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We study in detail the impact of dynamical quarks on the gluon mass generation mechanism, in the

Landau gauge, for the case of a small number of quark families. As in earlier considerations, we assume

that the main bulk of the unquenching corrections to the gluon propagator originates from the fully dressed

quark-loop diagram. The nonperturbative evaluation of this diagram provides the key relation that

expresses the unquenched gluon propagator as a deviation from its quenched counterpart. This relation

is subsequently coupled to the integral equation that controls the momentum evolution of the effective

gluon mass, which contains a single adjustable parameter; this constitutes a major improvement compared

to the analysis presented in Aguilar et al. [Phys. Rev. D 86, 014032 (2012)], where the behavior of the

gluon propagator in the deep infrared was estimated through numerical extrapolation. The resulting

nonlinear system is then treated numerically, yielding unique solutions for the modified gluon mass and

the quenched gluon propagator, which fully confirms the picture put forth recently in several continuum

and lattice studies. In particular, an infrared finite gluon propagator emerges, whose saturation point is

considerably suppressed, due to a corresponding increase in the value of the gluon mass. This character-

istic feature becomes more pronounced as the number of active quark families increases, and can be

deduced from the infrared structure of the kernel entering in the gluon mass equation.
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I. INTRODUCTION

The concept of a momentum-dependent gluon mass [1]
has been the focal point of considerable attention in recent
years, mainly because it offers a natural and self-consistent
explanation [2] for the infrared finiteness of the (Landau
gauge) gluon propagator and ghost dressing function, ob-
served in large-volume lattice simulations, both in SUð2Þ
[3] and in SUð3Þ [4]. Given the purely nonperturbative
nature of the associated mass generation mechanism, the
Schwinger-Dyson equations (SDEs) constitute the most
appropriate framework for studying such phenomenon in
the continuum [5–8].

At the level of the SDEs, the general analysis finally
boils down to the study of an integral equation, to be
referred as the mass equation [9,10], which governs the
evolution of the dynamical gluon mass, m2ðq2Þ, as a func-
tion of the momentum q2 [see Eq. (2.7) below]. It turns out
that this special equation has been derived exactly, follow-
ing the elaborate procedure explained in detail in [10].
This particular construction was carried out within the
framework provided by the synthesis of the pinch tech-
nique (PT) [1,11–15] with the background field method
(BFM) [16], known in the literature as the PT-BFM
scheme [5,17,18].

This exact mass equation, however, may not be treated
in its complete form, because a particular field-theoretic
ingredient entering in it is not fully known. Therefore,
an approximate version of the full equation has been

considered instead [10], which depends on a free adjust-
able parameter. The detailed numerical study of this
particular equation, for pure SUð3Þ Yang-Mills theory,
revealed that its solutions depend strongly on the precise
shape of the gluon propagators entering in its kernel. In
particular, the q2 region below 1 GeV2 appears to be
crucial for obtaining physically acceptable (i.e. positive-
definite and monotonically decreasing) solutions.
Interestingly enough, as has been shown in recent SDEs

[19] and lattice studies [20], the gluon propagator, �ðq2Þ,
undergoes considerable changes in this particular region of
momenta when a small number of light (dynamical) quarks
is included in the theory, i.e. when ‘‘unquenching’’ takes
place. This basic observation, in turn, motivates the further
scrutiny of the mass equation under the special conditions
that occur when the transition from pure Yang-Mills to real
world QCD takes place. In particular, it is clearly of the
utmost importance to establish, in quantitative detail, how
the inclusion of dynamical quarks affects the entire mecha-
nism of gluon mass generation. In fact, from the point of
view of computing unquenching effects to the gluon propa-
gator, the present work constitutes a sequel to [19], whose
main improvement is the incorporation of the gluon mass
equation into the general dynamical analysis (in the con-
text of the so-called ‘‘scaling’’ solutions, where no mass
scale is generated, the unquenching effects have been
investigated in detail in [21,22]).
If one subscribes to the interpretation that the infrared

finiteness of the lattice propagators is a consequence of the
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generation of such a mass, then the new unquenched lattice
results of [20] would seem to indicate that the general mass
generation picture persists in the presence of quark loops.
In fact, the observed considerable suppression of the value
of the saturation point of the unquenched propagators with
respect to the quenched ones would clearly suggest that
the corresponding gluon mass increases [since ��1ð0Þ ¼
m2ð0Þ]. To be sure, this basic argument must be supple-
mented by a more careful analysis, taking into account
the effects of renormalization. In particular, the required
renormalization of the gluon propagators by a multiplica-
tive constant may shift the location of their corresponding
saturation points. However, provided that all curves are
renormalized at the same (subtraction) point, the relative
size (ratio) between these saturation points will remain
unaltered, indicating the aforementioned relative increase
of the effective gluon mass.

To explore this fundamental issue systematically, one
needs a faithful description of the effects of the inclusion of
quark loops to the gluon propagator. To be sure, one could
envisage the possibility of substituting the unquenched
lattice data directly into the mass equation, in a spirit
similar to that followed in the pure Yang-Mills case.
However, we will refrain from using this latter set of
data, and will resort instead to the full SDE approach
presented in [19], which allows the approximate inclusion
of such effects in the quenched propagator.

