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We present a global analysis of the B ! K�ð! K�Þ�þ�� decay using the recent LHCb measurements

of the primary observables P1;2 and P0
4;5;6;8. Some of them exhibit large deviations with respect to the

Standard Model (SM) predictions. We explain the observed pattern of deviations through a large new

physics contribution to the Wilson coefficient of the semileptonic operator O9. This contribution has an

opposite sign to the SM one, i.e., reduces the size of this coefficient significantly. A good description of data

is achieved by allowing for new physics contributions to the Wilson coefficients C7 and C9 only. We find a

4:5� deviation with respect to the SM prediction, combining the large-recoil B ! K�ð! K�Þ�þ��

observables with other radiative processes. Once low-recoil observables are included the significance gets

reduced to 3:9�. We have tested different sources of systematics, none of them modifying our conclusions

significantly. Finally, we propose additional ways of measuring the primary observables through new

foldings.

DOI: 10.1103/PhysRevD.88.074002 PACS numbers: 13.25.Hw, 11.30.Er, 11.30.Hv

The four-body B ! K�ð! K�Þ�þ�� decay and its
plethora of different observables [1–15] is becoming
one of the key players not only in our search for new
physics (NP) in the flavor sector but also to guide us in the
construction of viable new models, which explains the
remarkable experimental effort devoted to its precise
measurement [16–20]. In the effective Hamiltonian ap-
proach used to analyze radiative decays at low energies,
one of the most prominent virtues of this decay is the
capacity to unveil NP contributions inside the short
distance Wilson coefficients, denoted Ci ¼ CSMi þ CNPi ,
not only for the Standard Model (SM) electromagnetic
and dileptonic operators

O7 ¼ e=ð16�2Þmbð �s���PRbÞF��; (1)

O9 ¼ e2=ð16�2Þð�s��PLbÞð �‘��‘Þ; (2)

O10 ¼ e2=ð16�2Þð�s��PLbÞð �‘���5‘Þ; (3)

(with the usual PL;R chirality projection operators) but also

for the chirally flipped operators Oi0 as well as the scalar
and pseudoscalar operators OS;P;S0;P0 . Among these, the

only non-negligible Wilson coefficients in the SM are
CSM7eff;9;10ð�bÞ ¼ ð�0:29; 4:07;�4:31Þ at �b ¼ 4:8 GeV.

The correlations between theWilson coefficients constitute
a unique test ground to find consistent patterns pointing
towards specific NP models.

However, the presence of hadronic effects can easily
hide a NP signal. For this reason, it is essential to design
an optimized basis of observables, easy to measure, with
low hadronic and high NP sensitivities. In Refs. [15,21]
we proposed such a basis, consisting of P1;2;3 and P0

4;5;6

(primary observables with a low sensitivity to form-factor
uncertainties at low dilepton invariant mass q2), together
withFL (orAFB) and d�=dq

2 (containing large uncertainties
but required to complete the basis).
There has been an evolution in the type of observables

measured by LHCb. It started with the set of observables
AFB, FL and S3 [19], all of them rather sensitive to hadronic
uncertainties. The experimental results pointed towards a
scenario consistent with the SM, but with small deviations in
AFB (in both the q2 bin ½2–4:3� GeV2 and the position of
the zero). The next generation of measurements included a

theoretically controlled version of AFB called AðreÞ
T [6] or P2

[7], and P1, which are both less sensitive to hadronic effects
and able to magnify deviations due to NP. Finally, LHCb has
issued very recent results [20] completing the basis ofPi and
P0
i primary observables [7,15,21]. These observables, with

little sensitivity to hadronic uncertainties at low q2, have
unveiled a set of tensions with respect to the SM that have to
be understood from the theoretical point of view. This paper
aims at providing such a consistent picture, where the
Wilson coefficient C9 plays an essential role.
In Sec. I we discuss the experimental evidence, i.e., the

pattern of deviations observed at LHCb. In Sec. II,
we present the main results and the details of our analysis
of data using our basis of observables. Finally, in Sec. III
we explore the robustness of these results analysing dif-
ferent sources of uncertainty, namely, their sensitivity to
perturbative and nonperturbative charm effects, large
power-suppressed corrections as well as the comparison
between naive and next-to-leading-order (NLO) QCD
factorizations. We discuss possible improvements on the
control of the S-wave pollution in an appendix. We con-
clude by suggesting cross-checks of our findings and
further prospects for similar analyses.
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I. EXPERIMENTAL EVIDENCE

The recent LHCb breakthrough, leading to the measure-
ment of most observables of the basis, namely, P1;2 and

P0
4;5;6;8 using folded distributions [19,20], actually exhibits

a consistent pattern of deviations with respect to SM
expectations. In Table I we summarize the experimental
results expressed in our convention in Refs. [7,15].
Ordering the bins according to the dilepton invariant
mass q2, and focusing on the first three bins, comparing
the data [19,20] with the NP scenarios discussed in Ref. [7]
leads to the following comments:

(i) There is no substantial deviation in P1 (still with
large error bars). From this observable, no definite
conclusion can be drawn yet on the presence nor the
absence of contributions from right-handed currents.
One can notice a mild preference for negative values
in the first two bins and positive ones in the third bin,
also present in CDF measurements [16].

(ii) A slight preference for a lower value of the second
and third bins of AFB is consistent with a 2:9�
(1:7�) deviation in the second (third) bin of P2.
One notices also a preference for a slightly higher
q2 value for the zero of AFB (at the same position as
the zero of P2). Both effects can be accommodated
with CNP7 < 0 and/or CNP9 < 0.

(iii) There is a striking 4:0� (1:6�) deviation in the
third (second) bin of P0

5,
1 consistent with large

negative contributions in CNP7 and/or CNP9 .

(iv) P0
4 is in agreement with the SM, but within large

uncertainties, and it has future potential to deter-
mine the sign of CNP10 .

(v) P0
6 and P

0
8 show small deviations with respect to the

SM, but such effect would require complex phases
in CNP9 and/or CNP10 .

A similar pattern of deviations can be observed when one
considers the wider q2 bin ½1; 6� GeV2. Other mechanisms,
involving contributions to chirally flipped operators
CNP70;90;100 , could yield similar effects on some of these

observables, but they fail to provide a consistent picture,
as will become clear in the following.

Indeed, deviations involving mainly P2, P
0
4 and P

0
5 at low

q2 can be understood qualitatively if NP affects C9 and/or
C10. First, at low q2, this NP contribution will impact
the transversity amplitudes A?;k only mildly (as it will be

hidden by the contribution proportional to C7 which is
enhanced by the 1=q2 photon pole) but it will affect A0

much more significantly (where C7 is not enhanced). At low
q2, this type of NP will thus mainly affect observables built
from the A0 amplitude such as P0

4 and P
0
5. Second, as shown

TABLE I. Experimental averages and SM predictions for the
observables used in the analysis. The dictionary between the
different conventions used in Refs. [7,15,19,20] is PLHCb

1 ¼ P1,

PLHCb
2 ¼ �P2, P0LHCb

4 ¼ � 1
2P

0
4, P0LHCb

5 ¼ P0
5, P0LHCb

6 ¼ �P0
6

and P0LHCb
8 ¼ 1

2P
0
8 (sign differences stem from �LHCb‘ ¼ �� �‘).

