gluons

building up gauge links carry exactly zero longitudinal
momentum due to the contour integration around the gluon
pole 1=ðxg � i�Þ (for final state interactions). This pole

arises when performing the calculation in the collinear
approximation. However, if one keeps the gluon transverse
momentum kg?, the gluon pole in jet production in the

SIDIS process will be modified to

1

xg � k2g?=ð2p � qÞ � i�
; (72)

where q is the virtual photon momentum. Within the lead-
ing logarithm accuracy, it is convenient to replace k2g? in

the above formula by �hk2?i. Once xg is fixed as

�hk2?i=ð2p � qÞ, one obtains (for a lead or gold target)

�hk2?i
�q!q¼
�
1

2

CF

CA

ðA1=3�1ÞQ2
0

�
1=ð1þ�Þ�

s
x0

1þxB

�
�=ð1þ�Þ

�1:08

�
s

x0
1þxB

�
0:23ðQ2

0Þ0:77; (73)

where s ¼ ðpþ qÞ2 and xB � Q2=2p � q ¼ Q2=ðsþQ2Þ
with Q2 ¼ �q2 being the virtual photon virtuality. The
above equation holds as long as xB is of the order of 1 and
xg � 0:01 where the MV model can apply. This implies

FIG. 3. Feynman diagrams contributing to quark-antiquark pair production.
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that our formalism is invalid at relatively low energy [60].
Given xB ¼ 0:2 and

ffiffiffi
s

p ¼ 35 GeV accessible at a future
EIC, the nuclear k? broadening for jet production in
the SIDIS process gives �hk2?i
�q!q � 0:82 GeV2. For

the Drell-Yan process one can fix the saturation scale in
the same way. Unfortunately, we are not able to unambig-
uously determine the saturation scale for other processes.

Now we compare our result with that obtained from the
higher twist collinear approach. As mentioned in the in-
troduction, the process dependent k? broadening effect
was also investigated within the higher twist collinear
factorization framework [33,34] which can be applied in
the intermediate or large x region. In this formalism, the
effect of initial/final state multiple scattering generating
k? broadening is encoded in the collinear twist-4 quark-

gluon correlation functions TðIÞ
q;g=AðxÞ and TðFÞ

q;g=AðxÞ. These
functions are parametrized as follows:

4�2	s

Nc

TðIÞ
q;g=AðxÞ ¼

4�2	s

Nc

TðFÞ
q;g=AðxÞ

¼ 2ðA1=3 � 1Þfq;g=AðxÞ; (74)

where 2 represents a characteristic scale of parton
multiple scattering, and fq;g=AðxÞ is the standard leading-

twist parton distribution function for quarks and gluons,
respectively. If we identify the saturation scale as

1

2

Q2
s;q

CF

¼ 1

2

Q2
s

CA

¼ 2A1=3; (75)

our analytical results for k? broadening take the same form
as those presented in [33,34]. In [33,34], 2 is chosen to be
0:12 GeV2. Provided that one evaluates the saturation scale
using the same value 2 ¼ 0:12 GeV2, we a have numeri-
cal result for jet k? broadening in SIDIS �hk2?i
�q!q ¼
0:8 GeV2, which is very close to that calculated with the
GBW parametrization. We would also get the identical
numerical results for all other processes using Eq. (75).

Apart from the process dependent unpolarized nuclear
TMDs, the process dependent nuclear quark Boder-
Mulders function is also studied in this paper. Below we
discuss the corresponding phenomenological implications
for the polarized cases. In both SIDIS and DY in pA
collisions, the nuclear quark Boer-Mulders function can
give rise to cos 2� azimuthal asymmetries by coupling
with the Collins fragmentation function and the antiquark

Boer-Mulders function from the proton side [61], respec-
tively. According to our calculation, in the semihard region,
the transverse momentum dependence of the asymmetry is
unambiguously determined by the ratio

hcos 2�iðk?Þ / @F DISðk?Þ
@k?

�
F DISðk?Þ:

Such observables can in principle be measured in unpolar-
ized eA collisions at EIC and unpolarized pA collisions at
RHIC. We leave detailed phenomenological studies for a
future work.

V. SUMMARY

We have established relations between nuclear TMDs
and the corresponding nucleon ones by computing contri-
butions from the process dependent gauge links in the MV
model. In particular, in the semihard region where quark
transverse momenta are of the order of the saturation scale,
unpolarized nuclear TMDs are determined by the process
dependent small x gluon distributions, while nuclear quark
Boer-Mulders distributions are expressed as products of

Tð�Þ
F ðx; xÞ and the differential of the same gluon distribu-

tions with respect to gluon transverse momentum. We
stress again that the formalism developed in this paper
applies only for nuclear TMDs at intermediate or large x.
Two phenomenological applications of our work are

nuclear k? broadening and the k? dependence of the
asymmetries generated by the quark Boer-Mulders func-
tion in eA and pA collisions. To be more specific, we
calculated nuclear k? broadening for jet and dijet produc-
tion in eA collisions, and the nuclear enhancement of the
transverse momentum imbalance for Drell-Yan lepton pair
production, photon-jet production, and quark-antiquark
pair production in pA collisions. To investigate how the
quark Boer-Mulders function are affected by the surround-
ing cold nuclear matter, we also proposed to measure
cos 2� azimuthal asymmetries in SIDIS off a large nucleus
and Drell-Yan pairs in pA collisions. It will be interesting
to test our predications at RHIC and the planned EIC.
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