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We investigate the transverse momentum resummation for top quark pair production at hadron colliders

using the soft-collinear effective theory and the heavy-quark effective theory. We derive the factorization

formula for t�t production at the small pair transverse momentum, and show in detail the procedure for

calculating the key ingredient of the factorization formula: the next-to-leading order soft functions. We

compare our numerical results with experimental data and find that they are consistent within theoretical

and experimental uncertainties. To verify the correctness of our resummation formula, we expand it to the

next-to-leading order and the next-to-next-to-leading order, and compare those expressions with the exact

fixed-order results numerically. Finally, using the results of transverse momentum resummation, we

discuss the transverse-momentum-dependent forward-backward asymmetry at the Tevatron.
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I. INTRODUCTION

Top quark physics is one of the major research topics in
current and future theoretical and experimental particle
physics. The top quark is the most massive known particle,
and it plays a special role in the Standard Model (SM) and
in many possible extensions of the SM. Once produced, the
top quark immediately decays to a W boson and a bottom
quark before hadronization. This gives us a great oppor-
tunity to study many properties of the top quark. Up to
date, tens of thousands of top quark events have been
produced and studied at the Tevatron. The experiments at
the LHC are accumulating data and are expected to observe
millions of top quark events with the increase of the
integrated luminosity. The expected high precision of the
experimental measurements poses high demand on equally
precise theoretical predictions for many observables
including total and differential cross sections. In the SM,
the main source of top quark events at hadron colliders is
the top quark pair production. Studying this process, on the
one hand, provides a precision test of the SM, and on the
other hand, can control the background of many new
physics (NP) signals. Therefore, it is worthwhile and
important to make precise theoretical predictions for top
quark pair production at hadron colliders.

Actually, the efforts on obtaining precision predictions
for t�t production at hadron colliders have a long history
since the eighties of the last century, when the next-to-
leading order (NLO) quantum chromodynamics (QCD)
corrections to this process were first calculated [1–3].
The NLO electroweak corrections [4,5] were known
shortly after. Using narrow-width approximation, fully

differential top quark pair production and decay at NLO
are also known [6–8]. Furthermore, off-shell effects in top
quark pair production have also been investigated [9–11].
Beyond NLO, threshold soft gluon resummation has
been calculated to the next-to-next-to-leading logarithmic
(NNLL) accuracy [12–16]. Recently, calculations of the
full next-to-next-to-leading order (NNLO) QCD correc-
tions to t�t production have been finished [17–20]. The
NNLO fully differential top quark decay was also obtained
using two different methods [21,22].
Recently, the inclusive and differential cross sections of

top quark pair production at the LHC have been measured
by the ATLAS and CMS Collaborations [23–27]. One
interesting differential observable is the transverse
momentum of the top quark pair. This is particularly the
case since the D0 and CDF Collaborations showed that the
t�t charge asymmetry at the Tevatron has strong dependence
on the t�t transverse momentum [28,29]. It has also been
shown in [30,31] that a kinematic cut on the top quark pair
transverse momentum leads to a significant enhancement
on the charge asymmetry. It is therefore important to have a
better theoretical understanding of this observable, in par-
ticular, at low transverse momentum.
It was well known that for the Drell-Yan process, at

small transverse momentum, qT � M, where M is the
mass of the Drell-Yan pair, the collinear factorization
must be replaced by transverse-momentum-dependent
(TMD) factorization (also called kT factorization). This
has been clearly demonstrated in the pioneering works of
Collins, Soper, and Sterman (CSS) [32–34]. Using kT
factorization, the large logarithms of the form ln nðqT=MÞ
can be systematically resummed to all orders in the strong
coupling constant �s provided that qT is in the perturbative
domain, i.e., qT � �QCD. This is the so-called CSS for-

malism and for a recent review, see, e.g., [35]. The CSS
formalism has since then been extended and applied to
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many processes including Higgs production and diphoton
production [36–46]. Note that the CSS formula receives
corrections suppressed by powers of �QCD=qT; therefore,

it breaks down for qT & �QCD, and one needs to introduce

some nonperturbative form factors [34,47,48].
For processes involving strong-interacting particles in

the final state, however, things are much more complicated.
For back-to-back hadron production, it has been shown in
[49,50] by a counterexample that TMD factorization is not
valid due to the appearance of process-dependent Wilson
lines in the transverse-momentum-dependent parton distri-
bution functions (PDFs) and fragmentation functions. On
the other hand, the top quark is different from light partons
in the sense that its mass is much larger than �QCD and it

also decays before forming hadrons. It is therefore hopeful
that for top quark pair production, TMD factorization and
hence transverse momentum resummation may work. In
fact, by extending the CSS formalism, resummation of the
initial state radiations and the final state radiations at a
partially next-to-leading logarithmic (NLL) accuracy has
been studied in Refs. [51,52]. However, they did not
include the soft gluon exchanges between the initial and
final state partons and it was not known how to extend the
analysis beyond the NLL accuracy.

In the past decade, soft-collinear effective theory
(SCET) [53–55] has been proven to be a very efficient
tool to deal with soft and collinear radiations and solve
factorization and resummation problems. In the case of
transverse momentum resummation, frameworks equiva-
lent to the CSS formalism have been developed for both the
Drell-Yan process and Higgs production [56–62]. Based on
these works, in our recent paper [63], we developed for the
first time a systematic all-order framework for the TMD
factorization in top quark pair production and performed
the transverse momentum resummation at the NNLL
accuracy. In this paper, we show the details of our frame-
work and the calculations of the resummation. We also
perform a nontrivial check of the qT spectrum at NNLO in
fixed-order perturbation theory, and give more numerical
results based on our formula. Finally, we point out how to
use our results to construct a subtraction framework for t�t
production at NNLO based on the method of Ref. [64].
Recently, it was pointed out in Ref. [65] by studying the
interactions between top quarks and beam remnants that
the power corrections to TMD factorization in t�t produc-
tion are of the order �QCD=p

0
T , where p

0
T is the transverse

momentum of the hardest parton recoiling against the t�t
pair. In the sense of power corrections, �QCD=p

0
T is not so

different from our previous expectation �QCD=qT , and the

actual size of the power corrections can only be estimated
by comparing to experimental data or employing some
nonperturbative methods, which is beyond the scope of
our paper.

This paper is structured as follows. In the following
section, we briefly review the basic ideas of the effective

field theory method and apply it to t�t production at hadron
colliders to obtain a factorization formula at small pair
transverse momentum. In Sec. III, we present the calcu-
lation of the soft functions at the NLO. We show in Sec. IV
the renormalization group (RG) equations for the hard and
soft functions and the TMD PDFs. By solving these RG
equations we arrive at the final resummation formula. We
expand the resummation formula to NLO and NNLO in
Sec. V and compare them with fixed-order calculations
at small transverse momentum. The phenomenological
implications are discussed in Sec. VI. We draw our con-
clusions in Sec. VII. Some expressions are collected in the
Appendices for readers’ convenience.

II. kT FACTORIZATION FOR t �t PRODUCTION

In this section we present the derivation of kT factoriza-
tion for t�t production using the SCET and the heavy-quark
effective theory (HQET) [66–71]. The HQET was origi-
nally developed to study decays of charmed and beauty
hadrons. The first application of SCET and HQET in top
quark physics at hadron colliders was performed in [72] in
the context of threshold resummation for direct top quark
production. The extension to top quark pair production was
shown in [14,73–77], where the threshold resummation
for the total cross section and various differential cross
sections are performed. The transverse momentum resum-
mation discussed in this paper shares some similarity with
threshold resummation but is also genuinely different from
that. In particular, the treatment of hard fluctuations is
exactly the same as in threshold resummation, and we
will therefore reiterate certain derivations in [14]. On the
other hand, the treatment of soft and collinear radiations
are completely different from threshold resummation.
We consider the process

N1ðP1Þ þ N2ðP2Þ ! tðp3Þ þ �tðp4Þ þ XðpXÞ; (1)

where X is an inclusive hadronic final state. At the leading
order (LO), there are two partonic processes, namely,
the quark-antiquark annihilation process and gluon fusion
process,

qðp1Þ þ �qðp2Þ ! tðp3Þ þ �tðp4Þ;
gðp1Þ þ gðp2Þ ! tðp3Þ þ �tðp4Þ;