Observable Experiment SM prediction Pull

hP1i½0:1;2� �0:19þ0:40
�0:35 0:007þ0:043

�0:044 �0:5

hP1i½2;4:3� �0:29þ0:65
�0:46 �0:051þ0:046

�0:046 �0:4

hP1i½4:3;8:68� 0:36þ0:30
�0:31 �0:117þ0:056

�0:052 þ1:5

hP1i½1;6� 0:15þ0:39
�0:41 �0:055þ0:041

�0:043 þ0:5

hP2i½0:1;2� 0:03þ0:14
�0:15 0:172þ0:020

�0:021 �1:0

hP2i½2;4:3� 0:50þ0:00
�0:07 0:234þ0:060

�0:086 þ2:9

hP2i½4:3;8:68� �0:25þ0:07
�0:08 �0:407þ0:049

�0:037 þ1:7

hP2i½1;6� 0:33þ0:11
�0:12 0:084þ0:060

�0:078 þ1:8

hP0
4i½0:1;2� 0:00þ0:52

�0:52 �0:342þ0:031
�0:026 þ0:7

hP0
4i½2;4:3� 0:74þ0:54

�0:60 0:569þ0:073
�0:063 þ0:3

hP0
4i½4:3;8:68� 1:18þ0:26

�0:32 1:003þ0:028
�0:032 þ0:6

hP0
4i½1;6� 0:58þ0:32

�0:36 0:555þ0:067
�0:058 þ0:1

hP0
5i½0:1;2� 0:45þ0:21

�0:24 0:533þ0:033
�0:041 �0:4

hP0
5i½2;4:3� 0:29þ0:40

�0:39 �0:334þ0:097
�0:113 þ1:6

hP0
5i½4:3;8:68� �0:19þ0:16

�0:16 �0:872þ0:053
�0:041 þ4:0

hP0
5i½1;6� 0:21þ0:20

�0:21 �0:349þ0:088
�0:100 þ2:5

hP0
6i½0:1;2� 0:24þ0:23

�0:20 �0:084þ0:034
�0:044 þ1:6

hP0
6i½2;4:3� �0:15þ0:38

�0:36 �0:098þ0:043
�0:056 �0:1

hP0
6i½4:3;8:68� 0:04þ0:16

�0:16 �0:027þ0:060
�0:063 þ0:4

hP0
6i½1;6� 0:18þ0:21

�0:21 �0:089þ0:042
�0:052 þ1:3

hP0
8i½0:1;2� �0:12þ0:56

�0:56 0:037þ0:037
�0:030 �0:3

hP0
8i½2;4:3� �0:30þ0:60

�0:58 0:070þ0:045
�0:034 �0:6

hP0
8i½4:3;8:68� 0:58þ0:34

�0:38 0:020þ0:054
�0:055 þ1:5

hP0
8i½1;6� 0:46þ0:36

�0:38 0:063þ0:042
�0:033 þ1:0

hAFBi½0:1;2� �0:02þ0:13
�0:13 �0:136þ0:051

�0:048 þ0:8

hAFBi½2;4:3� �0:20þ0:08
�0:08 �0:081þ0:055

�0:069 �1:1

hAFBi½4:3;8:68� 0:16þ0:06
�0:05 0:220þ0:138

�0:113 �0:5

hAFBi½1;6� �0:17þ0:06
�0:06 �0:035þ0:037

�0:034 �2:0

hP1i½14:18;16� 0:07þ0:26
�0:28 �0:352þ0:697

�0:468 þ0:6

hP1i½16;19� �0:71þ0:36
�0:26 �0:603þ0:589

�0:315 �0:2

hP2i½14:18;16� �0:50þ0:03
�0:00 �0:449þ0:136

�0:041 �1:1

hP2i½16;19� �0:32þ0:08
�0:08 �0:374þ0:151

�0:126 þ0:3

hP0
4i½14:18;16� �0:18þ0:54

�0:70 1:161þ0:190
�0:332 �2:1

hP0
4i½16;19� 0:70þ0:44

�0:52 1:263þ0:119
�0:248 �1:1

hP0
5i½14:18;16� �0:79þ0:27

�0:22 �0:779þ0:328
�0:363 þ0:0

hP0
5i½16;19� �0:60þ0:21

�0:18 �0:601þ0:282
�0:367 þ0:0

hP0
6i½14:18;16� 0:18þ0:24

�0:25 0:000þ0:000
�0:000 þ0:7

hP0
6i½16;19� �0:31þ0:38

�0:39 0:000þ0:000
�0:000 �0:8

hP0
8i½14:18;16� �0:40þ0:60

�0:50 �0:015þ0:009
�0:013 �0:6

hP0
8i½16;19� 0:12þ0:52

�0:54 �0:008þ0:005
�0:007 þ0:2

hAFBi½14:18;16� 0:51þ0:07
�0:05 0:404þ0:199

�0:191 þ0:5

hAFBi½16;19� 0:30þ0:08
�0:08 0:360þ0:205

�0:172 �0:3

104BB!Xs� 3:43� 0:22 3:15� 0:23 þ0:9

106BB!Xs�
þ�� 1:60� 0:50 1:59� 0:11 þ0:0

109BBs!�þ�� 2:9� 0:8 3:56� 0:18 �0:8

AIðB ! K��Þ 0:052� 0:026 0:041� 0:025 þ0:3

SK�� �0:16� 0:22 �0:03� 0:01 �0:6

1In Ref. [20], only a 3:7� deviation was quoted for the third
bin, due to the fact that the comparison was performed between
the central experimental value and the 68.3% C.L. upper bound
for the theoretical prediction. Here the deviation is computed
comparing the two central values.
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in Ref. [7], the position of the zero of P2 and P0
5 is affected

by a contribution CNP7 and/or CNP9 , whereas that of P0
4 de-

pends on CNP7 , CNP9 and CNP10 . A NP contribution CNP9 < 0
would shift the zero of P2 (resp. P

0
4 and P

0
5) to higher (resp.

lower and higher) q2 values, leading to an increase of the
third bin (resp. an increase of the first bin and an increase of
the second and third bins). A contribution from CNP10 < 0
would mainly affect the zero of P0

4 in a similar way to
CNP9 < 0, whereas a contribution from CNP7 < 0 would have

the same impact as CNP9 < 0 in P2 and P
0
5.

II. ANALYSIS, RESULTS AND DISCUSSION

Qualitatively, all the comments of the previous section
point towards a scenario where CNP9 < 0 (with possible

small contributions CNP7 , CNP10 < 0) in a consistent way.

We will now proceed with a quantitative analysis of these
measurements.

A. General analysis and overview of constraints

We start with a global analysis to the data, in a general
scenario with simultaneous arbitrary (real) NP contribu-
tions to the Wilson coefficients C7;9;10 and C70;90;100 , writing
Ci ¼ CSMi þ CNPi (we neglect scalar contributions). We use
the predictions and uncertainty estimates described in
Ref. [21], following NLO QCD factorization for the
large-recoil (low-q2) bins [22,23] and Heavy-Quark
Effective Theory for the low-recoil (large-q2) bins [24].
We follow a standard �2 frequentist approach, following
Appendix C in Ref. [15]: we take into account the asym-
metric errors on the experimental numbers, estimate theo-
retical uncertainties for each set of values for CNPi , and treat
all uncertainties (experimental and theoretical) as statisti-
cal to combine them in quadrature. The correlations among
the measurements are not available currently and are thus
neglected. We consider the following observables:

(1) Optimized observables in B ! K��þ��: We take
P1, P2, P

0
4, P

0
5, P

0
6 and P0

8, within the 3 large-recoil

bins [0.1,2], [2,4.3] and ½4:3; 8:68� GeV2, and the 2
low-recoil bins [14.18,16] and ½16; 19� GeV2. We
note that: (a) all these observables are independent,
as P3 is not measured (see Ref. [7]), (b) these observ-
ables have little hadronic sensitivity only at low q2

[21], so we expect weak constraints from the low-
recoil region, (c) we do not consider the [1,6] bin at
this stage since these observables are not independent
of the previous ones.Wewill consider this bin later on.

