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In the perturbative QCD (PQCD) approach, we study the direct CP violation in B%* — p%(w)7%* —

at T 7o

* via the p-w mixing mechanism. We find that the CP violation can be enhanced due to a large

strong phase difference when the masses of the 7% 77~ pairs are in the vicinity of the w resonance. Taking
into account the p-w mixing, we also compare the CP violation from the naive factorization approach,
QCD factorization approach, and PQCD approach. Based on the B°B° mixing, we discuss the effects of
B°B° mixing for the total CP violation of B® — p%(w)7® — " 7~ %, which is time dependent.
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I. INTRODUCTION

CP violation has been an open topic in recent years.
In the Standard Model, CP violation is related to weak
complex phases in the Cabibbo-Kobayashi-Maskawa
(CKM) matrix [1,2]. CP violations have been observed
in the decays of B mesons [3]. In the past few years, more
attention has been focused on the decays of the B-meson
system, both theoretically and experimentally.

Currently, the hadronic matrix elements can be calcu-
lated from the first principles in the decays of the B meson.
Exclusive two-body B-decay amplitudes have been esti-
mated using the naive factorization approach [4], QCD
factorization (QCDF) [5], perturbative QCD (PQCD)
[6,7], and soft-collinear effective theory [8]. Due to the
power expansion of 1/m,, (m,, is the b-quark mass), all of
the theories of factorization are shown to deal with the
hadronic matrix elements in the leading power of 1/m;,.
However, these methods are different significantly due to
the collinear degree or transverse momenta. The power
counting is different from the hard kernels between
QCDF and PQCD. It is important to extract the strong
phase difference for CP violation. A very different feature
of QCDF and PQCD is the strong interaction scale, which
is low in PQCD, typically of the order 1-2 GeV; in the case
of QCDF, it is of the order O(m,) for the Wilson
coefficients.

Direct CP violation occurs through the interference of
two amplitudes with different weak phases and strong
phases. The weak phase difference is directly determined
by the CKM matrix elements, while the strong phase is
usually difficult to control. However, the strong phase is
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not well determined from the theoretical approach. The
B-meson decay amplitude involves the hadronic matrix
elements whose computation is nontrivial. The different
methods may present different strong phases. Meanwhile,
we can also obtain a large strong phase difference by some
phenomenological mechanism. p-@ mixing has been used
for this purpose in the past few years [9—17] and focuses on
the naive factorization and QCD factorization approaches.
In this paper, we will investigate the CP violation via p-w
mixing in the PQCD approach.

In the PQCD approach, at the rest frame of a heavy B
meson, the B-meson decays into two light mesons with
large momenta that move very fast. The hard interaction
dominates the decay amplitude from a short distance
because there is not enough time to exchange the soft
gluons with the final mesons. Since the final mesons
move very fast, a hard gluon kicks the light spectator
quark of the B meson to form a fast moving final meson.
Hence, the hard interaction consists of six quark opera-
tors. The nonperturbative dynamics is included in the
meson wave function, which can be extracted from an
experiment. The hard one can be calculated by the

perturbation theory.

The remainder of this paper is organized as follows. In
Sec. II, we present the form of the effective Hamiltonian
and the values of the Wilson coefficients. A discussion
about PQCD is also presented. In Sec. III, we give the
formalism and numerical results for the CP violation in
B** — p%(w)7** — 77 7% via p-w mixing. In
Sec. IV, we calculate the total CP violation for B® —
p%(w)7 — 7" 7~ 7% including B°B° mixing. A summary
and discussion are given in the Sec. V. The related func-
tions defined in the text are given in the Appendix.
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II. THE EFFECTIVE HAMILTONIAN

With the operator product expansion, the effective weak
Hamiltonian can be written as [18]

G .
Hnr = [ VisVisfer 04 + 09
10
—Va Vi D c,»oi] + H.c., (1)
i=3
where G represents the Fermi constant, ¢; (i = 1, ..., 10)

are the Wilson coefficients, and V;,, V4, V,;,, and V,; are
the CKM matrix elements. The operators O; have the
following forms:

o} = da’y,u(l - ’}’5)14,31/7/3’)’“(1 — ¥s)bg,
04 = dy, (1 — ys)uiy(1 — ys)b,
05 = dy,(1 = y5)bY g'v*(1 = ¥5)d.,
ql
04 = duy,(1 = ¥5)bp Y v (1 = ¥5)dh
q/
Os = dy,(1 = y5)bY g'v*(1 + y5)d.,
q (2)
06 = duy,(1 = ¥5)bp Y gy (1 + y5)dl
q/

3 _
07 =5dy,(1 = y5)bY e g y*(1 + y5)q,
ql
0=§5’ (1 - )bz 75y (1 + vs)q.
8= 2 da¥ull = v5)bpQ eqdpy Y5/ 4a
q
3 - -/ /
0y =2y, (1 = y5)bY e v* (1 = ¥5)d.
q/
O = 2d,y,(1 - VoY eqipy* (1= vs)q,
10 = 5%Yu Ys)0p /eq/qB)/ Ys)qa

q

where « and B are color indices, and ¢’ = u, d, or s
quarks. In Eq. (2), Of and O% are tree operators, O3—0Og
are QCD penguin operators, and O;—0 are the operators
associated with electroweak penguin diagrams.

