
Study on perturbation schemes for achieving the real PMNS matrix
from various symmetric textures

Bin Wang,1 Jian Tang,2 and Xue-Qian Li1

1School of Physics, Nankai University, Tianjin 300071, China
2Center for Particle Physics, University of Alberta, Edmonton, Alberta, T6G 2E1 Canada

(Received 8 March 2013; published 14 October 2013)

The Pontecorvo-Maki-Nakawaga-Sakata matrix displays an obvious symmetry but not exact. There are

several textures proposed in the literature which possess various symmetry patterns and seem to originate

from different physics scenarios at high energy scales. To be consistent with the experimental measure-

ment, however, the symmetry must be broken. Following the schemes given in the literature, we modify

the matrices (ten in total) to gain the real Pontecorvo-Maki-Nakawaga-Sakata matrix by perturbative

rotations. The results may be useful for future model builders.
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I. INTRODUCTION

Mixing among fermions is one of the most mysterious
aspects in particle physics. Mixing among leptons displays
an obvious regularity but not equal to the identity of the
quark mixing. It is well known that the mixing among
fermions originates from the fact that the weak eigenstates
of fermions (quarks and leptons) are not that of the mass
Hamiltonian, and the rotation from the weak basis to the
mass basis results in the mixing matrix [1]. As is observed,
the structures of the quark and leptonmixingmatrices are so
different, and it implies that the mechanisms which deter-
mine their mass eigenstates would be different. Lam sug-
gests that a higher horizontal symmetry Uð1Þ � SOð3Þ is
broken into the tetrahedral A4 and nematic Z2 � Z2 � Z2

sectors which correspond to the lepton and quark mixing,
respectively [2]. Definitely, it is only one of the possible
structures which were discussed in the literature. It is be-
lieved that there must be a higher symmetry at high energy
scales, and later it is broken during the evolution from high
energy to theweak energy scale. It is worth pointing out that
Lam’s mechanism which determines an A4 symmetry for
the lepton mixing demands �13 in the mixing matrix to be
zero. And most of the proposed symmetries would result in
the same zero �13. However, the recent experiments of the
T2K [3], Double-Chooz [4,5], Daya-Bay [6–8], and RENO
[9] Collaborations all confirm that �13 is not zero but sizable
as near 9�. This implies that, even though the lepton mixing
matrix displays an approximate symmetric form, its original
symmetry must be broken.

The most plausible way to break the symmetry is to
perturb the matrix to realize a practical lepton mixing
matrix which is obtained by fitting the data while the
unitarity of the matrix must be retained. The form of the
perturbation may hint to us the breaking mechanism which
is important for understanding the nature. Moreover, in the
process of perturbing the matrix and comparing with data,
we notice that several textures of the matrix are disfavored
or marginally favored, even though a perturbative rotation
would make them in marginal agreement with data (see the
text). That is the breaking mechanism. A careful analysis
of the breaking (indeed the perturbation) indicates that one
may have an opportunity to realize what original symmet-
ric texture(s) is more realistic, so one would be able to trace
back to high energy scale physics where the mixing origi-
nates. In particular, such a study about the patterns of
perturbation may be useful for future model builders.
As is well known, nonzero neutrino masses, neutrino

or lepton mixing, and relatively small splitting among
neutrino masses are the three conditions leading to the
quantum mechanical phenomena: observable neutrino
oscillations [10,11]. The mixing matrix in the lepton sector

Uy
LUR (UL and UR take part in the diagonalizations of

charged lepton and neutrino mass matrices, respectively)
are named as the Pontecorvo-Maki-Nakawaga-Sakata
(PMNS) [12,13] matrix

UPMNS ¼ Uy
LUR; (1)

which is a 3� 3 unitarymatrix and can be parameterized via
mixing angles �12, �23, and �13 and one CP phase � [10]:

UPMNS ¼
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i� c23c13

0
BB@

1
CCA; (2)

where cij � cos�ij, sij � sin �ij. If neutrinos are Majorana particles, there could be one additional matrix

diagðe�1=2; e�2=2; 1Þ, and since it is not revelent to neutrino oscillations at all, we ignore it in this work. The mixing angles
and Jarlskog invariant JCP, which determines the magnitude of CP violation in neutrino oscillation [10,14,15], are
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T12 � tan�12 ¼ jUe2j
jUe1j ; (3)

