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In the perturbative QCD (PQCD) approach, we study the direct CP violation in B0;� ! �0ð!Þ�0;� !
�þ���0;� via the �-! mixing mechanism. We find that the CP violation can be enhanced due to a large

strong phase difference when the masses of the �þ�� pairs are in the vicinity of the ! resonance. Taking

into account the �-! mixing, we also compare the CP violation from the naive factorization approach,

QCD factorization approach, and PQCD approach. Based on the B0 �B0 mixing, we discuss the effects of
�B0B0 mixing for the total CP violation of B0 ! �0ð!Þ�0 ! �þ���0, which is time dependent.
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I. INTRODUCTION

CP violation has been an open topic in recent years.
In the Standard Model, CP violation is related to weak
complex phases in the Cabibbo-Kobayashi-Maskawa
(CKM) matrix [1,2]. CP violations have been observed
in the decays of B mesons [3]. In the past few years, more
attention has been focused on the decays of the B-meson
system, both theoretically and experimentally.

Currently, the hadronic matrix elements can be calcu-
lated from the first principles in the decays of the Bmeson.
Exclusive two-body B-decay amplitudes have been esti-
mated using the naive factorization approach [4], QCD
factorization (QCDF) [5], perturbative QCD (PQCD)
[6,7], and soft-collinear effective theory [8]. Due to the
power expansion of 1=mb (mb is the b-quark mass), all of
the theories of factorization are shown to deal with the
hadronic matrix elements in the leading power of 1=mb.
However, these methods are different significantly due to
the collinear degree or transverse momenta. The power
counting is different from the hard kernels between
QCDF and PQCD. It is important to extract the strong
phase difference for CP violation. A very different feature
of QCDF and PQCD is the strong interaction scale, which
is low in PQCD, typically of the order 1–2 GeV; in the case
of QCDF, it is of the order OðmbÞ for the Wilson
coefficients.

Direct CP violation occurs through the interference of
two amplitudes with different weak phases and strong
phases. The weak phase difference is directly determined
by the CKM matrix elements, while the strong phase is
usually difficult to control. However, the strong phase is

not well determined from the theoretical approach. The

B-meson decay amplitude involves the hadronic matrix

elements whose computation is nontrivial. The different

methods may present different strong phases. Meanwhile,

we can also obtain a large strong phase difference by some

phenomenological mechanism. �-! mixing has been used

for this purpose in the past few years [9–17] and focuses on

the naive factorization and QCD factorization approaches.

In this paper, we will investigate the CP violation via �-!

mixing in the PQCD approach.
In the PQCD approach, at the rest frame of a heavy B

meson, the B-meson decays into two light mesons with

large momenta that move very fast. The hard interaction

dominates the decay amplitude from a short distance

because there is not enough time to exchange the soft

gluons with the final mesons. Since the final mesons

move very fast, a hard gluon kicks the light spectator

quark of the B meson to form a fast moving final meson.

Hence, the hard interaction consists of six quark opera-

tors. The nonperturbative dynamics is included in the

meson wave function, which can be extracted from an

experiment. The hard one can be calculated by the

perturbation theory.
The remainder of this paper is organized as follows. In

Sec. II, we present the form of the effective Hamiltonian

and the values of the Wilson coefficients. A discussion

about PQCD is also presented. In Sec. III, we give the

formalism and numerical results for the CP violation in

B0;� ! �0ð!Þ�0;� ! �þ���0;� via �-! mixing. In

Sec. IV, we calculate the total CP violation for B0 !
�0ð!Þ�0 ! �þ���0 including B0 �B0 mixing. A summary

and discussion are given in the Sec. V. The related func-

tions defined in the text are given in the Appendix.
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II. THE EFFECTIVE HAMILTONIAN

With the operator product expansion, the effective weak
Hamiltonian can be written as [18]

H �B¼1 ¼ GFffiffiffi
2

p
�
VubV

�
udðc1Ou

1 þ c2O
u
2Þ

� VtbV
�
td

X10

i¼3

ciOi

�
þ H:c:; (1)

where GF represents the Fermi constant, ci (i ¼ 1; . . . ; 10)
are the Wilson coefficients, and Vub, Vud, Vtb, and Vtd are
the CKM matrix elements. The operators Oi have the
following forms:

Ou
1 ¼ �d���ð1� �5Þu� �u���ð1� �5Þb�;

Ou
2 ¼ �d��ð1� �5Þu �u��ð1� �5Þb;

O3 ¼ �d��ð1� �5Þb
X

q0
�q0��ð1� �5Þq0;

O4 ¼ �d���ð1� �5Þb�
X

q0
�q0��

�ð1� �5Þq0�;

O5 ¼ �d��ð1� �5Þb
X

q0
�q0��ð1þ �5Þq0;

O6 ¼ �d���ð1� �5Þb�
X

q0
�q0��

�ð1þ �5Þq0�;

O7 ¼ 3

2
�d��ð1� �5Þb

X

q0
eq0 �q

0��ð1þ �5Þq0;

O8 ¼ 3

2
�d���ð1� �5Þb�

X

q0
eq0 �q

0
��

�ð1þ �5Þq0�;

O9 ¼ 3

2
�d��ð1� �5Þb

X

q0
eq0 �q

0��ð1� �5Þq0;

O10 ¼ 3

2
�d���ð1� �5Þb�

X

q0
eq0 �q

0
��

�ð1� �5Þq0�;

(2)

where � and � are color indices, and q0 ¼ u, d, or s
quarks. In Eq. (2), Ou

1 and Ou
2 are tree operators, O3–O6

are QCD penguin operators, and O7–O10 are the operators
associated with electroweak penguin diagrams.