We can obtain the numerical values of ¢;. When
c;(myp) [7],

¢, = —02703, ¢, = L1188,  ¢3=0.0126,
ey = —0.0270, 5 =00085  cs= —0.0326,
¢; = 0.0011, cg = 0.0004, ¢y = —0.0090,

10 = 0.0022. 3)

The CKM matrix, which should be determined from the
experiments, can be expressed in terms of the Wolfenstein
parameters A, A, p, and 7 [19]:
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1-1x2 A AN (p — in)
-A -2 AN? G
AN —p—in) —AX 1

where the O(A*) corrections are neglected. The latest
values for the parameters in the CKM matrix are [3]

A =0.2272 = 0.0010,

p = 022110064

A =0.81810007 )
7 = 0.34019017

where

p=1 —%2) 7= (1 —)‘;) ©)

From Egs. (5) and (6) we have

0.198 < p < 0.293, 0.302 < 7 <0.366. (7)

In the PQCD approach, there are three scales in-
volved: the W-boson mass my associated with weak
interaction, the hard scale ¢, and the factorization scale
1/b (b is the conjugate variable of the parton transverse
momenta k7). The leading logarithm order contribution
of the short distance associated with the Wilson coeffi-
cients C(¢) can be resumed from the order my down
to hadronic scale ¢ by a renormalization group equation.
The interaction associated with the scale below the
factorization scale k; is not calculable in perturbation
theory, which can be involved in hadronic wave function
®(x). Taking into account the high-order power correc-
tion in the meson wave function, the overlap of the soft
and collinear divergence will produce double logarithms
In2(Pb), where P denotes the light-cone component of
the meson momentum. The resummation of the double
logarithms leads to a Sudakov factor exp[—s(P, b)],
which suppresses the long-distance contribution in the
large b region and vanishes as b > 1/Aqcp. The remain-
ing finite contributions are absorbed into a hard subam-
plitude H(x, 1).

The three scale factorization formula is written as

C(H) ® H(x, 1) ® B(x) ® exp [ —s(P, b)
[ e
2 [ o Vala() | ®)

where y, = —a,/7 is the quark anomalous dimension
in the axial gauge. The hard amplitude H(x, ) can be
calculated in perturbative theory. However, the double
logarithms a,In?(x) will appear and cannot expand as
the momentum fraction x is at the end-point region.
Then, the threshold resummation is presented due to the
resummation of all orders of double logarithms that are
associated with a jet function S,(x).
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III. CP VIOLATION IN

B — pYe@)m"* — mtaaht

A. Formalism

The amplitude A (A) for the decay B’ — 7" 7 7°
(B — 7t 7~ 7% can be written as (for simplicity, we
neglect the calculating formalism of CP violation for the
process of BT — 7t 7w~ ar*, which is similar to the case of
B’ — 7t~ 70)

A = {(m* 7 7°|HT|B®Y + (w "7~ #°|HF|B%), (9)

A = {m" 7~ 7°|HT|B%) + (7t 7~ #°|HP|B®), (10)

with HT and H? being the Hamiltonians for the tree and
penguin operators, respectively.

We can define the relative magnitudes and phases
between the tree and penguin operator contributions as
follows:

A = (77 7|HT|BO)[1 + rei®+¢)], (11)

A = (m" 7 7|HT|BO)[1 + re®=¢)], (12)

where & and ¢ are the strong and weak phases, respec-
tively. ¢ arises from the CP-violating phase in the CKM
matrix, which is arg [V, V,/(V,,V: )]. The parameter r is
the absolute value of the ratio of the penguin and tree
amplitudes:

(7" 7~ w°|H?|B°)

= . 13
"= G ) (13
The CP-violating asymmetry a can be written as
Al> — |A]? —2rsin § si
0= |Al |AlI* rsin 6 sin ¢ (14)

A2 +JA]> 1+ 2rcosdcosep + r2’

From Eq. (14), one can find that the CP violation depends
on the weak phase difference and the strong phase differ-
ence. The weak phase is determined for a specific decay
process. Hence, in order to obtain a large CP violation, we
need some mechanism to make sin § large. It has been
found that p-w mixing (which was proposed based
on vector meson dominance [20]) leads to a large strong
phase difference [10-17]. Based on p-w mixing and work-
ing to the first order of isospin violation, we have the
following results:

<7T+7T_7TO|HT|BO>=g—pl:[pwta) +g_ptp, (15)
SpSe Sp
. 8p 7 8
(mt 7 7°|H?|B%) = =211 ,,p, + S—ppp, (16)
pPw P

where #,(p,) and ¢,,(p,,) are the tree (penguin) amplitudes
for B — p%7° and B® — w7, respectively; g, is the
coupling for p®— 7" 7~ II,, is the effective p-w

mixing amplitude, which also effectively includes the
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direct coupling w — 7" 7~. sy, my, and 'y, (V = p or
w) are the inverse propagator, mass, and decay rate of the
vector meson V, respectively, and

Sy = 8§ — m%/ + imvrv, (17)

with /s being the invariant masses of the 7" 7~ pairs.