(2)

where p1 ¼ �1P1 and p2 ¼ �2P2. For later convenience,
we define the following kinematic variables:

s ¼ ðP1 þ P2Þ2; ŝ ¼ ðp1 þ p2Þ2;
M2 ¼ ðp3 þ p4Þ2; t1 ¼ ðp1 � p3Þ2 �m2

t ;

u1 ¼ ðp1 � p4Þ �m2
t ; � ¼ M2 þ q2T

s
;

(3)

where qT is the transverse momentum of the t�t pair and mt

is the top quark mass. The kinematic region which we are
interested in is
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ŝ;M2; jt1j; ju1j; m2
t � q2T � �2

QCD: (4)

In this limit, only soft or collinear emissions can contribute
and to study them, it is convenient to introduce two light-
like vectors n and �n along the directions of the colliding
partons, which satisfy n � �n ¼ 2. In the lab frame, they can
be written as

n ¼ ð1; 0; 0; 1Þ; �n ¼ ð1; 0; 0;�1Þ: (5)

With the help of these two vectors, any four vector can be
decomposed as

k� ¼ n � k �n�

2
þ �n � k n

�

2
þ k

�
? � kþ

�n�

2
þ k�

n�

2
þ k

�
?:

(6)

In the small qT limit, we need to distinguish four differ-
ent momentum regions

hard: k��Mð1;1;1Þ; collinear: k��Mð�2;1;�Þ;
anticollinear: k��Mð1;�2;�Þ; soft: k��Mð�;�;�Þ;
where we denote momenta by their components k� ¼
ðkþ; k�; k?Þ and � ¼ qT=M. The top quark momenta can
be written as p

�
i ¼ mtv

�
i þ k

�
i (i ¼ 3, 4) where v2

i ¼ 1
and the residue momenta k

�
i scale like the soft mode. Note

that threshold resummation is different since it involves an
ultrasoft region k� �Mð�2; �2; �2Þ but no soft region. To
deal with these momentum regions, the effective theory
method is a very useful and generic framework, which
can separate the different regions at the field theoretical
level and convert multiscale problems into single-scale
problems.

To derive the factorization formula, we start with the
effective Hamiltonian which contributes to t�t production. It
is the same as in threshold resummation and can be written
as [14]

H effðxÞ ¼
X
I;m

Z
dt1dt2e

imtðv3þv4Þ�x½ ~Cq �q
Imðt1; t2ÞOq �q

Imðx; t1; t2Þ

þ ~Cgg
Imðt1; t2ÞOgg

Imðx; t1; t2Þ�; (7)

where I andm label the color structure and Dirac structure,
respectively. The derivation will be very similar for the q �q
and the gg channels, with subtleties arising in the gg
channel related to the Lorentz structure. We will therefore
show the details in the gg channel, with the factorization
formula in the q �q channel a natural extension. We will
also suppress the gg subscripts and superscripts unless
necessary.

The operators in the q �q channel can be written as [14]

Oq �q
Imðx; t1; t2Þ
¼ X
fag;fbg
ðcq �qI Þfag½Oh

mðxÞ�b3b4½Oc
mðx; t1; t2Þ�b1b2½OsðxÞ�fag;fbg;

(8)

with

½Oh
mðxÞ�b3b4¼ �h

b3
v3
ðxÞ�00mhb4v4

ðxÞ;
½Ocðx;t1; t2Þ�b1b2¼ ��b2

�n ðxþ t2nÞ�0m�b1
n ðxþ t1 �nÞ;

½OsðxÞ�fag;fbg ¼ ½Syv3
ðxÞ�b3a3½Sv4

ðxÞ�a4b4
�½Sy�n ðxÞ�b2a2½SnðxÞ�a1b1 ; (9)

while the operators in the gg channel can be written as

Ogg
Imðx; t1; t2Þ ¼

X
fag;fbg
ðcggI Þfag½Oh

mðxÞ���
b3b4

� ½Ocðx; t1; t2Þ�b1b2�� ½OsðxÞ�fag;fbg; (10)

where

½Oh
mðxÞ���

b3b4
¼ �hb3v3

ðxÞ���
m hb4v4

ðxÞ;
½Ocðx; t1; t2Þ�b1b2�� ¼Ab1

n�?ðxþ t1 �nÞAb2
�n�?ðxþ t2nÞ;

½OsðxÞ�fag;fbg ¼ ½Syv3
ðxÞ�b3a3½Sv4

ðxÞ�a4b4
� ½Sadjy�n ðxÞ�b2a2½Sadjn ðxÞ�a1b1 : (11)

In the above, hv, �n An�? are gauge-invariant fields for

heavy quarks, collinear quarks, and collinear gluons in
HQET and SCET, respectively. The index m labels differ-
ent Dirac structures and ���

m , �0m, �00m are combinations of
Dirac matrices and the external vectors n, �n, v3, and v4.
The indices ai and bi with i ¼ 1, 2, 3, 4 are color indices
which can be in either the fundamental or adjoint repre-
sentation depending on the particle involved. The tensors
cI define a basis in color space, which we choose the same
way as in [14]. They are given by

ðcq �q1 Þfag ¼ �a1a2�a3a4 ; ðcq �q2 Þfag ¼ tca1a2 t
c
a3a4 ;

ðcgg1 Þfag ¼ �a1a2�a3a4 ; ðcgg2 Þfag ¼ ifa1a2ctca3a4 ;

ðcgg3 Þfag ¼ da1a2ctca3a4 :

(12)

The soft Wilson lines are defined by

½SnðxÞ�ab ¼ P exp

�
ig
Z 0

�1
dtn � Ac

sðxþ tnÞtcab
�
;

½Sadjn ðxÞ�ab ¼ P exp

�
ig
Z 0

�1
dtn � Ac

sðxþ tnÞð�ifcabÞ
�
;

(13)

and similarly for the �n, v3, and v4 directions.
To deal with the color indices, it is useful to introduce

the color-space formalism of [78,79], which was exten-
sively discussed in [14]. In this formalism, scattering
amplitudes and similar objects are treated as vectors in
an abstract vector space, while color generators and any
objects involving them are treated as matrices in this vector
space. We will use boldface letters to denote color space
matrices. For example, the soft operator in Eq. (11) is
a matrix OsðxÞ, while the color basis in Eq. (12) are
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vectors jcIi. As a result, the scattering amplitude for the gg
channel can be written as

jMðxÞi ¼X
m

Z
dt1dt2e

imtðv3þv4Þ�xht�tXj½Oh
mðxÞ���

� ½Ocðx; t1; t2Þ���O
sðxÞjN1N2ij ~Cmðt1; t2Þi;

(14)

where the vectors of Wilson coefficients are defined as

j ~Cmðt1; t2Þi ¼
X
I

~CImðt1; t2ÞjcIi: (15)

We can now write down the differential cross section for
t�t production

d	 ¼ 1

2s

d3 ~p3

ð2
Þ32E3

d3 ~p4

ð2
Þ32E4

X
X

Z
d4xhMðxÞjMð0Þi:

(16)

Using the fact that the fields in different sectors of the
effective theory do not interact with each other after ab-
sorbing the interactions into Wilson lines, we can factorize
the squared matrix element as

X
X

hMðxÞjMð0Þi ¼ X
m;m0

Z
dt1dt2dt

0
1dt
0
2e
�iðp3þp4Þ�xh0j½Ohy

m0 ð0Þ��	jtðp3Þ�tðp4Þihtðp3Þ�tðp4Þj½Oh
mð0Þ���j0i

�X
Xc

hN1ðP1ÞjAn�?ðxþ þ x? þ t01 �nÞjXcihXcjAn�?ðt1 �nÞjN1ðP1Þi

�X
X �c

hN2ðP2ÞjA �n	?ðx� þ x? þ t02nÞjX �cihX �cjA �n�?ðt2nÞjN2ðP2Þi

�X
Xs

h ~Cm0 ðt01; t02Þjh0jOsyðx?ÞjXsihXsjOsð0Þj0ij ~Cmðt1; t2Þi; (17)

where Xc, X �c, and Xs denote the collinear, anticollinear, and soft final states, respectively, and we have performed the
multipole expansion for the collinear and soft fields.