(2) Forward-backward asymmetry in B ! K��þ��:
Once one has chosen a maximal set of optimized
observables, one has still to choose two independent
observables sensitive to form-factor uncertainties.
The differential branching ratio dB=dq2 is one of
them, necessary to fix the overall normalization. We
do not include this observable because of its large
theoretical uncertainty derived from its significant

sensitivity to hadronic form factors. The other ob-
servable can be either AFB or FL. We choose AFB

because of its expected higher sensitivity to CNP9 and

its complementarity with P2 [7,25]. Again, we keep
the [1,6] bin for a later stage of the analysis. We
consider only LHCb measurements (the inclusion of
the available results from other experiments has
only a marginal impact on the data [26]).

(3) Radiative and dileptonic B decays: There are other
importantb ! s penguinmodes sensitive tomagnetic
and dileptonic operators. We consider the branching
ratiosBðB ! Xs�ÞE�>1:6 GeV,BðB ! Xs�

þ��Þ½1;6�
andBðBs ! �þ��Þ, the isospin asymmetryAIðB !
K��Þ and theB ! K�� time-dependentCP asymme-
try SK��. Relevant formulas for these observables can

be found in Ref. [27], while updated experimental
numbers are taken from Refs. [26,28,29] and
Refs. [30–32] [where the average for BðBs !
�þ��Þ takes into account differences in the ratio of
production fractions fs=fd and normalizations for
CMS and LHCb]. We disregard other similar observ-
ables, either because their theoretical description is
not ascertained, such asACPðB ! Xs�Þ, or because of
experimental issues, as is the casewithB ! K�þ��
due to the unclear status of the experimental separa-
tion of neutral and charge modes indicated by the
measured isospin asymmetry [33].

For B ! K�þ��, an additional issue was raised in
Ref. [34], as an unexpected resonant structure c ð4160Þ
has been observed in Bþ ! Kþ�þ�� at low recoil. It
remains to be seen how this resonant structure can impact
the neutral mode around q2 ’ 17:3 GeV2, and if it can
modify the predictions for B ! K��þ�� observables
for the two bins in the low-recoil region. In the following
analysis, we will always consider two data sets: one with
only large-recoil data, the other one with both low- and
large-recoil data.
Experimental averages and SM theoretical predictions

for all these observables are summarized in Table I. As an
outcome of the fit, all Wilson coefficients have 2� C:L:
intervals encompassing the SM value, except for C9 (below
its SM value) with a best-fit point around CNP9 ��1:2.
The SM hypothesis (CNPi ¼ 0 for all i) has a pull2 of 2:9�.
The individual 1, 2 and 3� intervals for the Wilson coeffi-
cients are given in Table II.3 The most economical scenario

2When testing a hypothesis (e.g. the SM) in a given frame-
work, we refer to its p value in units of � as the ‘‘pull’’ of this
hypothesis. Therefore, a lower p value corresponds to a larger
pull in units of �.

3Besides the region close to the SM point, there is an allowed
but less favored region close to the flipped-sign solution for the
Wilson coefficients (Ci ’ �CSMi ). The appearance of this region
is expected and well understood (e.g., Ref. [27]), but would
correspond to a significant amount of NP. We thus disregard it
for the time being, even though this should be kept in mind in
future analyses.
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corresponds to a negative NP contribution to C9 with all the
other Wilson coefficients close to their SM value. Even
though the branching ratio is affected by very large uncer-
tainties and is not considered in our analysis, it is also
interesting to notice that CNP9 < 0 would tend to decrease

the differential branching ratio, improving the agreement
with experimental data.

The large-recoil data favors CNP9 < 0 more significantly

than the low-recoil region. Removing the low-recoil B !
K��þ�� observables from the fit enhances the effect, with
a best-fit point around CNP9 ��1:6. In this case also a

negative contribution CNP90 < 0 is favored. This pattern is

also obtained when considering only the [1,6] bin, though
with larger uncertainties. We discuss these issues in more
depth below.

B. Comparison of NP scenarios

In order to clarify the role played by C9 in explaining the
B ! K��þ�� anomaly and to discuss the role of the other
coefficients, it is interesting to consider nested scenarios
where NP is turned on for eachWilson coefficient one after
the other, starting from the SM hypothesis. In a given
scenario (where some Wilson coefficients Cj1;...jN receive

NP and the others do not), the improvement obtained by
allowing one more Wilson coefficient Ci to receive NP
contributions can be quantified by computing the pull of
the CNPi ¼ 0 hypothesis within the scenario where CNPi and
CNPj1;...jN are left free [35].

When considering the full set of large- and low-recoil
data for B ! K��þ��, we find that the larger pulls
(around �4�) are obtained when adding CNP9 , indepen-

dently of which other Wilson coefficients are left free to
receive NP contributions. The next-to-larger pulls are ob-
tained by adding CNP7 (around �3�), in all cases except
when CNP9 has been added beforehand; in such a case,

the pull is �1:3� (still the lowest after CNP9 ). The rest of

the pulls are always around or below 1�. These results are
consistent with the fact that C9 plays a prominent role in
explaining the B ! K��þ�� anomaly; besides that, a NP
contribution to C7 is also favored though less strongly.

It is also interesting to consider only the large-recoil
bins, for which the theoretical description of the optimized

observables is more accurate. The main picture remains the
same, although in some cases some other coefficients may
play a (more modest) role in the discussion. For instance,
pulls around �3� can be obtained for C10 and C100 if we
insist that CNP9 ¼ 0 (not otherwise). Another example arises

in a scenario with only CNP9 � 0, for which the next most

relevant NP contributions are C7 and C90 (with pulls at the
same level).
Finally, using both low- and large-recoil data for B !

K��þ��, we can compute the pull corresponding to the
CNP10;70;90;100 ¼ 0 hypothesis in the scenario where all 6

Wilson coefficients are allowed to receive NP contribu-
tions. The resulting pull is below�0:2�, indicating that no
other NP contribution is required by the data apart from
CNP9 and CNP7 . The same results occur when only large-

recoil data is used.
Before focusing on this scenario in the following, a

comment is in order concerning alternative scenarios
with different sets of coefficients receiving NP contribu-
tions. In all scenarios considered the best fit corresponds to
CNP9 ��1:2 with a significant preference for negative val-

ues. In addition, a slight preference for negative values of
CNP90 or CNP7 occurs (with much less significance). It arises

for CNP90 when only large-recoil data is considered: CNP90 < 0

is favored to raise the value of hP0
5i½4:3;8:68� without spoiling

the agreement between theory and experiment in the first
bin. This possibility is however weakened by the low-
recoil data, and we will not consider this possibility any
further. On the other hand, CNP7 < 0 is also favored by the
radiative decays (see e.g. Ref. [15]), and deserves further
consideration.

C. ðCNP
7 ; CNP

9 Þ scenario
We focus on the implications of data for NP in C7 and C9.