The direct coupling w — 777~ has been effectively
absorbed into T pw» Which leads to the explicit s depen-
dence of T1 po [21]. However, the s dependence of 11 po 18
negligible in practice. We can make the expansion
I:Ipw(s) = l:Ipm(m%J) + (s — mw)fl;m(m%,). The p—
mixing parameters were determined per the fit of
Gardner and O’Connell [22]:

Nell,, (m2) = —3500 + 300 MeV?,
Smll,, (m2) = —300 = 300 MeV?, (18)
1], (m%) = 0.03 = 0.04.
From Egs. (9), (11), (15), and (16), one has

H,,p0 T 5,0,

redelt =
I, t, + s,t,

19)

Defining
. t . i
Po_ oo lo— geiv., Po— poiss  (20)
tp p Po

where 6,, 0 p> and Sq are strong phases. One finds the
following expression from Egs. (19) and (20):

_ s
is, I1,, + Bess,

re'® = yle =
II,,ae® + s,

21

In order to get the CP-violating asymmetry in Eq. (14),

sin ¢ and cos ¢ are needed. The weak phase ¢ is fixed by

the CKM matrix elements. In the Wolfenstein parametri-

zation [19], one has

sin ¢ = 1 ,

Vel =p) = *F + 7’

_ pli-p-7

cos ¢ = .

ol =p) = 7°F +7°

(22)

B. Calculational details

From Egs. (14), (19), and (20), in order to obtain the
formulas of the CP violation, we calculate the amplitudes
tys tys Pp» and p,, in the PQCD approach, which can be
decomposed in terms of tree-level and penguin-level am-
plitudes due to the CKM matrix elements of V,,V;, and
Vi, V3. In the following, we calculate the decay amplitudes
for B — p%w)7® and BT — p°(w)7*, which we will
use in the next paragraph. The PQCD functions of F and
M can be found in the Appendix.
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1. The decay amplitudes of B — p®(w)7’

With the Hamiltonian (1) depending on the CKM matrix elements of V,,V,, and V,,V;,, the decay amplitudes for
B? — p%77% in PQCD can be written as

—2M(B° — p°7%) = Vs Viaty = Vs Vi ps (23)

where
1
t,=(F, + Fe,,)(c, + gCZ) + M, +M,,—M,—M,,)C,, (24)

and

1 3 1 5 1 3 1 5
pp = Fe(_§C3 - C4 +—C7 +_C8 +§C9 +C|0) +F€p(_—C3 _C4_—C7 __CS +§C9 + C10>

2 2 3 2 2
p (1 1 1 3 1 3 3 1 3
- Fep<§C5 + C6 - 6C7 - ECS) + Me<_C3 - ECS + ECQ + Eclo) + Mep<_C3 + ECS + §C9 + Eclo)
1 1 1 P P 1
- (Ma + Map)<C3 + 2C4 - 2C6 - ECS - §C9 + ECIO) - (Me + 2Ma)<C5 - 5C7> (25)
The decay amplitudes for B — w7 can be written as
2M(B® — w7V) = Vs Vigto = Vi VP (26)
where
1
ty, = (Fep - Fe)(Cl + §C2) + (Mep -M,+M,+ Map)Cz, 27
and

7 5 2 1 1 1 1 1 3 1 5
Pow = Fe _§C3 _§C4 - 2C5 _§C6 - §C7 - 6(:8 - §C9 + §C10) + Fep<_§C3 - C4 - §C7 - ECS + §C9 + CIO)
- F? (C +1C —lc —1C>+M <—C —2C4+2 +1C +1C —lc )
ep{b6 T35 717568 e\ 7C3 4T 2Tl 50500
3.1 .3 3.1 .3 . 1
+ Mep _C3 + ECS + ECQ + ECIO + (Ma + Map) _C3 - ECS +§C9 + Eclo - (Me + 2Ma) C5 - §C7 .
(28)
Based on the definition of Eq. (20), we can get 2. The decay amplitudes of B* — p®(w)m™
weide — ty (29) The decay amplitudes for BT — p7" can be written as
1,
o, V2ZM(B* — p°m*) =V, Vigt, = Vi Vigp,.  (33)
Beios ==L, (30)
Po
where
Heidy = Po o w (31) | |
o ViV t, = Fe(c1 + gCz) + (F,, — 2Fa)<g C, + Cz)
where
+ M,Cy + (M,, — M, + M,,)C,, (34)
[ abis | ST=p7 )
VibVia (1 = A2/2/p? + n? and
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1 3 1 5
pp:Fe<_§C3_C4+§C7+§C8+§C9+C10)
1
+ (F,, 2Fa)( C3+C4+3C9+C10)
1
+(Fe _2FP)< C5+C6+3C7+C8)

3 1 3
T M\ —C—5CG 506 +§C10>

1
+(M,, — M, + M,,)(C; + Co) — M5<C5 - -c7).

2
(35)

The decay amplitudes for B¥ — w7 can be written as

V2ZM(B* = om) = Vo Vigt, — Vo Vi, (36)
where
1 1
= Fe(Cl + §C2> + F€p<§C1 + C2>
+M,C, + (Mep + M, + Map)Cl, 37
and
2
= ( C3+ C4+2C5+3C6+ C7+6C8
1 1 1 1
§ _§C]0>+Fep(§C3+C4+§C9+C10)
1
+ F? (3C5 + Cq +§C7 +C8>
1 1 1
Me<C3 + 2C4 - 2C6 - ECS - §C9 + Eclo)

+(M,, + M, +M,,)(C; + Cy)
+ (ME + ML) (Cs + C;) + M”(C5 5C7). (38)

Similarly, we can also obtain the strong phase from
Egs. (29)-(32).

