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The baryon-antibaryon spectrum consisting of u, d, s, c, and b quarks is studied in the color flux-tube

model with a multibody confinement interaction. Numerical results indicate that many low-spin (S � 1)

baryon-antibaryon states can form compact bound states and are stable against decaying into a baryon and

an antibaryon. They can be searched for in eþe� annihilation and charmonium or bottomonium decay if

they really exist. Multibody confinement interaction as a binding mechanism plays an important role in the

formation of the baryon-antibaryon bound states; chromomagnetic interaction also provides a strong

attraction in many low-spin baryon-antibaryon states. The newly reported states, Xð1835Þ, Xð2370Þ,
Yð2175Þ, Yð4360Þ, and Ybð10890Þ, might be interpreted as N �N, � ��, � ��, �c

��c, and �b
��b bound states,

respectively.
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I. INTRODUCTION

Baryonia research has a rather long history, which dates
back to the 1940s. Fermi and Yang proposed that the �
meson may be a composite particle, a nucleon-antinucleon
(N �N) [1], in which a strong attractive force is assumed to
bind them together, because the mass of a � meson is
substantially smaller than twice the mass of a nucleon.
Subsequently, Sakata extended Fermi and Yang’s idea by
introducing a strange baryon � and its antiparticle. The
strange baryon �, proton p, neutron n, and their antipar-
ticles were regarded as the fundamental building blocks to
form other mesons and baryons, which is the well-known
Fermi-Yang-Sakata (FYS) model [2]. The profound diffi-
culty of the FYS model was that mesons and baryons other
than p, n, and � would be formed by baryons and anti-
baryons, which is inconsistent with the observed properties
of these hadrons. In 1964, the FYS model was therefore
replaced by quark models, and the point of view that
mesons might be B �B states has been abandoned since
then by most physicists. A new type of meson with a
mass near the B �B threshold and having specific decay
properties called baryonia was proposed [3].

In recent years, many near-threshold enhancements
have been observed. The p �p enhancement is observed in
the J=c ! �p �p, c 0 ! �0p �p, �p �p, and B� ! p �pK�

processes [4]; the � �� enhancement is observed in

the Bþ ! � ��Kþ and eþe� ! � �� processes [5]; the
�þ

c �
�
c enhancement is observed in the eþe� ! �þ

c �
�
c

process [6], and so on. Furthermore, other resonances
called XYZ particles were also observed in experiments.
It is hard to accommodate some of them, such as Xð3872Þ

and Yð4260Þ, into Q �Q quark models. Their extraordinary
properties go beyond our anticipation based on the Q �Q
quark model; it is taken for granted that the heavy mesons
can be well described with Q �Q quark models. The appear-
ance of XYZ particles inspired other interpretations rather
than a Q �Q configuration. An account of recent progresses
and a rather complete list of references onXYZ particles can
be found in the recent review, Ref. [7]. In addition to the
compact tetraquark states, meson-meson molecular states,
hybrid quarkonia, and orbital excited states of conventional
mesons et al., baryonia or hexaquark states q3 �q3 are also
proposed. The p �p enhancement was interpreted as a bar-
yonium N �N with quantum numbers JPC ¼ 0�þ in different
models by many authors [8]. The states Yð4260Þ, Yð4361Þ,
Z�ð4430Þ, and Yð4664Þ were systematically embedded into
an extended baryonium picture [9]. Yð2175Þ was described
as a bound state � �� with quantum numbers 2Sþ1LJ ¼ 3S1
in the one-boson exchange (OBE) model [10].
Light nonstrange hexaquark systems q3 �q3 were system-

atically studied in a color flux-tube model with a six-body
confinement potential instead of an additive two-body
interaction in our previous work, and it was found that
some ground states are stable against disintegrating into a
baryon and an antibaryon [11]. In the present work, the
spectrum of the B �B of the ground states consisting of u, d,
s, c, and b quarks is studied in the color flux-tube model.
This work is not only a natural extension of the previous
work to understand the structure of the recently discovered
resonances, but also provides a new insight to explore the
baryonium states. Our model study shows that many low-
spin B �B states might be compact hexaquark states and
stable against directly decaying into a baryon and an
antibaryon. The multibody confinement interaction in the
color flux-tube model plays an important role in the short-
range domain, and the chromomagnetic interaction also
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provides a strong attraction in the low-spin states. The
dominant components of the new hadron states, Xð1835Þ,
Xð2370Þ, Yð2175Þ, Yð4260Þ, and Ybð10890Þ, may be inter-

preted as N �N, � ��, � ��, �c
��c, and �b

��b bound states,
respectively.

The paper is organized as follows: Sec. II is devoted to
the description of the color flux-tube model and gives the
Hamiltonian of baryons and hexaquark systems. A brief
introduction to the construction of the wave functions of
baryons and hexaquark systems is given in Sec. III. The
numerical results and discussions are presented in Sec. IV.
A brief summary is given in the last section.