We perform a standard �2 fit to CNP7 , CNP9 , first including all

the observables considered in Sec. II A, but taking only the
first three large-recoil bins for B ! K��þ��. The result is
shown in Fig. 1, where 68.3% (red), 95.5% (green), and
99.7% (yellow) C.L. regions are shown. The best-fit point
is obtained for CNP9 ��1:5 and CNP7 ��0:02. We stress

that in this scenario, the SM hypothesis CNP7 ¼ 0, CNP9 ¼ 0
has a pull of 4:5�.
The individual 68.3% C.L. (1�) ranges for CNP7 and CNP9

are

CNP7 ¼ ½�0:035; 0:000�; CNP9 ¼ ½�1:9;�1:3�: (4)

Including the low-recoil bins decreases slightly the sig-
nificance of the effect, since these observables are less
constraining and compatible with the SM currently. The
corresponding regions are indicated by the dashed curves
in Fig. 1. The inclusion of the low-recoil data reduces the
discrepancy with respect to the SM to 3:9�. We notice that
if the (first low-recoil) [14.18,16] bin is excluded from the
analysis, we get similar significances analysing either

TABLE II. 68.3% (1�), 95.5% (2�) and 99.7% (3�) confi-
dence intervals for the NP contributions to Wilson coefficients
resulting from the global analysis.

Coefficient 1� 2� 3�

CNP7 ½�0:05;�0:01� ½�0:06; 0:01� ½�0:08; 0:03�
CNP9 ½�1:6;�0:9� ½�1:8;�0:6� ½�2:1;�0:2�
CNP10 ½�0:4; 1:0� ½�1:2; 2:0� ½�2:0; 3:0�
CNP70 ½�0:04; 0:02� ½�0:09; 0:06� ½�0:14; 0:10�
CNP90 ½�0:2; 0:8� ½�0:8; 1:4� ½�1:2; 1:8�
CNP100 ½�0:4; 0:4� ½�1:0; 0:8� ½�1:4; 1:2�
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large-recoil data alone or large- and low-recoil data together,
meaning that the reduction of significance stems mainly
from the [14.18,16] bin, a region where the role of the newly
found c ð4160Þ resonance has still to be understood [20].
In both analyses (with or without low-recoil data),P2 andP

0
5

drive the fits away from the SMpoint, and fits including only
one of these two observables for B ! K��þ��, together
with the other radiative and dileptonic decays, lead to con-
tours in the ðCNP7 ; CNP9 Þ plane similar to Fig. 1.

We would like to understand whether this conclusion is
due to peculiarities of individual bins. For this purpose we
repeat the analysis restricting the input for the B !
K��þ�� observables to ½1; 6� GeV2 bins, exploiting sev-
eral theoretical and experimental advantages. Such wider
bins collect more events with larger statistics. Furthermore,
some theoretical issues are less acute, such as the effect of
low-mass resonances at very low q2 & 1 GeV2 [36], or the
impact of charm loops above �6 GeV2 [37]. On the other
hand, integrating over such a large bin washes out some
effects related to the q2 dependence of the observables, so
that we expect this analysis to have less sensitivity to NP
[15]. This can be seen in Fig. 1, where the regions in this
case are indicated by the orange curves, and as expected
the constraints get slightly weaker. In addition, due to the
fact that theoretical uncertainties happen to increase mod-
erately for large negative NP contributions to C9, the con-
straints are looser in the lower region of the ðCNP7 ; CNP9 Þ
plane. We emphasize that even in this rather conservative

situation the main conclusion (a NP contribution
CNP9 ��1:5) still prevails, whereas the SM hypothesis

has still a pull of 3:2�.
We illustrate the improvement gained by shifting C9 in

Fig. 2, where we show the predictions for CNP9 ¼ �1:5 (and
other CNPi ¼ 0) for the observables P2, P

0
4 and P

0
5, together

with the experimental data and SM predictions. In particu-
lar, we observe how the various observables described in
Sec. I change for CNP9 < 0. If the data is in general well

reproduced in this scenario, there are still a few observ-
ables difficult to explain theoretically. Looking at Fig. 2,
the most obvious cases are hP0

5i in the first and third bins.

One can see there is a tension between these two bins: more
negative values for CNP9 reproduce better the third bin, but

drive the first bin upwards, whose experimental value is
consistent with the SM. A similar situation happens with
the second and third bins of hP2i, although in this case a
good compromise is achieved.
Concerning the individual constraints to the fit, the

large-recoil bins for P2 and P0
5 both favor the same large

region away from the SM in the ðCNP7 ; CNP9 Þ plane, providing
a negative correlation between CNP7 and CNP9 . B ! Xs�
selects values of CNP7 close to the SM value, leading to
the combined (smaller) region shown in Fig. 1. To be more
quantitative, we have considered the pulls obtained by
removing in turn one or two observables from the fit. We
find that the largest pulls are associated to hP0

5i½4:3;8:68�, B !
Xs�, hP2i½14:18;16� and hP0

4i½14:18;16�. B ! Xs� has a large

pull because it plays a very important role in disfavoring a
scenario with large and negative CNP7 , which can mimic the
CNP9 scenario in B ! K��þ�� observables. The observ-

ables hP0
5i½4:3;8:68� and hP2i½14:18;16� pull in different direc-

tions: the former favors more negative and the latter less
negative values for CNP9 , while the best-fit point lies some-

what in the middle, with or without these observables. On
the other hand hP0

4i½14:18;16� has a marginal effect on the

results of the fit.
The role of individual observables is confirmed by com-

paring our analysis with the preliminary results in
Ref. [25], performed in the same framework, but with
only P1,P2 and AFB as inputs for B ! K��þ��, leading
to a 3� deviation from the SM in the ðCNP7 ; CNP9 Þ plane (in
our present analysis, this effect is magnified by the addition
of P0

4;5;6;8 [20] among the observables). We emphasize the

importance of choosing the right set of observables among
the three correlated inputs AFB, P2, FL: FL has a very
significant dependence on the choice of form factors
(Fig. 5), which is less acute in the case of AFB and P2, so
that the choices ðFL; P2Þ or ðFL; AFBÞ [38] lead to results
that are more biased by the specific parametrization of
form factors considered and less sensitive to NP compared
to ðAFB; P2Þ [25]. For this reason, we use AFB instead of FL

in our analysis. We have checked by two different proce-
dures (NLO QCD factorization and naive factorization)
that the 3� deviation reported in Ref. [25] using [1–6]
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95.5 C.L

99.7 C.L

Includes Low Recoil data

Only 1,6 bins

SM

0.15 0.10 0.05 0.00 0.05 0.10 0.15
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4

C7
NP

C
9N

P

FIG. 1 (color online). Fit to ðCNP7 ; CNP9 Þ, using the three large-
recoil bins for B ! K��þ�� observables, together with B !
Xs�, B ! Xs�

þ��, B ! K�� and Bs ! �þ��. The dashed
contours include both large- and low-recoil bins, whereas the
orange (solid) ones use only the 1–6 GeV2 bin for B !
K��þ�� observables. The origin CNP7;9 ¼ ð0; 0Þ corresponds to

the SM values for the Wilson coefficients CSM7eff;9 ¼ ð�0:29; 4:07Þ
at �b ¼ 4:8 GeV.
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bins gets reduced to around 1� if FL is used as an input
instead of P2 or AFB (in agreement with Ref. [38], where
FL is used).

