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In this article, the long-distance correction to the total decay width of the �� ! K0��� decay is

calculated in a model-independent approach, in which a discrimination of photons in the bremmstrahlung

process is assumed. This correction is completely free of ultraviolet and infrared singularities, and,

moreover, it satisfies electromagnetic gauge invariance. The result of this work can be applied on the tau

decays: �� ! ���0�, K��0�.
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I. INTRODUCTION

It is well known that hadronic � decays are an ideal
laboratory to obtain information about the fundamental
parameters within the Standard Model and also some
properties of QCD at low energies [1,2]. In particular, the
� ! K�� decay has been studied in the past by ALEPH
[3] and OPAL [4] and recently at B factories [5,6], where
the high statistic measurements provide excellent informa-
tion about the structure of the spectral functions, para-
meters of the intermediate states, and the total hadronic
spectral function. It is also possible to determine the

product jVusjFK0�þ
þ ð0Þ from this decay, although the best

determination comes from semileptonic kaon decays [7].
On the theoretical side, these sorts of processes have a

nice feature: the decay amplitude can be factorized into a
pure leptonic part and a hadronic spectral function [8] in
such a way that the differential decay distribution reads
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(1)

where a sum over the two possible decays �þ ! Kþ�0�
and �þ ! K0�þ� has been done, isospin symmetry is
assumed, and the reduced vector and scalar form factors
have been normalized to 1 at the origin

~FK�þ ðsÞ ¼ FK�þ ðsÞ
FK�þ ð0Þ ;

~FK�
0 ðsÞ ¼ FK�

0 ðsÞ
FK�þ ð0Þ : (2)

In this expression, �K� � m2
K �m2

�, and the kaon
momentum in the rest frame of the hadronic system reads

qK� ¼ 1

2
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� ðmK þm�Þ2Þðs� ðmK �m�Þ2Þ

q
� �ðs� ðmK þm�Þ2Þ: (3)

A theoretical description [9] of the vector and scalar
form factors has been done in the resonance chiral theory
ðR�TÞ framework [10], providing a successful representa-
tion of the data. It is worth mentioning that Eq. (1) includes
the short-distance correction SEW [11,12]; however, the
long-distance correction is not included neither as a global
factor nor inside the form factors. This long-distance cor-
rection is the electromagnetic correction considering the
decay as a punctual 4-body interaction with form factors.
In the B factories [5,6], an improved experimental preci-
sion can be achieved in the future, which makes it manda-
tory to have a theoretical analysis of the long-distance
correction effects.
It is well known that, in all decays with a charged

particle, the emission of photons is always present, altering
the dynamics of the decay. The approximative next-
to-leading-order algorithms [13] are used to simulate the
correction due to soft photons for which the virtual correc-
tions (one loop) are reconstructed numerically up to the
leading logarithms from the real photon corrections.
An improved algorithm [14] can be applied if a phenome-
nological model is used to describe the behavior of the
invariant amplitude.
On the other hand, the first attempt to describe the

lepton-hadron interaction used a simple effective interac-
tion approach; nonetheless, once the electromagnetic cor-
rection is computed, an unfortunate feature appears: it
depends on the cutoff energy [15] that controls the UV
singularity. Nevertheless, in the chiral perturbation theory
(�PT) framework [16], it is possible to describe the inter-
actions between the lightest multiplet of pseudoscalar
mesons and the lightest leptons at low energy [below the
�ð770Þ resonance region] including also real and virtual
photons [17,18], and, due to the character of �PT, the UV
singularity is cancelled by adding a finite number of
appropriated counterterms. At the end, one does not have
to deal with a UV cutoff but with the finite pieces of the
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coupling constants of the effective theory. A nice example
of this type of electromagnetic correction treatment was
done in Kl3 [19].

Another alternative for the analysis of electromagnetic
corrections is given by a model-independent (MI) approach
[20]. In this method, the invariant amplitude of the radia-
tive correction is separated into external and internal con-
tribution. The external radiative correction contains the MI
correction and a model-dependent (MD) piece, and it is
obtained by considering Feynman diagrams in which the
emission and absorption of real or virtual photons occur
in external lines. The internal radiative correction corre-
sponds to diagrams in which a photon is attached to an
internal line and clearly depends on the precise details of
the process; in other words, this part is MD. The aim of this
technique is to procure an electromagnetic correction,
evaluated once and for all, which is gauge invariant, free
of UV singularities, and contains the dominant logarithms
that come after the infrared singularity cancellation.

The MI technique has been applied in the analysis of the
electromagnetic corrections to the Dalitz plot of semilep-
tonic decays of hyperons [21], in the calculation of radia-
tive correction to leptonic decays of a pseudoscalar meson
[22], and also recently in the radiative corrections analysis
to the Dalitz plot of theKl3 decay [23]. It is worth mention-
ing that the authors in Ref. [23] have quoted that their result
in Kl3 has been compared with the universal electromag-
netic correction given in Ref. [19] with a very small
quantitative difference. That comparison also helps us to
identify the model-dependent part in the MI scheme with
the corresponding form factor computed within �PT. In
the effective approach, the form factors can be separated
into two parts: the first one contains the universal electro-
magnetic correction that is linked with the MI electromag-
netic correction, and the second one can be seen as the
corresponding MD electromagnetic form factor, which in
the context of �PT is made of hadronic loop contributions,
finite local terms, and electromagnetic pieces that are left
aside once the universal correction is defined. It is worth
mentioning that the definition of the universal correction is
not unique; meanwhile, the correction computed in the MI
approach is very well defined.