C. Numerical results

In our numerical calculation, we use the following input
parameters [3,23]:

mp = 5.28 GeV, 75+ = 1.641 ps,
Tgo = 1.519 ps, f==0.13 GeV,
fp =0.216 GeV, for = 0.145 GeV,
fo =0.195 GeV, fpr = 0.165 GeV,

4
Afep = 0.148 GeV.

CP violation depends on the CKM matrix elements and the
strong phases. The CKM matrix elements, which relate to
p, 1, A, and A are given by Eq. (5). For our results, we find
the CP violation is not sensitive to the CKM matrix
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elements for the different p, n, A, and A. Hence, we
present the CP violation as a function of the central
CKM matrix elements in Fig. 1. From the numerical
results, we find that there is a maximum CP-violating
parameter value, a,,,,, when the invariant masses of the
7t 7~ pairs are in the vicinity of the w resonance. For
example, the maximum CP-violating parameter can reach
73% for the decay channel of BY — 7% 7~ 7" when
s =0.785 GeV. In the case of B® — 77 70, the
maximum CP-violating parameter can also reach 74%
when /s = 0.782 GeV. This is shown in Fig. 1.
One can see that the CP violations are enhanced for above
two decay channels when the invariant masses of the
7t~ pairs are in the vicinity of the @ resonance.
The qualities of p and w are very close to each other. On
the other hand, they have very different decay widths. The
width of p is much larger than that of w. Consequently,
the Breit-Wigner of p will look very smooth even in the
vicinity of p. As a result, the phase in the 77 scattering
caused by the p resonance will change very slowly even in
the vicinity of the p meson. This is also the reason why we
do not see a rapid change of CP asymmetry in the vicinity
of the p meson in Fig. 1.

From Eq. (14), one can see that the CP-violating pa-
rameter is dependent on sin § and r. In our calculation, it is
found that the p-w mixing mechanism produces a large
sin & which is independent of the CKM matrix elements.
The plot of sin § as a function of +/s is shown in Fig. 2. One
can see that the p-® mixing mechanism leads to the strong
phase & reaching —90° (sin 8§ = —1) at the @ resonance
for the processes of BY — 7t 7~ 7" and B — 7t 7~ #°.
From Fig. 3, it can be seen that r increases rapidly for the
channel of BY* — 7" 7~ 7" when the invariant masses of
the 7w+ 7~ pairs are in the vicinity of the w resonance.

However, in the case of B’ — #w"# 7’ r changes
slightly.
T T
0.5F B
« 0.0
o5t .
~
~ ~
l/ 1 1 1 - il
0.76 0.77 0.78 0.79 0.80

FIG. 1. The CP-violating asymmetry, a, as a function of /s
for central CKM matrix elements. The solid (dashed) line
corresponds to the decay channel of Bt — 7t 7~ 7+ (B* —
ata w0).
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FIG. 2.

sind as a function of /s for central CKM matrix
elements. The solid (dashed) line corresponds to the decay
channel of B* — 7"~ 7™ (B — w" o #°).

For the process of the above decay channels, we find the
p-w mixing presents a strong phase so as to make sin 6 big.
The involvement of the p-w mixing can also change the
value of r. However, as found from our detailed analysis,
the effect of the change of r on a is small compared with
the case of sin 6.

In Table I, we compare the maximum CP violation
obtained via the p-w mixing by naive factorization [12],
QCD factorization [24], and the perturbative QCD ap-
proaches. One can find that the different approaches give
different results. However, the CP violations are all en-
hanced via the p-w mixing by the three methods, which,
however, are significantly different due to the collinear
degrees, transverse momenta, and strong interaction scale.
Since the b quark is heavy and energetic, the naive facto-
rization approximation is expected to be a good method.
The uncertainties come mainly from the color-octet and
nonfactorizable contribution that are effectively absorbed
into N. [12]. The QCD factorization scheme adds «

0.76 0.77 0.78 0.79 0.80
Vs
FIG. 3. r as a function of /s for central CKM matrix elements.

The solid (dashed) line corresponds to the decay channel of
BY - a7 ot (B — 7t w 70).
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TABLE I. The maximum CP violation for different ap-
proaches via p-w mixing.

Bt > nmta ot BY— 7t a0
Naive factorization —0.23- - 0.57 —0.42—- — 0.81
QCD factorization —0.02-0.05 —0.3-0.05
Perturbative QCD 0.69-0.73 0.72-0.74

corrections. In this framework, there is a cancellation
of the scale and renormalization scheme dependence be-
tween the Wilson coefficients and the hadronic matrix
elements. The QCD factorization suffers from end-point
singularities, which are not well controlled. The CP vio-
lation depends on the unknown parameters associated with
such end-point singularities. The uncertainties of PQCD
come from the variation of the hard scattering scale to-
gether with the uncertainty on Agcp and the CKM matrix
elements. The different methods present different strong
phases which lead to different CP violation. However, the
case is the same in that the p-w mixing provides new
strong phases. Hence, large CP violation can be obtained
using different factorization approaches.