This particular approach assumes the presence of a
small number of quark families, and treats the entire
effect of ‘‘unquenching’’ as a ‘‘perturbation’’ to the
quenched gluon propagator.1 Then, the main bulk of the
unquenching is attributed to the fully dressed quark-loop
graph, while higher loop contributions are considered to
be subleading. The inclusion of this particular nonpertur-
bative loop induces considerable modifications to the
shape of the resulting propagator, but does not provide
precise information on the existence and value of the new
saturation point. Indeed, such information may be only
gathered in conjunction with the gluon mass equation,
which was unavailable at the time of the original analysis.
As a result, in the work of [19] the existence of a
saturation point was assumed, and its approximate value
was obtained through simple extrapolation from the
overall shape of the propagator in the region around
0:05 GeV2.

Here, instead, our present knowledge of the mass equa-
tion allows us to carry out a thorough analysis of this
particular dynamical question. Specifically, the equation
describing the unquenching of the gluon propagator is
coupled to the mass equation, and the resulting nonlinear
system is solved numerically. In this way, one eventually
obtains as a result the unquenched gluon propagator in the

entire range of physically relevant momenta, including the
value of its saturation point.
The main result of this article may be summarized as

follows. The solution of the system reveals that the mass
equation yields physical solutions in the presence of
quarks, specifically for the typical cases Nf ¼ 2 (two

degenerate light quarks), and Nf ¼ 2þ 1þ 1 (two degen-

erate light quarks and two heavy ones), considered in the
recent lattice simulations [20]. In fact, one establishes
clearly that the value of the gluon mass at the origin
increases as additional quarks are included in the theory.
In addition, one obtains a concrete prediction for the
quenched gluon propagator, which compares rather favor-
ably with the aforementioned lattice results. We emphasize
that throughout this analysis we make use of a single
adjustable parameter, which is meant to model contribu-
tions to the mass equations stemming from the fully
dressed three gluon vertex.
The article is organized as follows. In Sec. II, we first

define the basic quantities appearing in the problem, and
introduce some important relations characteristic to the
PT-BFM framework. Then, we describe the modifications
that must be implemented at the level of the gluon SDE in
order to consistently accommodate a dynamical gluon
mass. Finally, we review the theoretical origin and proper-
ties of the two key dynamical equations, namely, the gluon
mass (integral) equation and the unquenching formula.
Section III is dedicated to the solution of the system
formed when the aforementioned two equations are
coupled to each other. To that end, we begin by reviewing
the main ingredients appearing in them, and spell out the
approximations employed in their treatment. Then we
proceed to the numerical solution, describing in detail the
iterative procedure adopted. The numerical results ob-
tained are then compared with the latest lattice results,
and some of the possible reasons for the observed devia-
tions are discussed. Our conclusions are finally presented
in Sec. IV.

II. GLUON MASS EQUATION WITH
UNQUENCHED GLUON PROPAGATORS

The full gluon propagator (quenched or unquenched) in
the Landau gauge assumes the general form

i���ðqÞ ¼ �i�ðq2ÞP��ðqÞ;
P��ðqÞ ¼ g�� � q�q�=q

2;
(2.1)

where�ðq2Þ is related to the scalar form factor of the gluon
self-energy ���ðqÞ ¼ �ðq2ÞP��ðqÞ through

��1ðq2Þ ¼ q2 þ i�ðq2Þ: (2.2)

In addition, the corresponding inverse gluon dressing func-
tion, Jðq2Þ, is defined as

��1ðq2Þ ¼ q2Jðq2Þ; (2.3)
1In the case of several quark families the changes induced may

be rather profound, see, e.g. [23,24] and references therein.
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and, as has been explained in [9,25], it is intimately related
with the definition of the renormalization-group invariant
QCD effective charge.

As has been demonstrated in detail in the recent litera-
ture [26,27], the nonperturbative dynamics of Yang-Mills
theories gives rise to a dynamical (momentum-dependent)
gluon mass, which accounts for the infrared finiteness of
�ðq2Þ. Specifically, from the kinematic point of view, we
will describe the transition from a massless to a massive
gluon propagator by carrying out the replacement
��1ðq2Þ ! ��1

m ðq2Þ, where (Minkowski space)

��1
m ðq2Þ ¼ q2Jmðq2Þ �m2ðq2Þ: (2.4)

Notice that the subscript ‘‘m’’ indicates that effectively one
has now a mass inside the corresponding expressions:
for example, whereas perturbatively Jðq2Þ � ln q2, after
dynamical gluon mass generation has taken place, one
has Jmðq2Þ � ln ðq2 þm2Þ. The presence of this mass, in
turn, tames the Landau pole appearing in the (perturbative)
effective charge, causing its saturation in the deep
infrared [28,29].

From the dynamical point of view, the emergence of
massive solutions from the gluon propagator SDE depends
crucially on the inclusion of a set of special vertices, to be
generically denoted by V and called pole vertices [9],
which contain massless, longitudinally coupled poles.
These vertices are added to the usual (fully dressed) verti-
ces of the theory, and have a two-fold effect: they trigger
the well-known Schwinger mechanism, thus endowing the
gluon with a dynamical mass, while, at the same time, they
guarantee that the Slavnov-Taylor identities (STIs) of the
theory maintain exactly the same form before and after
the mass has been dynamically generated. In particular, the
transversality of ���ðqÞ in the presence of masses is

preserved, provided that one replaces all vertices � appear-
ing in the gluon SDE by

� ! �0 ¼ �m þ V; (2.5)

with V having the precise structure that will make the new
vertices �0 satisfy the same formal STIs as the � before, but
with the replacement ��1 ! ��1

m .