On the other hand, in hadronic � decays, the energy
transferred

ffiffiffi
s

p
to the hadronic system goes from a thresh-

old (m1 þm2) up to m�, which means that the expansion
parameter of �PT is no longer valid in all the region. In this
respect, we cannot apply consistently the work done in kl3
in computing the electromagnetic corrections in hadronic
tau decays. In this paper, we are not committed to giving a
description of the form factors; our aim is to present the MI
electromagnetic corrections to the � ! K�� decay follow-
ing the techniques given in Ref. [20]. In Sec. II, we
describe briefly the basis of the hadronic tau decay and
general effects of electromagnetic correction. In Sec. III,
the MI electromagnetic corrections for virtual and real

photons are computed. In Sec. IV, we present the MI
corrections to the �þ ! K0�þ� decay width, and in
Sec. V, we give a brief discussion about our result.

II. � DECAYAND THE ELECTROMAGNETIC
INTERACTION

A. Basic elements on � decays

Here, we do a brief review of the very well-known
elements of the �� ! P�P0�� decay for which P is a
pseudoscalar meson. We start with the invariant amplitude
without electromagnetic effects expressed [8] as

Mð0Þ
� ¼ CCGGFVCKMl�h

�; (4)

where GF is the Fermi constant, VCKM is the Cabibbo–
Kobayashi–Maskawa (CKM) matrix element, the

Clebsch–Gordon coefficient CCG ¼ ð�
ffiffi
2

p
2 ; 12 ; 1Þ depends

on the hadronic final state ð�þK0; �0Kþ; �þ�0Þ, and the
leptonic current is given by

l� ¼ �u��
ðqÞ��ð1� �5Þu�ðp�Þ; (5)

meanwhile, the hadronic part h� that contains the form
factors FþðsÞ, F�ðsÞ is written as

h� ¼ FþðsÞðpþ � p0Þ� þ F�ðsÞðpþ þ p0Þ�; (6)

where pþðp0Þ is the 4-momenta of the charged (neutral)
pseudoscalar meson and s ¼ ðpþ þ p0Þ2. The density
function at tree level is given by

�ð0Þðs; uÞ ¼ jFþðsÞj2Dðs; uÞ þ 2FþðsÞFy�ðsÞD3ðs; uÞ
þ jF�ðsÞj2D2ðsÞ; (7)

and the D functions are given as follows:

Dðs; uÞ ¼ 2u2 þ 2uðs�m2
� �m2þ �m2

0Þ

þm2
�

2
ðm2

� � sÞ þ 2m2þm2
0; (8)

D2ðsÞ ¼ m2
�

2
ðm2

� � sÞ; (9)

D3ðs; uÞ ¼ m2
�

2
ð2m2

0 þm2
� � s� 2uÞ: (10)

The differential decay width can be written in a compact
equation,

d�ð0Þ
PþP0

dsdu
¼ jCCGGFVCKMj2

ð4�Þ3m3
�

�ð0Þðs; uÞ; (11)

where u ¼ ðp� � pþÞ2. After doing the u integration, it is
straightforward to get
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�qþ0ð1� s
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�
Þ2

3ð4�Þ3 ffiffiffi
s
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�
�
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1þ 2s
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�
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s
þ 3�2þ

s2

�

þ 3jF�ðsÞj2 þ 6FþðsÞFy�ðsÞ�þ
s

�
; (12)

where �þ ¼ m2þ �m2
0 and the mass of the charged

(neutral) meson is denoted by mþðm0Þ. The momentum
qþ0 in the rest frame of the hadronic system reads

qþ0 ¼ 1

2
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� ðmþ þm0Þ2Þðs� ðmþ �m0Þ2Þ

q
� �ðs� ðmþ þm0Þ2Þ: (13)

It is more familiar and elegant to write Eq. (12) in terms of
the scalar form factor F0ðsÞ defined by

F�ðsÞ ¼ �þ
s

½F0ðsÞ � FþðsÞ�: (14)

With the help of Eq. (14), the differential decay width reads

d�ð0Þ
PþP0

d
ffiffiffi
s

p ¼ jGFVCKMj2m3
�

32�3s

�
1� s

m2
�

�
2
q3þ0Apþpð0Þ

�
�
3�2þ
4sq2þ0

jF0ðsÞj2 þ jFþðsÞj2
�
1þ 2s

m2
�

��
; (15)

where Apþpð0Þ ¼ 4
3C

2
CG and its value is equal to 1

3 ð23Þ for the
hadronic final state Kþ�0, (K0�þ). It is easy to see that
summing both finalK� states, we get Eq. (1). In the case of
the �þ�0-final state, A�� ¼ 4=3, and the scalar form
factor contribution vanishes due to isospin symmetry.

The energy-momenta conservation defines a set of
allowed values for the cinematic variables ðu; sÞ that can
be shown in a Dalitz plot (See Fig. 1), for which the borders
are given by

ðmþ þm0Þ2 � s � m2
�; u�ðsÞ � u � uþðsÞ; (16)

where

u�ðsÞ ¼ 1

2s

�
ðs�m2

�Þðsþm2þ �m2
0Þ þ 2sðm2

� þm2
0 � sÞ

� ðm2
� � sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� ðm2þ þm2

0ÞÞ2 � 4m2þm2
0

q �
: (17)

Considering the hadronic final state K0�þ, the integrated
decay width is found to be

�ð0Þ
K� ¼ jFþð0ÞVCKMj2G2

FC
2
CGN iI

ð0Þ
K�; (18)

where N i ¼ ½ m5
�

48�3� and the integrated density Ið0ÞK� is

defined as follows:

Ið0ÞK� ¼
Z ½1� s

m2
�
�2ds

m2
�s

ffiffiffi
s

p
�
j ~FK�þ ðsÞj2

�
1þ 2s

m2
�

�
q3K�

þ 3�2þqK�

4s
j ~FK�

0 ðsÞj2
�
: (19)

In order to compute Ið0ÞK�, one needs a theoretical descrip-
tion of the normalized vector and scalar form factors
~FK�þ ðsÞ and ~FK�

0 ðsÞ. This task is achieved by a fit to the
measured distributions to �� ! Ks�

��. There is a strong
effort in computing this integral [24] with a dispersive
representation of the form factors, but for illustrative pur-
pose, we consider the parametrized vector and scalar form
factors as given by the Belle Collaboration [6] as

FVðsÞ ¼ FþðsÞ
¼ 1

1þ 	
½BWK�ð892ÞðsÞ þ 	BWK�ð1410ÞðsÞ�; (20)

where 	 is the fraction of the K�ð1410Þ resonance contri-
bution and BWRðsÞ is a relativistic Breit–Wigner function

BWRðsÞ ¼ M2
R

M2
R � s� {MR�RðsÞ

; (21)

and �RðsÞ is the s-dependent total width of the resonance,

�RðsÞ ¼ �0;R

s

M2
R

�

K�ðsÞ

K�ðm2

RÞ
�
3
; (22)


K�ðsÞ ¼ 2qK�ðsÞffiffiffi
s

p : (23)

For the scalar form factor F0ðsÞ, we take a description that
includes only the K�

0ð800Þ resonance,
F0ðsÞ ¼ �

s

M2
K�
0ð800Þ

BWK�
0
ð800ÞðsÞ; (24)

where � is a complex constant and represents the fraction
of the scalar resonance contribution.
The masses and widths of K�ð892Þ, K�ð1410Þ are fixed

from Ref. [25]; meanwhile, the parameters of K�
0ð800Þ

are taken from Ref. [26]. With the values of Table 3

0.5 1.0 1.5 2.0 2.5 3.0
s GeV2

0.5

1.0
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2.0

2.5

u GeV2

FIG. 1. The Dalitz plot without electromagnetic corrections
for the �� ! K0��� decay. The region is defined by
Eqs. (16) and (17).
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given in Ref. [6], it is found Ið0Þ
KS�

� ¼ 0:384221. Moreover,

assuming that

Bð��!K0���Þ¼Bð��!KS�
��ÞþBð��!KL�

��Þ
¼2Bð��!KS�

��Þ; (25)

then we get the raw number

Ið0Þ
K0�� ¼ 2Ið0ÞKS�� � 0:768: (26)

B. Overview on electromagnetic corrections

Here, we address general effects of the electromagnetic
corrections. First, we assume the simplest and easiest
scenario: there is just one form factor that is not affected
by the one-loop integration; in other words, its dependence
on transferred energy is negligible, and we denote this by
writing FþðsÞ ¼ FV . In this case, the tree-level amplitude
for the �þ ! PþP0� decay reads

Mð0Þ ¼ GFVCKMCCGFVl�ðpþ � p0Þ�: (27)

The amplitude for the one-loop electromagnetic correc-
tion with a pointlike meson-photon interaction is found
to be

Mv ¼ GFVCKMCCGFVl�
�

4�
½fe:m:þ ðuÞðpþ � p0Þ�

þ fe:m:� ðuÞðpþ þ p0Þ�þ�: (28)

The details of the one-loop functions are not necessary for
giving our remarks. It is well known that fe:m:þ ðuÞ encloses
UV and IR singularities; meanwhile, fe:m:� ðuÞ contains just
a UV singularity. The IR divergence is cancelled by taking
into account the real photon emission; meanwhile, the
UV problem can be solved with a cutoff in the one-loop
integration that replaces the singularity. In short, this
method consists of making the next replacement

�UV ! ln

�
�2

m2

�
; (29)

where �UV encloses the UV singularity in some regulari-
zation method, the cutoff � can be some resonance mass,
and m is a characteristic mass of the process.

The replacement makes sense because it represents that
something is hidden in the effective 4-body interaction
encoded in Eq. (27). To make an analogy, we recall the
one-loop corrections (at short distances) computed [27]
within the Standard Model for the process � ! ��d �u,
where the pure QED correction in the Fermi model is
UV divergent, but if all the electroweak corrections are
included (Z and W virtual exchange), then the ultraviolet

cutoff ( ln ½�2

m2
�
�) is replaced naturally by a large logarithm,

namely, ln ½mZ=m�� [11]. In this case, the hidden objects in
the Fermi model are Z and W bosons. There are other

prescriptions for the treatment of the UV problem [28],
but that is out of the scope of this work.
On the other hand, when the electromagnetic corrections

are computed in the MI approach, the discussion about the
value of the cutoff � is left aside. For instance, consider
we compute the electromagnetic corrections to Eq. (27)
following the work of Ref. [20]; in this case, the one loop
invariant matrix can be written as

Mv ¼ Mð0Þ �

4�
fe:m:
m:i: ðu; 2Þ þMþ

�

4�
frm:i:ðuÞ

þMð0Þ �

4�
fm:dþ ðuÞ; (30)

where

Mþ ¼ GFVCKMCCGFV �u��
ðqÞ��ð1� �5Þ

� ðpþ � p0Þ� 6pþu�ðp�Þ: (31)

The first and second pieces of Eq. (30) are independent of
structure effects, come from the convection and spin term,
are gauge invariant, are free of UV divergences, and all the
IR singularity is located in these terms. The last piece
gathers, in the function fm:dþ ðuÞ, the electromagnetic effects
on the vector form factor, details of strong interactions, and
the model-dependent assumptions to cancel the UV diver-
gences. Notice that, in assuming the vector form factor is
the dominant one, we are taking into account only the
effects at Oð�Þ to this form factor. Adding Eqs. (27) and
(30), we get

M ¼ Mð0Þ0
�
1þ �

4�
fe:m:
m:i: ðu; 2Þ

�
þM0þ

�

4�
frm:i:ðuÞ;

(32)

where the vector form factor has been redefined at order �
as follows:

F0
VðuÞ ¼ FV þ �

4�
fm:d:þ ðuÞ: (33)

This fact is indicated by a prime on the amplitudes of
Eq. (32). As a consequence, it is assumed that F0