II. COLOR FLUX-TUBE MODEL
AND HAMILTONIAN

Quantum chromodynamics (QCD) is widely accepted as
the fundamental theory to describe strong interacting sys-
tems and has been verified in high-momentum transfer
processes. In the low-energy region, such as hadron spec-
troscopy and hadron-hadron interaction study, the ab initio
calculation directly fromQCDbecomes very difficult due to
the complication of nonperturbative nature. Although many
nonperturbative methods have been developed, such as
lattice QCD (LQCD), QCD sum rule, large-Nc expansion,
chiral unitary theory, and so on, the QCD-inspired constitu-
ent quark model (CQM) is still a useful tool in obtaining
physical insight for these complicated strong interacting
systems. The CQM can offer the most complete description
of hadron properties and is probably the most successful
phenomenological model of hadron structure [12].

The CQM is formulated under the assumption that
the hadrons are color-singlet nonrelativistic bound states
of constituent quarks with phenomenological effective
masses and interactions. The effective interactions include
one-gluon exchange (OGE), OBE, and a confinement
potential. The traditional CQM includes the typical
Isgur-Karl model and chiral quark model [13,14], in which
the confinement potential can be phenomenologically
described as the sum of two-body interactions proportional
to the color charges and rkij,

VC ¼ �ac
Xn
i>j

�i � �jr
k
ij; (1)

where rij is the distance between two interacting quarks qi
and qj, and k usually takes 1 or 2. The traditional models

can describe the properties of ordinary hadrons (q3 and q �q)
well. However, the traditional models lead to power-law
van derWaals forces between color-singlet hadrons and the
anticonfinement in a color-symmetrical quark or antiquark
pair. The problems are related to the fact that the traditional
CQM does not respect local color-gauge invariance.

The color flux-tube structures of ordinary hadrons are
unique and trivial; important low-energy QCD information
may be absent in the descriptions of these objects, such as

the interaction of a quark (antiquark) pair in color-
symmetrical 6 (�6) representation. Multiquark systems, if
they really exist, have various color flux-tube structures in
the intermediate- and short-distance domains, which may
contain abundant low-energy QCD information and affect
the properties of multiquark systems [15–19]. The mixing
effect of the color flux-tube structures can provide the
intermediate-range attractive force coming from the �
meson or �� exchange [20]. The various color flux-
tube structures of multiquark systems are hard to describe
using the two-body confinement potential in the traditional
CQM.
LQCD calculations of ordinary hadrons, tetraquark and

pentaquark states reveal various color flux-tube structures
[21]. Within the color flux-tube picture, the confinement
potential of multiquark states is a multibody interaction
and can be simulated by a potential which is proportional
to the minimum of the total length of all color flux tubes
which connect the quarks (antiquarks) to form the multi-
quark system [21]. Based on the traditional CQM and the
LQCD picture, the color flux-tube model has been devel-
oped to study multiquark systems, in which a multibody
confinement interaction is employed, and a sum of the
square of the length of flux tubes rather than a linear
relationship is assumed to simplify the calculation
[15–19]. The approximation is justified for the following
two reasons: One is that the spatial variations in the sepa-
ration of the quarks (lengths of the flux tubes) in different
hadrons do not differ significantly, so the difference
between the two functional forms is small and can be
absorbed in the adjustable parameter, the stiffness. The
other is that we are using a nonrelativistic dynamics in
the study. As was shown long ago [22], an interaction
energy that varies linearly with separation between fermi-
ons in a relativistic first-order differential dynamics has a
wide region in which a harmonic approximation is valid
for the second-order (Feynman-Gell-Mann) reduction of
the equations of motion. The comparative studies also
indicated that the difference between the two types of
confinement potentials is very small [18,19].
In the color flux-tube picture, it is assumed that the

color-electric flux is confined to narrow, flux-tube-like
tubes joining quarks and antiquarks. A color flux tube starts
from each quark and ends at an antiquark or a Y-shaped
junction, where three color flux tubes are either annihilated
or created [23]. The Y-shaped color flux-tube structure, the
LQCD picture of a baryon [24], is shown in Fig. 1, in which
ri represents the spatial position of the ith quark, denoted
by a black dot, and y0 denotes a junction where three color
flux tubes meet. The three-body quadratic confinement
potential can be written as

VCð3Þ ¼ Kððr1 � y0Þ2 þ ðr2 � y0Þ2 þ ðr3 � y0Þ2Þ: (2)

The position of the junction y0 can be fixed by minimizing
the energy of baryons, and then we get
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y0 ¼ r1 þ r2 þ r3
3

: (3)

The minimum of the confinement potential has, therefore,
the following forms:

VC
min ð3Þ ¼ K

��
r1 � r2ffiffiffi

2
p

�
2 þ

�
2r3 � r1 � r2ffiffiffi

6
p

�
2
�
: (4)

The above equation can also be expressed as the sum of
three pairs of two-body interactions,

VC
min ð3Þ ¼

K

3
ððr1 � r2Þ2 þ ðr2 � r3Þ2 þ ðr1 � r3Þ2Þ: (5)

It can be seen that the three-body quadratic confinement
potential of a baryon is totally equivalent to the sum
of the two-body one—see the �-shaped structure in
Fig. 1—although the equivalence is only approximately
valid for the linear confinement potential.