In the above formula, the collinear matrix elements correspond to the PDFs. Since we have x? in the arguments of the
collinear fields, we need the TMD PDFs [32,33] which in the transverse position space are defined as [62]

Bn
q=Nðz; x2T; �Þ ¼

1

2


Z
dte�izt �n�phNðpÞj ��aðt �nþ x?Þ �n2�

að0ÞjNðpÞi;

B �n
q=Nðz; x2T; �Þ ¼

1

2


Z
dte�iztn�phNðpÞj ��aðtnþ x?Þ 6n2�

að0ÞjNðpÞi;

B��;n
g=N ðz; x?; �Þ ¼ �

z �n � p
2


Z
dte�izt �n�phNðpÞjA�a

n?ðt �nþ x?ÞA�a
n?ð0ÞjNðpÞi;

B��; �n
g=N ðz; x?; �Þ ¼ �

zn � p
2


Z
dte�iztn�phNðpÞjA�a

�n?ðtnþ x?ÞA�a
�n?ð0ÞjNðpÞi;

(18)

where we have used the superscripts n and �n to label the moving direction of the initial hadron. Inverting the definition
above, we obtain the matrix elements that appeared in Eq. (17):

hN1ðP1ÞjAa
n�?ðxþ þ x? þ t01 �nÞAb

n�?ðt1 �nÞjN1ðP1Þi ¼ � 2�ab

dg

Z 1

0

dz1
z1

B��;n
g=N ðz1; x?; �Þeiðx

þþðt01�t1Þ �nÞ�p1 ;

hN2ðP2ÞjAa
�n	?ðx� þ x? þ t02nÞAb

�n�?ðt2nÞjN2ðP2Þi ¼ � 2�ab

dg

Z 1

0

dz2
z2

B�	; �n
g=N ðz2; x?; �Þeiðx

�þðt0
2
�t2ÞnÞ�p2 ;

(19)

where we have identified p1 ¼ z1P1 and p2 ¼ z2P2, and dg ¼ N2 � 1 with N ¼ 3 for QCD. For the q �q channel we have
similar equations

hN1ðP1Þj ��aðt �nþ x?Þ �n2�
bð0ÞjN1ðP1ÞÞi ¼ �ab

dq

Z 1

0

dz1
z1
½Bn

q=N1
ðz; x2T; �Þ þBn

�q=N1
ðz; x2T;�Þ�eit �n�p1 �n � p1;

hN2ðP2Þj ��aðtnþ x?Þ 6n2�
bð0ÞjN2ðP2ÞÞi ¼ �ab

dq

Z 1

0

dz2
z2
½B �n

q=N2
ðz; x2T; �Þ þB �n

�q=N2
ðz; x2T;�Þ�eitn�p2n � p2;

(20)

where dq ¼ N.
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The integrals over t1, t2, t
0
1, t

0
2 now give rise to the

momentum-space Wilson coefficients

jCmi ¼ jCmðM;mt; cos �;�Þi
¼
Z

dt1dt2e
�it1 �n�p1�it2n�p2 j ~Cmðt1; t2Þi: (21)

We can then define the hard function in the gg channel as

H���	
gg ðM;mt; v3; �Þ
¼ 3

8

1

ð4
Þ2
1

4dg

X
m;m0
jCmihCm0 jh0j½Ohy

m0 ð0Þ��	jtðp3Þ�tðp4Þi

� htðp3Þ�tðp4Þj½Oh
mð0Þ���j0i: (22)

We should now mention that the definitions of the
TMD PDFs in Eq. (18) involve light-cone singularities
which are not regularized by dimensional regularization.
These divergences can be regularized in various ways
[35,58,61,80,81], and the product of two such TMD
PDFs are free from the light-cone singularities. However,
anomalous dependence on the hard scaleM remains, which
was called a ‘‘collinear anomaly’’ in [58]. In our frame-
work we adopt the analytic regularization of [80], and the
product of the two TMD PDFs can be re factorized as [62]

B ��;n
g=N1
ðz1; x?; �ÞB�	; �n

g=N2
ðz2; x?; �Þ

¼
�
x2TM

2

4e�2E

��Fggðx2T ;�Þ
B
��
g=N1
ðz1; x?; �ÞB�	

g=N2
ðz2; x?; �Þ;

(23)

where x2T ¼ �x2?. The anomalous dependence on M is

factorized out and is controlled by the function Fgg, while

the B
��
g=N functions are independent ofM. Note also that we

don’t need to distinguish the n and �n directions for the B
��
g=N

functions. There are two possible Lorentz structures for the
B
��
g=N functions, which we choose as

B
��
g=Nðz; x?; �Þ ¼

g��
?
2

Bg=Nðz; x2T; �Þ

þ
�
g��
?
2
þ x�?x

�
?

x2T

�
B0g=Nðz; x2T; �Þ: (24)

We finally turn to the soft part of Eq. (17), and define
position space soft functions as matrices in color space

Wðx?; �Þ ¼ 1

dR
h0j �T½Osyðx?Þ�T½Osð0Þ�j0i: (25)

In the intermediate steps of calculating the soft functions, we
also encounter light-cone singularities of the samenature as in
the TMD PDFs. For those we also use the scheme of [80] for
the regularization. In the final soft function, such singularities
cancel when combining different contributions. Note that for
the Drell-Yan process and Higgs production, the soft func-
tions are trivial when adopting the regularization method of
[80]. The appearance of the soft function matrices is a reflec-
tion of the color exchange among initial state and final state
particles, and is a genuinely new feature of our framework.
Since we are interested in the momentum of the t�t pair, it

is helpful to define q ¼ p3 þ p4 and insert the following
identity into Eq. (16):

1 ¼
Z

d4qdM2�ð4Þðq� p3 � p4Þ�ðM2 � q2Þ: (26)

Performing the ~p4 and j ~p3j integrals using the � functions,
we arrive at a factorization formula for the differential cross
sections in the limit of small pair transverse momentum

d	 ¼ �t

6
2sM
dq2TdydMd cos �

Z
xTdxTd�xd�qd�te

iqTxT cos ð�q��xÞ

�
��

x2TM
2

4e�2E

��Fggðx2T ;�Þ
4B

��
g=N1
ð�1; x?; �ÞB�	

g=N2
ð�2; x?; �ÞTr½H���	

gg ðM;mt; v3; �ÞWggðx?; �Þ�

þ
�
x2TM

2

4e�2E

��Fq �qðx2T ;�Þ
Bq=N1

ð�1; x
2
T;�ÞB �q=N2

ð�2; x
2
T; �ÞTr½Hq �qðM;mt; cos �;�ÞWq �qðx?; �Þ� þ ðq$ �qÞ

�
; (27)

where we have also included the q �q channel, and �t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

t =M
2

p
, �1 ¼

ffiffiffi
�
p

ey, �2 ¼
ffiffiffi
�
p

e�y. In the above formula, �
is the scattering angle of the top quark in the t�t rest frame, �t, �q, and �x are the azimuthal angles of v3, q?, and x?,
respectively. The azimuthal integrals can be simplified by noting that the integrand only depends on the two differences
�q ��x and �t ��x. Therefore,

d4	

dq2TdydMdcos�
¼8
�t

3sM

1

2

Z
xTdxT

d�

2

J0ðxTqTÞ

�
��

x2TM
2

4e�2E

��Fggðx2T ;�Þ
4B

��
g=N1
ð�1;x?;�ÞB�	

g=N2
ð�2;x?;�ÞTr½H���	

gg ðM;mt;v3;�ÞWggðx?;�Þ�

þ
�
x2TM

2

4e�2E

��Fq �qðx2T ;�Þ
Bq=N1

ð�1;x
2
T;�ÞB �q=N2

ð�2;x
2
T;�ÞTr½Hq �qðM;mt;cos�;�ÞWq �qðx?;�Þ�þðq$ �qÞ

�
;

(28)
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where � is now the relative azimuthal angle between x?
and v3.

Equation (28) is the master factorization formula of our
paper, which is valid to all orders in �s and to any loga-
rithmic accuracy, up to power corrections of the sizes
q2T=M

2 and �2
QCD=q

2
T . The appearance of the tensor struc-

tures in the gg channel was noted before in the studies of
the Higgs production [62,82,83]. The case for t�t produc-
tion, however, is even more complicated since the hard
matching coefficient itself is a tensor. The situation can be
simplified if we restrict ourselves up to the NNLL accu-
racy. At this order, the second Lorentz structure in the B

��
g=N

functions does not contribute. This is guaranteed since
B0g=N vanishes at the leading order, and

Z 2


0
d�g

��
?