We can obtain the numerical values of ci. When
ciðmbÞ [7],

c1 ¼ �0:2703; c2 ¼ 1:1188; c3 ¼ 0:0126;

c4 ¼ �0:0270; c5 ¼ 0:0085; c6 ¼ �0:0326;

c7 ¼ 0:0011; c8 ¼ 0:0004; c9 ¼ �0:0090;

c10 ¼ 0:0022: (3)

The CKM matrix, which should be determined from the
experiments, can be expressed in terms of the Wolfenstein
parameters A, �, �, and � [19]:

1� 1
2�

2 � A�3ð�� i�Þ
�� 1� 1

2�
2 A�2

A�3ð1� �� i�Þ �A�2 1

0

BB@

1

CCA; (4)

where the Oð�4Þ corrections are neglected. The latest
values for the parameters in the CKM matrix are [3]

� ¼ 0:2272� 0:0010; A ¼ 0:818þ0:007
�0:017;

�� ¼ 0:221þ0:064
�0:028; �� ¼ 0:340þ0:017

�0:045;
(5)

where

�� ¼ �

�
1� �2

2

�
; �� ¼ �

�
1� �2

2

�
: (6)

From Eqs. (5) and (6) we have

0:198< �< 0:293; 0:302<�< 0:366: (7)

In the PQCD approach, there are three scales in-
volved: the W-boson mass mW associated with weak
interaction, the hard scale t, and the factorization scale
1=b (b is the conjugate variable of the parton transverse
momenta kT). The leading logarithm order contribution
of the short distance associated with the Wilson coeffi-
cients CðtÞ can be resumed from the order mW down
to hadronic scale t by a renormalization group equation.
The interaction associated with the scale below the
factorization scale kT is not calculable in perturbation
theory, which can be involved in hadronic wave function
�ðxÞ. Taking into account the high-order power correc-
tion in the meson wave function, the overlap of the soft
and collinear divergence will produce double logarithms
ln 2ðPbÞ, where P denotes the light-cone component of
the meson momentum. The resummation of the double
logarithms leads to a Sudakov factor exp ½�sðP; bÞ�,
which suppresses the long-distance contribution in the
large b region and vanishes as b > 1=�QCD. The remain-

ing finite contributions are absorbed into a hard subam-
plitude Hðx; tÞ.
The three scale factorization formula is written as

CðtÞ �Hðx; tÞ ��ðxÞ � exp

�
�sðP; bÞ

� 2
Z t

1=b

d�

�
�qð�sð�ÞÞ

�
; (8)

where �q ¼ ��s=� is the quark anomalous dimension

in the axial gauge. The hard amplitude Hðx; tÞ can be
calculated in perturbative theory. However, the double
logarithms �sln

2ðxÞ will appear and cannot expand as
the momentum fraction x is at the end-point region.
Then, the threshold resummation is presented due to the
resummation of all orders of double logarithms that are
associated with a jet function StðxÞ.
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III. CP VIOLATION IN
B0;þ ! �0ð!Þ�0;þ ! �þ���0;þ

A. Formalism

The amplitude A ( �A) for the decay B0 ! �þ���0

( �B0 ! �þ���0) can be written as (for simplicity, we
neglect the calculating formalism of CP violation for the
process of Bþ ! �þ���þ, which is similar to the case of
B0 ! �þ���0)

A ¼ h�þ���0jHTjB0i þ h�þ���0jHPjB0i; (9)

�A ¼ h�þ���0jHTj �B0i þ h�þ���0jHPj �B0i; (10)

with HT and HP being the Hamiltonians for the tree and
penguin operators, respectively.

We can define the relative magnitudes and phases
between the tree and penguin operator contributions as
follows:

A ¼ h�þ���0jHTjB0i½1þ reið	þ
Þ�; (11)

�A ¼ h�þ���0jHTj �B0i½1þ reið	�
Þ�; (12)

where 	 and 
 are the strong and weak phases, respec-
tively. 
 arises from the CP-violating phase in the CKM
matrix, which is arg ½VtbV

�
td=ðVubV

�
udÞ�. The parameter r is

the absolute value of the ratio of the penguin and tree
amplitudes:

r �
��������
h�þ���0jHPjB0i
h�þ���0jHTjB0i

��������: (13)

The CP-violating asymmetry a can be written as

a � jAj2 � j �Aj2
jAj2 þ j �Aj2 ¼

�2r sin	 sin


1þ 2r cos	 cos
þ r2
: (14)

From Eq. (14), one can find that the CP violation depends
on the weak phase difference and the strong phase differ-
ence. The weak phase is determined for a specific decay
process. Hence, in order to obtain a large CP violation, we
need some mechanism to make sin	 large. It has been
found that �-! mixing (which was proposed based
on vector meson dominance [20]) leads to a large strong
phase difference [10–17]. Based on �-!mixing and work-
ing to the first order of isospin violation, we have the
following results:

h�þ���0jHTjB0i ¼ g�

s�s!
~��!t! þ g�

s�
t�; (15)

h�þ���0jHPjB0i ¼ g�

s�s!
~��!p! þ g�

s�
p�; (16)

where t�ðp�Þ and t!ðp!Þ are the tree (penguin) amplitudes

for B0 ! �0�0 and B0 ! !�0, respectively; g� is the

coupling for �0 ! �þ��; ~��! is the effective �-!

mixing amplitude, which also effectively includes the

direct coupling ! ! �þ��. sV , mV , and �V (V ¼ � or
!) are the inverse propagator, mass, and decay rate of the
vector meson V, respectively, and

sV ¼ s�m2
V þ imV�V; (17)

with
ffiffiffi
s

p
being the invariant masses of the �þ�� pairs.