It turns out that Jmðq2Þ and m2ðq2Þ satisfy two separate,
but coupled, integral equations of the generic type2 [9]

Jmðq2Þ ¼ 1þ
Z
k
K1ðk; q;m2;�Þ;

m2ðq2Þ ¼
Z
k
K2ðk; q;m2;�Þ;

(2.6)

such that K1, K2 � 0, as q ! 0. In the equations above
we have introduced the dimensional regularization mea-
sure

R
k ¼ ��

R
ddk=ð2�Þd where d ¼ 4� � is the space-

time dimension and � the ’t Hooft mass.
The exact closed form of the kernel K2, and hence the

full integral equation that determines m2ðq2Þ, has been
derived in [10], by appealing to the special properties of
the pole vertices V. The resulting homogeneous equation is
given by [10] (see also Fig. 1)

m2ðq2Þ ¼ � g2CA

1þGðq2Þ
1

q2

�
Z
k
m2ðk2Þ��

� ðkÞ���ðkþ qÞK��ðk; qÞ; (2.7)

with

K��ðk;qÞ ¼ ½ðkþqÞ2 � k2�f1�½YðkþqÞþYðkÞ�gg��

þ½Yðkþ qÞ�YðkÞ�ðq2g�� � 2q�q�Þ: (2.8)

The quantity Y represents the subdiagram nested inside the
two-loop dressed graph of Fig. 1, given by

Yðk2Þ¼g2CA

4k2
k�

Z
‘
���ð‘Þ���ð‘þkÞ����ð�‘�k;‘;kÞ;

(2.9)

with ���� the full three-gluon vertex, and CA the Casimir

eigenvalue in the adjoint representation [CA ¼ N for
SUðNÞ].
Finally, the function Gðq2Þ corresponds to the g�� com-

ponent of a special two-point function, which constitutes a
crucial ingredient in a set of powerful identities, relating

FIG. 1 (color online). The effective SDE satisfied by the dynamical gluon mass. The blue vertex corresponds to the vertex �m of
Eq. (2.5), while the red vertex ~V indicates a pole vertex in which one of the gluon is leg is a background leg. Finally, the box singles out
the quantity Yðk2Þ which represents the purely two-loop dressed correction to the one-loop dressed mass equation kernel.

2Note that in the rest of this article we will suppress the
subscript ‘‘m’’ in �; it is understood that the gluon propagator
is infrared finite.
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the conventional Green’s functions to those of the BFM
[30,31]. For the case of the conventional gluon propagator,

�, and the PT-BFM gluon propagator, denoted by �̂, the
relevant identity reads

�ðq2Þ ¼ ½1þGðq2Þ�2�̂ðq2Þ; (2.10)

its application at the level of the corresponding SDEs leads
to the appearance of the factor 1þGðq2Þ in Eq. (2.7).

The numerical treatment of Eq. (2.7), under certain
simplifying assumptions regarding the form of Yðk2Þ (see
next section), gave rise to solutions that display the basic
qualitative features expected on general field-theoretic
considerations, and employed in numerous phenomeno-
logical studies. In particular, the m2ðq2Þ obtained are
monotonically decreasing functions of the momentum
and vanish rather rapidly in the ultraviolet [1,10].

As explained in the Introduction, the purpose of the
present work is to study the effects induced on the gluon
mass by the inclusion of a small number of light quark
families. To that end, one needs to solve Eq. (2.7) using
unquenched gluon propagators, �Nf

ðq2Þ, namely, carrying

out the substitution �ðq2Þ ! �Nf
ðq2Þ inside the integral of

the right-hand side.
The corresponding expression for �Nf

ðq2Þ will be

obtained following the SDE approach presented in [19].
Specifically, one assumes that the main bulk of the
unquenching effect is captured by the (fully dressed)
one-loop diagram of Fig. 2(b), neglecting, at this level of
approximation, all contributions stemming from (higher
order) diagrams containing nested quark loops.

Denoting the contribution of this special diagram by

X̂��ðqÞ ¼ X̂ðq2ÞP��ðqÞ; (2.11)

we have that

X̂ðq2Þ ¼ �g2

6

Z
k
Tr½	�SðkÞ�̂�ðk;�k� q; qÞSðkþ qÞ�:

(2.12)

where S denotes the full quark propagator, and the vertex

�̂� corresponds to the PT-BFM quark-gluon vertex, satis-

fying the QED-like Ward identity

iq��̂�ðk;�k� q; qÞ ¼ S�1ðkÞ � S�1ðkþ qÞ: (2.13)

Of course, in the case of including various quark loops,
corresponding to different quark flavors Nf, the term

X̂��ðqÞ in Eq. (2.11) is replaced simply by the sum over
all quark loops, i.e.