III. ROBUSTNESS OF THE RESULTS

In view of the results of the previous section, it is
important to assess the robustness of the NP interpretation
for the B ! K��þ�� anomaly and how stable the con-
clusion CNP9 < 0 is, taking into account potential pollution

from SM sources mimicking a negative CNP9 .

A. Charm loop

One of the key sources of uncertainty in the extraction of
C9 from B ! K��þ�� is related to the charm-loop con-
tribution (subsequently decaying through a photon into a
dilepton pair) coming from the insertion of 4-quark
current-current (Oc

1;2) or penguin operators (O3�6). The

contributions fromOc
1;2 are particularly important since the

Wilson coefficients are numerically large and the processes
are not Cabibbo-Kobayashi-Maskawa suppressed. This
contribution can be described through a short-distance
(perturbative) contribution, which exhibits a noticeable
sensitivity to the value of mc near the threshold of c �c
production, and a long-distance (nonperturbative) contri-
bution which is difficult to assess.

The perturbative charm-loop contribution is usually
absorbed into the definition of Ceff9 ðq2Þ ¼ C9 þ Yðq2Þ [22]
and is given at leading order by

Ycðq2; mcÞ ¼ � 4

27
ð4C1 þ 3C2 þ 18C3 þ 180C5Þ

�
�
ln
m2

c

�2
� 2

3
� zþ ð2þ zÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jz� 1j

p
arccot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� 1Þ

p �
; (5)

where z ¼ 4m2
c=q

2. There is a threshold at q2 ¼ 4m2
c ’

6 GeV2, above which Eq. (5) must be continued analyti-
cally and an imaginary part is generated. The real part
exhibits a cusp at this threshold, whose exact position
depends on mc. There is a significant variety of choices
in the literature concerning the value of mc for such com-
putation, for instance the pole mass (around 1.4 GeV) [22],

the MS mass at the scale � ¼ mc (around 1.27 GeV) [39]
or the same mass at the scale � ¼ 2mc (around 1 GeV)
[37]. Following Ref. [21], we take the second option and
perform the computation of B ! K��þ�� observables
with a reference value �mc ¼ 1:27 GeV. We can study the
dependence on mc by reinterpreting its change as a shift in
the value of C9, given by
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FIG. 2 (color online). Comparison between the SM predictions (gray boxes), the experimental measurements (blue) crosses and the
predictions for the scenario with CNP9 ¼ �1:5 and other CNPi ¼ 0 (red) empty squares.
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�Cc �c;pert9 ¼ Re½Ycðq2; mcÞ � Ycðq2; �mcÞ�: (6)

The same analysis can be performed for the imaginary part,
which vanishes below the charm threshold, with similar
conclusions.

The long-distance contribution is difficult to estimate,
and we are not aware of a systematic approach able to
compute this correction from first principles. Part of this
effect is taken into account directly at the level of the
experimental analysis, through the removal of charmonium
contributions. From the theoretical side, one can exploit
the light-cone sum-rule computation in Ref. [37], per-
formed below the charm threshold and extrapolated up to
the J=c pole at q2 � 9:4 GeV2. These long-distance con-
tributions can be recast as an effective contribution to C9,
but they depend on the transversity amplitude considered
(contrary to the perturbative case). Even though one could
in principle distinguish this effect from a ‘‘universal’’ NP
contribution CNP9 by comparing observables with different

sensitivities to the three transversity amplitudes, this can-
not be achieved with the current uncertainties. In particu-
lar, the results quoted in Ref. [37] for each amplitude are
compatible within errors. Therefore we consider a univer-
sal correction to C9 arising from the long-distance charm-
loop contribution, that we parametrize as

�Cc �c;LD9 ¼ aþ bq2ðc� q2Þ
q2ðc� q2Þ : (7)

The parameters a, b, c can be obtained by imposing that
the sum of the perturbative contribution Yc and the non-

perturbative �Cc �c;LD9 contributions reproduce the results in

Ref. [37] below the charm threshold [correcting for the
different reference value of the charm-quark mass
�mcðmcÞ ¼ 1:27 GeV used here]. The parameter c is chosen
to recover the J=c pole, leading to a� 5, b� 0:25 and
c� 9:5.

In Fig. 3 we show the size and q2 dependence of the
perturbative and nonperturbative charm-loop contributions
in Eqs. (6) and (7). The results of Sec. II were obtained
taking Ycð �mcÞ and neglecting nonperturbative contribu-
tions. To keep a good agreement with data, an additional
�Cc �c9 correction must be compensated by a shift in the NP

contribution CNP9 compared to the values obtained previ-

ously. A positive �Cc �c9 means that CNP9 should be enhanced

(more negative), whereas a negative �Cc �c9 requires CNP9 to

be reduced in magnitude (less negative). Several comments
are in order. First, one can see that the region between 1
and 6 GeV2 is little affected by the long-distance contri-
bution, and gets either an enhancement of NP effects in CNP9
(for mc ¼ 1 GeV) or a very small depletion (for mc ¼
1:4 GeV) from the short-distance part. In the case of the
[4.3,8.68] bin, one has to remember that the negative con-

tribution �Cc �c;pert9 when varying mc from 1.27 to 1.4 GeV

has to be integrated over the whole bin, leading to a shift of
at mostþ0:3 for CNP9 from this bin (one finds a contribution

of similar size for the imaginary part of C9, which is
however more difficult to interpret directly in terms of a
shift of CNP9 , taken real here).

We see therefore that (a) charm-loop effects affect very
marginally our analysis using B ! K��þ�� observables
in the [1,6] bin only, and (b) these long-distance charm
contributions will tend to enhance (rather than reduce) the
need for a negative CNP9 for the analysis including thinner

bins, closer to the photon and J=c poles.
We have checked the sensitivity of our analysis to these

effects (charm-loop effects and charm-mass dependence) by
considering the least favorable situation for NP, where the
charm-quark mass is shifted from 1.27 to 1.4 GeV and
long-distance contributions are neglected. The need for
CNP9 � 0 remains, with a slight decrease in significance (by

less than 1�) and a small shift of the best-fit value for CNP9
(by ’ þ0:3, in agreement with our previous discussion).

B. Alternative approaches to factorization

A second issue consists in the sensitivity to the frame-
work used to describe B ! K��þ�� form factors and
amplitudes. Following Refs. [7,21,22], we have adopted
the QCD factorization framework. One issue still under
discussion is the uncertainty coming from �=mb correc-
tions. As a check of the robustness of our results with
respect to this issue, we have increased the uncertainties
coming from �=mb corrections by 3, resulting in a slight
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FIG. 3 (color online). Estimate of possible effective correc-
tions to C9 from the mc dependence of short-distance (�Cc �c;pert9 )

and long-distance charm-loop effects (�Cc �c;LD9 ). The thick line

shows a (worst-case scenario) combination of both effects. A
positive contribution here enhances a negative NP contribution
to C9, while a negative contribution here means CNP9 is less

negative by the same amount. Note that these effects cannot
mimic a NP contribution as large as CNP9 ��1:5.
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decrease of the pull for the SM hypothesis in the ðC7; C9Þ
scenario from 4:5� to 4� for the analysis based on the 3
large-recoil bins of B ! K��þ�� (multiplying the same
uncertainties by 6 decreases the significance down to 3�).