T23 � tan �23 ¼
jU�3j
jU�3j ; (4)

S13 � sin �13 ¼ jUe3j; (5)

JCP � ImðU�3U
�
e3Ue2U

�
�2Þ: (6)

The recent data indicate that the angle �13 is sizable:
(i) KamLAND.—Global �13 analysis incorporating

CHOOZ, atmospheric, and long-baseline accelerator
experiments indicates sin 2�13 ¼ 0:009þ0:013

�0:007 (i.e.,

�13 ¼ 5:444þ3:086
�2:881

�) andnonzero�13 at 79%C.L. [16].

(ii) T2K.—At 90% C.L. and for �CP ¼ 0,
4:99�ð5:77�Þ< �13 < 15:97�ð17:83�Þ for normal
(inverted) hierarchy [3].

(iii) MINOS.—With �CP ¼ 0 the best fit result is
2sin 2�23sin

2�13 ¼ 0:041þ0:047
�0:031ð0:079þ0:071

�0:053Þ for

normal (inverted) hierarchy and �13 ¼ 0 is disfa-
vored at 89% C.L. [17].

(iv) Double Chooz.—The early result from the Double
Chooz reactor electron antineutrino disappearance
experiment is 3:7� < �13 < 12� at 90% C.L. [4].
The updated results are sin 22�13 ¼ 0:109�
0:030ðstatÞ � 0:025ðsystÞ (i.e., the central value
�13 ¼ 9:639�) and excluding the no-oscillation
hypothesis at 99.8% C.L. [5].

(v) DayaBay.—The Daya Bay Collaboration presents
the reactor electron antineutrino disappearance
experiment result sin 22�13 ¼ 0:092� 0:016ðstatÞ �
0:005ðsystÞ (i.e., the central value �13 ¼ 8:8�) and
nonzero �13 with a significance of 5.2 standard
deviations [6]. The recent updated result is
sin 22�13 ¼ 0:089� 0:010ðstatÞ � 0:005ðsystÞ (i.e.,
the central value �13 ¼ 8:7�) with �13 ¼ 0 disfa-
vored at 7:7� [7,8].

(vi) RENO.—The result from the RENO experiment is
sin 22�13 ¼ 0:113� 0:013ðstatÞ � 0:019ðsystÞ (i.e.,
the central value �13 ¼ 9:821�) [9].

For convenience of discussion, an updated global
analysis on neutrino oscillation data [18] is represented
in Table I, and we single out the mixing angles and represent
them in degrees in Table II, where NH and IH stand for
cases of normal hierarchy and inverted hierarchy,
respectively.
Analyzing the PMNS matrix, one notices an obvious

symmetry but not exact. If writing it in an ideal form which
has an exact symmetry, there are various textures which
have different symmetric patterns. In other words, some
phenomenologically assigned forms for the mixing matrix
UPMNS explicitly manifest flavor symmetries, while the
practical form of the matrix implies that the symmetric
structures should be spontaneously or explicitly broken. By
synthesizing the proposals for the symmetric textures ex-
isting in the literature, there are ten in total such Ansätze:

TABLE I. The updated global fit results of three neutrino oscillation, where �m2 is defined as
m2

3 � ðm2
1 þm2

2Þ=2 and �m2 ¼ m2
2 �m2

1.

Parameter Best fit 1� range 2� range 3� range

�m2=10�5 eV2 (NH or IH) 7.54 7.32–7.80 7.15–8.00 6.99–8.18

sin 2�12=10
�1 (NH or IH) 3.07 2.91–3.25 2.75–3.42 2.59–3.59

�m2=10�3 eV2 (NH) 2.43 2.33–2.49 2.27–2.55 2.19–2.62

�m2=10�3 eV2 (IH) 2.42 2.31–2.49 2.26–2.53 2.17–2.61

sin 2�13=10
�2 (NH) 2.41 2.16–2.66 1.93–2.90 1.69–3.13

sin 2�13=10
�2 (IH) 2.44 2.19–2.67 1.94–2.91 1.71–3.15

sin 2�23=10
�1 (NH) 3.86 3.65–4.10 3.48–4.48 3.31–6.37

sin 2�23=10
�1 (IH) 3.92 3.70–4.31 3:53–4:84 � 5:43–6:41 3.35–6.63

�=� (NH) 1.08 0.77–1.36 � � � � � �
�=� (IH) 1.09 0.83–1.47 � � � � � �

TABLE II. The mixing angles from neutrino oscillation fit results in [18] (in degree).