X̂ ��ðqÞ ! X
f

X̂��
f ðqÞ: (2.14)

Then, the detailed analysis of [19] reveals that the un-
quenched gluon propagator �Nf

ðq2Þ may be expressed as a

deviation from the quenched propagator �ðq2Þ, namely
(Euclidean space),

�Nf
ðq2Þ ¼ �ðq2Þ

1þ fX̂ðq2Þ½1þGðq2Þ��2 þ 
2ðq2Þg�ðq2Þ ;
(2.15)

where the quantity


2ðq2Þ ¼ m2
Nf
ðq2Þ �m2ðq2Þ (2.16)

measures the difference induced to the gluon mass due to
the inclusion of quarks.
An important point, which can be established formally

and confirmed numerically [19], is that the nonperturbative

X̂ðq2Þ vanishes at the origin, X̂ð0Þ ¼ 0, exactly as it hap-
pens in perturbation theory. This implies that the mass
equation is not directly affected by the presence of
dynamical quarks, as the methodology used to derive
Eqs. (2.7), (2.8), and (2.9) is left invariant by the unquench-
ing procedure. However, the solutions of the corresponding
equation will be different from those obtained in the
quenched case, as the kernel K�� will change, due to

the modifications induced by X̂ðq2Þ in the overall shape
of the propagator throughout the entire range of momenta.
Thus, the inclusion of quark loops affects the value of the
saturation point of the gluon propagator, not directly

(a)

(b)

(c)

(d)

FIG. 2 (color online). Schematic representation of the un-
quenched propagator (a), corresponding to Eq. (2.15), and
some of the ingredients [(b), (c), and (d)] entering in it. In
particular, (b) represents the quark loop, which, in the approxi-
mation employed, is the only source of quark dependence. The
quark propagators entering in (b) are solutions of the gap
equation depicted in (c), where m0 denotes the appropriate
current mass. Finally, the function Gðq2Þ is obtained from the
relation shown in (d), namely, Eq. (3.2). The quantities obtained
from the lattice are also indicated. Note that the term 
2ðq2Þ will
be determined dynamically, once the mass equation of Fig. 1 is
coupled to (a).
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through the presence of the X̂ðq2Þ, rather indirectly through
the generation of a nonvanishing mass difference 
2ðq2Þ.

The next nontrivial step is therefore to treat the mass
equation (2.7) and the unquenching master formula of
Eq. (2.15) as a coupled system, and determine both m2

Nf

and �Nf
ðq2Þ. This rather involved task will be undertaken

in detail in the next section.

III. NUMERICAL ANALYSIS

Before entering into the technical details of the
solution of the system, it is important to comment on a
fundamental qualitative difference between the present
situation and the treatment followed in [10]. Specifically,
as already explained in the previous section, even in the
absence of quarks, Eq. (2.7) forms part of a system of
coupled equations, namely, that of Eq. (2.6). However,
given that the corresponding equation for Jmðq2Þ is only
partially known, the approach adopted in [10] was to treat
the gluon propagators appearing in Eq. (2.6) as external
quantities, using the lattice results of [4] for their
functional form. As a consequence, the intrinsically non-
linear equation (2.6) [recall Eq. (2.4)] was converted into a
linear one. As a result of this linearity, one obtained a
continuous family of solutions, parametrized by the
values of a multiplicative constant; the actual solution
chosen was the one that reproduced the saturation point
of the lattice gluon propagator that was used as input
in Eq. (2.6).

Here, instead, even though we still decouple the equa-
tion for Jmðq2Þ, the mass equation retains its nonlinear
nature due to the form of the unquenched gluon propagator,
�Nf

ðq2Þ, that will be inserted in it. Specifically, as can be

appreciated from Eq. (2.15), the 
2ðq2Þ appearing in the
denominator of �Nf

ðq2Þ introduces a nonlinear term into

Eq. (2.6). Consequently, the solution obtained will be
unique, and the saturation point of the resulting �Nf

ðq2Þ
will emerge as a prediction of the theory rather than as an
input from the lattice.

A. Main ingredients and basic assumptions

We next proceed to a brief description of the ingredients
entering into the two equations (2.6) and (2.15) composing
the system under study, together with an account of the
most important underlying assumptions.

(i) The determination of the quantity X̂ðq2Þ is of central
importance, since it approximates the entire effect of
the inclusion of the active quarks. In order to evalu-
ate it from Eq. (2.12), one needs specific expressions
for the full quark propagator S and the fully dressed

vertex �̂. Evidently, the total X̂ðq2Þ emerges as the
sum of the individual flavor contributions, in accor-
dance with Eq. (2.14).

The nonperturbative form of each quark propaga-

tor entering into X̂ðq2Þ is obtained from the standard
gap equation [32], supplemented by an appropriate
current mass term, in order to make contact with
the lattice results of [20]. In this latter simulation,
the gluon (and ghost) propagators have been
evaluated from large volume configurations (up to
33 � 6 [fm4]), generated from a lattice action that
included (twisted mass) fermions. Specifically, one
employed two light degenerate quarks (Nf ¼ 2),

with a current mass ranging from 20 to 50 MeV, or
two light and two heavy quarks (Nf ¼ 2þ 1þ 1),

with a strange (charm) quark current mass roughly
set to 95 MeV (1.51 GeV).