If our uncertainties stemming from Refs. [7,21,22] are
fairly standard, one can find alternative estimates for in-
stance in Ref. [36], where larger uncertainties for P0

i at large
recoil are obtained due to significantly larger power-
suppressed corrections. The size of these power corrections
and their q2 dependence was obtained from the spread
between different estimates of the form factors (several
sum-rule computations in different settings and Dyson-
Schwinger equations). If this approach is certainly conser-
vative, it mixes frameworks with very different levels of
accuracy, q2 ranges of validity, and correlations between the
various form factors. Indeed, as noticed in Ref. [36], the
form factors are estimated in a conventional basis which is
different from the helicity basis needed for the computation
of the transversity amplitudes. Our lack of knowledge con-
cerning the correlations among these form factors increases
the uncertainties on the helicity form factors very signifi-
cantly. In our mind, averaging different parametrizations
(some of them not being updated to their latest values)
given in this conventional basis tends to overestimate the
power-suppressed corrections in the helicity form factors.
However, we agree with Ref. [36] that a first-principle
computation of the helicity form factors would be the best
way to improve the accuracy on this type of systematics.

One could also consider the alternative approach of
naive factorization following, e.g., Ref. [4]: the B !
K��þ�� form factors are then treated as independent
and not reduced to two form factors 	?;jj, and contributions
to the transversity amplitudes from hard-gluon interactions
(in particular, spectator interaction) are neglected. As
shown in Ref. [4], these two approaches yield slightly
shifted results for the q2 dependence of some observables,
but they agree on their qualitative variations. We have
performed fits identical to the ones presented in Sec. II C,
with very similar results (preference for CNP9 < 0, SM

hypothesis with a large pull but less significance for the
large-recoil data), indicating that our results are robust with
respect to the use of naive or NLO QCD factorization.

IV. CONCLUSIONS AND PERSPECTIVES

We have combined the recent LHCb measurements of
B ! K��þ�� observables [19,20] with other radiative
modes in a fit to Wilson coefficients, using the framework
of our previous works [15,21]. We have found a strong
indication for a negative NP contribution to the coefficient
C9, at 4:5� using large-recoil data (3:9� using both large-
and low-recoil data). Our results correspond to C9 inside a
68% C.L. range 2:2 � C9 � 2:8 to be compared with
CSM9 ¼ 4:07 at the scale �b ¼ 4:8 GeV. This is the main

conclusion of our analysis of LHCb B ! K��þ��
measurements.

We also observe a slight preference for negative values
in CNP7 (mainly driven by radiative constraints), but no
clear-cut evidence for CNP70;90;100 � 0. The situation for C70
could be clarified with a substantial reduction of error bars
inP1, whereas the case for CNP90 < 0 is supported by the data

at large recoil, but not at low recoil (an illustration of the
improvement brought by CNP90 < 0 at large recoil is shown

in Fig. 4).
We emphasise that the same mechanism CNP9 < 0

(CNP7 < 0) is remarkably efficient and economical in
explaining the whole pattern of deviations indicated by
the recent LHCb results [19,20]: small discrepancies in
AFB, tensions in P2 and P

0
5, preference for a higher position

of the zero of AFB and P2.
If this pattern is confirmed, it remains to determine what

kind of NP could accommodate a situation where CNP9 < 0
is large, with the possibility of additional contributions to
CNP7 and CNP90 . A natural possibility would consist in a Z0

gauge boson [40], coupling to left-handed quarks only but
equally to left- and right-handed charged leptons, and with
flavor-changing couplings to down-type quarks. This cate-
gory of models and the flavor constraints set on them were
discussed in Ref. [41], even though the case discussed here
(i.e., in their notation, ���

L ¼ ���
R , �sb

R ’ 0 and �sb
L with

the same phase as VtbV
�
ts) was not considered specifically

in this reference. In the minimal scenario, the Z0 gauge
boson would contribute to �ms, but not to the Bs � �Bs

mixing phase. As an illustration, such a boson with MZ0 ¼
1 TeV could yield CNP9 ��1:5 and be compatible with

�ms (using the values in Ref. [41]), provided that its
coupling to muons �

��
L ¼ �

��
R is of order 0.1. It would
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FIG. 4 (color online). Improvement in the q2 dependence of P0
5

in the illustrative case CNP9 ¼ CNP90 ¼ �1:5 (and NP contributions

to the other Wilson coefficients set to zero).
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be worth checking if such a scenario could be framed in a
specific model showing a good agreement with all the
available �F ¼ 2 measurements.

Obviously, this analysis is only a starting point, illustrat-
ing the potential of B ! K��þ�� observables to unveil
interesting patterns of NP through rare radiative decays,
and many improvements and confirmations should be
gathered before reaching a definitive conclusion on the
situation discussed here.

The main improvement for the analysis concerns the
reduction of uncertainties. On the experimental side, the
LHCb results [19,20] are based on 1=fb of data collected in
2011. Adding the 2012 data (another 2=fb already on disk)
will constitute a big improvement concerning statistical
uncertainties. In addition, one should be able to improve
on some of the primary observables Pi, as well as on the
determination of the S-wave pollution, by using new fold-
ings (see the Appendix). In order to avoid the potential
pollution of C9 from charm-loop effects, it is essential that
the LHCb experiment provides future results for B !
K��þ�� with a finer q2 binning, with several narrow
bins between 1 and 6 GeV2, and a summary of the corre-
lations among the various measurements. On the theoreti-
cal side, since C9 seems to be the main Wilson coefficient
affected by NP, charm-loop effects become a very impor-
tant issue, with several questions left open. It would be very
useful for the theorists to converge on the scheme and the
scale of the perturbative charm-quark contribution, as well
as to provide alternative and/or improved estimates of the
long-distance contribution obtained in Ref. [37], in par-
ticular above the charm threshold. Another significant
source of uncertainties comes from the form factors, for
which new lattice results should bring more control on the
low-recoil region [42,43]. In order to decrease the uncer-
tainty attached to the form factors, it will also become
essential that their estimates are provided including corre-
lations, or in the basis of helicity form factors discussed in
Refs. [36,44].

An essential aspect consists in cross-checking and con-
firming the results from B ! K��þ�� on CNP9 through

other channels accessible to LHCb and with good pros-
pects of improving on our knowledge of the form factors.
The B ! K�þ�� decay [45] gives a linear constraint
between C7 and C9 involving pseudoscalar-to-pseudoscalar
form factors well suited for lattice simulations [42,46,47].
The Bs ! 
�þ�� [48] has the same potential as B !
K��þ�� in terms of angular observables, with the added
interest of a very narrow
 final state, avoiding the difficult
simulation of wide resonances on the lattice. Finally, the
�b ! ��þ�� decay [49,50] is also a useful cross-check,
with a different angular structure [51] and very recent
estimates for the relevant form factors [52–55].