The direct coupling ! ! �þ�� has been effectively

absorbed into ~��!, which leads to the explicit s depen-

dence of ~��! [21]. However, the s dependence of ~��! is

negligible in practice. We can make the expansion
~��!ðsÞ ¼ ~��!ðm2

!Þ þ ðs�m!Þ ~�0
�!ðm2

!Þ. The ��!

mixing parameters were determined per the fit of
Gardner and O’Connell [22]:

Re ~��!ðm2
!Þ ¼ �3500� 300 MeV2;

Im ~��!ðm2
!Þ ¼ �300� 300 MeV2;

~�0
�!ðm2

!Þ ¼ 0:03� 0:04:

(18)

From Eqs. (9), (11), (15), and (16), one has

rei	ei
 ¼
~��!p! þ s!p�

~��!t! þ s!t�
: (19)

Defining

p!

t�
� r0eið	qþ
Þ;

t!
t�
��ei	� ;

p�

p!

��ei	� ; (20)

where 	�, 	�, and 	q are strong phases. One finds the

following expression from Eqs. (19) and (20):

rei	 ¼ r0ei	q

~��! þ �ei	�s!
~��!�e

i	� þ s!
: (21)

In order to get the CP-violating asymmetry in Eq. (14),
sin
 and cos
 are needed. The weak phase 
 is fixed by
the CKM matrix elements. In the Wolfenstein parametri-
zation [19], one has

sin
 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½�ð1� �Þ � �2�2 þ �2

p ;

cos
 ¼ �ð1� �Þ � �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½�ð1� �Þ � �2�2 þ �2
p :

(22)

B. Calculational details

From Eqs. (14), (19), and (20), in order to obtain the
formulas of the CP violation, we calculate the amplitudes
t�, t!, p�, and p! in the PQCD approach, which can be

decomposed in terms of tree-level and penguin-level am-
plitudes due to the CKM matrix elements of VubV

�
ud and

VtbV
�
td. In the following, we calculate the decay amplitudes

for B0 ! �0ð!Þ�0 and Bþ ! �0ð!Þ�þ, which we will
use in the next paragraph. The PQCD functions of F and
M can be found in the Appendix.
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1. The decay amplitudes of B0 ! �0ð!Þ�0

With the Hamiltonian (1) depending on the CKM matrix elements of VubV
�
ud and VtbV

�
td, the decay amplitudes for

B0 ! �0�0 in PQCD can be written as

� 2MðB0 ! �0�0Þ ¼ VubV
�
udt� � VtbV

�
tdp�; (23)

where

t� ¼ ðFe þ Fe�Þ
�
C1 þ 1

3
C2

�
þ ðMe þMe� �Ma �Ma�ÞC2; (24)

and

p� ¼ Fe

�
� 1

3
C3 � C4 þ 3

2
C7 þ 1

2
C8 þ 5

3
C9 þ C10

�
þ Fe�

�
� 1

3
C3 � C4 � 3

2
C7 � 1

2
C8 þ 5

3
C9 þ C10

�

� FP
e�

�
1

3
C5 þ C6 � 1

6
C7 � 1

2
C8

�
þMe

�
�C3 � 3

2
C8 þ 1

2
C9 þ 3

2
C10

�
þMe�

�
�C3 þ 3

2
C8 þ 1

2
C9 þ 3

2
C10

�

� ðMa þMa�Þ
�
C3 þ 2C4 � 2C6 � 1

2
C8 � 1

2
C9 þ 1

2
C10

�
� ðMP

e þ 2MP
a Þ
�
C5 � 1

2
C7

�
: (25)

The decay amplitudes for B0 ! !�0 can be written as

2MðB0 ! !�0Þ ¼ VubV
�
udt! � VtbV

�
tdp!; (26)

where

t! ¼ ðFe� � FeÞ
�
C1 þ 1

3
C2

�
þ ðMe� �Me þMa þMa�ÞC2; (27)

and

p! ¼ Fe

�
�7

3
C3 � 5

3
C4 � 2C5 � 2

3
C6 � 1

2
C7 � 1

6
C8 � 1

3
C9 þ 1

3
C10

�
þFe�

�
�1

3
C3 �C4 � 3

2
C7 � 1

2
C8 þ 5

3
C9 þC10

�

�FP
e�

�
C6 þ 1

3
C5 � 1

6
C7 � 1

2
C8

�
þMe

�
�C3 � 2C4 þ 26 þ 1

2
C8 þ 1

2
C9 � 1

2
C10

�

þMe�

�
�C3 þ 3

2
C8 þ 1

2
C9 þ 3

2
C10

�
þ ðMa þMa�Þ

�
�C3 � 3

2
C8 þ 1

2
C9 þ 3

2
C10

�
� ðMP

e þ 2MP
a Þ
�
C5 � 1

2
C7

�
:

(28)

Based on the definition of Eq. (20), we can get

�ei	� ¼ t!
t�

; (29)

�ei	� ¼ p�

p!