�
g�	

2
þ x�?x

	
?

x2T

�
H
ð0Þ;���	
gg ðM;mt; v3; �Þ ¼ 0;

(29)

where H
ð0Þ;���	
gg is the leading order coefficient of H

���	
gg

in the perturbative expansion in �s. Once this is true, the

dependence on � in the integrand of Eq. (28) now resides
only in the soft functions. This fact motivates us to define
new soft functions as

Si�iðL?;M;mt; cos �;�Þ ¼
Z d�

2

Wðx?; �Þ; (30)

where

L? ¼ ln
x2T�

2

4e�2E
: (31)

Note that the soft function defined in this way doesn’t
obey non-Abelian exponentiation theorem. The reason is
that the extra phase space integration over � does not
factorize. This means that at NNLO, the scale indepen-
dent terms proportional to C2

F cannot be obtained by
simply exponentiating the NLO results, but have to be
recalculated. Fortunately, for the logarithmic accuracy
studied in this paper, those terms are not needed. The
simplified factorization formula, valid up to the NNLL
accuracy, now reads

d4	

dq2TdydMd cos �
¼ X

i¼q; �q;g

8
�t

3sM

1

2

Z
xTdxTJ0ðxTqTÞ

�
x2TM

2

4e�2E

��Fi�iðx2T ;�Þ
Bi=N1

ð�1; x
2
T; �ÞB�i=N2

ð�2; x
2
T; �Þ

� Tr½Hi�iðM;mt; cos �;�ÞSi�iðL?;M;mt; cos �;�Þ�: (32)

This formula will be the starting point of our NNLL
transverse momentum resummation in the following.

III. NLO RESULTS FOR THE HARD AND SOFT
FUNCTIONS AND THE TMD PDFS

In this section, we present the NLO calculations for the
hard and soft functions and the TMD PDFs which are
relevant for the NNLL transversemomentum resummation.
While the hard functions and the TMD PDFs at NLO are
already available in the literature, the transverse soft func-
tion is new in our framework and is a major difference from
the Drell-Yan process or Higgs production. Therefore, we
will first discuss the calculation of the soft function.

The soft functions are defined in Eqs. (25) and (30). We
define the perturbative expansions of them as

Si�iðL?;M;mt; cos �;�Þ ¼
X1
n¼0

SðnÞ
i�i

�
�s

4


�
n
: (33)

Up to now we have been treating the soft functions as
abstract matrices in color space. In practice, it is more
convenient to cast them into a matrix form by defining
the matrix elements

SIJ ¼ hcIjSjcJi: (34)

In this form, the LO soft functions for the q �q and gg
channels are given by

Sð0Þq �q ¼
N 0

0 CF

2

 !
; Sð0Þgg ¼

N 0 0

0 N
2 0

0 0 N2�4
2N

0
BB@

1
CCA: (35)

At the NLO, the soft functions receive contributions
from the diagrams depicted in Fig. 1. We can write the
bare soft functions as

Sð1Þ;bare
i�i

¼X
j;k

wi�i
jkIjk; (36)

where wi�i
jk is the NLO color matrices defined by

ðwi�i
jkÞIJ ¼

1

dR
hcIjTj � TkjcJi; (37)

with Tj the color generator associated with the parton j.

These matrices can be found in Ref. [14]. Ijk are integrals

of the form

Ijk ¼ �ð4
�
2Þ�


2��
Z 2


0
d�

�
Z

ddk

�
�

n � k
�
�
�ðk2Þ�ðk0Þvj � vke

�ix?�k?

vj � kvk � k ; (38)

where the analytic regularization method of Ref. [80]
is used. We show an example for calculating I13 in
Appendix B. The results for the nonvanishing integrals are
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I13 ¼
�
L? þ 1

�

��
� 2

�
þ ln

�2

�2
þ 2 ln

�t1
mtM

�
þ 1

�2
� L2

?
2
� 
2

12
� Li2

�
1� t1u1

m2
t M

2

�
;

I23 ¼
�
L? þ 1

�

��
2

�
� ln

�2

�2
þ 2 ln

�u1
mtM

�
� 1

�2
þ L2

?
2
þ 
2

12
� Li2

�
1� t1u1

m2
t M

2

�
;

I34 ¼ �ð1þ �2
t Þ ln xs

�t

�
L? þ 1

�
þ f34

�
; I33 ¼ I44 ¼ 2L? þ 2

�
� 2 ln

�
t1u1
m2

t M
2

�
;

I14 ¼ I13ðt1 $ u1Þ; I24 ¼ I23ðu1 $ t1Þ;

(39)

where xs ¼ ð1� �tÞ=ð1þ �tÞ and

f34 ¼ �Li2
�
�xstan 2 �

2

�
þ Li2

�
� 1

xs
tan 2 �

2

�

þ 4 ln xs ln cos
�

2
: (40)

The contribution from soft gluon exchange between initial
states, i.e., I12, vanishes because the corresponding integral
is scaleless in the regularization scheme we adopt. If we
had adopted other regularization methods such as that of
Ref. [61], I12 could give a nonvanishing contribution.
However, this contribution can always be absorbed into
the two collinear sectors, so that our framework, in par-
ticular our soft function, is independent of the regulariza-
tion scheme used.

Combining the integrals with the color matrices, and

renormalizing in the MS scheme, we arrive at the final
form of the NLO soft functions

Sð1Þ
i�i
¼ 4L?

�
2w13

i�i
ln
�t1
mtM

þ 2w23
i�i
ln
�u1
mtM

þ w33
i�i

�

� 4ðw13
i�i
þ w23

i�i
ÞLi2

�
1� t1u1

m2
t M

2

�
þ 4w33

i�i
ln

t1u1
m2

t M
2

� 2w34
i�i

1þ �2
t

�t

½L? ln xs þ f34�: (41)

Note that while the individual integrals in Eq. (39) contain
poles in the analytic regulator �, these divergences cancel
in the final soft functions, together with the dependence on
the unphysical scale �.
We now turn to the hard functions. They are the absolute

values squared of the Wilson coefficients of the operators,
which can be obtained by matching the full theory onto
SCET. The LO hard functions are simple to calculate,
which are just the tree-level amplitude squared, decom-
posed into the color basis in Eq. (12). For the NLO hard
functions, we work with on-shell external particles. As a

FIG. 1 (color online). Feynman diagrams contributing to the NLO soft functions. The double lines represent the Wilson lines in the
directions along the top and antitop quarks’ movement. The single lines are the Wilson lines in the light-cone directions.
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result, the loop integrals in SCET are scaleless and vanish.
Therefore, the NLO hard functions can be obtained by
computing the one-loop virtual diagrams for top quark
pair production. The NLO virtual corrections for t�t pro-
duction have been calculated long ago [1–3]. However,
they are not color decomposed and are not suitable for
extracting the hard functions. In Ref. [14], the one-loop
amplitudes decomposed into the color basis were calcu-
lated, and the NLO hard functions were extracted there,
which wewill take over. Up to NLO, the hard functions can
be expressed as

Hi�i ¼
3�2

s

8di

�
Hð0Þ

i�i
þ �s

4

Hð1Þ

i�i

�
: (42)

Similar to the soft functions, the matrix form of the hard
functions is defined by

HIJ ¼ 1

hcIjcIihcJjcJi hcIjHjcJi: (43)

The leading order hard function matrices are

Hð0Þq �q ¼
0 0

0 2

 !�
t21 þ u21
M4

þ 2m2
t

M2

�
;

Hð0Þgg ¼
1
N2

1
N

t1�u1
M2

1
N

1
N

t1�u1
M2

ðt1�u1Þ2
M4

t1�u1
M2

1
N

t1�u1
M2 1

0
BBB@

1
CCCA

� M4

2t1u1

�
t21 þ u21
M4

þ 4m2
t

M2
� 4m4

t

t1u1

�
: (44)

The expressions for the NLO hard functions are rather
lengthy, and we have obtained them from the electronic
file associated with the arXiv submission of Ref. [74].

We finally discuss the TMD PDFs. The Bq=N and Bg=N

functions introduced in Sec. II are intrinsically nonpertur-
bative objects. For xT � 1=�QCD, they can be matched

onto the normal PDFs [58] via

Bq=Nðz; x2T; �Þ ¼
X
i

Z d�

�
Iq ið�; L?; �Þ�i=Nðz=�;�Þ;

Bg=Nðz; x2T; �Þ ¼
X
i

Z d�

�
Ig ið�; L?; �Þ�i=Nðz=�;�Þ;

(45)

with perturbatively calculable matching coefficient func-
tions Ii j. At leading order the Ii j functions are given by

Ið0Þi jðz; L?; �Þ ¼ �ij�ð1� zÞ. The NLO results for them

have been calculated in Refs. [58,62]. We collect those
results in Appendix A for the readers’ convenience.