For the quark propagator, SðpÞ, we use the stan-
dard parametrization

S�1ðpÞ ¼ �i½AðpÞ6p� BðpÞ�
¼ �iAðpÞ½6p�MðpÞ�; (3.1)

where AðpÞ represents the ‘‘quark wave function,’’
while the ratio MðpÞ ¼ BðpÞ=AðpÞ denotes the
dynamical quark mass and extracts them from the
corresponding system of integral equations. The in-
verse of the quark wave functions, 1=AðpÞ, and the
dynamical quark masses, MðpÞ, used in the present
work, are shown in the top and bottom panels of
Fig. 3, respectively. They have been obtained from
the gap equation of [32], where the quenched lattice
data of [4] were used as input.

As can be seen from Fig. 3 the two degenerate
light quarks acquire a physical mass around
300 MeV, while the two heavier ones get physical
masses around 440 MeV (strange) and 2.2 GeV
(charm). It should be stressed that these values
for the quark masses are consistent with the ones
generally employed in phenomenological calcula-
tions [33,34].

As for the PT-BFM quark-gluon vertex �̂, the fact
that it satisfies the Abelian Ward identity of
Eq. (2.13) allows one to model it by means of the
standard Abelian Ansätze existing in the literature

[35,36]. In particular, �̂ is expressed entirely in terms
of the quantities AðpÞ and MðpÞ, with no reference
to auxiliary ghost Green’s functions, a fact that

simplifies considerably the task of computing X̂ðq2Þ.
When all the aforementioned ingredients are put

together, the two different X̂ðq2Þ, corresponding to
the cases Nf ¼ 2 (black continuous line) and Nf ¼
2þ 1þ 1 (blue dashed line), are shown in Fig. 4.

Note finally that, as one can establish formally
and confirm numerically [19], the nonperturbative

X̂ðq2Þ vanishes at the origin, X̂ð0Þ ¼ 0, exactly as it
happens in perturbation theory. Evidently, the inclu-
sion of quark loops does not affect directly the value
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of the saturation point of the gluon propagator.
However, as already explained, the saturation point
will be indirectly affected, due to the modifications

induced by X̂ðq2Þ in the overall shape of the propa-
gator, throughout the entire range of momenta.

(ii) As already mentioned, the quenched lattice data for
�ðq2Þ [4] constitute the starting point for obtaining
from Eq. (2.15) a prediction for �Nf

ðq2Þ. In addi-

tion, in the Landau gauge, the quantity 1þGðq2Þ,
appearing in both Eqs. (2.6) and (2.15), is linked to
the inverse of the ghost dressing function Fðq2Þ
through [37,38]

F�1ðq2Þ � 1þGðq2Þ: (3.2)

This relation, which is valid to a very good approxi-
mation, and becomes an exact equality at q2 ¼ 0,
allows one to use the lattice results of [4] for the
ghost dressing function, in order to determine

Gðq2Þ. Notice that both sets of data will be
renormalized at the scale � ¼ 4:3 GeV, which is
the last available point in the ultraviolet. At this
scale, the expected value of the (quenched) strong
effective charge is �s ¼ g2=4� ¼ 0:22 [39,40].

(iii) The function Yðk2Þ represents a crucial ingredient
of Eq. (2.7). However, its exact closed form is not
available, mainly because our present knowledge of
the full three-gluon vertex, entering in its definition,
is relatively limited; we must therefore resort to
suitable approximations. In particular, we will
employ the lowest-order perturbative expression
for Yðk2Þ, obtained from Eq. (2.9) by substituting
the tree-level values for all quantities appearing
there. Within this approximation, and after carrying
out momentum subtraction renormalization at
k2 ¼ �2, one obtains [10]

YRðk2Þ ¼ ��sCA

4�

15

16
log

k2

�2
; (3.3)

where �s is the value of the coupling at the sub-
traction point chosen. This simple approximation
will be compensated, in part, by multiplying YRðk2Þ
by an arbitrary constant C, i.e. by implementing the
replacement YRðk2Þ ! CYRðk2Þ treating C as a free
parameter. In this heuristic way, one hopes to
model further corrections that may be added to
the ‘‘skeleton’’ result provided by Eq. (3.3). This
particular procedure has been proved sufficient for
obtaining in the quenched case physically mean-
ingful solutions for m2ðq2Þ for reasonable values of
the constant C [10]. As the numerical study pre-
sented in Fig. 5 shows, this continues to be true also
in the unquenched case.

1×10−3

FIG. 3 (color online). The inverse of the quark wave functions
(top), and dynamical quark masses (bottom), obtained from the
quark gap equation for three different values of the current mass:
m0 ¼ 41:2 MeV (black continuous line), m0 ¼ 95 MeV (red
dotted line), and m0 ¼ 1:51 GeV (blue dashed line).

FIG. 4 (color online). The full nonperturbative quark-loop
contribution X̂ðq2Þ for the two cases Nf ¼ 2 (black continuous

line) and Nf ¼ 2þ 1þ 1 (blue dashed line).
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(iv) A particularly helpful constraint may be
obtained by taking the q2 ! 0 limit of the mass
equation (2.7), which gives (passing to spherical
coordinates, and setting y ¼ k2)

m2ð0Þ ¼ � 3

8�
�sCAFð0Þ

Z 1

0
dym2ðyÞKNf

ðyÞ;
KNf

ðyÞ ¼ f½1� 2CYðyÞ�y2�2
Nf
ðyÞg0; (3.4)

where the prime denotes derivatives with respect to
y. The usefulness of this relation lies in the fact that,
when used in combination with the unquenched
propagators obtained following the approach of
[19], it allows one to deduce how the running
mass will be affected by the presence of dynamical
fermions.