; (30)

r0ei	q ¼ p!

t�
�

��������
VtbV

�
td

VubV
�
ud

��������; (31)

where

��������
VtbV

�
td

VubV
�
ud

��������¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� �Þ2 þ �2

p

ð1� �2=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p : (32)

2. The decay amplitudes of Bþ ! �0ð!Þ�þ

The decay amplitudes for Bþ ! �0�þ can be written as

ffiffiffi
2

p
MðBþ ! �0�þÞ ¼ VubV

�
udt� � VtbV

�
tdp�; (33)

where

t� ¼ Fe

�
C1 þ 1

3
C2

�
þ ðFe� � 2FaÞ

�
1

3
C1 þ C2

�

þMeC2 þ ðMe� �Ma þMa�ÞC1; (34)

and
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p� ¼ Fe

�
� 1

3
C3 � C4 þ 3

2
C7 þ 1

2
C8 þ 5

3
C9 þ C10

�

þ ðFe� � 2FaÞ
�
1

3
C3 þ C4 þ 1

3
C9 þ C10

�

þ ðFP
e� � 2FP

a Þ
�
1

3
C5 þ C6 þ 1

3
C7 þ C8

�

þMe

�
�C3 � 3

2
C8 þ 1

2
C9 þ 3

2
C10

�

þ ðMe� �Ma þMa�ÞðC3 þ C9Þ �MP
e

�
C5 � 1

2
C7

�
:

(35)

The decay amplitudes for Bþ ! !�þ can be written as
ffiffiffi
2

p
MðBþ ! !�þÞ ¼ VubV

�
udt! � VtbV

�
tdp!; (36)

where

t! ¼ Fe

�
C1 þ 1

3
C2

�
þ Fe�

�
1

3
C1 þ C2

�

þMeC2 þ ðMe� þMa þMa�ÞC1; (37)

and

p! ¼ Fe

�
7

3
C3 þ 5

3
C4 þ 2C5 þ 2

3
C6 þ 1

2
C7 þ 1

6
C8

þ 1

3
C9 � 1

3
C10

�
þ Fe�

�
1

3
C3 þ C4 þ 1

3
C9 þ C10

�

þ FP
e�

�
1

3
C5 þ C6 þ 1

3
C7 þ C8

�

þMe

�
C3 þ 2C4 � 2C6 � 1

2
C8 � 1

2
C9 þ 1

2
C10

�

þ ðMe� þMa þMa�ÞðC3 þ C9Þ
þ ðMP

a þMP
a�ÞðC5 þ C7Þ þMP

e

�
C5 � 1

2
C7

�
: (38)

Similarly, we can also obtain the strong phase from
Eqs. (29)–(32).

C. Numerical results

In our numerical calculation, we use the following input
parameters [3,23]:

mB ¼ 5:28 GeV; �Bþ ¼ 1:641 ps;

�B0 ¼ 1:519 ps; f� ¼ 0:13 GeV;

f� ¼ 0:216 GeV; f!T ¼ 0:145 GeV;

f! ¼ 0:195 GeV; f�T ¼ 0:165 GeV;

�ð4Þ
QCD ¼ 0:148 GeV:

CP violation depends on the CKMmatrix elements and the
strong phases. The CKM matrix elements, which relate to
�, �, �, and A are given by Eq. (5). For our results, we find
the CP violation is not sensitive to the CKM matrix

elements for the different �, �, �, and A. Hence, we
present the CP violation as a function of the central
CKM matrix elements in Fig. 1. From the numerical
results, we find that there is a maximum CP-violating
parameter value, amax , when the invariant masses of the
�þ�� pairs are in the vicinity of the ! resonance. For
example, the maximum CP-violating parameter can reach
73% for the decay channel of Bþ ! �þ���þ whenffiffiffi
s

p ¼ 0:785 GeV. In the case of B0 ! �þ���0, the
maximum CP-violating parameter can also reach 74%
when

ffiffiffi
s

p ¼ 0:782 GeV. This is shown in Fig. 1.
One can see that the CP violations are enhanced for above
two decay channels when the invariant masses of the
�þ�� pairs are in the vicinity of the ! resonance.
The qualities of � and ! are very close to each other. On
the other hand, they have very different decay widths. The
width of � is much larger than that of !. Consequently,
the Breit-Wigner of � will look very smooth even in the
vicinity of �. As a result, the phase in the �� scattering
caused by the � resonance will change very slowly even in
the vicinity of the �meson. This is also the reason why we
do not see a rapid change of CP asymmetry in the vicinity
of the � meson in Fig. 1.
From Eq. (14), one can see that the CP-violating pa-

rameter is dependent on sin	 and r. In our calculation, it is
found that the �-! mixing mechanism produces a large
sin	 which is independent of the CKM matrix elements.
The plot of sin	 as a function of

ffiffiffi
s

p
is shown in Fig. 2. One

can see that the �-!mixing mechanism leads to the strong
phase 	 reaching �90

�
( sin	 ¼ �1) at the ! resonance

for the processes of Bþ ! �þ���þ and B0 ! �þ���0.
From Fig. 3, it can be seen that r increases rapidly for the
channel of Bþ ! �þ���þ when the invariant masses of
the �þ�� pairs are in the vicinity of the ! resonance.
However, in the case of B0 ! �þ���0, r changes
slightly.

0.76 0.77 0.78 0.79 0.80

0.5

0.0

0.5

s

a

FIG. 1. The CP-violating asymmetry, a, as a function of
ffiffiffi
s

p
for central CKM matrix elements. The solid (dashed) line
corresponds to the decay channel of Bþ ! �þ���þ (B0 !
�þ���0).
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For the process of the above decay channels, we find the
�-!mixing presents a strong phase so as to make sin	 big.
The involvement of the �-! mixing can also change the
value of r. However, as found from our detailed analysis,
the effect of the change of r on a is small compared with
the case of sin	.