IV. CP VIOLATION FOR B’ — #'z* 7~

Generally, the contribution of neutral meson mixing may
be small for CP violation, which can be neglected. In our
calculating formalism, the case may be different due to
the involvement of p-w mixing. The decay process can be
produced as B — f or B — B° — f. Hence, we also
consider the effect of BB mixing for the process B® —
7’7t 7~ via p-w mixing. Based on the BB mixing, the
time-dependent CP violation of neutral B decays to a final
state f given by [25]

o)~ TEO = 1)~ TE0) = )
[(B°(r) — f) + T(B°(1) = f)
= acos (Amt) + Sy sin (Amt), (39)

where Am is the mass difference of the two mass eigen-
states of the neutral B meson. The direct CP-violating
parameter a is defined in Eq. (14). The mixing
CP-violating parameter is defined as

2 Im(A
Sp=— LC’JZ’ (40)
1+ [Acpl
where
* V.o f|H|B°
Aoy = ViVt F1HIE) )
Vs Vil f1H|B)
and we can get
1+ e
= p2id
Acp =€ 1+ rel®*¢) 42

Including the BB mixing effect and by integrating over
time ¢, the total CP violation can be written as [7]
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T T T T T

0.4 b

02 ]

0.0

L -02f

—04F

0.6 -

-0.8

L L L L L L L L 1 L L L L L L " n
0.76 0.77 0.78 0.79 0.80

FIG. 4. The total CP-violating asymmetry, a, as a function of
/s for central CKM matrix elements for B° — p’7" —
mOrta.
n x
Qoral = a
ol T 2 1+ x2

with x = Am/I" = 0.723.

The predictions for the total CP violation of B? —
p’m® — 707" 7~ are presented in Fig. 4. One can find
that the total CP violation is also enhanced when the
invariant masses of the 7" 7~ pairs are in the vicinity
of the w resonance, which is suppressed when compared
with direct CP violation. However, the maximum total
CP violation can also reach 41% including the p-w
mixing.

S, 43)

V. SUMMARY AND DISCUSSION

We have studied the CP violation in the decay of
B%* — 7%= 7 7~ due to the contribution of p-w
mixing in the PQCD approach. It was found that p-w
mixing can cause a large strong phase difference so
that large CP violation can be obtained at the w resonance.
As a result, it was found that the CP violation could
reach 74%.

The LHC is a proton-proton collider with the designed
center-of-mass energy of 14 TeV and luminosity of
L = 10°** cm~2s~!. The production rates for heavy quark
flavors will be large at the LHC, and the bb production
cross section will be of the order of 0.5 mb, providing as
many as 0.5 X 10'? bottom events per year [26]. In par-
ticular, the LHCb detector is designed to exploit a large
number of b hadrons produced at the LHC in order to make
precise studies on CP asymmetries and on rare decays in
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b-hadron systems. The other two experiments, ATLAS and
CMS, are optimized for discovering new physics and will
complete most of their B physics program within the first
few years [26,27]. Recently, the LHCb Collaboration
found clear evidence for direct CP violation in some
three-body decay channels in charmless decays of a B
meson. Meanwhile, large CP violation was obtained in
Bt —>K'K 7w", B* > 7w 7~ in the region of
mi, . <04GeV? and m?, = >15GeV? [28].
The LHCb experiment may perhaps collect data in the
region of the invariant masses of 7" 7~ associated
resonance for detecting our prediction of CP violation.
Meanwhile, the experiment results can also detect the
different factorization methods and the p-w mixing
mechanism.

For the decay processes of bottom mesons, the tradi-
tional factorization approach was the leading order of the
QCD factorization scheme with the 1/m,, corrections being
neglected. The QCD factorization scheme suffers from
end-point singularities, which are not well controlled.
Next-to-leading order (NLO) corrections for the decay of
B — mp(w) have recently been implemented using the
PQCD approach [29]. In Ref. [30], the author discusses
some problems with the NLO accurate calculation in the
PQCD approach. A complete NLO calculation in the
PQCD approach requires a calculation of all one-loop
spectator-scattering diagrams. However, Ref. [29] only
considers the one-loop BBNS kernel (similar to the kernel
in the QCD factorization) for the decay of B — mp(w).
The vertex diagram can be far off shell as a subdiagram
in a large diagram with hard-collinear line exchanges.
Moreover, the Wilson coefficients are evaluated at very
low scales that perturbation theory breaks down. An un-
physical enhancement of the Wilson coefficients at small
scales is also the origin of the large penguin and annihila-
tion. Based on the above discussion, we investigate the CP
violation of B®* — 7** 7% 7~ via p-w mixing from the
leading-order contribution in PQCD.
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APPENDIX: RELATED FUNCTIONS DEFINED IN THE TEXT
64 1 0
Mf = ?\/g']TCFGFm%mB(G : Pﬁfo dx;dx,dx; [0 bydbbydby ¢ (xy, by) X {r,(x3 — xz)[d’ﬁ(xz, b1)¢;(x3, b,)

+ d7(x2, b1) @3 (x3, b2)] — 16 + x3)[Ph(x0, by) (x5, br) + PF(xa, by) Pl (x3, by)] + x35(xa, by)[ P (x3, by)

- d’;(xb b)) [tha(x1, X0, X3, by, by) exp[—S.4(2,)],

(A
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1 00
F, = 8v3aCrGrf ,mymiy(e - pr) [) dx,dx, [0 bydbybydbyd(xy, b + 1) $A(xs, by)