In all these aspects, a deep interplay between experimen-
tal and theoretical analyses will prove essential to confirm
the pattern of NP suggested by the B ! K��þ�� anomaly.
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APPENDIX: TAMING S-WAVE POLLUTION

In this section we focus on the S-wave pollution coming
from the companion decay B ! K�

0�
þ�� [56–58] with a

threefold aim. First, we provide the explicit form of the
S-wave polluting terms entering the different foldings
allowing one to extract the primary observables. This
might help in estimating the systematics if the bounds
found in Ref. [21] are used. Second, we present three
new foldings to disentangle the contributions from P1

alone, P1;2 and P1;3. Separating P1 from the other observ-

ables can be useful to sharpen the size of its error bars.
Third, we show that certain combinations of folded distri-
butions can be sensitive to the interesting observables free
from S-wave pollution. This could be combined with other
approaches to the S-wave contribution4 to reduce system-
atic uncertainties of the experimental analysis.
Our starting point is the distribution given in Eq. (43) of

Ref. [21] using the definitions for the angular variables
defined there and working in the massless lepton limit
(see Ref. [58] for the massive case). We determine the
S-wave pollution accompanying the relevant folded distri-
butions that can be used to extract the primary observables:
(i) P1;2;3: Identifying 
 $ 
þ � (when 
< 0)

amounts to the folded distribution d�̂ ¼ d�ð
̂Þ þ
d�ð
̂� �Þ. Once normalized to the full distribu-
tion the result (see Sec. 7 of [21] for definitions) is

d�̂=�full ¼ x
2þ 9

16�FTsin
2�̂Kð2P2 cos �̂‘ �P3 sin2
̂

sin2�̂‘Þð1�FSÞ þ �1
sw where x ¼ 9

32� ð8FLcos
2�̂K

sin2�̂‘ þ FTsin
2�̂Kð3 þ cos 2�̂‘Þ þ 2FTP1sin

2�̂K
cos 2
̂sin2�̂‘Þð1 � FSÞ and �ð1Þ

sw ¼ 3
8� ðFS þ AS

cos �̂KÞsin2�̂‘ stands for the S-wave contribution.

The folded angle 
̂ is defined in the range 
̂ 2
½0; �� and all other angles are inside their usual

range �̂l, �̂K 2 ½0; ��. Other foldings providing
subsets of P1;2;3 can be found in Table III.

(ii) P0
4: A double folded distribution is necessary

d�̂ ¼ d�ð
̂Þ þ d�ð�
̂Þ þ d�ð� � 
̂; � � �̂‘Þ þ
d�ð
̂ � �; � � �̂‘Þ and once normalized

d�̂=�full ¼ x þ 9
16�

ffiffiffiffiffiffiffiffiffiffiffiffi
FTFL

p
P0
4 cos
̂ sin 2�̂K sin2�̂‘

4See Ref. [59] for an approach to the S-wave problem using
chiral perturbation theory and dispersion relations and Ref. [60]
for an experimental analysis of the S-wave impact on B !
K��þ��.
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FIG. 5 (color online). Experimental measurements and SM predictions for some B ! K��þ�� observables. The black crosses are
the experimental LHCb data. The blue band corresponds to the SM predictions for the differential quantities, whereas the purple boxes
indicate the corresponding binned observables.
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ð1�FSÞþ�ð2Þ
sw where �ð2Þ

sw¼2�ð1Þ
swþ 3

4�A
4
Scos
̂sin�̂K

sin2�̂‘ with 
̂ 2 ½0; ��, �̂‘ 2 ½0; �=2�, �̂K 2
½0; ��. Another possible folding leading to P0

4 can

be found in Table III.
(iii) P0

5: A double folded distribution is also required

d�̂¼d�ð
̂Þþd�ð�
̂Þþd�ð
̂;�� �̂‘Þþd�ð�
̂;

�� �̂‘Þ leading to d�̂=�full ¼ xþ 9
8�

ffiffiffiffiffiffiffiffiffiffiffiffi
FTFL

p
P0
5

cos 
̂ sin 2�̂K sin �̂‘ð1� FSÞ þ �ð3Þ
sw where �ð3Þ

sw ¼
2�ð1Þ

sw þ 3
4�A

5
S cos 
̂ sin �̂K sin �̂‘. Here 
̂ 2 ½0; ��,

�̂‘ 2 ½0; �=2� and �̂K 2 ½0; ��.
The explicit form of the folding in terms of distributions

for the last two primary observables P0
6;8 depends on the

region in parameter space ð
; �‘; �KÞ chosen. We provide
here the folded distributions for P0

6 and P0
8 in the region


̂ 2 ½0; �=2� (a similar folding can be obtained for 
̂ 2
½��=2; 0�).

(i) P0
6: The associated folded distribution is d�̂¼

d�ð
̂Þþ d�ð�� 
̂Þþd�ð
̂;�� �̂‘Þþd�ð�� 
̂;

�� �̂‘Þ corresponding to d�̂=�full ¼ x� 9
8� �ffiffiffiffiffiffiffiffiffiffiffiffi

FTFL

p
P0
6 sin 
̂ sin 2�̂K sin �̂‘ð1� FSÞ þ �ð4Þ

sw where

�ð4Þ
sw ¼ 2�ð1Þ

sw þ 3
4�A

7
S sin 
̂ sin �̂K sin �̂‘ and �̂‘ 2

½0; �=2�, �̂K 2 ½0; ��.
(ii) P0

8: The folded distribution is in this case d�̂¼
d�ð
̂Þþd�ð��
̂Þþd�ð���̂‘;���̂KÞþ d�ð��

̂;���̂‘;���̂KÞ ¼ x þ 9

16�

ffiffiffiffiffiffiffiffiffiffiffiffi
FTFL

p
P0
8sin
̂sin2�̂K

sin2�̂‘ð1�FSÞþ�5
sw where �5

sw ¼ 3
4�FSsin

2�̂‘ þ
3
4�A

7
S sin 
̂ sin �̂K sin �̂‘ with �̂‘ 2 ½0; �=2�, �̂K 2

½0; ��.
We summarize this discussion in Table III presenting some
of the foldings already discussed, and other possibilities,
with their sensitivity to primary observables and S-wave
polluting terms (besides FS).

Given that the present statistics does not allow one
to fit all S-wave coefficients, we suggest combinations
of folded distributions sensitive to the interesting
observables P2 and P0

4;5 free from S-wave pollution

(besides a global 1� FS factor), but at the price of
reducing the experimental sensitivity. We provide in the
following two examples of this approach, one for P2 and
one for P0

4;5.

First, it was found in Ref. [58] that the identification

 $ 
þ � and �‘ $ �� �‘ leads to a folding similar
to the first folding in Table III but with twice the S-wave
term. In this way the combination of distributions

d�̂ ¼ d�ð
̂; � � �̂‘Þ þ d�ð
̂ � �; � � �̂‘Þ � d�ð
̂Þ �
d�ð
̂ � �Þ once normalized allows a direct measurement

of P2, i.e., d�̂=�full ¼ � 9
4�FTP2 cos �̂‘sin

2�̂Kð1� FSÞ.
The second example combines the two distributions for

P0
4;5 described at the beginning of this section with three

distributions given by Eqs. (28), (41) and (42) in Ref. [58].

In this case the resulting combination is d�̂¼d�ð�
̂Þþ
d�ð�
̂þ�;�� �̂‘Þ þ d�ð
̂��;�� �̂KÞ þ d�ð�
̂;��
�̂‘Þ � d�ð
̂ ��Þ � d�ð � 
̂; � � �̂KÞ � d�ð� � �̂‘Þ�
d�ð
̂��;�� �̂‘Þ leading to d�̂=�full¼ 9

4� sin�̂Kcos
̂

sin �̂‘ ð
ffiffiffiffiffiffiffiffiffiffiffiffi
FLFT

p ðP0
5 þP0

4cos�̂‘Þ cos�̂K þFT P3 sin
̂ sin �̂K
sin�̂‘Þð1�FSÞ.
Finally, we would like to point out that one can

also tame the S-wave contribution using the bounds on
the Ai

S coefficients presented in Ref. [21], which how-

ever require a measurement of FS. This can be achieved

through the folded distribution d�̂ ¼ d�ð
̂Þ þ d�ð��
�̂KÞ þ d�ð
̂� �Þ þ d�ð
̂� �;�� �̂KÞ where only

FS enters as an S-wave pollution d�̂=�full ¼ xþ 1
4� �

½9FTsin
2�̂KðP2 cos �̂‘ � P3 cos 
̂ sin 
̂sin 2�̂‘Þ�ð1�FSÞþ

3
4�FSsin

2�̂‘.