VðuÞ is
extracted from the experiment and hence gives information
about the structure dependence and also helps to select the
best model or theory that describes this form factor and its
complications.
The same procedure is applied when the tree-level

amplitude depends on two form factors; in this case, the
MD amplitude can be written as follows:

Mv
md ¼ GFVCKMCCGl�

�

4�
½Fm:dþ ðs; uÞðpþ � p0Þ�

þ Fm:d� ðs; uÞðpþ þ p0Þ��: (34)

In this general case, the form factors are redefined as
follows:
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F0þðs; uÞ ¼ FþðsÞ þ �

4�
Fm:d:þ ðs; uÞ;

F0�ðs; uÞ ¼ F�ðsÞ þ �

4�
Fm:d:� ðs; uÞ:

(35)

III. MODEL-INDEPENDENT RADIATIVE
CORRECTIONS

A. Virtual photons

The one-loop electromagnetic corrections are computed
from the diagrams shown in Fig. 2, with the tree-level
amplitude given in Eq. (4). The amplitude of the first
external diagram Fig. 2(a) reads

Ma ¼ �u�ðqÞG �{e2

ð2�Þ4
Z

dk4½Fþðs0Þð6pþ � 6p0 þ 6kÞ

þ F�ðs0Þð6pþ þ 6p0 þ 6kÞ��7 6p� þ 6k�m�

k2½ðp� þ kÞ2 �m2
��

� ½2 6pþ þ 6k�
ðpþ þ kÞ2 �m2þ

u�ðp�Þ; (36)

where now s0 ¼ ðp0 þ pþ þ kÞ2 and here we define
G ¼ GFVCKMCCG and �7 ¼ ð1� �5Þ in order to avoid
long expressions. According to our aim and following the
result given in Ref. [20], the amplitude is separated in one
piece that depends only on general QED properties and
a second piece that depends on the description of the
structure.

This assumption allows us to write the amplitudeMa in
the form

Ma ¼ ðMcc
a þMst

a Þ þMmd
a ; (37)

where

Mcc
a ¼ Mð0Þ

�
�{e2

ð2�Þ4
Z ð2p� þ kÞ 	 ð2pþ þ kÞ

k2½ðp� þ kÞ2 �m2
��

� dk4

½ðpþ þ kÞ2 �m2þ�
(38)

is known as the convection term and contains the infrared
singularity, some UV divergences, and the major finite
correction,

Mst
a ¼ G �u�ðqÞh����7 {e2

ð2�Þ4
Z 1

2 ½��; 6k�ð2pþ þ kÞ�
k2½ðp� þ kÞ2 �m2

��
� dk4

½ðpþ þ kÞ2 �m2þ�
u�ðp�Þ; (39)

is the spin term that is UV and IR finite and also gauge
invariant by itself. The MI correction piece of this ampli-
tude is equal to Mcc

a þMst
a ; the MD piece denoted as

Mmd
a is written as indicated in Eq. (34).
The convection term is written in terms of the tree-level

amplitude times the electromagnetic correction as

Mcc
a ¼ Mð0Þ

�
�

4�
½4p� 	 pþC0½m2þ; u; m2

�; 
2�

þ B0½m2
�; 0; m

2
�� � B0½u;m2þ; m2

��
þ B0½m2þ; 0; m2þ��; (40)

where  is the fictitious mass of the photon used in order to
control the IR divergence. The integration is done using the
FEYNCALC [29] package for MATHEMATICA, and in order to

have the certainty of an exact IR singularity cancellation,
we use the analytical expression for the scalar one-loop
function (see the Appendix). The spin term is found to be

Mst
a ¼ Mð0Þ

�
�

4�
ð2p� 	 pþÞfr

þG �u��
ðqÞh����7 6pþu�ðp�Þ �

4�
½2m�f

r�; (41)

where the function fr reads

fr ¼ 1

m2þðy2� � 4r�Þ
�
m2þð2� y�Þ

u

�
2� y�

2
ln ½r��

� x�
1� x2�

ln ½x��ffiffiffiffiffi
r�

p ðy2� � 4r�Þ
�
� ln ½r2��

�
(42)

and we have used the same notation given in Ref. [30].
The amplitude of Fig. 2(b) is the very well-known lepton

self-energy, which is entirely MI and reads

Mb ¼ Mð0Þ
�

2

�

4�

�
��UV þ 2 ln

�
m3

�

�2

�
� 4

�
; (43)

where �UV ¼ 2
4�D � �E þ ln ½4�� in dimensional regu-

larization, � is the well-known mass parameter, and �E

is the Euler constant.
The amplitude of Fig. 2(c) represents the scalar meson

self-energy, and it is split into two pieces:

P
+

τ+

P0

ν

τ+

ν

P
+

P0

τ+

P
+

P0

ν

P
+

τ+

P0

ν

τ+

P0

P
+

ν

(d) (e)

(a) (b) (c)

FIG. 2. The one-loop external radiative correction is con-
structed with diagrams (a), (b), and (c), where PþðP0Þ
denotes the charged (neutral) scalar meson. Diagrams (d) and
(e) correspond to internal radiative corrections.
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Mc ¼ Mcc
c þMmd

c : (44)

The MI contribution is given by (see Ref. [20])

Mcc
c ¼ Mð0Þ

�
1

2

4{��

ð2�Þ4
Z dk4ð2pþ þ kÞ 	 ð2pþ þ kÞ

k2½ðpþ þ kÞ2 �m2þ�2
;

(45)

and the MD piece (Mmd
c ) is written in the form given in

Eq. (34). The addition of the amplitudes corresponding to
last diagrams [Fig. 2(d) and 2(e)] is MD; we denote this as
follows:

Mmd
de ¼ Mmd

d þMmd
e : (46)

The total convection amplitudeMcc
a þMb þMcc

c is free
of UV singularities and is electromagnetic gauge invariant,
which can be easily checked by adding to the photon
propagator the term �k�k�=k2, where � is an arbitrary
parameter, and then seeing that �-dependent contributions
from the lepton self-energy and MI meson self-energy
cancel the respective terms coming from Eq. (40).