In Table I, we compare the maximum CP violation
obtained via the �-! mixing by naive factorization [12],
QCD factorization [24], and the perturbative QCD ap-
proaches. One can find that the different approaches give
different results. However, the CP violations are all en-
hanced via the �-! mixing by the three methods, which,
however, are significantly different due to the collinear
degrees, transverse momenta, and strong interaction scale.
Since the b quark is heavy and energetic, the naive facto-
rization approximation is expected to be a good method.
The uncertainties come mainly from the color-octet and
nonfactorizable contribution that are effectively absorbed
into Nc [12]. The QCD factorization scheme adds �s

corrections. In this framework, there is a cancellation
of the scale and renormalization scheme dependence be-
tween the Wilson coefficients and the hadronic matrix
elements. The QCD factorization suffers from end-point
singularities, which are not well controlled. The CP vio-
lation depends on the unknown parameters associated with
such end-point singularities. The uncertainties of PQCD
come from the variation of the hard scattering scale to-
gether with the uncertainty on �QCD and the CKM matrix

elements. The different methods present different strong
phases which lead to different CP violation. However, the
case is the same in that the �-! mixing provides new
strong phases. Hence, large CP violation can be obtained
using different factorization approaches.

IV. CP VIOLATION FOR B0 ! �0�þ��

Generally, the contribution of neutral meson mixing may
be small for CP violation, which can be neglected. In our
calculating formalism, the case may be different due to
the involvement of �-! mixing. The decay process can be
produced as B0 ! f or B0 ! �B0 ! f. Hence, we also
consider the effect of B0 �B0 mixing for the process B0 !
�0�þ�� via �-! mixing. Based on the B0 �B0 mixing, the
time-dependent CP violation of neutral B decays to a final
state f given by [25]

aðtÞ ¼ �ðB0ðtÞ ! fÞ � �ð �B0ðtÞ ! fÞ
�ðB0ðtÞ ! fÞ þ �ð �B0ðtÞ ! fÞ

¼ a cos ð�mtÞ þ Sf sin ð�mtÞ; (39)

where �m is the mass difference of the two mass eigen-
states of the neutral B meson. The direct CP-violating
parameter a is defined in Eq. (14). The mixing
CP-violating parameter is defined as

Sf ¼ � 2 Imð�CPÞ
1þ j�CPj2

; (40)

where

�CP ¼ V�
tbVtdhfjHj �B0i

VtbV
�
tdhfjHjB0i ; (41)

and we can get

�CP ¼ e2i

1þ reið	�
Þ

1þ reið	þ
Þ : (42)

Including the B �B mixing effect and by integrating over
time t, the total CP violation can be written as [7]

0.76 0.77 0.78 0.79 0.80
0.0

0.2

0.4

0.6

0.8

1.0

s

r

FIG. 3. r as a function of
ffiffiffi
s

p
for central CKM matrix elements.

The solid (dashed) line corresponds to the decay channel of
Bþ ! �þ���þ (B0 ! �þ���0).

TABLE I. The maximum CP violation for different ap-
proaches via �-! mixing.

Bþ ! �þ���þ B0 ! �þ���0

Naive factorization �0:23–� 0:57 �0:42–� 0:81
QCD factorization �0:02–0:05 �0:3–0:05
Perturbative QCD 0.69–0.73 0.72–0.74

0.76 0.77 0.78 0.79 0.80
1.0

0.5

0.0

0.5

s

Si
n

FIG. 2. sin	 as a function of
ffiffiffi
s

p
for central CKM matrix

elements. The solid (dashed) line corresponds to the decay
channel of Bþ ! �þ���þ (B0 ! �þ���0).
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atotal ¼ 1

1þ x2
aþ x

1þ x2
Sf; (43)

with x ¼ �m=� ’ 0:723.
The predictions for the total CP violation of B0 !

�0�0 ! �0�þ�� are presented in Fig. 4. One can find
that the total CP violation is also enhanced when the
invariant masses of the �þ�� pairs are in the vicinity
of the ! resonance, which is suppressed when compared
with direct CP violation. However, the maximum total
CP violation can also reach 41% including the �-!
mixing.

V. SUMMARYAND DISCUSSION

We have studied the CP violation in the decay of
B0;� ! �0;��þ�� due to the contribution of �-!
mixing in the PQCD approach. It was found that �-!
mixing can cause a large strong phase difference so
that large CP violation can be obtained at the! resonance.
As a result, it was found that the CP violation could
reach 74%.

The LHC is a proton-proton collider with the designed
center-of-mass energy of 14 TeV and luminosity of
L ¼ 1034 cm�2 s�1. The production rates for heavy quark
flavors will be large at the LHC, and the b �b production
cross section will be of the order of 0.5 mb, providing as
many as 0:5� 1012 bottom events per year [26]. In par-
ticular, the LHCb detector is designed to exploit a large
number of b hadrons produced at the LHC in order to make
precise studies on CP asymmetries and on rare decays in

b-hadron systems. The other two experiments, ATLAS and
CMS, are optimized for discovering new physics and will
complete most of their B physics program within the first
few years [26,27]. Recently, the LHCb Collaboration
found clear evidence for direct CP violation in some
three-body decay channels in charmless decays of a B
meson. Meanwhile, large CP violation was obtained in
Bþ ! KþK��þ, B� ! ���þ�� in the region of
m2

�þ��low < 0:4 GeV2 and m2
�þ��low > 15 GeV2 [28].