The color flux-tube structures of a multiquark system
with N þ 1 particles can be generated by replacing a quark
or an antiquark in an N-particle state with a Y-shaped
junction and two antiquarks or two quarks. A hexaquark
system q3 �q3 has at least four possible color flux-tube
structures listed in Fig. 2, in which a black dot denotes a

quark and a hollow dot denotes an antiquark. A thin line
connecting a quark and a junction represents a fundamental
color flux tube, namely a color triplet. A thick line con-
necting two junctions represents a compound color flux
tube, namely a color sextet, octet, or others. The different
dimensional color flux tubes may have different stiffness,
which will be discussed in the latter part of this section.
The numbers ðdijÞ on the color flux tubes represent the

dimensions of the corresponding color flux tube. The
dimension d23 in the structures (b) and (c) may be,
respectively, (8, 10) and (3, �6, 15). The dimensions
ðd16; d63; d35; d52; d24; d41Þ in the structure (d) at least
may be ð�3; 3; �3; 3; �3; 3Þ and (3, 8, 3, 8, 3, 8). The arrows
in the color flux tubes represent the color coupling direc-
tion. Both the overall color-singlet nature of a multiquark
system and the SUð3Þ color coupling rule at each junction
must be satisfied.
A color flux-tube structure specifies the corresponding

color configuration (how the colors of quarks and anti-
quarks are coupled to form an overall color singlet). In
general, each color flux-tube structure has various color
configurations according to quark correlation. Quark cor-
relation plays an important role in a multiquark system
[25]. A hexaquark system q3 �q3 has many clustering
configurations, such as ½q3�½ �q3�, ½q �q2�½q2 �q�, ½q�½q2 �q3�,
½q2�½q �q3�, ½ �q�½ �q2q3�, ½ �q2�½ �qq3�, ½q �q�½ �q2q2�, and so on. In
the present work, only two symmetrical configurations
under quark-antiquark exchange, ½q3�½ �q3� and ½q �q2�½q2 �q�,
are considered. In this way, the structure (a) may be a B �B
molecule state: ½q3�1½ �q3�1. The structure (b) may be called
a hidden color baryon-antibaryon state, and it has two
color configurations: ½½q3�10½ �q3� �10�1 and ½½q3�8½ �q3�8�1.
The structure (c) may be called a diquark-antidiquark state
and has four possible color configurations: ½½½q2��3 �q�3 �
½½ �q2�3q��3�1, ½½½q2��3 �q��6½½ �q2�3q�6�1, ½½½q2�6 �q�3½½ �q2��6q��3�1,
and ½½½q2�6 �q�15½½ �q2��6q� �15�1. The last of these is very similar
to a chemical benzene, and it is therefore called QCD
benzene. The color configuration of this structure is hard
to describe only using quark degrees of freedom in the
framework of the quark models, which is worthy of study
in the future. A hexaquark state q6 with this structure was
investigated in our previous work [18]. Of course, the color
flux-tube structures should include a three-color-singlet
meson configuration: ½q �q�1½q �q�1½q �q�1, which must be
taken into account in the decay of a q3 �q3 system into three
color-singlet mesons. This task, too, is left for future study.
The color flux tube in hadrons should be very similar to the
chemical bond in organic compounds. The same molecular
constituents may have different chemical bond structures;
these are called isomeric compounds. Therefore, multi-
quark systems with the same quark content but different
flux-tube structures are similarly called QCD isomeric
compounds.
In general, a hexaquark system q3 �q3 should be the

mixture of all possible color flux-tube structures. In order
FIG. 2. Four possible color flux-tube structures of a hexaquark
system q3 �q3.

FIG. 1. Three-body (left) and two-body (right) confinement
potential.
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to avoid a too-complicated calculation in the present work,
only the structures (a) and (b) in Fig. 2 are considered.
Within the color flux-tube model, the confinement poten-
tial for the structure (a) can be written as

Va
min ð6Þ ¼ K

��
r1 � r2ffiffiffi

2
p

�
2 þ

�
2r3 � r1 � r2ffiffiffi

6
p

�
2

þ
�
r4 � r5ffiffiffi

2
p

�
2 þ

�
2r6 � r4 � r5ffiffiffi

6
p

�
2
�
: (6)

The confinement potential for the structure (b) has the
following form:

Vbð6Þ¼Kððr1�y1Þ2þðr2�y1Þ2þðr3�y2Þ2
þðr4�y3Þ2þðr5�y4Þ2þðr6�y4Þ2
þ�d12ðy1�y2Þ2þ�d23ðy2�y3Þ2þ�d34ðy3�y4Þ2Þ:

(7)

In the above equations, K is the stiffness of an elementary
color flux tube, while K�dij is the stiffness of other com-

pound color flux tubes. The relative stiffness �dij depends

on the dimension, dij, of the compound color flux tube [26]

�dij ¼
Cdij

C3

; (8)

where Cdij is the eigenvalue of the Casimir operator asso-

ciated with the SUð3Þ color representation dij on either end
of the color flux tube, such as C3 ¼ 4

3 , C6 ¼ 10
3 , or C8 ¼ 3.