IV. RG EVOLUTION AND TRANSVERSE
MOMENTUM RESUMMATION

In our formalism, the factorization scale � is chosen at
the typical soft or collinear scale where the soft functions
and the TMD PDFs can be expanded in the perturbation
theory. The resummation of large logarithms is achieved by
evolving the hard functions from the hard scale�h down to
the factorization scale. In this section, we present the RG
equations for the various functions and the final form of the
resummation formula. The explicit expressions for the rele-
vant anomalous dimensions are collected in Appendix A.
The treatment for the Ii j functions are the same as in

Ref. [59]. For completeness, we briefly summarize it here.
The Ii j functions, as defined in Eq. (45), satisfy the

following RG equation:

d

d ln�
Ii jðz; L?; �sÞ

¼ ½�i
cuspð�sÞL? � 2ið�sÞ�Ii jðz; L?; �sÞ
�X

k

Z 1

z

d�

�
Ii kð�; L?; �sÞP kjðz=�; �sÞ; (46)

where �i
cusp are the cusp anomalous dimensions, i are

the single parton anomalous dimensions, and P kj are

the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
splitting functions. While we are going to choose the scale
� such that the Ii j functions contain no large logarithms,

it has been shown in Ref. [59] that it is essential to
exponentiate the double logarithmic terms in the Ii j

functions. This can be achieved by defining

Iq iðz; L?; �sÞ � ehqðL?;�sÞ �Iq iðz; L?; �sÞ;
Ig iðz; L?; �sÞ � ehgðL?;�sÞ �Ig iðz; L?; �sÞ;

(47)

where hiðL?; �sÞ satisfies the evolution equation

d

d ln�
hiðL?; �sÞ ¼ �i

cuspð�sÞL? � 2ið�sÞ: (48)

The expressions for hiðL?; �sÞ have been given in
Ref. [59]. The new functions �Ig iðz; L?; �sÞ evolve ex-

actly following the DGLAP equations with an opposite
sign. With Eqs. (45) and (47), the NNLL factorization
formula Eq. (32) now becomes

d4	

dq2TdydMd cos �

¼ X
i¼q; �q;g

X
a;b

8
�tM

3sðM2 þ q2TÞ
Z 1

�1

dz1
z1

�
Z 1

�2

dz2
z2

fa=N1
ð�1=z1; �Þfb=N2

ð�2=z2; �Þ

� Ci�i abðz1; z2; qT;M;mt; cos �;�Þ; (49)

where
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Ci�i abðz1; z2; qT;M; cos �;mt; �Þ ¼ 1

2

Z 1
0

xTdxTJ0ðxTqTÞ exp ½gið�i; L?; �sÞ� �Ii aðz1; L?; �sÞ �I �i bðz2; L?; �sÞ
� Tr½Hi�iðM;mt; cos�;�ÞSi�iðL?;M;mt; cos �;�Þ�: (50)

Here �i ¼ ðCi�s=
Þ ln ðM2=�2Þ with Cq ¼ CF and Cg ¼ CA. The gi function is given by

gið�i; L?; �sÞ ¼ �
�
ln
M2

�2
þ L?

�
Fi�iðL?; �sÞ þ 2hiðL?; �sÞ: (51)

As described in Ref. [59], for very small qT we must reorganize the resummation procedure by using the modified power
counting scheme, where ð�sL?Þn are counted as order �n=2, with � an auxiliary expansion parameter. The NLL accuracy
should contain terms up to order �0 and the NNLL accuracy means up to order �1. Within this power counting scheme, the
gi functions can be written as [59,62]

gið�i; L?; �sÞ ¼ �½�iL?���1=2 �
�
asð�i

0 þ �i�0Þ
L2
?
2

�
�0
�
�
asð2i

0 þ �iKÞL? þ a2sð�i
0 þ �i�0Þ�0

L3
?
3

�
�1=2

�
�
as�id2 þ a2sðK�i

0 þ 2i
0�0 þ �ið�1 þ 2K�0ÞÞ

L2
?
2
þ a3sð�i

0 þ �i�0Þ�2
0

L4
?
4

�
�
�Oð�3=2Þ; (52)

where

as ¼ �s

4

;

K ¼
�
67

9
� 
2

3

�
CA � 20

9
TFnf;

d2 ¼
�
202

27
� 7�3

�
CA � 56

27
TFnf:

(53)

And with NNLL accuracy, the �Ii jðz; L?; �sÞ functions are
given by

�Ii jðz; L?; �sÞ ¼ �ij�ð1� zÞ �
�
asP

ð1Þ
ij ðzÞ

L?
2

�
�1=2

þ
�
asR

ð1Þ
ij ðzÞ þ a2sðDijðzÞ

� 2�0P
ð1Þ
ij ðzÞÞ

L2
?
8

�
�
þOð�3=2Þ; (54)

where DijðzÞ is defined as

DijðzÞ ¼
X
k

Z 1

z

d�

�
P ð1Þik ð�ÞP ð1Þkj ðz=�Þ: (55)

The RG evolution of the hard functions is the same as in
the threshold resummation for the top quark pair produc-
tion studied in [14], which can be written as

d

d ln�
Hi�iðM;mt; cos �;�Þ

¼ �H
i�i
ðM;mt; cos �;�ÞHi�iðM;mt; cos�;�Þ

þHi�iðM;mt; cos �;�Þ�Hy
i�i
ðM;mt; cos�;�Þ; (56)

where �H
i�i

are the anomalous dimensions of the hard

functions and can be found in Ref. [84] for both the q �q

and gg initial states. It will be convenient to split �H
i�i
into

two parts

�H
i�i
¼
�
�i
cuspð�sÞ

�
ln
M2

�2
� i


�
þ 2ið�sÞ

�
1

þ �h
i�i
ðM;mt; cos �;�sÞ: (57)

The solution to Eq. (56) is

Hi�iðM;mt; cos�;�Þ
¼ UH

i�i
ðM;mt; cos �;�h;�ÞHi�iðM;mt; cos�;�hÞ

� UHy
i�i
ðM;mt; cos �;�h;�Þ; (58)

where UH
i�i
is given by

UH
i�i
ðM;mt; cos �;�h;�Þ
¼ exp ½2Sið�h;�Þ � 2aið�h;�Þ�

�
�
M2

�2
h

��a�i
uh
i�i
ðM;mt; cos�;�h;�Þ: (59)

The functions Sið�h;�Þ and a�i are defined as

Sið�h;�Þ ¼ �
Z �sð�Þ

�sð�hÞ
d�

�i
cuspð�Þ
�ð�Þ

Z �

�sð�hÞ
d�0

�ð�0Þ ;

a�ið�h;�Þ ¼ �
Z �sð�Þ

�sð�hÞ
d�

�i
cuspð�Þ
�ð�Þ ;

(60)

and similarly for ai . The matrix uh
i�i
is

TOP QUARK PAIR PRODUCTION AT SMALL TRANSVERSE . . . PHYSICAL REVIEW D 88, 074004 (2013)

074004-9



uh
i�i
ðM;mt; cos �;�h;�Þ
¼ P exp

Z �sð�Þ

�sð�hÞ
d�

�ð�Þ�
h
i�i
ðM;mt; cos �;�h;�Þ: (61)

Using the method shown in Refs. [85,86], the matrix
function uh

i�i
can be obtained as follows:

uh
i�i
ðM;mt; cos �;�h;�Þ

¼ V

�
1þ �sð�Þ

4

K

��
�sð�hÞ
�sð�Þ

��
hð0Þ
i�i
2�0

D

�
1� �sð�hÞ

4

K

�
V�1;

(62)

with

�hð0Þ
i�i;D
¼ V�1�hð0Þ

i�i
V;

KIJ ¼ �1

2�2
0

�IJð�hð0Þ
i�i;D
ÞII �

½V�1�hð1Þ
i�i

V�IJ
2�0 þ ð�hð0Þ

i�i;D
ÞII � ð�hð0Þ

i�i;D
ÞJJ

;

(63)

where the subscript D is used to label the diagonalized
matrix. Finally, the solution of Eq. (56) is

Hi�iðM;mt;cos�;�h;�Þ
¼ exp½4Sið�h;�Þ�4aið�h;�Þ�

�
�
M2

�2
h

��2a�i
uh
i�i
ðM;mt;cos�;�h;�Þ

�Hi�iðM;mt;cos�;�hÞ
�uhy

i�i
ðM;mt;cos�;�h;�Þ: (64)

From the evolution equations of the hard functions and
the TMD PDFs, we can derive the RGEs of the soft
functions as follows:

d

d ln�
Si�iðL?;M;mt; cos �;�Þ

¼ ��sy
i�i
ðM;mt; cos �;�ÞSi�iðL?;M;mt; cos�;�Þ

� Si�iðL?;M;mt; cos �;�Þ�s
i�i
ðM;mt; cos�;�Þ;

(65)

with �s
i�i
¼ �h

i�i
. Similar to the treatment of the I functions,

we can factor out certain logarithmic terms from the soft
functions to the exponent by

Si�iðL?;M;mt; cos �;�Þ
¼ usy

i�i
ðM;mt; cos �;�Þ �Si�iðL?;M;mt; cos�; �sð�ÞÞ

� us
i�i
ðM;mt; cos �;�Þ; (66)

where

d

d ln�
us
i�i
ðM;mt; cos �;�Þ

¼ �us
i�i
ðM;mt; cos �;�Þ�s

i�i
ðM;mt; cos�;�Þ;

d

d ln�
�Si�iðL?;M;mt; cos �;�sð�ÞÞ ¼ 0: (67)

Following the same procedure as for ui
�i
h , we can obtain u

i�i
s .