The one-loop electromagnetic correction is the sum of
Eqs. (37), (43), (44), and (46) and reads

Mv ¼ Mð0Þ
�

�

4�
½2ðp� 	 pþÞfr þ fvm:i:�

þG �u��
ðqÞh����7 6pþuðp�Þ �

4�
½2m�f

r� þMmd
T ;

(47)

where the total MD contribution is

Mmd
T ¼ Mmd

a þMmd
c þMmd

de ; (48)

and fvm:i: embraces the total convection effect and reads

fvm:i: ¼ 2 ln

�
mþm�

2

�
� 1þmþm�

u

�
1

xt
� xt

�
ln ½xt�

þ 2m2þytC0½m2þ; u; m2
�; 

2� �m2þ
2u

ð1� rtÞ ln ½rt�:
(49)

The first and second pieces of Eq. (47) are the MI one-loop
correction, and the total MD contribution is written as
indicated in Eq. (34). From here, we assume that the
model-dependent part is included in the redefinition of
the form factors as given in Eq. (35).

The MI one-loop correction to the differential tau decay
width is written as

d�PþP0

dsdu
¼ jGj2

ð4�Þ3m3
�

�
�ð0Þðs; uÞ þ �

2�
½�ð0Þðs; uÞ

� ½fvm:i: þ 2p� 	 pþfr� þm2
�f

rfjFþðsÞj2Gðs; uÞ
þ jF�ðsÞj2Eðs; uÞ þ 2Fy

þðsÞF�ðsÞH ðs; uÞg�
�
;

(50)

where

Gðs; uÞ ¼ sðm2þ � uÞ þm2þð4u� 4m2
0Þ þm2

�ðm2
0 �m2þÞ;

(51)

E ðs; uÞ ¼ sðm2þ � uÞ þm2
�m

2
0 �m2þm2

�; (52)

H ðs; uÞ ¼ sðm2þ þ uÞ �m2
�m

2
0 �m2þm2

�: (53)

The IR singularity enclosed only in fvm:i: is cancelled after
taking into account the real-photon emission [31].
In the case of two pions in the hadronic final state where

the vector form factor is dominant, Eq. (50) yields

d���

dsdu
¼ kGFVðsÞk2

ð4�Þ3m3
�

�
Dðs; uÞ

þ �

2�
½ðfvm:i: þ 2p� 	 pþfrÞDðs; uÞ

þm2
rf

rGðs; uÞ�
�
: (54)

B. Real-photon emission

To be consistent with the work done in the one-loop
correction, the model-independent part of the radiative
process must be defined, a task that is achieved by using
the low-energy theorems [32,33].
According to the Low theorem [32], the radiative invari-

ant amplitude denoted as M� can be expanded in powers
of the photon energy k for small k as

M� ¼ M
k

þM1k
0 þ kM2 þ 	 	 	 ; (55)

where the dots symbolize terms with powers of order 
 2
in k. The first piece M (Low term) and M1 can be
calculated completely from the nonradiative invariant
amplitude; meanwhile, M2 and the next elements of the
series depend on the theoretical model that describes
the details of the photon emission from either hadronic
external lines or an internal hadronic vertex. This means
that Eq. (55) establishes the definition of the model-
independent and model-dependent terms in the radiative
amplitude.
On the other hand, it was shown in Ref. [33] that the

unpolarized and squared amplitude of the radiative process
can be split into two parts, one element of order 1=k2 that
comes entirely from the Low term and the rest that contains
contributions of order k0; k1; . . . , as the equation

X
spins

jM�j2 ¼ X
spins

jMð0Þej2
�
pþ 	 �
pþ 	 k�

p� 	 �
p� 	 k

�
2

þ X
spins

jM0j2k0 þ X
spins

jM00j2k1 þ 	 	 	 (56)

shows, where � ¼ �ðkÞ is the photon polarization vector
and

P
spins indicates an average over initial spin states and a
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sum over final spin states, except over the photon degrees
of freedom. The first piece is the Low term, which is
precisely the convection term in the MI scheme and
encloses the appropriated terms that cancel the IR singu-
larity in Eq. (49). The term of order k0 includes contribu-
tions from the interference between the model-independent
and the model-dependent terms; therefore, it is model
dependent. In this work, we consider only the Low term
for the radiative amplitude.

According to the previous lines, our gauge-invariant MI
radiative amplitude for the �þ ! K0�þ�� decay reads

M�
� ¼ Mð0Þ0

� e

�
pþ 	 �
pþ 	 k�

p� 	 �
p� 	 k

�
: (57)

The soft photon approximation [34] was computed in a
previous work [35] with a careful handling of the infrared
singularity [36], and it was shown that the radiative cor-
rection depends on a cutoff energy !0. However, in this
work, we consider an alternative procedure [15,37,38] that
proposes a separation of the Dalitz-plot region in such a
way that the uncomfortable dependence is avoided.

In computing the well-known invariant integrals for the
real-photon correction, a novel approach was done in the
work of A. Martı́nez et al. [23], obtaining the same result as
Ginsberg [37]; however, we follow the technique of the
latter. In the radiative process, a new variable arises known
as the invariant mass of the undetected particles denoted
by x ¼ ðqþ kÞ2 and is bounded as

x�ðs; uÞ � x � xþðs; uÞ; (58)

where k ¼ ðk0;kÞ are the energy and the momentum of the
photon and q is the neutrino 4-momentum. The maximal
and minimal values of x are given in the Appendix. To
compute the real-photon contribution, some assumptions
have to be considered; in this respect, we adopt those given
in Ref. [23], which means the following:

(i) the allowed kinematical region of all values for ðu; sÞ
that satisfy the relation of the three-body space
phase, given by Eqs. (16) and (17);

(ii) the values of the Lorentz-invariant x consistent with
the first point.