For the sake of simplicity, the arithmetic average �d for all
relative stiffness �dij in each structure is used in numerical

calculations, namely

�d ¼
�d12 þ �d23 þ �d34

3
: (9)

For given quark (antiquark) positions ri, those junctions
yi can be obtained by minimizing the confinement
potential. By introducing the following set of canonical
coordinates Ri,

R1 ¼ 1ffiffiffi
2

p ðr1 � r2Þ; R2 ¼ 1ffiffiffi
2

p ðr5 � r6Þ;

R3 ¼ 1ffiffiffiffiffiffi
12

p ðr1 þ r2 � 2r3 � 2r4 þ r5 þ r6Þ;

R4 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
33þ 5

ffiffiffiffiffiffi
33

pp ðr1 þ r2 � w1r3 þ w1r4 � r5 � r6Þ;

R5 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
33� 5

ffiffiffiffiffiffi
33

pp ðr1 þ r2 þ w2r3 � w2r4 � r5 � r6Þ;

R6 ¼ 1ffiffiffi
6

p ðr1 þ r2 þ r3 þ r4 þ r5 þ r6Þ; (10)

the minimum of the confinement potential takes the
following form:

Vb
min ð6Þ ¼ K

�
R2

1 þR2
2 þ

3�d

2þ 3�d

R2
3

þ 2�dð�d þ w3Þ
2�2

d þ 7�d þ 2
R2

4 þ
2�dð�d þ w4Þ
2�2

d þ 7�d þ 2
R2

5

�
;

(11)

where w1 ¼
ffiffiffiffi
33

p þ5
2 , w2 ¼

ffiffiffiffi
33

p �5
2 , w3 ¼ 7þ ffiffiffiffi

33
p
4 , and w4 ¼

7� ffiffiffiffi
33

p
4 . Clearly this confinement potential is a multibody

interaction rather than the sum of a two-body one. When
two clusters q3 and �q3 separate in large distances, a baryon
and an antibaryon should be a dominant component of the
system, because other hidden color flux-tube structures are
suppressed due to the color confinement. With the separa-
tion reducing, a hadronic molecule state may be formed if
the attractive force between a baryon and an antibaryon is
strong enough. When they are close enough to be within
the range of confinement (about 1 fm), all possible flux-
tube structures may appear due to the excitation and
rearrangement of color flux tubes. In this case, the
confinement potential of the system should at least be taken
to be the minimum of the two flux-tube structures. It
therefore reads

VC
min ð6Þ ¼ min ðVa

min ; V
b
min Þ: (12)

OGE and (or) OBE are important and responsible for the
mass splitting in the ordinary hadron spectra. The model
with OGE and the model with OGE plus OBE can both
describe the ground states of baryons well; the differences
between the two models appear in the description of
excited baryons [27]. The study on the ground states of
nonstrange hexaquark systems q3 �q3 indicates that the dif-
ference between the two models is small [17]; therefore,
only OGE is taken into account in the present work. The
complete Hamiltonian used here is listed as the following:

Hn ¼ Xn
i¼1

�
mi þ p2

i

2mi

�
� TC þXn

i>j

VG
ij þ VC

min ðnÞ; (13)

VG
ij ¼

1

4
�s�i � �j

�
1

rij
� 2�

3
�ðrijÞ

�i � �j

mimj

�
: (14)

The tensor force and spin-orbit force between quarks are
omitted in the model, because our primary interest is in the
lowest energies, and their contributions to the ground states
are small or zero. In the above expression of Hn, n ¼ 3 or
n ¼ 6, TC is the center-of-mass kinetic energy, mi and pi

are the mass and momentum of the ith quark, and � and �
are the SUð3Þ Gellman and SUð2Þ Pauli matrices, respec-
tively. Note that � ! ��� for the antiquark; all other
symbols have their usual meanings. An effective scale-
dependent strong coupling constant is used here [28],

�sð�Þ ¼ �0

ln
�
�2þ�2

0

�2
0

� ; (15)

DENG et al. PHYSICAL REVIEW D 88, 074007 (2013)

074007-4



where � is the reduced mass of two interactional quarks qi
and qj, namely � ¼ mimj

miþmj
. �0, �0, and �0 are model

parameters. The � function, arising as a consequence of
the nonrelativistic reduction of the OGE diagram between
pointlike particles, has to be regularized in order to
perform numerical calculations. It reads [29]

�ðrijÞ ¼ 1

	3�
3
2

e
�

r2
ij

	2 ; (16)

where 	 is a model parameter which is determined by
fitting the experiment data in Sec. IV.