The LHCb experiment may perhaps collect data in the
region of the invariant masses of �þ�� associated !
resonance for detecting our prediction of CP violation.
Meanwhile, the experiment results can also detect the
different factorization methods and the �-! mixing
mechanism.
For the decay processes of bottom mesons, the tradi-

tional factorization approach was the leading order of the
QCD factorization schemewith the 1=mb corrections being
neglected. The QCD factorization scheme suffers from
end-point singularities, which are not well controlled.
Next-to-leading order (NLO) corrections for the decay of
B ! ��ð!Þ have recently been implemented using the
PQCD approach [29]. In Ref. [30], the author discusses
some problems with the NLO accurate calculation in the
PQCD approach. A complete NLO calculation in the
PQCD approach requires a calculation of all one-loop
spectator-scattering diagrams. However, Ref. [29] only
considers the one-loop BBNS kernel (similar to the kernel
in the QCD factorization) for the decay of B ! ��ð!Þ.
The vertex diagram can be far off shell as a subdiagram
in a large diagram with hard-collinear line exchanges.
Moreover, the Wilson coefficients are evaluated at very
low scales that perturbation theory breaks down. An un-
physical enhancement of the Wilson coefficients at small
scales is also the origin of the large penguin and annihila-
tion. Based on the above discussion, we investigate the CP
violation of B0;� ! �0;��þ�� via �-! mixing from the
leading-order contribution in PQCD.
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APPENDIX: RELATED FUNCTIONS DEFINED IN THE TEXT

MP
e ¼ 64

3

ffiffiffi
3

p
�CFGFm

2
�mBð� 	 p�Þ

Z 1

0
dx1dx2dx3

Z 1

0
b1db1b2db2
Bðx1; b1Þ � fr�ðx3 � x2Þ½
P

�ðx2; b1Þ
t
�ðx3; b2Þ

þ

�ðx2; b1Þ
s

�ðx3; b2Þ� � r�ðx2 þ x3Þ½
P
�ðx2; b1Þ
s

�ðx3; b2Þ þ

�ðx2; b1Þ
t

�ðx3; b2Þ� þ x3

A
�ðx2; b1Þ½
t

�ðx3; b2Þ
�
s

�ðx3; b2Þ�ghdðx1; x2; x3; b1; b2Þ exp ½�ScdðtdÞ�; (A1)

0.76 0.77 0.78 0.79 0.80

0.8

0.6

0.4

0.2

0.0

0.2

0.4

s

a

FIG. 4. The total CP-violating asymmetry, a, as a function offfiffiffi
s

p
for central CKM matrix elements for B0 ! �0�0 !

�0�þ��.
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Fe ¼ 8
ffiffiffi
2

p
�CFGFf�m�m

2
Bð� 	 p�Þ

Z 1

0
dx1dx2

Z 1

0
b1db1b2db2
Bðx1; b1Þf½ð1þ x2Þ
A

�ðx2; b2Þ
þ r�ð1� 2x2Þð
P

�ðx2; b2Þ þ

�ðx2; b2ÞÞ��sðt1eÞheðx1; x2; b1; b2Þ exp ½�Sabðt1eÞ�

þ 2r�

P
�ðx2; b2Þ�sðt2eÞheðx2; x1; b2; b1Þ exp ½�Sabðt2eÞ�g; (A2)

Me ¼ � 32

3

ffiffiffi
3

p
�CFGFm�m

2
Bð� 	 p�Þ

Z 1

0
dx1dx2dx3

Z 1

0
b1db1b2db2
Bðx1; b1Þx2½
A

�ðx2; b1Þ
� 2r�



�ðx2; b1Þ�
�ðx3; b2Þhdðx1; x2; x3; b1; b2Þ exp ½�ScdðtdÞ�; (A3)

Ma ¼ 32

3

ffiffiffi
3

p
�CFGFm�m

2
Bð� 	 p�Þ

Z 1

0
dx1dx2dx3

Z 1

0
b1db1b2db2
Bðx1; b1Þf½x2
A

�ðx2; b2Þ
�ðx3; b2Þ
þ r�r�ðx2 � x3Þð
P

�ðx2; b2Þ
t
�ðx3; b2Þ þ


�ðx2; b2Þ
s
�ðx3; b2ÞÞ þ r�r�ðx2 þ x3Þð


�ðx2; b2Þ
t
�ðx3; b2Þ

þ
P
�ðx2; b2Þ
s

�ðx3; b2ÞÞ�h1fðx1; x2; x3; b1; b2Þ exp ½�Sefðt1fÞ� � ½x3
A
�ðx2; b2Þ
�ðx3; b2Þ

þ r�r�ðx3 � x2Þð
P
�ðx2; b2Þ
t

�ðx3; b2Þ þ

�ðx2; b2Þ
s

�ðx3; b2ÞÞ þ r�r�ð2þ x2 þ x3Þ
P
�ðx2; b2Þ
s

�ðx3; b2Þ
� r�r�ð2� x2 � x3Þ


�ðx2; b2Þ
t
�ðx3; b2Þ�h2fðx1; x2; x3; b1; b2Þ exp ½�Sefðt2fÞ�g: (A4)

We use a wave function for 
A
� and the twist-three wave

functions 
P
� and 
t

� from [31]


A
�ðxÞ ¼ 3

ffiffiffi
6

p f�xð1� xÞ½1þ 0:44C3=2
2 ð2x� 1Þ

þ 0:25C3=2
4 ð2x� 1Þ�; (A5)


P
�ðxÞ ¼ f�

2
ffiffiffi
6

p ½1þ 0:43C1=2
2 ð2x� 1Þ þ 0:09C1=2

4 ð2x� 1Þ�;

(A6)


t
�ðxÞ ¼ f�

2
ffiffiffi
6

p ð1� 2xÞ½1þ 0:55ð10x2 � 10xþ 1Þ�: (A7)

The Gegenbauer polynomials are defined by

C1=2
2 ðtÞ ¼ 1

2
ð3t2 � 1Þ; C1=2

4 ðtÞ ¼ 1

8
ð35t4 � 30t2 þ 3Þ;