In other words, we consider the set of values of u, s, and x
that define a region for which the borders are given as
follows:

DIII ¼ fu�ðsÞ � u � uþðsÞ; ðmK0 þm�þÞ2 � s � m2
�;

2 � x � xþðs; uÞg: (59)

It is important to point out that the IR divergence is pre-
cisely within this region. Here, the minimal value of x is
written in terms of , the same regulator used in handling
the IR singularity in Sec. IIA. As a consequence of these
remarks, we assume a discrimination of real photons that
could be done in an experimental setup by means of an
analysis of the 4-body radiative Dalitz plot (see Fig. 3) [39].

The discriminated photons are inside the complementary
region Dc, only accessible to the radiative process, where
the energy of the photon is never zero, and as a conse-
quence, the radiative amplitude is free of IR singularity.
This region is defined for the following set of values:

Dc ¼
(
uþ � u � ðm� �m�þÞ2; x� � x � xþ;

smin � s � m�ðm�m�þ þm2
K0 �m2

�þÞ
m� �m�þ

)
: (60)

Once our assumptions have been clarified, we can calculate
the contribution of the Low term, Eq. (57), with the corre-
sponding phase space described in Eq. (59). Notice that we
are computing Eq. (18) given in Ref. [37], but adapted to
our process. The differential radiative decay width reads

d��
K�

dsdu
¼ G2

FjVusF
K�þ ð0Þj2C2

CG�ðs; uÞ
m3

�ð4�Þ3
�

�
ðI1;1 þ I2;0 þ I0;2Þ:

(61)

The very well-known invariant integrals are given in
Ref. [37], and details of the computation and the notation
are presented in the appendix; here, we just write our
results as follows:

0.5 1.0 1.5 2.0 2.5 3.0
s GeV2

0.5

1.0

1.5

2.0

2.5

u GeV2

0.40 0.42 0.44 0.46 0.48 0.50
s GeV2

2.45

2.50

2.55

2.60

2.65

u GeV2

DIII

DIII

Dc

FIG. 3. The upper plot shows the projection of the 4-body
radiative Dalitz plot [see Eq. (59)] onto the u–s plane, where it
can be seen that the 3-body Dalitz plot is inside this region. The
lower plot shows an amplification of the projected complemen-
tary region Dc [see Eq. (60)] accessible only to the radiative
process.
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I2;0 ¼ ln

�
m2

� � s

xþðs; uÞ
�
þ ln

�


m�

�
;

I0;2 ¼ ln

�m2
� � s� uþm2

K0

xþðs; uÞ
�
þ ln

�


m�þ

�
;

I1;1 ¼ x�y�ffiffiffiffiffi
r�

p ð1� x2�Þ
�
Li2

��a2

4rþ

�
� Li2

��4r�
a2

�

� ln ½x�� ln
�
y2� � 4r�ffiffiffiffiffi

r�
p

�
þ ln ½x�� ln

�
2

m�m�þ

�

� ln ½x�� ln
�
x�x

2þðs; uÞ
4rþ

��
: (62)

IV. CORRECTIONS TO THE �þ ! K0�þ� DECAY

The results of the previous sections are applicable to
the final hadronic modes ðK0�þ; Kþ�0; �0�þÞ; however,
we are interested only in the first mode. Consequently, we
present here the MI electromagnetic corrections to the
differential width decay due to virtual photons, Eq. (50),
and real photons, Eq. (61), computed within the region
given in Eq. (59),

d�K0�þ

dsdu
¼ G2

FjVusF
K�þ ð0Þj2C2

CG

ð4�Þ3m3
�

fj ~FþðsÞj2 ~Dðs; uÞ

þ 2 ~F�ðsÞ ~FþðsÞ ~D3ðs; uÞ þ j ~F�ðsÞj2 ~D2ðs; uÞg;
(63)

where C2
CG ¼ 1=2 and the ~D functions corrected are

given by

~Dðs;uÞ¼Dðs;uÞþ �

2�
½Dðs;uÞfm:i:

I þGðs;uÞfm:i:
II �;

(64)

~D2ðs; uÞ ¼ D2ðsÞ þ �

2�
½D2ðsÞfm:i:

I þ Eðs; uÞfm:i:
II �; (65)

~D3ðs; uÞ ¼ D3ðs; uÞ þ �

2�
½D3ðs; uÞfm:i:

I þH ðs; uÞfm:i:
II �;
(66)

where

fm:i:
I ¼ 2½I2;0 þ I0;2 þ I1;1� þ fvm:i: þm2

�þy�f
r; (67)

fm:i:
II ¼ m2

�f
r: (68)

The simple form of Eq. (63) gives a hand to identify the
effect of the electromagnetic corrections:

(i) The density function, Eq. (7), is corrected atOð�Þ by
the MI corrections.

(ii) The form factors include, for definition in Eq. (35),
the MD corrections at Oð�Þ.