TABLE III. Foldings needed to single out the interesting observables, with the corresponding remaining S-wave pollution. For all
foldings, �̂‘ and �̂K lie within ½0; �=2�, whereas 
̂ has different ranges depending on the observables considered.

Observables S-wave Folding 
̂ range

P1;2;3 As d�ð
̂; �̂l; �̂KÞ þ d�ð
̂� �; �̂l; �̂KÞ ½0; ��
P1 As5, As8 d�ð
̂; �̂l; �̂KÞ þ d�ð
̂; �̂l; �� �̂KÞ þ d�ð�
̂; �� �̂l; �̂KÞ þ d�ð�
̂; �� �̂l; �� �̂KÞ ½0; ��
P1 and P2 As4, As5 d�ð
̂; �̂l; �̂KÞ þ d�ð
̂; �̂l; �� �̂KÞ þ d�ð�
̂; �̂l; �̂KÞ þ d�ð�
̂; �̂l; �� �̂KÞ ½0; ��
P1 and P3 As5, As7 d�ð
̂; �̂l; �̂KÞ þ d�ð
̂; �̂l; �� �̂KÞ þ d�ð
̂; �� �̂l; �̂KÞ þ d�ð
̂; �� �̂l; �� �̂KÞ ½0; ��
P1 and P0

4 As5 d�ð
̂; �̂l; �̂KÞ þ d�ð�
̂; �̂l; �̂KÞ þ d�ð
̂; �� �̂l; �� �̂KÞ þ d�ð�
̂; �� �̂l; �� �̂KÞ ½0; ��
P1 and P0

5 As, As5 d�ð
̂; �̂l; �̂KÞ þ d�ð�
̂; �̂l; �̂KÞ þ d�ð
̂; �� �̂l; �̂KÞ þ d�ð�
̂; �� �̂l; �̂KÞ ½0; ��
P1 and P0

6 As, As7 d�ð
̂; �̂l; �̂KÞ þ d�ð�� 
̂; �̂l; �̂KÞ þ d�ð
̂; �� �̂l; �̂KÞ þ d�ð�� 
̂; �� �̂l; �̂KÞ ½��=2; �=2�
P1 and P0

8 As7 d�ð
̂; �̂l; �̂KÞ þ d�ð�� 
̂; �̂l; �̂KÞ þ d�ð
̂; �� �̂l; �� �̂KÞ þ d�ð�� 
̂; �� �̂l; �� �̂KÞ ½��=2; �=2�

UNDERSTANDING THE B ! K ��þ�� ANOMALY PHYSICAL REVIEW D 88, 074002 (2013)

074002-11



[1] F. Kruger and J. Matias, Phys. Rev. D 71, 094009 (2005).
[2] U. Egede, T. Hurth, J. Matias, M. Ramon, and W. Reece,

J. High Energy Phys. 11 (2008) 032.
[3] E. Lunghi and J. Matias, J. High Energy Phys. 04 (2007)

058.
[4] W. Altmannshofer, P. Ball, A. Bharucha, A. J. Buras,

D.M. Straub, and M. Wick, J. High Energy Phys. 01
(2009) 019.

[5] U. Egede, T. Hurth, J. Matias, M. Ramon, and W. Reece,
J. High Energy Phys. 10 (2010) 056.

[6] D. Becirevic and E. Schneider, Nucl. Phys. B854, 321
(2012).

[7] J. Matias, F. Mescia, M. Ramon, and J. Virto, J. High
Energy Phys. 04 (2012) 104.

[8] C. Bobeth, G. Hiller, and D. van Dyk, J. High Energy
Phys. 07 (2010) 098.

[9] C. Bobeth, G. Hiller, and D. van Dyk, Phys. Rev. D 87,
034016 (2013).

[10] A. K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh,
and D. London, J. High Energy Phys. 11 (2011) 121.

[11] A. K. Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh,
and D. London, J. High Energy Phys. 11 (2011) 122.

[12] W. Altmannshofer, P. Paradisi, and D.M. Straub, J. High
Energy Phys. 04 (2012) 008.

[13] W. Altmannshofer and D.M. Straub, J. High Energy Phys.
08 (2012) 121.

[14] F. Beaujean, C. Bobeth, D. van Dyk, and C. Wacker,
J. High Energy Phys. 08 (2012) 030.

[15] S. Descotes-Genon, J. Matias, M. Ramon, and J. Virto,
J. High Energy Phys. 01 (2013) 048.

[16] CDF Collaboration, Phys. Rev. Lett. 108, 081807 (2012).
[17] Belle Collaboration, Phys. Rev. Lett. 103, 171801 (2009).
[18] BABAR Collaboration, Phys. Rev. D 86, 032012 (2012).
[19] LHCb Collaboration, J. High Energy Phys. 08 (2013) 131.
[20] Report No. LHCb-PAPER-2013-037 (to be published);

see also N. Serra, ‘‘Studies of Electroweak Penguin
Transitions of b ! s��’’ EPS-HEP Conference,
Stockholm, 2013 (unpublished).

[21] S. Descotes-Genon, T. Hurth, J. Matias, and J. Virto,
J. High Energy Phys. 05 (2013) 137.

[22] M. Beneke, T. Feldmann, and D. Seidel, Nucl. Phys. B612,
25 (2001).

[23] M. Beneke, T. Feldmann, and D. Seidel, Eur. Phys. J. C
41, 173 (2005).

[24] B. Grinstein and D. Pirjol, Phys. Rev. D 70, 114005 (2004).
[25] J. Matias, ‘‘Optimizing the Basis of B ! K�‘þ‘�

Observables and Understanding its Tensions,’’ EPS-HEP
Conference, Stockholm, 2013 (unpublished).

[26] Y. Amhis et al. (Heavy Flavor Averaging Group
Collaboration), arXiv:1207.1158.

[27] S. Descotes-Genon, D. Ghosh, J. Matias, and M. Ramon,
J. High Energy Phys. 06 (2011) 099.

[28] T. Huber, T. Hurth, and E. Lunghi, Nucl. Phys. B802, 40
(2008).

[29] LHCb Collaboration, Phys. Rev. Lett. 110, 021801 (2013).
[30] LHCb Collaboration, Phys. Rev. Lett. 111, 101805 (2013).

[31] CMS Collaboration, arXiv:1307.5025.
[32] S. Hansmann-Menzemer, ‘‘Experimental Results on

Flavour Physics,’’ EPS-HEP Conference, Stockholm,
2013 (unpublished).

[33] LHCb Collaboration, J. High Energy Phys. 07 (2012) 133.
[34] LHCb Collaboration, Phys. Rev. Lett. 111, 112003

(2013).
[35] A. Lenz, U. Nierste, J. Charles, S. Descotes-Genon, A.

Jantsch, C. Kaufhold, H. Lacker, S. Monteil, V. Niess, and
S. T’Jampens, Phys. Rev. D 83, 036004 (2011).
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