And similar to the case of the hi functions, we choose the
boundary conditions as us

i�i
ðM;mt; cos �; b0=xTÞ ¼ 1,

where b0 ¼ 2e�2E . In the �S functions, the � dependence
through �sð�Þ and L? cancels each other, and up to the
NLO, they are given by

�Si�iðL?;M;mt; cos �; �sð�ÞÞ ¼ Si�ið0;M;mt; cos �;�Þ:
(68)

With these RG improved hard and soft functions, we can
now perform the qT resummation according to Eqs. (49)
and (50). To give a precise prediction, we resum the
singular terms to all orders and include the nonsingular
terms up to NLO, which can be written as

d	NNLLþNLO

dqT

¼ d	NNLL

dqT
þ
�
d	NLO

dqT
� d	NNLL

dqT

��������expanded to NLO

�
: (69)

In Eq. (69), the exact NLO QCD corrections can be calcu-
lated by public codes such as MCFM [87] and the expansion
of the resummed formula will be shown in the next section.

V. THE qT SPECTRUM OF t �tAT FIXED ORDER

To verify the correctness of our factorization formula
and our soft functions, we can expand our qT spectrum to
the NLO and the NNLO, and compare with existing results
in the literature. We can also reproduce the NLO total cross
sections using a variation of the qT subtraction method of
[64], which can be compared to the known results.
We start from Eqs. (49) and (50). We will expand the

Ci�i ab functions to the NNLO, which will contain L? up to
power 4. We will then need to carry out the Fourier trans-
form to the qT space. The relevant transformation can be
performed as follows [58]:

1

2

Z
xTdxTJ0ðxTqTÞLn

?

�
x2T�

2

4e�2E

���

¼ ð� @�Þn 1

q2T

�
�2

q2T

��� �ð1� �Þ
e2�E�ð�Þ : (70)

This relation works only when 1=4<�< 1 and the range
can be analytically continued to 0<�< 1. We can then
take the limit �! 0 after we carry out the derivatives. The
Fourier transformation of Ln

? then corresponds to the

following replacements:
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1! �ðq2TÞ; L? ! �
�
1

q2T

�½�2�

	
; L2

? ! �
�
2

q2T
ln
�2

q2T

�½�2�

	
;

L3
? ! �

�
3

q2T
ln 2 �

2

q2T

�½�2�

	
� 4�3�ðq2TÞ; L4

? ! �
�
4

q2T
ln 3 �

2

q2T

�½�2�

	
þ 16�3

�
1

q2T

�½�2�
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(71)

where the definition for the star distribution can be found in, e.g., Ref. [88]. We briefly show the properties of the star
distribution as follows:

½fðq2TÞ�½m
2�

	 ¼ fðq2TÞ for qT > 0;
Z m2

0
dq2T½fðq2TÞ�½m

2�
	 gðq2TÞ ¼

Z m2

0
dq2Tfðq2TÞ½gðq2TÞ � gð0Þ�;

½fðq2TÞ�½m
2�

	 ¼ ½fðqTÞ2�½m02� þ �ðq2TÞ
Z m02

m2
dp2

Tfðp2
TÞ:

(72)

With the one-loop Ii j and soft functions, we can get the qT distribution for top quark pair production at NLO in the small
qT region. The results are given by
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where

Ai�i¼�i
0S
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i�i
; Bi�i¼2i

0S
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i�i
�4w33
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i�i
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(74)

In the previous work [63], we have shown that the
leading singular terms in Eq. (73) agree well with the exact
results at the QCD NLO level in the small transverse
momentum region. However, the NLO qT spectrum re-
ceives no contribution from the �ðq2TÞ terms in Eq. (73).
To check the soft functions further, we now reproduce the
total cross section at NLO for top quark pair production.
Using the phase space slicing method, the NLO total cross
section can be divided into two parts: small qT region
denoted by 	I, which can be obtained by integrating the
distribution in Eq. (73) in the approximation of neglecting
Oðq2T=M2Þ terms, and the large qT part labeled by 	II,
which is infrared safe and can be numerically computed
directly. Thus the total cross section is given by

	NLO¼
Z q2T;cut

0
dq2T

d	NLO

dq2T
þ
Z 1
q2T;cut

dq2T
d	NLO

dq2T
¼	Iþ	II:

(75)

We can make numerical calculation to clarify the correct-
ness of Eq. (75). In our numerical calculation, we use the
MSTW2008NLO PDFs [89] and set mt ¼ 172:5 GeV. We
show the numerical results at the 7 TeV LHC in Fig. 2. It
can be seen that the dependence on qT;cut is canceled when

 (
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FIG. 2 (color online). The NLO total cross section for t�t
production at the LHC with

ffiffiffi
s
p ¼ 7 TeV. The red dotted line

represents 	I and the blue dot-dashed line stands for 	II. The
total cross section is shown as the black solid line. In the lower
plot, the red dash-dotted line represents the result calculated by
MCFM, to which we found perfect agreement.

TOP QUARK PAIR PRODUCTION AT SMALL TRANSVERSE . . . PHYSICAL REVIEW D 88, 074004 (2013)

074004-11



we sum 	I and 	II. Figure 2 shows that the total cross
section computed from our formula is in perfect agreement
with the one calculated by MCFM, and is independent of
qT;cut when qT;cut is sufficiently small.

We can now proceed to calculate the leading singular qT
distribution at the NNLO. For that we will need all the

L?-dependent terms in the NNLO functions Fð2Þ, Ið2Þi j, and

Sð2Þ
i�i
, which can be obtained from the RG equations and the

known results for the two-loop splitting functions and
anomalous dimensions. We write the cross section as

d3	

dq2TdMd cos �

¼ X
i¼q; �q;g

X
a;b

8
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3sM
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dz1dz2
z1z2

� Ci�i abðz1; z2; qT;M; cos�;mt; �Þ
�
Z dx

x
fa=N1

ðx;�Þfb=N2

�
�

xz1z2
; �

�
; (76)

where the perturbative expansion of the partonic cross
section is
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¼X
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�s

4


�
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CðnÞ
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ðz1; z2; qT;M;mt; cos �;�Þ: (77)

At the NNLO level, the partonic cross section can be
expanded asZ dz1
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where the functions Cð2Þ
i�i ab

are the NNLO coefficients of

the functionsCi�i ab and we have suppressed the arguments

of the functions �ð2;mÞ
i�i ab

ðz;M;mt; cos�;�Þ. From our cur-

rent knowledge, we can calculate the coefficients �ð2;mÞ
i�i ab

form ¼ 1, 2, 3, 4, which are sufficient for the qT spectrum.
The explicit expressions for them are too lengthy to be
presented in the text, and we give them in a Mathematica
notebook file associated with the arXiv submission of this

paper. The coefficient �ð2;0Þ
i�i ab

is crucial for computing the

NNLO total cross section using the qT subtraction method.
It receives contributions from the L?-independent terms in

Ið2Þi j and Sð2Þ
i�i
, as well as the NNLO hard functions Hi�i.

These are still not available except the matching coefficient
Iq q, whose NNLO result has been calculated in Ref. [90].