As far as a baryon is concerned, the color flux-tube
model reduces to the traditional quark model. However,
if it is applied to multiquark systems, the confinement
potential is a multibody interaction instead of a color-
dependent two-body one used in traditional quark models
[15–19]. In fact, the color flux-tube model based on
traditional quark models and the LQCD picture merely
modifies the two-body confinement potential to describe
possible multiquark states with multibody confinement
potential.

III. WAVE FUNCTIONS AND THE GAUSSIAN
EXPANSION METHOD

The total wave function of baryons can be written as the
direct products of color, isospin, spin, and spatial terms,

�q3

IMIJMJ
ðR; rÞ ¼ 
c½�G

LTMT
ðR; rÞ�IMISMS

�IMIJMJ
; (17)

in which ½� � ��IMIJMJ
means coupling the spin S and total

orbital angular momentum LT with Clebsch-Gordan coef-
ficients. The color-part wave function 
c is antisymmet-
rical because of the color-singlet requirement. Only u and
d quarks are regarded as identical particles; the SUsfð4Þ �
SUsð2Þ 	 SUfð2Þ symmetry is therefore used in the spin-

flavor wave function �IMISMS
. The spatial wave functions

of identical particles are assumed to be symmetrical
because we are interested in the ground states. We can
define Jacobi coordinates rij and Rk for the cyclic

permutations of (1, 2, 3):

rij ¼ ri � rj; Rk ¼ rk �
miri þmjrj
mi þmj

: (18)

Within the framework of the Gaussian expansion method
(GEM) [30], the total spatial symmetrical wave functions
of baryons with three identical particles, such as N, �, and
�, can be expressed as

�LTMT
ðR; rÞ ¼ X3

i;j;k¼1

½�lmðrijÞ�LMðRkÞ�LTMT
: (19)

For baryons with only two identical particles, such as �
and �, the spatial wave function has the following form:

�LTMT
ðR; rÞ ¼ ½�lmðrijÞ�LMðRkÞ�LTMT

; (20)

in which quarks qi and qj are identical particles. The

spatial wave function of baryons with three different
quarks is the same as Eq. (20), in which the quark qk is
the heaviest one.
The relative-motion wave functions �lmðrijÞ and

�LMðRkÞ are the superpositions of Gaussian basis
functions with different sizes,

�lmðrijÞ ¼
Xnmax

n¼1

cnNnlr
l
ije

��nr
2
ijYlmðr̂ijÞ; (21)

c LMðRkÞ ¼
XNmax

N¼1

cNNNLR
L
k e

��NR
2
kYLMðR̂kÞ; (22)

where Nnl and NNL are normalization constants.
Gaussian size parameters �n and �N are taken as geometric
progression:

rn ¼ r1a
n�1; �n ¼ 1

r2n
; a ¼

�
rnmax

r1

� 1
nmax �1

; (23)

RN ¼R1A
N�1; �N ¼ 1

R2
N

; A¼
�
RNmax

R1

� 1
Nmax�1

: (24)

The numbers n and l (N and L) specify, respectively, the
radial and angular momenta excitations with respect to
the Jacobi coordinate r ðRÞ. The angular momenta l and
L are coupled to the total orbit angular momentum LT .
With regard to a hexaquark system q3 �q3, the Jacobi

coordinates are shown in Fig. 3 and can be expressed as

rij ¼ ri � rj; Rk ¼ rk �
miri þmjrj
mi þmj

;

rlm ¼ rl � rm; Rn ¼ rn �mlrl þmmrm
ml þmm

;

X ¼ miri þmjrj þmkrk
mi þmj þmk

�mlrl þmmrm þmnrn
ml þmm þmn

:

(25)

The model wave function with fixed quantum numbers I
and J can be expressed as

FIG. 3. Jacobi ordinates for a hexaquark system q3 �q3.
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�½q3�½ �q3�
IJ ¼ X




c
½½�q3

c1I1J1
��q3

c2I2J2
�
FðXÞ�IJ: (26)

�q3

c1I1J1
and ��q3

c2I2J2
are the cluster wave functions of the

colorful or color-singlet baryon q3 and antibaryon �q3,
respectively, in which the spatial functions are the same
as those shown before for baryons, and ½� � ��
 represents all
the needed coupling: color, isospin, and spin. All the
possible channels are taken into account in our multichan-
nel coupling calculation. FðXÞ is the relative orbital wave
function between q3 and �q3 clusters; it is also expanded by
Gaussian basis functions with different sizes,

FðXÞ ¼ XN0
max

N0¼1

cN0NN0L0XL0
e��N0X2

YL0M0 ðX̂Þ: (27)

The Gaussian size parameter �N0 is taken to have the same
form as �n or �N .

IV. NUMERICAL RESULTS AND DISCUSSIONS

The mass spectrum of the ground states of baryons
can be obtained by solving the three-body Schrödinger
equation

ðH3 � EIJÞ�q3

IMIJMJ
ðR; rÞ ¼ 0 (28)

with the Rayleigh-Ritz variational principle. The con-
verged results are arrived at by setting r1 ¼ R1 ¼ 0:3 fm,
rnmax

¼ Rnmax
¼ 2:0 fm, and nmax ¼ Nmax ¼ 5. The

model parameters are fixed by fitting the experimental
data, with the exception that the parameters �0 and �0

are taken from the Ref. [28]: �0 ¼ 0:187 fm and �0 ¼
0:113 fm. The values of the model parameters and the
masses of the ground baryon are listed in Tables I and II,
respectively. In general, the model can describe the baryon
spectrum well.