+ rﬂ'(l - 2x2)(¢ﬁ(x2, bZ) + (ﬁg(Xz, b2))]as(té)he(xl’ X2, bl’ b2) exp [_Sab([é)]

+ 27‘77(,‘{)7’;()(2, bZ)as(l%)he(XZ’ X1, b2’ bl) exXp [_Sub(l%)]}’

32 2 1 00 4
M, = _?\/gﬂcFGFmme(f'Pw)j; dxldxzdx3[0 bydb bydbypp(xy, by)xy[ P57 (x, by)

- 2r77¢(7’7:(x2) b])]¢p(x3’ bZ)hd(-le X2, X3, b]) bZ) exp[_Scd(td)];

32 1 00
M, =?\/§7TCFGFmpm129(€'Pw)fo dxldxzdx3[0 b1db1b2db2¢3(x1,b1){[x2¢?r(xzr b2)¢p('x3’ b,)

+ rar,(x;

= x3)(Ph(x2, D) bl (x3, by) + d7(xa, by) 5 (x5, b)) + 1y

+ d’l;(xzr b2)¢f)(x3r bZ))]h}(xlr X2, X3, blr bZ) exp[_Sef(t})] - [X3¢174T(X2, b2)¢p(x3’ b2)

+ a1, (xs

We use a wave function for ¢4 and the twist-three wave
functions d)P and ¢’ from [31]

PA(x) = NG fﬁx(l — 0[1 +0.44C*2x — 1)
+0.25CY*(2x — 1)], (A5)
dl(x) = \/_[1 +0.43CY2(2x — 1) + 0.09C)*(2x — 1)],
(A6)
b (x) = zfj-(l — 201+ 0.55(10x% — 10x + 1)]. (A7)

The Gegenbauer polynomials are defined by

1 1
G0 =362 -1, €} =265 =302 +3)

(1) = %(5# —n, AP
(A8)

We choose the wave function of the p and w meson [32]:

b,(x) = ¢, (x) = \/igfpx(l — 01 +0.18CY*2x — 1)],
(A9)
) (x) = ¢, (x)
= 2{56{3(% — 1)2 +0.3(2x — 1)2[5(2x — 1)2 — 3]
+0.21[3 — 30(2x — 1)% + 35(2x — 1)*]},

(A10)

= 0) (5 (xp, by) L (x5, by) + PT(x0, by) (x5, b)) + 1
(2 = X3 — x3) 5 (x2, by) Pl (x5, b2)]h%(x]’ X2, X3, by, by) eXP[_Sef(szf)]}-

15
= §(21t4 — 1472 + 1).

(A2)
(A3)
rp(x2 + x3)(d7(x2, by) P, (x3, by)
o2 + x5 + x3) P 5 (x5, by) B3 (x3, b))
(A4)

¢p(x) = ¢>“ (x)

2\/_ P —2x)[1 + 0.76(10x* — 10x + 1)].

(A11)
For the B meson, the wave function is chosen as

M
2a)b

dp(x, b) = \/—fo2(1 —x)? CXP[ *( bb)z]

(A12)

with w, = 0.4 GeV. N = 2365.57 is a normalization
factor.

We show here the function of 4;’s coming from the
Fourier transform of H©,

h, (X1,X2, by, bz) = Ko(\/x1x2m3b1)[9(b1 - bz)
X Ko(xomgb)Io(Jxymghy)
+ 0(by — by)Ko(\/x,mpb,)

X Io(\/xympby)]S,(x,), (A13)

hg (x1, X3, %3, b1, by) = (1) Ko(—i/xyx3mpb,)

X[0(b) — by)Ko(x1xympby)

X Io(\fx1x,mpby) + 0(by — b))

X Ko(xX1x3mpby) Iy (\Jx1x,mpby)],
(A14)
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hi (xy, X, x3, by, by) = Ko(—iy/xpxzmpby)a(t})
X [0(by = by)Ko(—i/xpx3mpby)
X Jo(\/xax3mpby) + 0(by — b))
X Ko(—i/x3x3mpb,)
X Jo(\fx2x3mpby)],

(x1, X2, X3, by, by) = KoYy + x5 — xpx3mpby)a(13)
X [0(by — by)Ko(—iy/xpx3mphy)
X Jo(x2x3mpby) + 0(by — by)
X Ko(=iy/xyx3mpbs)
X Jo(\/x2x3mpbi)],

(A15)

o

(A16)

ha  (x1, %3, by, by) = Ko(—i/x1X3mpby)S,(x))[0(by — bs)
X Ko(=iy/ximpb)Jo(\/ximpb,)
+ 0(by — b)) Ko(—i/ximpb,)
X Jo(\/x mpby)]

where J,, is the Bessel function, and K, I, are modified
Bessel functions Ky(—ix) = —(7/2)Yy(x) + i(7/2)Jy(x).
The threshold resummation form factor S,(x;) is adopted
from Ref. [33],

(A17)

21%2¢1°(3/2 + ¢)
J7l(1 + ¢)

where the parameter ¢ = 0.3. This function is normalized
to unity.
The Sudakov factors used in the text are defined as
Sap(1) = s(xymp/N2, by) + s(x;mp/\2, by)
X +5((1 = x)mp /2, by)

_ il:ln In(t/A)
Bi —In(bA)