To see how this works in detail, consider first the
quenched case; the kernel K0, constructed from the cor-
responding lattice propagator data, is shown on the top
panel of Fig. 6. As can be appreciated there, for increasing
values of C one observes the appearance of a negative area,
in the region of momenta q2 < 1 GeV2. It is precisely the
contributions from this negative region that counteract the
minus sign in front of the mass equation (2.7), thus making
possible the existence of positive-definite and monotoni-
cally decreasing solutions [10].

Let us now repeat this exercise for the unquenched case
with Nf ¼ 2þ 1þ 1. On the bottom panel of Fig. 6 we

show the kernelK2þ1þ1; the �2þ1þ1ðq2Þ used to construct
it is obtained from Eq. (2.15), using the X̂ that corresponds
to the aforementioned quark configuration, and setting

2 ¼ 0. As we will see in the next section, this particular
propagator emerges precisely after the first step of the
iterative procedure employed to solve the SDE system.
Note also that, due to the decoupling of the heavy fermions
[19], the kernel K2, corresponding to the case Nf ¼ 2, is

practically identical to K2þ1þ1.
As it is evident from Fig. 6, the addition of dynamical

fermions affects the shape of the kernel significantly, as it
now displays a much shallower negative region compared
to the quenched case. Once this kernel is inserted into the
mass equation (for the successive iterative steps), one then
observes that in order to keep satisfying the constraint
Eq. (3.4) with a positive m2ð0Þ, the dynamical mass
must increase (and therefore the saturation point of the

FIG. 5 (color online). The curves formed by the set of the pairs
ðC�s; �sÞ yielding physical solutions to the full mass
equation (2.7), for the various numbers of quark families Nf:

quenched (red, circles), Nf ¼ 2 (green, triangles), and Nf ¼
2þ 1þ 1 (blue, squares). At the values of C indicated by the
stars, the solutions obtained correspond to the expected values of
the strong coupling �s at the scale chosen (� ¼ 4:3 GeV); one
has C ¼ 9:04 for Nf ¼ 0 (�s ¼ 0:22), C ¼ 8:48 for Nf ¼ 2

(�s ¼ 0:285), and C ¼ 8:64 for Nf ¼ 2þ 1þ 1 (�s ¼ 0:33).

Finally, the values of �s obtained for the case in which Y is
simply kept at the lowest order perturbative value (i.e. C ¼ 1)
are �s ¼ 0:93 (Nf ¼ 0), �s ¼ 1:09 (Nf ¼ 2), and �s ¼ 1:25

(Nf ¼ 2þ 1þ 1).
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FIG. 6 (color online). Comparison between the kernel KNf
ðyÞ

of Eq. (3.4) for the quenched case (top), and the unquenched case
with Nf ¼ 2þ 1þ 1 (bottom). The plots are drawn with the

same scale to facilitate the comparison.
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unquenched propagator decrease), in order to compensate
for the suppressed negative region. This increase is coun-
teracted in part by the fact that the coupling constant �s

also rises when adding quarks [at � ¼ 4:3 GeV, one has a
30% increase for the Nf ¼ 2 case (from 0.22 to 0.285), and

an additional 20% increase (from 0.285 to 0.33) for the
Nf ¼ 2þ 1þ 1 case].

This qualitative conclusion is supported by both the SDE
study of [19] as well as the lattice results of [20] and will be
fully confirmed through the explicit numerical computa-
tions carried out in the next subsection (see, in particular,
Fig. 10, where the final running masses for the different
cases are presented).

B. Solving the system and comparing with the lattice

The system of SDEs that we consider is composed of
Eqs. (2.7), (2.12), and (2.15), supplemented by the quark
gap equation. The initial condition is provided by the
quenched SUð3Þ gluon propagator and ghost dressing func-
tion obtained in the lattice simulations of [4], which will
be also used to determine the initial values of the form
factors AðpÞ andMðpÞ. All calculations will be performed
at � ¼ 4:3.

The algorithm that we adopt consists of the following
main steps.

(i) Using the quenched propagator as an input of the first
iterative step, one determines the quark form factors AðpÞ
andMðpÞ by solving the quark gap equation; (ii) AðpÞ and
MðpÞ are substituted into Eq. (2.12), and the correspond-

ing value of the quark loop diagram X̂ðq2Þ is evaluated;
(iii) the preliminary form of �Nf

ðq2Þ is determined from

(2.15), employing initially 
2ðq2Þ ¼ 0, with the quenched
mass m2ðq2Þ obtained from the solution of the mass
equation (2.7) corresponding to the quenched lattice propa-
gator; (iv) the unquenched propagator �Nf

ðq2Þ of the

previous step is substituted into the mass equation (2.7)
in order to determine the associated unquenched dynamical
gluon mass m2

Nf
ðq2Þ, and therefore the corresponding


2ðq2Þ; (v) at this point the latter quantity is inserted
back into the master equation (2.15), and the loop starts
again, until convergence, determined by the stability of the
quantities involved, has been reached.