C3=2
2 ðtÞ ¼ 3

2
ð5t2 � 1Þ; C3=2

4 ðtÞ ¼ 15

8
ð21t4 � 14t2 þ 1Þ:

(A8)

We choose the wave function of the � and ! meson [32]:


�ðxÞ ¼ 
!ðxÞ ¼ 3
ffiffiffi
6

p f�xð1� xÞ½1þ 0:18C3=2
2 ð2x� 1Þ�;

(A9)


t
�ðxÞ ¼ 
t

!ðxÞ

¼ fT�

2
ffiffiffi
6

p f3ð2x� 1Þ2 þ 0:3ð2x� 1Þ2½5ð2x� 1Þ2 � 3�

þ 0:21½3� 30ð2x� 1Þ2 þ 35ð2x� 1Þ4�g;
(A10)


s
�ðxÞ ¼ 
s

!ðxÞ
¼ 3

2
ffiffiffi
6

p fT�ð1� 2xÞ½1þ 0:76ð10x2 � 10xþ 1Þ�:

(A11)

For the B meson, the wave function is chosen as


Bðx; bÞ ¼ NB

2
ffiffiffi
6

p fBx
2ð1� xÞ2 exp

�
�M2

Bx
2

2!2
b

� 1

2
ð!bbÞ2

�
;

(A12)

with !b ¼ 0:4 GeV. NB ¼ 2365:57 is a normalization
factor.
We show here the function of hi’s coming from the

Fourier transform of Hð0Þ,

he ðx1; x2; b1; b2Þ ¼ K0ð ffiffiffiffiffiffiffiffiffi
x1x2

p
mBb1Þ½�ðb1 � b2Þ

� K0ð ffiffiffiffiffi
x2

p
mBb1ÞI0ð ffiffiffiffiffi

x2
p

mBb2Þ
þ �ðb2 � b1ÞK0ð ffiffiffiffiffi

x2
p

mBb2Þ
� I0ð ffiffiffiffiffi

x2
p

mBb1Þ�Stðx2Þ; (A13)

hd ðx1;x2;x3;b1;b2Þ¼�sðtdÞK0ð�i
ffiffiffiffiffiffiffiffiffi
x2x3

p
mBb2Þ

�½�ðb1�b2ÞK0ð ffiffiffiffiffiffiffiffiffi
x1x2

p
mBb1Þ

� I0ð ffiffiffiffiffiffiffiffiffi
x1x2

p
mBb2Þþ�ðb2�b1Þ

�K0ð ffiffiffiffiffiffiffiffiffi
x1x2

p
mBb2ÞI0ð ffiffiffiffiffiffiffiffiffi

x1x2
p

mBb1Þ�;
(A14)
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h1f ðx1; x2; x3; b1; b2Þ ¼ K0ð�i
ffiffiffiffiffiffiffiffiffi
x2x3

p
mBb1Þ�sðt1fÞ

� ½�ðb1 � b2ÞK0ð�i
ffiffiffiffiffiffiffiffiffi
x2x3

p
mBb1Þ

� J0ð ffiffiffiffiffiffiffiffiffi
x2x3

p
mBb2Þ þ �ðb2 � b1Þ

�K0ð�i
ffiffiffiffiffiffiffiffiffi
x2x3

p
mBb2Þ

� J0ð ffiffiffiffiffiffiffiffiffi
x2x3

p
mBb1Þ�; (A15)

h2f ðx1; x2; x3; b1; b2Þ ¼ K0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x3 � x2x3

p
mBb1Þ�sðt2fÞ

� ½�ðb1 � b2ÞK0ð�i
ffiffiffiffiffiffiffiffiffi
x2x3

p
mBb1Þ

� J0ð ffiffiffiffiffiffiffiffiffi
x2x3

p
mBb2Þ þ �ðb2 � b1Þ

�K0ð�i
ffiffiffiffiffiffiffiffiffi
x2x3

p
mBb2Þ

� J0ð ffiffiffiffiffiffiffiffiffi
x2x3

p
mBb1Þ�; (A16)

ha ðx1; x2; b1; b2Þ ¼ K0ð�i
ffiffiffiffiffiffiffiffiffi
x1x2

p
mBb2ÞStðx1Þ½�ðb1 � b2Þ

�K0ð�i
ffiffiffiffiffi
x1

p
mBb1ÞJ0ð ffiffiffiffiffi

x1
p

mBb2Þ
þ �ðb2 � b1ÞK0ð�i

ffiffiffiffiffi
x1

p
mBb2Þ

� J0ð ffiffiffiffiffi
x1

p
mBb1Þ�; (A17)

where J0 is the Bessel function, and K0, I0 are modified
Bessel functions K0ð�ixÞ ¼ �ð�=2ÞY0ðxÞ þ ið�=2ÞJ0ðxÞ.
The threshold resummation form factor StðxiÞ is adopted
from Ref. [33],

StðxÞ ¼ 21þ2c�ð3=2þ cÞ
ffiffiffiffi
�

p
�ð1þ cÞ ½xð1� xÞ�c; (A18)

where the parameter c ¼ 0:3. This function is normalized
to unity.