The left plot in Fig. 3 shows the numerical results of the
NLO and NNLO qT distributions, calculated using
Eqs. (73) and (78). Shown together is the exact NNLO
distribution calculated using POWHEG BOX [91–94], which
implements the results of [95]. It can be seen that the
leading singular distribution at the NNLO agrees well
with the exact result, which is a very strong support of
our framework. The right plot shows the small qT region
with a logarithmic scale for the qT axis. As expected from
Eq. (78), the distribution is a cubic function of ln ðqTÞ.

VI. NUMERICAL RESULTS

In this section, we present the numerical results of the
NNLL transverse momentum resummation. We set the top
quark mass to be 172.5 GeV, and use MSTW2008NNLO
PDFs. Following Ref. [59] for the Drell-Yan process and
Ref. [62] for the Higgs production, we choose the factori-
zation scale to be �i ¼ q	i þ qT , where q	i is determined
from

q	i ¼ M exp

�
� 2


�i
0�sðq	i Þ

�
: (79)
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FIG. 3 (color online). The hadronic qT distribution for top quark pair production. The left plot shows the leading singular qT
distribution (red solid line) at NNLO compared with the exact result (blue dash-dotted line) computed using POWHEG BOX. The right
plot shows the small qT region.
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Our factorization formula is formally valid in the region
�QCD � qT � M. When qT ��QCD, there are correc-

tions in powers of xT�QCD, which comes form the

operator-product expansion of the transverse PDFs [59].
These power corrections are of nonperturbative origin and
one must model them using some ansatz. Following
Ref. [59], we choose a simple model such that the TMD
PDFs are replaced by

Bi=Nðz; x2T; �Þ ¼ B
pert
i=Nðz; x2T; �ÞfhadrðxT�i

NPÞ; (80)

where �i
NP is a hadronic scale with i ¼ q, g, and

fhadrðxT�NPÞ is
fhadrðxT�NPÞ ¼ exp ð��2

NPx
2
TÞ: (81)

Figure 4 shows the �NP dependence of the NNLL
resummed transverse momentum distribution of the top
quark pair at the LHC with

ffiffiffi
s
p ¼ 7 TeV. The left plot

shows the total differential cross section while the right
plot shows the contributions from the q �q channel.

Obviously, the nonperturbative form factor has a very
tiny effect on the total distribution. This can be understood
since q	g * 14:0 GeV is far away from the nonperturbative

region, and the dominant contribution to t�t production at
the LHC comes from the gg channel. For the q �q channel,
q	q * 3:0 GeV, and the long-distance effects are expected

to have a stronger influence, which can be seen from the
right plot in Fig. 4. In our numerics in the following, we set
�i

NP ¼ 0:6 GeV to simulate the nonperturbative effects for

t�t production.
We now make predictions for the transverse momentum

distribution of the top quark pair, and compare them with
results from parton shower (PS) methods and with experi-
mental data. According to Eq. (69), we obtain the theoreti-
cal predictions at theNNLLþ NLO accuracy. In Fig. 5, we
compare the NNLLþ NLO resummed distribution with
the results from the LOþ PS program PYTHIA 8.1 [96] and
from NLOþ PS program POWHEG+PYTHIA [97], where the
top quark pair production process is used. Here and in the
following, we choose the central value for �h to beM, and
the perturbative uncertainties are estimated by varying �h,
�q and �g by a factor of 2 around their central values.
When using PYTHIA, we turn off the hadronization and the
decay of top quark. It can be observed that when going
from LOþ PS to NLOþ PS, the differential cross sec-
tions are significantly increased, especially in the peak
region. Our NNLLþ NLO resummed result add another
30% for the peak, while at large qT it is slightly smaller
than the NLOþ PS result. We also note that the uncertain-
ties of the resummed predictions are much smaller than
those obtained by POWHEG+PYTHIA and PYTHIA.
In Table I and Fig. 6, we compare the resummed

prediction for the normalized differential cross section
1=	d	=dqT with experimental data from the ATLAS
and CMS Collaborations. In Table I, the data was measured
by the ATLAS Collaboration in the leptonþ jets channel
[23] with

ffiffiffi
s
p ¼ 7 TeV and is grouped in three bins up to

1.1 TeV. Our NNLLþ NLO resummed predictions are
consistent with the data in all three bins within theoretical
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FIG. 4 (color online). The transverse momentum distribution of top quark pair at the LHC with
ffiffiffi
s
p ¼ 7 TeV, using different values

for �NP. The left plot shows the total differential cross section at the NNLL accuracy. The right plot shows the contributions from q �q
initial states.
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and experimental uncertainties. We note that in the small qT
region the theoretical uncertainties of our predictions are
well under control. At large transversemomentum, however,
the scale dependence is rather large. This can be understood
since for large qT the differential cross sections are domi-
nated by hard gluon emissions,which are not captured by the
resummation of soft and collinear emissions. The behavior
at large qT can be improved by matching our resummed
results to the NLO results for t�tþ jet production calculated
in [95,98–100], which we leave for a future update of our
work. In Fig. 6, we present the normalized qT distribution at
the 8 TeVLHC and compare the theoretical predictions with
the data measured by the CMS Collaboration [26]. It can be
seen that the resummed results are consistent with the
experimental data. The only small difference is in the first
bin, where our prediction is higher than the measured result.
We note that in the first bin in Table I, our prediction is also
slightly higher than the ATLAS data, albeit with a better
agreement. A possible effect which will decrease the differ-
ential cross section at small qT is again coming frommatch-
ing to the NLO results for t�tþ jet. This will increase the
differential cross section at large qT , and hence will affect
the shape globally after normalizing.

Now we turn to the forward-backward asymmetry in top
quark pair production at the Tevatron. The qT-dependent
asymmetry is defined as

AFBðqTÞ ¼ 	FðqTÞ � 	BðqTÞ
	FðqTÞ þ 	BðqTÞ ; (82)

where

	FðqTÞ ¼
Z 1

0
d cos �

d2	

d cos�dqT
;

	BðqTÞ ¼
Z 0

�1
d cos �

d2	

d cos�dqT
:

(83)

The forward-backward asymmetry has been measured by
the CDF [28,101] and D0 [29] Collaborations and was
found to be larger than the SM prediction. To find out the
possible origin of the asymmetry, it is instructive to study
its kinematic dependence. For example, the invariant-
mass-dependent asymmetry has been measured by the
CDF Collaboration [101] and it was found that the dis-
crepancy is mainly in the high invariant mass region. In
[30,31], it has been shown that the asymmetry also has
intriguing dependence on the pair transverse momentum.
In particular, by concentrating in the small qT region, one
can increase the asymmetry which leads to a better signal.
Apparently, in the small qT region, it is essential to use our
framework to resum the soft and collinear gluon effects.
Figure 7 shows the theoretical predictions and the experi-
mental results at the Tevatron. Here the CDF data is
extracted from Ref. [28]. We observe that our resummed
results are consistent with the experimental data, and
have better agreements than the results of PYTHIA. We,
however, note that the central values of our predictions in
the intermediate qT region is slightly lower than the central
values of the data. It would be interesting to see if matching
to the NLO results for t�tþ jet can reduce the difference.

TABLE I. Normalized differential cross section 1=	d	=dqT
at the 7 TeV LHC. The experiment results are measured by the
ATLAS Collaboration in the leptonþ jets channel.

qT [GeV]
1=	d	=dqT [1=TeV]

NNLLþ NLO ATLAS [23]

0� 40 15:5þ0:7ðþ5%Þ�0:6ð�4%Þ 14� 2ð�14%Þ
40� 170 2:4þ0:3ðþ13%Þ�0:2ð�8%Þ 3:0� 0:3ð�10%Þ
170� 1100 0:078þ0:031ðþ40%Þ�0:026ð�33%Þ 0:051� 0:008ð�16%Þ
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VII. SUMMARYAND OUTLOOK

Based on SCETand HQET, we have developed a frame-
work for transverse momentum resummation for top quark
pair production at hadron colliders. We have shown the
details of the derivation of the factorization formula in the
limit of small pair transverse momentum. In the procedure
of factorization, we first of all integrate out the hard
fluctuations and obtain the hard functions. We then
describe the collinear and soft emissions in terms of the
TMD PDFs and the transverse soft functions, respectively.
The resummation of large logarithms is achieved by renor-
malization group evolution.

In order to validate our resummation formula, we
expand it to the NLO and the NNLO to obtain the leading
singular terms at these orders. We then compare the trans-
verse momentum distributions at the NNLO with the exact
results and find perfect agreement in the small qT region.
We also reproduced the NLO total cross section using a
variation of the qT subtraction method. These consistency
checks provide a strong support for our framework.