The color flux-tube model with the model parameters
listed in Table I is used to study the hexaquark systems
q3 �q3. It should be emphasized that no new parameter is
introduced in the calculation of the hexaquark systems
q3 �q3. The mass spectrum of the hexaquark systems q3 �q3

can be obtained by solving the six-body Schrödinger
equation

ðH6 � EIJÞ�½q3�½ �q3�
IJ ¼ 0: (29)

The converged numerical results can be obtained by setting
nmax ¼ 5, Nmax ¼ 5, and N0

max ¼ 5. The minimum and

maximum ranges of the bases are 0.3 and 2.0 fm, respec-
tively, for coordinates r, R, and X.
The binding energies, �EJ ¼ EIJ � 2MB, of the ground

states of the hexaquark systems q3 �q3 are listed in Table III.
It can be seen that the energies of many low-spin (S � 1)
states lie below the threshold 2MB; the ground states are
therefore stable against dissociation into a baryon and an
antibaryon, while they can decay into three color-singlet
mesons. None of the high-spin (S 
 2) states lie below the
corresponding threshold. To check the rationality of the
various color structures used, the spatial configurations of
the bound states are calculated by using the wave functions
obtained in solving the Schrödinger equation. The rms for
r, R, and X of all possible bound states q3 �q3 with JPC ¼
0�þ and 1�� are listed in Table IV; it can be seen that they
are smaller than 1 fm in the color flux-tube model.
Numerical results in Tables III and IV indicate a tendency
that the heavier the states are, the deeper the binding

and the smaller the size. Taking the group � ����c
��c �

�b
��b as an example, the binding energies are, respec-

tively, �80 MeV, �244 MeV, and �363 MeV. The

distances between two clusters q3 and �q3 hX2i12 are,
respectively, 0.49, 0.39, and 0.38 fm. The same

tendency appears in � ����c
��c ��b

��b and �� ��� �
��

c
���
c ���

b
���
b systems and other groups. The reason

TABLE II. The masses of the ground states of baryons, units in
MeV, in which n stands for a u or d quark.

Baryons Flavor IJP Calculated Experimental

N nnn 1
2
1
2

þ 939 939

� nns 0 1
2

þ 1108 1116

� nns 1 1
2

þ 1213 1195

� nss 1
2
1
2

þ 1350 1315

� nnn 3
2
3
2

þ 1232 1232

�� nns 1 3
2

þ 1382 1385

�� nss 1
2
3
2

þ 1528 1530

�� sss 0 3
2

þ 1675 1672

�þ
c nnc 0 1

2

þ 2287 2285

�c nnc 1 1
2

þ 2480 2455

��
c nnc 1 3

2

þ 2533 2520

�c nsc 1
2
1
2

þ 2620 2466

��
c nsc 1

2
3
2

þ 2670 2645

�0
c ssc 0 1

2

þ 2790 2695

�0�
c ssc 0 3

2

þ 2819 2766

�0
b

nnb 0 1
2

þ 5600 5620

�b nnb 1 1
2

þ 5816 5808

��
b nnb 1 3

2

þ 5836 5830

�b nsb 1
2
1
2

þ 5948 5790

��
b nsb 1

2
3
2

þ 5966 � � �
��

b ssb 0 1
2

þ 6107 6071

TABLE I. Adjustable model parameters.

Parameters: mud ms mc mb �0 K 	

Units: MeV MeV MeV MeV � � � MeV fm�2 fm

Values: 313 545 1800 5140 5.41 400 0.47

DENG et al. PHYSICAL REVIEW D 88, 074007 (2013)

074007-6



for this tendency is that the large mass of heavy quarks
depresses the motion domain and reduces the kinetic
energy. The results agree with the tetraquark state
calculations [31].

The sizes of all possible bound states in Table IV show
that the dominant component is not a loose B �B molecule
state but a compact hexaquark state, which is formed by
means of the multibody confinement potential originat-
ing from the color flux-tube picture, so the introduction
of hidden color configuration is reasonable. Compared
with the early baryonia calculations in the traditional
quark models [32,33], where no nonstrange bound state
was found, the multibody confinement interaction used
in our model can globally give more attraction than
the additive two-body one proportional to the color
factor in the traditional quark models. Furthermore, the
anticonfinement between a color-symmetrical quark or
antiquark pair does not appear in the multibody confine-
ment potential, because no color charge appears [15–17].
The similar string model with a multibody confinement
potential was applied to study the stabilities of tetra-
quark, pentaquark, and hexaquark states, and it was
suggested that many compact multiquark states could
exist [34].