The Sudakov factors used in the text are defined as

SabðtÞ ¼ sðx1mB=
ffiffiffi
2

p
; b1Þ þ sðx2mB=

ffiffiffi
2

p
; b2Þ

� þsðð1� x2ÞmB=
ffiffiffi
2

p
; b2Þ

� 1

�1

�
ln

ln ðt=�Þ
� ln ðb1�Þ þ ln

ln ðt=�Þ
� ln ðb2�Þ

�
; (A19)

ScdðtÞ ¼ sðx1mB=
ffiffiffi
2

p
; b1Þ þ sðx2mB=

ffiffiffi
2

p
; b2Þ

þ sðð1� x2ÞmB=
ffiffiffi
2

p
; b2Þ þ sðx3mB=

ffiffiffi
2

p
; b1Þ

þ sðð1� x3ÞmB=
ffiffiffi
2

p
; b1Þ

� 1

�1

�
2 ln

ln ðt=�Þ
� ln ðb1�Þ þ ln

ln ðt=�Þ
� ln ðb2�Þ

�
; (A20)

SefðtÞ ¼ sðx1mB=
ffiffiffi
2

p
; b1Þ þ sðx2mB=

ffiffiffi
2

p
; b2Þ

þ sðð1� x2ÞmB=
ffiffiffi
2

p
; b2Þ þ sðx3mB=

ffiffiffi
2

p
; b2Þ

þ sðð1� x3ÞmB=
ffiffiffi
2

p
; b2Þ

� 1

�1

�
ln

ln ðt=�Þ
� ln ðb1�Þ þ 2 ln

ln ðt=�Þ
� ln ðb2�Þ

�
; (A21)

SghðtÞ ¼ sðx2mB=
ffiffiffi
2

p
; b1Þ þ sðx3mB=

ffiffiffi
2

p
; b2Þ

þ sðð1� x2ÞmB=
ffiffiffi
2

p
; b1Þ þ sðð1� x3ÞmB=

ffiffiffi
2

p
; b2Þ

� 1

�1

�
ln

ln ðt=�Þ
� ln ðb1�Þ þ ln

ln ðt=�Þ
� ln ðb2�Þ

�
; (A22)

where the functions sðq; bÞ are defined in Appendix A of
Ref. [7]. The scale ti’s in the above equations are chosen as

t1e ¼ max ð ffiffiffiffiffi
x2

p
mB; 1=b1; 1=b2Þ; (A23)

t2e ¼ max ð ffiffiffiffiffi
x1

p
mB; 1=b1; 1=b2Þ; (A24)

td ¼ max ð ffiffiffiffiffiffiffiffiffi
x1x2

p
mB;

ffiffiffiffiffiffiffiffiffi
x2x3

p
mB; 1=b1; 1=b2Þ; (A25)

t1f ¼ max ð ffiffiffiffiffiffiffiffiffi
x2x3

p
mB; 1=b1; 1=b2Þ; (A26)

t2f ¼ max ð ffiffiffiffiffiffiffiffiffi
x2x3

p
mB;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x3 � x2x3

p
mB; 1=b1; 1=b2Þ:

(A27)
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LÜ et al. PHYSICAL REVIEW D 88, 074005 (2013)

074005-10

http://dx.doi.org/10.1103/PhysRevD.61.116009
http://dx.doi.org/10.1103/PhysRevD.61.116009
http://dx.doi.org/10.1140/epjc/s2003-01332-0
http://dx.doi.org/10.1140/epjc/s2003-01332-0
http://dx.doi.org/10.1140/epjc/s10052-008-0721-4
http://dx.doi.org/10.1140/epjc/s10052-008-0721-4
http://dx.doi.org/10.1103/PhysRevD.83.014002
http://dx.doi.org/10.1103/PhysRevD.83.014002
http://dx.doi.org/10.1142/S0217751X11053626
http://dx.doi.org/10.1142/S0217751X11053626
http://dx.doi.org/10.1103/RevModPhys.68.1125
http://dx.doi.org/10.1103/RevModPhys.68.1125
http://dx.doi.org/10.1103/PhysRevLett.51.1945
http://dx.doi.org/10.1103/PhysRevLett.13.562
http://dx.doi.org/10.1103/PhysRevLett.13.562
http://dx.doi.org/10.1016/S0146-6410(97)00044-6
http://dx.doi.org/10.1071/P96041
http://dx.doi.org/10.1016/S0375-9474(97)88425-4
http://dx.doi.org/10.1016/0370-2693(96)00293-6
http://dx.doi.org/10.1016/0370-2693(96)00293-6
http://dx.doi.org/10.1103/PhysRevD.57.2716
http://dx.doi.org/10.1103/PhysRevD.57.2716
http://dx.doi.org/10.1103/PhysRevD.74.094020
http://dx.doi.org/10.1103/PhysRevD.74.094020
http://dx.doi.org/10.1088/0954-3899/31/3/004
http://dx.doi.org/10.1088/0954-3899/31/3/004
http://dx.doi.org/10.1103/PhysRevD.23.1567
http://dx.doi.org/10.1103/PhysRevD.23.1567
http://dx.doi.org/10.1140/epjc/s10052-006-0025-5
http://arXiv.org/abs/hep-ph/0412158
http://arXiv.org/abs/hep-ph/0412158
http://dx.doi.org/10.1134/1.1788046
http://dx.doi.org/10.1134/1.1788046
http://arXiv.org/abs/1301.0283
http://dx.doi.org/10.1140/epjc/s10052-012-1923-3
http://dx.doi.org/10.1140/epjc/s10052-012-1923-3
http://dx.doi.org/10.1016/j.nuclphysbps.2007.05.002
http://dx.doi.org/10.1016/j.nuclphysbps.2007.05.002
http://dx.doi.org/10.1007/BF01554472
http://dx.doi.org/10.1088/1126-6708/1999/01/010
http://dx.doi.org/10.1016/S0550-3213(98)00356-3
http://dx.doi.org/10.1016/S0550-3213(98)00356-3
http://dx.doi.org/10.1103/PhysRevD.65.014007
http://dx.doi.org/10.1103/PhysRevD.65.014007