Integrating Eq. (63), we obtain the total decay width
corrected by the MI electromagnetic corrections,

�K0�þ ¼ �ð0Þ
K0�þ½1þ �m:i:

EM �; (69)

where the electromagnetic correction function reads

�m:i:
EM ¼ ½�=2��

m8
�I

ð0Þ
K�

3

4

Z
fj ~FþðsÞj2½Dðs; uÞfm:i:

I þGðs; uÞfm:i:
II �

þ j ~F�ðsÞj2½D2ðsÞfm:i:
I þ Eðs; uÞfm:i:

II �
þ 2 ~F�ðsÞ ~FþðsÞ½D3ðs; uÞfm:i:

I

þH ðs; uÞfm:i:
II �gdsdu: (70)

To estimate the electromagnetic correction, we follow the
theoretical description for the form factors as given in
Sec. II A; hence, we obtain �m:i:

EM ¼ �0:127%. The aim of
this work has been achieved by writing Eq. (70); however,
the Dalitz-plot corrections can be obtained straightforward
by using Eqs. (64)–(66).
On the other hand, Antonelli et al. [40] have given an

estimate of the long-distance electromagnetic corrections
to �þ ! K0�þ�, where the structure-dependent effects
have been neglected. Their approach relies in the analysis

already done in Kl3 and � ! ���. They found �
�K0�þ
em ¼

ð�0:15� 0:2Þ%, where the uncertainty they assigned is
due to the unknown structure-dependent effects.

V. CONCLUSIONS

Summarizing the work done, we provide the MI elec-
tromagnetic corrections to the �þ ! K0�þ� decay follow-
ing the procedure described in Ref. [20], considering both
virtual and real photons within the 3-body phase space
region given in Eq. (59). As it has been pointed out, this
correction is electromagnetic gauge invariant, free of
IR singularities, free of UV singularities, and, most
importantly, it does not have an UV cutoff. This approach
considers that all structure dependence is included inside
the form factors ~F�ðsÞ after an appropriated redefinition.
In this respect, our work is not focused in the theoretical
description of those form factors or the corresponding
solution to the remaining UV problem.
On the other hand, it is important to accentuate that

Eq. (70) can be used for the hadronic final states �0K�
and ���0 with the corresponding replacements.
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(México) convenio 290754 and by the Spanish
Government and ERDF funds from the EU Commission
[Grants No. FPA2007-60323, No. FPA2011-23778, and
No. CSD 2007-00042 (Consolider Proyect CPAN)].
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APPENDIX: INVARIANT INTEGRALS

The description of the radiative process [Sec. III B]
requires the introduction of the Mandelstam variable

x ¼ ðqþ kÞ2; (A1)

where q is the neutrino 4-momenta and k is the photon
4-momenta. The maximum and minimum values of x are
given as

x�ðs; uÞ ¼ 1

2m2
�

½uðm2þ �m2
0Þ �m2þðm2þ �m2

0Þ

þm2
�ðm2þ þm2

0Þ � sðm2
� �m2þ � uÞ

� 1=2ðu;m2þ; m2
�Þ1=2ðs; m2þ; m2

0Þ�; (A2)

where mþðm0Þ is the mass of the charged (neutral)
pseudoscalar and the well-known Källen function reads

ða; b; cÞ ¼ a2 þ b2 þ c2 � 2ðabþ acþ bcÞ: (A3)

According to the definition given in Ref. [37], the radiative
contribution requires the evaluation of the functions I11,
I20, and I02. These types of integrals were already studied
in Ref. [37]; here, we present brief details about computing
them for our situation. The easiest one is written as

I2;0 ¼ �lim
!0

Z xþðs;uÞ

2
p2
�i2;0dx (A4)

i2;0 ¼ 1

2�

Z d3kd3q

k0q0

�ðP� k� qÞ�ðE� � k0 � q0Þ
½ðp� � kÞ2 �m2

��2
;

(A5)

where P ¼ p� � pþ � p0 and E� ¼ E� � Eþ � E0.
The regulator for the IR singularity is chosen to be the
same as the one used in the one-loop correction. To sim-
plify the evaluation of Eq. (A5), we chose a frame in which
P ¼ 0. After integrating over the photon variable, one delta
function is canceled, and we are left with

i2;0 ¼ 1

8�

Z d3q�
�
E� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 þ 2

q
� q0

	
q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 þ 2

q
� 1h

E�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 þ 2

q
þ p� 	 q� 2=2

i
2
: (A6)

Equation (A6) is evaluated in spherical coordinates,
computing first over the azimuth angle � and then over
q0, so we get

i2;0 ¼
Z �

0

ðE2
� � 2Þ sin �d�

2

� 1

½E�ðE2
� þ 2Þ þ jp�jðE2

� � 2Þ cos �� 2E��2
:

(A7)

After doing the integration in �, Eq. (A7) is found to be

i2;0 ¼ ðx� 2Þ
x2m2

� þ 42ðP 	 p�Þ2 � 22p2
�x

; (A8)

where we have thrown away contributions of Oð4Þ and
greater. Finally, the x integration is done in Eq. (A4), and at
the end of the procedure, we maintain only the logarithm
term in . We thus find

I2;0 ¼ ln

�
m2

� � s

xþðs; uÞ
�
þ ln

�


m�

�
: (A9)

The computation of I0;2 is quite similar, and here we just

present the result:

I0;2 ¼ ln

�
m2

� � u� sþm2
0

xþðs; uÞ
�
þ ln

�


mþ

�
: (A10)

The third integral is written as follows:

I1;1 ¼ lim
!0

Z xþðs;uÞ

2
2p� 	 pþi1;1dx (A11)

i1;1 ¼ 1

2�

Z d3qd3k�ðkþ qÞ
4q0k0½E�k0 � p� 	 k� 2=2�

� �ðE� � k0 � q0Þ
½Eþk0 � pþ 	 kþ 2=2� : (A12)

After integrating the delta function �ðkþ qÞ, we get

i1;1 ¼ 1

2�

Z d3q

4q0k0½E�k0 þ p� 	 q� 2=2�
� �ðE� � k0 � q0Þ

½Eþk0 � pþ 	 kþ 2=2� ; (A13)

where k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 þ 2

q
. The Feynman trick allows us to

combine propagators as

1

ab
¼ 1

½E�k0 þ p� 	 q� 2=2�½Eþk0 þ pþ 	 qþ 2=2�
¼

Z 1

0

dz

½cþ q 	 p�2 ; (A14)

where

c ¼ Eþk0 þ zððE� � EþÞk0 � 2Þ þ 2=2; (A15)

p ¼ p�zþ pþð1� zÞ: (A16)