The chromomagnetic interaction VCM in OGE as
a unique binding mechanism was applied to study
multiquark systems [35–37], such as the well-known H
particle [35]:

VCM ¼ ���s

X6
i>j

�ðrijÞ�i � �j�i � �j

6mimj

: (30)

It gives a strong attraction in the formation of the multi-
quark states. However, some research of multiquark states
indicates that the chromomagnetic interaction as a unique
binding mechanism has encountered some difficulties
[38]. The contributions of the chromomagnetic interac-
tion in all possible B �B bound states in Table III are listed
in Table V. It can be seen that the chromomagnetic
interaction provides a strong attraction in the low-spin

B �B bound states, such as the states � ��, �c
��c, and

�b
��b. This is another reason why the low-spin B �B states

can form compact bound states q3 �q3 in the color flux-tube
model. The chromomagnetic interaction in a bound state
containing a baryon and an antibaryon with S ¼ 1

2 is

stronger than that in a bound state containing a baryon

and an antibaryon with S ¼ 3
2 (see Table V), such as � ��

and �� ���, �c
��c and ��

c
���
c, �b

��b and ��
b
���
b, and so on.

Our conclusions are qualitatively consistent with the con-
clusions of the study of the spectroscopy of hexaquark
states q3 �q3 [37].

TABLE III. The binding energies of the ground states of B �B
states with quantum numbers JPC, units in MeV, where ‘‘� � �’’
means that the corresponding state does not exist. For the states
with the lowest energies, all the orbital angular momenta are set
to zero; therefore, the parity of the B �B states is negative and the
C parity is ð�1ÞS, because the baryonia are pure neutral systems.

States 0�þ 1�� 2�þ 3��

N �N �46 0 � � � � � �
� �� �80 �46 0 0

� �� �10 0 � � � � � �
� �� �8 0 � � � � � �
� �� �80 0 0 0

�� ��� �20 0 0 0

�� ��� �105 �47 0 0

���þ �8 0 0 0

�þ
c �

�
c �244 �232 � � � � � �

�c
��c

�144 �132 � � � � � �
��

c
���
c

�34 0 0 0

�c
��c

�207 0 � � � � � �
��

c
���
c

�168 �98 0 0

�0
c
��0
c 0 0 � � � � � �

�0�
c

��0�
c 0 0 0 0

�þ
b �

�
b �363 �360 � � � � � �

�b
��b

�278 �277 � � � � � �
��

b
���
b

�58 �10 0 0

�b
��b

�304 �44 � � � � � �
��

b
���
b

�266 �200 � � � � � �
��

b �
þ
b 0 0 � � � � � �

TABLE IV. The rms for r, R, and X of all possible B �B bound
states listed in Table III, units in fm.

JPC 0�þ 1��
Rms hr2i12 hR2i12 hX2i12 hr2i12 hR2i12 hX2i12
N �N 0.81 0.71 0.68 � � � � � � � � �
� �� 0.76 0.66 0.49 0.77 0.69 0.54

� �� 0.86 0.67 0.87 � � � � � � � � �
� �� 0.72 0.69 0.73 � � � � � � � � �
� �� 0.93 0.82 0.62 � � � � � � � � �
�� ��� 0.89 0.78 0.51 � � � � � � � � �
�� ��� 0.75 0.77 0.47 0.75 0.80 0.48

���þ 0.75 0.70 0.45 � � � � � � � � �
�þ

c �
�
c 0.75 0.62 0.39 0.75 0.62 0.40

�c
��c

0.85 0.65 0.42 0.85 0.66 0.41

��
c
���
c

0.88 0.70 0.50 � � � � � � � � �
�c

��c
0.75 0.61 0.39 � � � � � � � � �

��
c
���
c

0.81 0.62 0.40 0.83 0.62 0.40

�þ
b �

�
b 0.75 0.61 0.38 0.75 0.61 0.38

�b
��b

0.83 0.64 0.38 0.83 0.64 0.38

��
b
���
b

0.86 0.67 0.38 0.87 0.68 0.39

�b
��b

0.75 0.61 0.38 0.75 0.60 0.39

��
b
���
b

0.80 0.61 0.38 0.82 0.61 0.38
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For the light nonstrange hexaquark system nnn �n �n �n ,

there are two interesting states, N �N and � �� with JPC ¼
0�þ. The masses are 1832 MeV and 2384 MeV, respec-
tively, which are very close to the experimental data of the
Xð1835Þ and Xð2370Þ observed in the radiative decay of
J=c by the BES Collaboration. Therefore, the bound

states N �N and � �� may be the dominant components of
the Xð1835Þ and Xð2370Þ, respectively. Our interpretation
is consistent with many authors’ points of view with
different models [8]. Alternatively, the Xð2370Þ could
also be explained as the bound state Nð1440Þ �N or
N �Nð1440Þ in the Bethe-Salpeter equation approach [39].
For the light strange hexaquark systems nns �n �n �s and

nss �n �s �s , several weakly bound states, � ��, � ��, �� ���,
� ��, and �� ���, can exist in the color flux-tube model.