We then perform the calculation of the transverse
momentum distributions at NNLL accuracy, and compare
them with experimental data and predictions from
parton shower Monte Carlo programs. Our results show
that our resummed predictions agree well with measure-
ments within theoretical and experimental uncertainties.
Furthermore, we discuss the qT-dependent forward-
backward asymmetry at the Tevatron, which is sensitive
to new physics effects. Our predictions are consistent with
the experimental data, despite the fact that the measure-
ments have very large error bars.

In our numerical results, we have matched our NNLL
resummed formula to the NLO results for t�t production,
which is the leading order for t�tþ jet production.
Matching to the NLO results for t�tþ jet production will
definitely provide a big improvement in the large qT
region, and hence also for the shape of the distribution.
On another issue, it is interesting to study the nonpertur-
bative contributions in the small qT region coming from the
effects discussed in [65]. In addition, it will be useful to
calculate the qT-dependent charge asymmetries at the LHC
once such measurements are possible. These we leave for
future updates of our work.

Our formalism can be easily generalized to other pro-
cesses for massive colored particle production at hadron
colliders, such as b �b, c �c and colored supersymmetric
partners. Besides, our resummed formula can provide
another approach to construct the subtraction terms for
the NNLO calculations of top quark pair production, based
on the qT subtraction method. This will require the calcu-
lation of the NNLO hard and soft functions and the TMD
PDFs. The NNLO hard functions may be extracted from
the calculations in [17–20]. The NNLO TMD PDFs for the
quark to quark case has been calculated in [90], and
the results for all channels are likely to be available soon.

The only remaining issue is the L?-independent terms in
the NNLO soft functions.
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APPENDIX A: EXPLICIT EXPRESSIONS OF THE
TMD PDFs AND THE ANOMALOUS DIMENSIONS

For the convenience of the readers, we collect in this
appendix explicit expressions of the matching coefficient
functions for the TMD PDFs as well as the anomalous
dimensions relevant for the NNLL resummation.
The cusp anomalous dimensions are given by

�i
cuspð�sÞ ¼

X1
n¼0

Ci
cusp
n

�
�s

4


�
nþ1

; (A1)

withCq ¼ CF, Cg ¼ CA, and the first three coefficients are

[102,103]
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The anomalous dimensions for massless partons are given
by [104]
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The anomalous dimensions for massive quarks are given
by [105]
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The � function is expanded perturbatively as

�ð�sÞ ¼ �2�s
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; (A5)

with the expansion coefficients up to three loops being
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The matching functions for the TMD PDFs up to the
NLO can be generically written as [58,62]

Ii jðz;L?;�Þ¼�ð1�zÞ�ij
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with the one-loop splitting functions given by
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and the one-loop remainder functions given by
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APPENDIX B: CALCULATION
OF SOFT FUNCTIONS

In this appendix we show the details of calculating the
soft functions. We will work in the momentum space,
where the integrals in Eq. (38) are represented as

~Ijk¼��2�e�E


1��
Z 2


0
d�

Z
ddk

�
�

n �k
�
�

��ðk2Þ�ðk0Þ�ð2Þðk?�q?Þ
vj �vk

vj �kvk �k; (B1)

where � is now the azimuthal angle of q?, and we have

suppressed the MS factor ð4
Þ�e��E . The � integral can
be performed with the help of the � function

�ð2Þðk? � q?Þ ¼ 2�ðk2T � q2TÞ�ð�Þ: (B2)

We then have

~Ijk ¼ � 2�2�e�E


1��
Z

ddk

�
�

n � k
�
�
�ðk2Þ�ðk0Þ�ðk2T � q2TÞ

� vj � vk

vj � kvk � k : (B3)

We parametrize the vectors as

k¼k0ð1; . . . ;sin�1 sin�2;sin�1 cos�2;cos�1Þ;
v3¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��2
t

p ð1; . . . ;0;�t sin�;�tcos�Þ;

v4¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

t

p ð1; . . . ;0;��t sin�;��tcos�Þ:

(B4)

The scalar products appearing in ~Ijk are

v3 �v4¼1þ�2
t

1��2
t

; n �v3¼ �n �v4¼1��tcos�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

t

p ;

�n �v3¼n �v4¼1þ�tcos�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

t

p ;

n �k¼k0ð1�cos�1Þ; �n �k¼k0ð1þcos�1Þ;
v3 �k¼ k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��2
t

p ð1��t sin�1 cos�2 sin���tcos�1 cos�Þ;

v4 �k¼ k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

t

p ð1þ�t sin�1 cos�2 sin�þ�tcos�1 cos�Þ:

(B5)

The integration measure can be written as

ddk�ðk2Þ�ðk0Þ¼�d�4
k1�2�0

2
dk0sin

1�2��1d�1sin�2��2d�2;

(B6)

where

�d�4 ¼ 2

1
2��

�ð12� �Þ ¼
21�2�
���ð1� �Þ

�ð1� 2�Þ : (B7)

We now demonstrate the calculation of the integrals, taking
~I13 as an example, which is
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~I13¼��2�e�E


1�� n �v3�d�4
Z
k1�2�0 dk0sin

1�2��1d�1sin�2��2d�2�ðk20sin2�1�q2TÞ

� ��

k2þ�0

1

ð1�cos�1Þ1þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

t

p
1��t sin�1 cos�2 sin���tcos�1 cos�

: (B8)

Performing the integration over k0 using the � function, we obtain

~I 13 ¼ 1

q2T

�
�2

q2T

�
�þ�=2��2

�2

�
�=2

~I013; (B9)

where

~I013 ¼ �
2�2�e�E�ð1� �Þ


�ð1� 2�Þ ð1� �t cos �Þ
Z 


0
sin 1þ��1d�1

Z 


0
sin�2��2d�2

� 1

ð1� cos �1Þ1þ�
1

ð1� �t sin � sin �1 cos �2 � �t cos � cos �1Þ
¼ � e�E

�ð1� �Þ
Z 


0
d�1

�
cot

�1
2

�
1þ� 1� �t cos�

1� �t cos ð�þ �1Þ 2F1

�
1;
1

2
� �; 1� 2�;

2�t sin � sin �1
1� �t cos ð�þ �1Þ

�
: (B10)

We redefine the integration variable as

�1 ¼ 2 arctan

�
1� y

y

�
;

Z 


0
d�1 ¼

Z 1

0

2

1� 2yþ 2y2
dy: (B11)

The integral then becomes

~I013 ¼ �
2eE�

�ð1� �Þ ð1� �t cos �Þ
Z 1

0
dyy1þ�ð1� yÞ�1�� 2F1ð1; 12� �; 1� 2�; 4yð1�yÞ�t sin �

1�2yð1�yÞþð1�2yÞ�t cos�þ2yð1�yÞ�t sin �
Þ

1� 2yð1� yÞ þ ð1� 2yÞ�t cos �þ 2yð1� yÞ�t sin �
: (B12)

We use the Mathematica package HypExp [106] to expand the hypergeometric functions as a series in �. After integrating
over y, we obtain the explicit expression for ~I13, which is

~I 13 ¼ 1

q2T

�
�2

q2T

�
�þ�=2��2

�2

�
�=2

�
2

�

e�E

�ð1� �Þ � 2 ln
�t1
mtM

þ �f13

�
; (B13)

where

f13 ¼ Li2

�
��2

t sin
2�

1� �2
t

�
: (B14)

With similar calculations, the other soft integrals can be obtained, which are

~I23 ¼ 1

q2T

�
�2

q2T

�
�þ�=2��2

�2

�
�=2

�
� 2

�

e�E

�ð1� �Þ � 2 ln
�u1
mtM

þ �f23

�
;

~I33 ¼ 1

q2T

�
�2

q2T

�
�½�2þ �f33�; ~I34 ¼ 1

q2T

�
�2

q2T

�
�
�
1þ �2

t

�t

ln
1þ �t

1� �t

þ �f34

�
;

(B15)

where

f23 ¼ Li2

�
��2

t sin
2�

1� �2
t

�
; f33 ¼ 2 ln

1� �2
t

1� �2
t cos

2�
;

f34 ¼ 1þ �2
t

�t

�
4 ln

1þ �t

1� �t

ln sec
�

2
� Li2

�
� 1� �t

1þ �t

tan 2 �

2

�
þ Li2

�
� 1þ �t

1� �t

tan 2 �

2

��
:

(B16)

We can then perform the Fourier transform to obtain the results in Eq. (39).
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