In Fig. 7 we show how the procedure described above
converges rather rapidly to a stable solution for both
�Nf

ðq2Þ (top panel) as well as 
2ðq2Þ (bottom panel). In

particular, observe that at the first iterative step one has

2ðq2Þ ¼ 0; even though this gives rise to a propagator
with the same saturation point as in the quenched case (red
circles curve on the top panel), the presence of the fermion
loops alter in a rather marked way the overall shape of the
function. As discussed in the previous section, this affects
in turn the kernel of the mass equation, resulting in a

2ðq2Þ> 0 already at the second step, which then forces
the unquenched propagator to have a lower saturation point

with respect to the quenched case (green stars curves on
both panels). Notice that, as anticipated, 
2ðq2Þ increases at
each successive iteration, resulting in an unquenched
propagator that is suppressed in the infrared with respect
to the quenched case.
In Fig. 8 we present the central result of this analysis.

In particular, we plot the propagators obtained when con-
vergence of the above mentioned iteration procedure has
been reached, and compare them with the corresponding
unquenched lattice data, recently reported in [20]. We
observe a rather good agreement between our theoretical
predictions and the lattice computation for both values of
Nf, for the available range of physical momenta. A notable

exception to this fair coincidence between curves is the
saturation point of the Nf ¼ 2þ 1þ 1 case; specifically,

the value obtained from our SDE analysis is 20% higher
than that found in lattice simulations. Similar conclusions
can be drawn by observing the plot corresponding to the
gluon dressing function q2�Nf

ðq2Þ shown in Fig. 9: while

1×10−3

1×10−3

FIG. 7 (color online). Convergence of the iterative procedure
for solving the SDE system in the Nf ¼ 2þ 1þ 1 case. Top:

unquenched propagator �Nf
ðq2Þ; Bottom: mass difference


2ðq2Þ.
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one has an excellent agreement in the case of two degen-
erate light quarks, when two heavier quarks are added the
SDE solution tends to mildly overestimate the amplitude
of the characteristic peak located in the intermediate
momentum region.

The corresponding dynamical gluon masses, m2
2ðq2Þ and

m2
2þ1þ1ðq2Þ, are shown in Fig. 10; for comparison, we also

plot the quenched solution,m2ðq2Þ, obtained from Eq. (2.6)
when the quenched lattice propagators of [4] are used as
input. In particular, the corresponding saturation points
give m2ð0Þ ¼ 413 MeV and m2þ1þ1ð0Þ ¼ 425 MeV (at
� ¼ 4:3 GeV), which should be compared with the value
mð0Þ ¼ 376 MeV obtained for the quenched case. The
results captured in Fig. 10 are particularly important,
because they demonstrate clearly that the mass generation
mechanism established for pure Yang-Mills theories con-
tinues to operate in QCD-like circumstances.

Let us finally comment on some possible factors
that might account for the aforementioned discrepancies

between our predictions and the lattice data for
Nf ¼ 2þ 1þ 1.

At first sight, one might be tempted to attribute part of
the observed discrepancy to the presence of volume effects.
Specifically, the propagator plot of Fig. 8 seems to indicate
that the deviation happens in the deep IR region q2 &
0:2 GeV2, where the lattice data are expected to be affected
by moderate volume artifacts (see, in particular, Fig. 2 of
[20]). However, a closer look at the corresponding gluon
dressing function (plot of Fig. 9) advocates against this
possibility; indeed, one observes the onset of a noticeable
discrepancy as early as q2 � 2:8 GeV2, namely, at a point
where volume effects are well under control. Therefore it is
reasonable to assume that the observed deviation is not
lattice related, but signals rather a mild violation of one of
the assumptions underlying the derivation of the unquench-
ing formula (2.15).
In particular, it is natural to expect that one of our

basic operating assumptions, namely, that the quark-loop

FIG. 8 (color online). The unquenched gluon propagators
obtained from our analysis, for Nf ¼ 2 (upper panel) and

Nf ¼ 2þ 1þ 1 (lower panel), compared with the lattice data

of [20] for the same cases.
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FIG. 9 (color online). The gluon dressing functions,
q2�Nf

ðq2Þ, corresponding to the propagators of the previous

figure.
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contributions constitute a ‘‘perturbation’’ of the quenched
propagator, will become progressively less accurate
as the number of active flavors increases. It is therefore
possible that from Nf > 2 onward we begin to perceive the

onset of additional effects, not captured by (2.15). For
instance, the identification of the ‘‘pure’’ gluonic diagrams
of the gluon SDE with the gluon propagator �ðq2Þ
obtained in quenched lattice simulations may no longer
be entirely reliable, due to the presence of (increasingly
appreciable) effects, coming from higher-order quark
subdiagrams.

Clearly, an additional theoretical uncertainty originates
from the approximate (perturbative) treatment of the quan-
tity Yðk2Þ. In particular, the parameter C may only model,
to some extent, unknown contributions that display a
logarithmic momentum dependence, as in Eq. (3.3), but
cannot account for terms with a different functional form.

Moreover, the use of an Ansatz for the vertex �̂� entering

into the definition of X̂ðq2Þmay induce further error, due to
the fact that its transverse (automatically conserved part) is
in general undetermined.