St(x) =

[x(1 = x)], (A18)

In(t/A)
T (b0

], (A19)

PHYSICAL REVIEW D 88, 074005 (2013)
Sea(t) = sCeymp/N2, b)) + s(cmp /2, by)
+ 5((1 = x2)mp/~2, by) + s(x3mp/~2, by)
+s((1 = xS)mB/\/—z_’ by)

1 [ Jp I (/A)

S BT = A

In(1/A)

+1
T (b0

], (A20)

Ser(t) = s(eymp/N2, b)) + s(mp /N2, by)
+ 5((1 = x2)mp/2, by) + s(x3mp /2, by)
+ 5((1 = x3)mp /2, by)

—L[ln In(t/A)
Bi —In(b A)

1n(r/A)
—1In (bzA)

+21In ] (A21)

Sen(t) = s(xamy /N2, by) + s(xsmp /2, by)
+s((1 - x2)m3/\/§r by) + s((1 — X3)m3/\/§, b,)
—Ll:ln In(t/A) N In(z/A) ]

Bi —In(b;A) —In(byA) [

where the functions s(g, b) are defined in Appendix A of
Ref. [7]. The scale ¢,’s in the above equations are chosen as

(A22)

1) = max (%3myg, 1/by, 1/b,), (A23)

12 = max (\/x;mp, 1/by, 1/b,), (A24)

ty = max (/X xymp, \/Xyx3mp, 1/b1,1/b,),  (A25)
t} = max (\/X;x3mp, 1/by, 1/by), (A26)

tjzc = max (1/x2x3m3, VX2 + X3 — XpX3Mp, 1/b1, 1/b2)
(A27)

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).

[2] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652
(1973).

[3] J. Beringer et al., Phys. Rev. D 86, 010001 (2012).

[4] M. Wirbel, B. Stech, and M. Bauer, Z. Phys. C 29, 637
(1985); M. Bauer, B. Stech, and M. Wirbel, Z. Phys. C 34,
103 (1987).

[5] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda,
Phys. Rev. Lett. 83, 1914 (1999); Nucl. Phys. B606, 245
(2001).

[6] Y.Y. Keum, H.-n. Li, and A.I. Sanda, Phys. Lett. B 504, 6
(2001); Phys. Rev. D 63, 054008 (2001).

[7] C.-D. Lii, K. Ukai, and M.-Z. Yang, Phys. Rev. D 63,
074009 (2001).
[8] C.W. Bauer, D. Pirjol, and I. W. Stewart, Phys. Rev. Lett.
87, 201806 (2001); Phys. Rev. D 65, 054022 (2002).
[9] R. Enomoto and M. Tanabashi, Phys. Lett. B 386, 413
(1996).
[10] S. Gardner, H.B. O’Connell, and A.W. Thomas, Phys.
Rev. Lett. 80, 1834 (1998).
[11] X.-H. Guo and A.W. Thomas, Phys. Rev. D 58, 096013
(1998).
[12] X.-H. Guo, O. Leitner, and A. W. Thomas, Phys. Rev. D
63, 056012 (2001).

074005-9


http://dx.doi.org/10.1103/PhysRevLett.10.531
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1007/BF01560299
http://dx.doi.org/10.1007/BF01560299
http://dx.doi.org/10.1007/BF01561122
http://dx.doi.org/10.1007/BF01561122
http://dx.doi.org/10.1103/PhysRevLett.83.1914
http://dx.doi.org/10.1016/S0550-3213(01)00251-6
http://dx.doi.org/10.1016/S0550-3213(01)00251-6
http://dx.doi.org/10.1016/S0370-2693(01)00247-7
http://dx.doi.org/10.1016/S0370-2693(01)00247-7
http://dx.doi.org/10.1103/PhysRevD.63.054008
http://dx.doi.org/10.1103/PhysRevD.63.074009
http://dx.doi.org/10.1103/PhysRevD.63.074009
http://dx.doi.org/10.1103/PhysRevLett.87.201806
http://dx.doi.org/10.1103/PhysRevLett.87.201806
http://dx.doi.org/10.1103/PhysRevD.65.054022
http://dx.doi.org/10.1016/0370-2693(96)00979-3
http://dx.doi.org/10.1016/0370-2693(96)00979-3
http://dx.doi.org/10.1103/PhysRevLett.80.1834
http://dx.doi.org/10.1103/PhysRevLett.80.1834
http://dx.doi.org/10.1103/PhysRevD.58.096013
http://dx.doi.org/10.1103/PhysRevD.58.096013
http://dx.doi.org/10.1103/PhysRevD.63.056012
http://dx.doi.org/10.1103/PhysRevD.63.056012

LU et al.

[13]
[14]
(15]
[16]
(17]
(18]
[19]

(20]

(21]

(22]

X.-H. Guo and A.W. Thomas, Phys. Rev. D 61, 116009
(2000).

O. Leitner, X.-H. Guo, and A. W. Thomas, Eur. Phys. J. C
31, 215 (2003).

X.-H. Guo, G. Lii, and Z.-H. Zhang, Eur. Phys. J. C 58,
223 (2008).