The mass of the bound state � �� with JPC ¼ 1��,
2186 MeV, is close to the experimental value of the
Yð2175Þ. Therefore, the dominant component of Yð2175Þ
could be treated as a bound state � �� in our model. The

interpretation of Yð2175Þ as the bound state � �� with
JPC ¼ 1�� is also proposed in other constituent quark

models [10,40]. The weakly bound state of � �� was also

obtained in Ref. [40]. The states � ��, � ��, and � �� were
investigated in the framework of the Bethe-Salpeter
equation with a phenomenological potential, and similar
conclusions were arrived at [39].

For the heavy hexaquark systems with a c �c or b �b pair,

the states �þ
c �

�
c , �c

��c,�c
��c,�

�
c
���
c, �

þ
b �

�
b , �b

��b, and

�b
��b can form bound states with large binding energies,

while the binding energies of states ��
c
���
c and ��

b
���
b are

tens of MeV. Concerning the states ���þ, �0
c
��0
c,

�0�
c

��0�
c , and ��

b �
þ
b , only the state ���þ has a shallow

bound state with binding energy about 8 MeV; the others

are unbound. Compared with the state � ��, the states

�0
c
��0
c, �

0�
c

��0�
c , and ��

b �
þ
b have a bigger quark mass—

although it makes the kinetic energies lower, it also reduces
the chromomagnetic interaction, which does not favor
forming a bound state in the model. The heavy baryonia

with a c �c pair were systematically investigated within the
framework of the OBE (�,�, �,!,�, and�) model, and it

is suggested that the states �þ
c �

�
c , �c

��c, and �c
��c have

deep attractive potentials in the short-distance domain [41],
which is qualitatively consistent with our conclusions. It
seems that the OBE effect in the short distance can be
described by the coupling of different color flux-tube
structures in our model, which deserves future study. The

heavy partners �c
��c (with mass 4330 MeV) and �b

��b

(with mass 10877 MeV) of the bound states � �� may be
used to explain the states Yð4260Þ or Yð4360Þ, and
Ybð10890Þ, respectively. The interpretation is consistent
with Refs. [9,42].
The B �B bound states, if they really exist, can be

observed in the corresponding B �B invariant mass spectrum
when they are produced in the eþe� annihilation and
charmonium or bottomonium decay processes; they can
eventually decay into three color-singlet mesons. Before
the occurrence of this decay, the hidden-color hexaquark
states must change into several colorless subsystems by
means of the breakdown and recombination of color flux
tubes because of a color confinement. This decay mecha-
nism is similar to compound nucleus formation, and
therefore should induce a resonance, which is called a
‘‘color-confined, multiquark resonance state’’ in the color
flux-tube model [43]. It is different from all of those
microscopic resonances discussed by S. Weinberg [44].

V. SUMMARY

The mass spectrum of B �B states containing u, d, s, c,
and b quarks has been studied in the color flux-tube model
with a multibody confinement interaction. A powerful
numerical method with high precision, GEM, is used in
the calculation. The numerical results indicate that many
low-spin B �B states can form compact hexaquark states
q3 �q3 which do not directly decay into a baryon and an
antibaryon but into three color-singlet mesons by means of
the breakdown and recombination of color flux tubes,
while the high-spin B �B states cannot form bound states.
The multibody confinement interaction as a binding
mechanism can globally give more attractions in the
short-distance domain than the two-body one does in the
study of the multiquark calculations; the effect seems to be
equivalent to that of the ! and � meson exchanges. In
addition, the chromomagnetic interaction can provide a
strong attraction for the low-spin states.

The B �B bound states, � ��, �� ���, � ��, �� ���, �c
��c,

�c
��c, �

�
c
���
c, �b

��b, and �b
��b, predicted by the color

flux-tube model, if they really exist, can be observed in the
corresponding B �B invariant mass spectrum when they are
produced in the eþe� annihilation and charmonium or
bottomonium decay processes. The dominant components
of the new hadron states, Xð1835Þ, Xð2370Þ, Yð2175Þ,
Yð4260Þ, and Ybð10890Þ, may be interpreted as N �N, � ��,

TABLE V. The contributions of the chromomagnetic interac-
tion in all possible B �B bound states listed in Table III, units in
MeV.

States 0�þ 1�� States 0�þ 1��

N �N �642 � � � �c
��c

�304 �296

� �� �826 �813 ��
c
���
c

�72 � � �
� �� �319 � � � �c

��c
�407 � � �

� �� �384 � � � ��
c
���
c

�249 �180

� �� �115 � � � �þ
b �

�
b �840 �839

�� ��� �118 � � � �b
��b

�315 �314

�� ��� �200 �134 ��
b
���
b

�83 �32

���þ �154 � � � �b
��b

�468 �189

�þ
c �

�
c �826 �814 ��

b
���
b

�267 �196
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� ��, �c
��c, and �b

��b compact bound states, respectively.

To justify this, the calculation of the decay properties of

these states is critical. However, the present difficulty lies

in the lack of reliable knowledge of the breakdown and

recombination of color flux tubes, which is worth studying

in the future.
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