IV. CONCLUSIONS

In this work we addressed the basic theoretical question
of whether the mass generation mechanism established
in pure Yang-Mills studies persists in real-world QCD.
Specifically, by employing a methodology relying mainly
on the SDEs that describe the gluon two-point sector
within the PT-BFM framework, we studied in quantitative
detail how the inclusion of dynamical quarks affects the

generation of the momentum-dependent gluon mass, in the
Landau gauge. This important issue is especially relevant
and timely, given the qualitative picture that appears to
emerge from recent unquenched lattice simulations. Our
results demonstrate clearly that the gluon propagator
still saturates in the infrared (therefore, a gluon mass
is indeed generated), and that the saturation point is pro-
gressively suppressed, as the number of quark flavors
increases.
Several of the salient dynamical features pertinent to the

transition from the quenched to the unquenched theory
have been presented in the preliminary study of [19].
The main novelty of the present analysis resides in the
fact that, unlike [19], where the saturation point of the
gluon propagator was estimated by means of an extrapo-
lation procedure, here it is determined explicitly from the
solution of the gluon mass equation. Therefore, the results
obtained constitute a genuine prediction of the formalism
employed, emerging entirely from the inherent dynamical
equations.
As has been explained in [19] and in the present work,

the ‘‘lowest order unquenching’’ consists in including ex-

plicitly the contribution of the quark loop X̂ðq2Þ, keeping
all other quantities unquenched. This is reflected clearly at
the level of the master formula Eq. (2.15), where the
quantity 1þGðq2Þ [or, equivalently, F�1ðq2Þ, by virtue
of Eq. (3.2)] assumes its quenched form, obtained from [4].

Moreover, the computation of X̂ðq2Þ [see Fig. 2] uses as
input the quark propagator obtained from the gap equation,
which, in turn, depends on both the gluon propagator and
the ghost dressing function; again, the quenched forms of
[4] were employed. Finally, the strength of the gauge
coupling g also depends on the number of flavors; in the
present analysis we have used its value when Nf ¼ 0

(momentum-subtraction scheme [40]). In order to improve
this analysis, and eventually reach a better agreement with
the lattice, one possible strategy would be to gradually
introduce quark effects into some of the aforementioned
(quenched) ingredients. For example, one could envisage
the possibility of using unquenched instead of quenched
data for the ghost dressing function Fðq2Þ, obtained from
the lattice analysis of [20]. Given that this quantity enters
both in the master formula and the gap equation, its overall
effect may be appreciable. In addition, the increase in the
value of the gauge coupling produced by the inclusion of
quark flavors may modify our predictions in the right
directions. We hope to be able to implement some of these
improvements in the near future.
It is worth pointing out that the ingredients obtained

from the present analysis may be used to determine the
flavor dependence of the QCD effective charge, ��sðq2Þ.
Specifically, as has been shown in [28], this latter quantity
may be defined in terms of the functions Jðq2Þ and Gðq2Þ,
through the renormalization-group invariant combination
���1
s ðq2Þ ¼ ��1

s ð�2Þ½1þGðq2;�2Þ�2Jmðq2;�2Þ, where �

1×10−3

FIG. 10 (color online). Solution of the mass equation yielding
the dynamically generated gluon mass for Nf ¼ 2 (red dotted

line) and Nf ¼ 2þ 1þ 1 (blue dashed line). In the deep infra-

red one has m2ð0Þ ¼ 413 MeV, and m2þ1þ1ð0Þ ¼ 425 MeV. For
comparison we also show the quenched gluon mass (black
continuous line) obtained from the quenched lattice propagator,
in which case mð0Þ ¼ 376 MeV.
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is the renormalization (subtraction) point chosen, within an
appropriate renormalization scheme. The direct determi-
nation of Jðq2Þ from its own dynamical equation, shown
schematically in Eq. (2.6), is thwarted from the fact that
the main ingredients entering in it are the fully dressed
three-gluon vertex BQ2 (studied in [41]) and the (largely
unexplored) four-gluon vertex BQ3, for arbitrary values of
their momenta. Instead, one may employ Eq. (2.4) to
compute Jðq2Þ indirectly, using a combined approach
based on the knowledge of the full propagator from the
lattice, and the corresponding gluon mass from solving
Eq. (2.7). (For the possibility of the direct extraction

of the quantity Ĵmðq2;�2Þ ¼ ½1þGðq2;�2Þ�2Jmðq2;�2Þ
from specialized lattice simulations, see [42]). Work in this
direction is already in progress.

Finally, it would clearly be important to study the
infrared dynamics of the gluon propagator, quenched and
unquenched, away from the Landau gauge. The SDEs
formulated within the PT-BFM framework provide a
natural starting point for such an investigation in the con-
tinuum. In fact, it would be particularly relevant to deter-
mine whether the detailed mass generation mechanism

established in the Landau gauge persists for other values
of the gauge-fixing parameter, such as, for example, the
Feynman gauge, which is known to be of central impor-
tance for the PT. To be sure, further reliable input from the
lattice would be invaluable for accomplishing such a
demanding task, given that, even though the formal proce-
dure for implementing covariant R� gauges on the lattice

has been already reported [43], the available simulations
are restricted to modest size volumes, and � � 1 only [44].
We hope to report progress in some of these directions in
the near future.
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