Combining propagators, using the properties of the
delta function, and computing in spherical coordinates,
Eq. (A13) is reduced to

i1;1 ¼ 1

2�

E2
� � 2

8E2
�

Z 1

0

Z 2�

0

Z �

0

sin �d�d�dzh
�cþ E2

��2

2E�
jpj cos �

i
2

¼ E2
� � 2

4E2
�

Z 1

0

dz

�c2 �
�
jpj E2

��2

2E�

	
2
; (A17)

where
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�c ¼ Eþ
E2
� þ 2

2E�

þ z

�
ðE� � EþÞE

2
� þ 2

2E�

� 2

�
þ 2=2:

(A18)

To do the z integration, the denominator is written as a
polynomial function on z,

�c2 �
�
jpjE

2
� � 2

2E�

�
2 ¼ 1

4E2
�

½�z2 þ 2	zþ ��: (A19)

The coefficients are expressed in terms of scalar products
as follows:

� ¼ ðx� 2Þ2ðm2
� þm2þ � 2ðp� 	 pþÞÞ

þ 44xþ 42ðp� 	 P� pþ 	 PÞ
� ððp� 	 P� pþ 	 PÞ � ðxþ 2ÞÞ; (A20)

	 ¼ ðx� 2Þ2ðp� 	 pþ �m2þÞ þ 24fP 	 p� � 3P 	 pþg
þ 42fP 	 p�P 	 pþ � ðP 	 pþÞ2g
� 24xþ ðx� 2Þ2fP 	 p� � 3P 	 pþg; (A21)

�¼ðx�2Þ2m2þþ2ð2P 	pþÞð2P 	pþþxþ2Þþ4x:

(A22)

It is an easy matter to find that, after some algebraic
manipulation, Eq. (A17) reads

i1;1 ¼
Z 1

0

ðx� 2Þdz
�z2 þ 2	zþ �

¼ ðx� 2Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � ��

p ln

2
4	þ �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	2 � ��
p

	þ �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 � ��

p
3
5: (A23)

To proceed more, we write Eqs. (A20)–(A22) in terms of
Maldenstam variables ðs; u; xÞ with the help of the follow-
ing relations:

P 	 p� ¼ 1

2
ðxþm2

� � sÞ; (A24)

P 	 pþ ¼ 1

2
ðm2

� þm2
0 � s� uÞ; (A25)

p� 	 pþ ¼ 1

2
ðm2

� þm2þ � uÞ: (A26)

Finally, we reduce Eq. (A11) in the conventional form
given by Ginsberg (Eq. (25) in Ref. [37]),

I1;1¼ lim
!0

Z xþðs;uÞ

2
dx

E�

��

� ln

�
x2E�þ22��ðs�m2

�Þþðx�2Þ ��
x2E�þ22��ðs�m2

�Þ�ðx�2Þ ��
�
; (A27)

where

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2jp�j2 þ 2a2

q
; E� ¼ m2

� þm2þ � u

2mþ
;

a2 ¼ �xþðs; uÞx�ðs; uÞ; jp�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu;m2

�; m
2þÞ

q
2mþ

;

�� ¼ uþ s�m2
� �m2

0

2mþ
: (A28)

Recalling the following definitions given by
Ginsberg [37],

r� ¼ x�
m�

8<
:�þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ � 1

16
m2

�a
4

s 9=
;; (A29)

�þ ¼ ��jp�j2ðs�m2
�Þ � 1

4
a2E�; (A30)

and using the master formula (Eq. (28) in Ref. [37]), we get
the final result

I1;1 ¼ x�y�ffiffiffiffiffi
r�

p ð1� x2�Þ
�
Li2

��a2

4rþ

�
� Li2

��4r�
a2

�

þ ln ½x�� ln
�

2

m�mþ

�

� ln ½x�� ln
�ðy2� � 4r�Þffiffiffiffiffi

r�
p x�x

2þðs; uÞ
4rþ

��
; (A31)

where

r� ¼ m2
�

m2þ
; y� ¼ 1þ r� � u

m2þ
;

x� ¼ 1

2
ffiffiffiffiffi
r�

p
�
y� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2� � 4r�

q �
;

(A32)

and the very well-known dilogarithm function [41] is
defined as follows:

Li2ðzÞ ¼ �
Z 1

0

ln ½1� zy�
y

dy: (A33)

In computing the one-loop calculation, the 3-point scalar
function C0½m2þ; u; m2

�; 
2� can be evaluated with the

LOOPTOOLS package [29]. However, in order to see the

exact cancellation of the IR singularity, the function is
written in terms of logarithms and dilogarithms with the
help of the general form given in Ref. [42],
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C0½m2þ; u; m2
�; 

2� ¼ xt
mþm�ð1� x2t Þ

�
� 1

2
ln 2½xt� � �2

6
þ 2 ln ½xt� ln ½1� x2t � þ 1

8
ln 2½rt� þ Li2

�
1� xtffiffiffiffi

rt
p

�
þ Li2½x2t �

þ Li2½1� xt
ffiffiffiffi
rt

p � � ln ½xt� ln
�

2

mþm�

��
: (A34)

The B0 function is very well known, and all the specific cases can be obtained easily from its definition [43].
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[35] F. V. Flores-Baéz, Nucl. Phys. B, Proc. Suppl. 207–208,

141 (2010).
[36] F. Coester, Phys. Rev. 83, 798 (1951); J.M. Jauch and

F. Rohrlich, The Theory of Photons and Electrons: The
Relativistic Quantum Field Theory of Charged Particles
with Spin One-Half (Addison-Wesley, Reading, MA,
1955).

[37] E. S. Ginsberg, Phys. Rev. 162, No. 5, 1570 (1967).
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