G. Li, B.-H. Yuan, and K.-W. Wei, Phys. Rev. D 83,
014002 (2011).

G. Lii, Z.-H. Zhang, X.-Y. Liu, and L.-Y. Zhang, Int. J.
Mod. Phys. A 26, 2899 (2011).

G. Buchalla, A.J. Buras, and M. E. Lautenbacher, Rev.
Mod. Phys. 68, 1125 (1996).

L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983); 13, 562
(1964).

H.B. O’Connell, B.C. Pearce, A. W. Thomas, and A.G.
Williams, Prog. Part. Nucl. Phys. 39, 201 (1997); H.B.
O’Connell, Aust. J. Phys. 50, 255 (1997).

H.B. O’Connell, A.W. Thomas, and A.G. Williams,
Nucl. Phys. A623, 559 (1997); K. Maltman, H.B.
O’Connell, and A.G. Williams, Phys. Lett. B 376, 19
(1996).

S. Gardner and H. B. O’Connell, Phys. Rev. D 57, 2716
(1998).

(23]
(24]
[25]
[26]
[27]
(28]
[29]
[30]
(31]
(32]

(33]

074005-10

PHYSICAL REVIEW D 88, 074005 (2013)

H.N. Li and S. Mishima, Phys. Rev. D 74, 094020
(2000).

O. Leitner, X.-H. Guo, and A. W. Thomas, J. Phys. G 31,
199 (2005).

A.B. Carter and A.I. Sanda, Phys. Rev. D 23, 1567
(1981).

A. Schopper, Eur. Phys. J. C 48, 467 (2006); N. Brambilla
et al. (Quarkonium Working Group), arXiv:hep-ph/
0412158.

I.LP. Gouz, V.V. Kiselevy A.K. Likhoded, V.IL
Romanovsky, and O.P. Yushchenko, Phys. At. Nucl. 67,
1559 (2004).

J. M. de Miranda (LHCb Collaboration), arXiv:1301.0283.
Z. Rui, G. Xiangdong, and C.-D. Lii, Eur. Phys. J. C 72,
1923 (2012).

M. Beneke, Nucl. Phys. B, Proc. Suppl.
(2007).

V.M. Braun and I. E. Filyanov, Z. Phys. C 48, 239 (1990);
P. Ball, J. High Energy Phys. 01 (1999) 010.

P. Ball, V.M. Braun, Y. Koike, and K. Tanaka, Nucl. Phys.
B529, 323 (1998).

T. Kurimoto, H.-n. Li, and A.I. Sanda, Phys. Rev. D 65,
014007 (2001).

170, 57


http://dx.doi.org/10.1103/PhysRevD.61.116009
http://dx.doi.org/10.1103/PhysRevD.61.116009
http://dx.doi.org/10.1140/epjc/s2003-01332-0
http://dx.doi.org/10.1140/epjc/s2003-01332-0
http://dx.doi.org/10.1140/epjc/s10052-008-0721-4
http://dx.doi.org/10.1140/epjc/s10052-008-0721-4
http://dx.doi.org/10.1103/PhysRevD.83.014002
http://dx.doi.org/10.1103/PhysRevD.83.014002
http://dx.doi.org/10.1142/S0217751X11053626
http://dx.doi.org/10.1142/S0217751X11053626
http://dx.doi.org/10.1103/RevModPhys.68.1125
http://dx.doi.org/10.1103/RevModPhys.68.1125
http://dx.doi.org/10.1103/PhysRevLett.51.1945
http://dx.doi.org/10.1103/PhysRevLett.13.562
http://dx.doi.org/10.1103/PhysRevLett.13.562
http://dx.doi.org/10.1016/S0146-6410(97)00044-6
http://dx.doi.org/10.1071/P96041
http://dx.doi.org/10.1016/S0375-9474(97)88425-4
http://dx.doi.org/10.1016/0370-2693(96)00293-6
http://dx.doi.org/10.1016/0370-2693(96)00293-6
http://dx.doi.org/10.1103/PhysRevD.57.2716
http://dx.doi.org/10.1103/PhysRevD.57.2716
http://dx.doi.org/10.1103/PhysRevD.74.094020
http://dx.doi.org/10.1103/PhysRevD.74.094020
http://dx.doi.org/10.1088/0954-3899/31/3/004
http://dx.doi.org/10.1088/0954-3899/31/3/004
http://dx.doi.org/10.1103/PhysRevD.23.1567
http://dx.doi.org/10.1103/PhysRevD.23.1567
http://dx.doi.org/10.1140/epjc/s10052-006-0025-5
http://arXiv.org/abs/hep-ph/0412158
http://arXiv.org/abs/hep-ph/0412158
http://dx.doi.org/10.1134/1.1788046
http://dx.doi.org/10.1134/1.1788046
http://arXiv.org/abs/1301.0283
http://dx.doi.org/10.1140/epjc/s10052-012-1923-3
http://dx.doi.org/10.1140/epjc/s10052-012-1923-3
http://dx.doi.org/10.1016/j.nuclphysbps.2007.05.002
http://dx.doi.org/10.1016/j.nuclphysbps.2007.05.002
http://dx.doi.org/10.1007/BF01554472
http://dx.doi.org/10.1088/1126-6708/1999/01/010
http://dx.doi.org/10.1016/S0550-3213(98)00356-3
http://dx.doi.org/10.1016/S0550-3213(98)00356-3
http://dx.doi.org/10.1103/PhysRevD.65.014007
http://dx.doi.org/10.1103/PhysRevD.65.014007