Parameter Best fit 1� range 2� range 3� range

�12 (NH or IH) 33.6 32.6–34.8 31.6–35.8 30.6–36.8

�13 (NH) 8.93 8.45–9.39 7.99–9.80 7.47–10.2

�13 (IH) 8.99 8.51–9.40 8.01–9.82 7.51–10.2

�23 (NH) 38.4 37.2–39.8 36.2–42.0 35.1–53.0

�23 (IH) 38.8 37.5–41.0 36:5–42:0 � 47:5–53:2 35.4–54.5

� (NH) 194.4 138.6–244.8 � � � � � �
� (IH) 196.2 149.4–264.6 � � � � � �
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(i) tribimaximal mixing (TBM) [19]; (ii) democratic
mixing (DM) [20]; (iii) bimaximal mixing (BM) [21];
(iv) golden ratio mixing 1 (GRM1) [22]; (v) golden
ratio mixing 2 (GRM2) [23]; (vi) hexagonal mixing
(HM) [24]; (vii) tetramaximal mixing (TMM) [25];
(viii) Toorop-Feruglio-Hagedorn mixing 1 (TFH1)
[26–28]; (ix) Toorop-Feruglio-Hagedorn mixing 2 (TFH2)
[26–28]; (x) bidodeca mixing (BDM) [29]. We list the
explicit forms of these patterns in Sec. II.

Some of the matrix forms listed above require zero �13
which is in obvious contradiction to the newly measured
value. It is shown that all those forms can be modified with
perturbative rotations into the form of a real PMNS matrix
which is consistent with the data.

In this work, we explicitly show how a perturbative
rotation transforms the matrix into the one with a sizable
�13 and practical �12 and �23. Our numerical analyses are
shown via several tables and figures. Then we present some
discussions in the last section.

II. THE SYMMETRIC TEXTURES
OF THE MIXING MATRIX

Here we list all ten symmetric textures proposed in the
literature:

UTBM ¼

ffiffi
2
3

q
1ffiffi
3

p 0

� 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

1ffiffi
6

p � 1ffiffi
3

p 1ffiffi
2

p

0
BBBB@

1
CCCCA; (7)

UDM ¼

1ffiffi
2

p 1ffiffi
2

p 0

� 1ffiffi
6

p 1ffiffi
6

p
ffiffi
2
3

q
1ffiffi
3

p � 1ffiffi
3

p 1ffiffi
3

p

0
BBBB@

1
CCCCA; (8)

UBM ¼

1ffiffi
2

p 1ffiffi
2

p 0

� 1
2

1
2

1ffiffi
2

p

1
2 � 1

2
1ffiffi
2

p

0
BBBB@

1
CCCCA; (9)

UGRM1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

�
1þ 1ffiffi

5
p
�s ffiffiffiffiffiffiffiffiffi

2
5þ ffiffi

5
p

q
0

� 1ffiffiffiffiffiffiffiffiffi
5þ ffiffi

5
pp 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

5
p

q
1ffiffi
2

p

1ffiffiffiffiffiffiffiffiffi
5þ ffiffi

5
pp � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

5
p

q
1ffiffi
2

p

0
BBBBBBBBB@

1
CCCCCCCCCA
; (10)

UGRM2 ¼

1
4 ð1þ

ffiffiffi
5

p Þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ð5�

ffiffiffi
5

p Þ
q

0

� 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� ffiffiffi

5
pp

1þ ffiffi
5

p
4
ffiffi
2

p 1ffiffi
2

p

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� ffiffiffi

5
pp

� 1þ ffiffi
5

p
4
ffiffi
2

p 1ffiffi
2

p

0
BBBBBB@

1
CCCCCCA; (11)

UHM ¼

ffiffi
3

p
2

1
2 0

� 1
2
ffiffi
2

p 1
2

ffiffi
3
2

q
1ffiffi
2

p

1
2
ffiffi
2

p � 1
2

ffiffi
3
2

q
1ffiffi
2

p

0
BBBBB@

1
CCCCCA; (12)

UTMM ¼

1
2

�
1þ 1ffiffi

2
p
�

1
2

1
2

�
1� 1ffiffi

2
p
�

� 1�ið1� ffiffi
2

p Þ
2
ffiffi
2

p 1
2

�
1� iffiffi

2
p
�

1þið1þ 1ffiffi
2

p Þ
2
ffiffi
2

p

1þið1� ffiffi
2

p Þ
2
ffiffi
2

p � 1
2

�
1þ iffiffi

2
p
�

� 1�ið1þ 1ffiffi
2

p Þ
2
ffiffi
2

p

0
BBBBBBBBB@

1
CCCCCCCCCA
;

(13)

UTFH1 ¼

3þ ffiffi
3

p
6

1ffiffi
3

p �3þ ffiffi
3

p
6

�3þ ffiffi
3

p
6

1ffiffi
3

p 3þ ffiffi
3

p
6

1ffiffi
3

p � 1ffiffi
3

p 1ffiffi
3

p

0
BBBB@

1
CCCCA; (14)

UTFH2 ¼

3þ ffiffi
3

p
6

1ffiffi
3

p 3� ffiffi
3

p
6

� 1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p

3� ffiffi
3

p
6 � 1ffiffi

3
p 3þ ffiffi

3
p
6

0
BBBB@

1
CCCCA; (15)

UBDM ¼
cos �6 sin �

6 0

� 1ffiffi
2

p sin �
6

1ffiffi
2

p cos �6 � 1ffiffi
2

p

� 1ffiffi
2

p sin �
6

1ffiffi
2

p cos �6
1ffiffi
2

p

0
BBB@

1
CCCA: (16)

It is noted that our expressions of the symmetric forms listed
above may differ from those given in the literature by a sign
or even a phase factor in a row or column of the matrices,
but, obviously, an additional overall phase ei� does not
change the physics of the mixing, and, moreover, our forms
are more convenient to be compared with the conventional
expression Eq. (2) adopted by the Particle Data Group [10].

III. THE MINIMAL MODIFICATIONS
TO THESE PATTERNS

As is well known, the eigenstates of weak interaction are
not that of the mass Hamiltonian; thus, for physical pro-
cesses one should rotate the weak basis into the mass basis.
The unitary transformation between the two bases is
expressed as a 3� 3 matrix: the Cabibbo-Kobayashi-
Maskawa (CKM) matrix for quarks and the PMNS matrix
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for leptons. The PMNS matrix manifests a not-exact regu-
lation. It is supposed that the exact symmetric texture is
originating from a symmetry at a high energy scale, and
breaking it leads to the practical matrix which keeps an
approximate symmetric pattern.

Our goal is to break the symmetric matrix by a
perturbation.

For that, the mass differences among quarks are very
large, and there exists no regularity in the quark sector, as is
shown in Wolfenstein’s parametrization [30]; i.e., the
quark mixing matrix is identity at the first order and is
corrected by Oð�Þ:

1 � �3

� 1 �2

�3 �2 1

0
BB@

1
CCA: (17)

The mass differences in charged leptons are also relatively
large; then the corresponding unitary matrices diagonalizing
the charged lepton mass matrix would also demonstrate the
above Wolfenstein-like form. For neutrinos, with the latest
Planck data [31]

P
m	 < 0:23 eV and squared-mass differ-

ences from Particle Data Group [10] �m2
21 ¼ ð7:50�

0:20Þ � 10�5 eV2, j�m2
32j ¼ ð2:32þ0:12

�0:08Þ � 10�3 eV2, it is

apparent that the mass differences among 	1, 	2, and 	3 are
very small. It can be concluded that the neutrino sector
contributes most to the lepton mixing. In addition, the
mixing parameters between quark and lepton sectors are
correlated by some empirical formulas, for instance, the

quark-lepton complementarity [32] and �13 ¼ �C=
ffiffiffi
2

p
[33], with �C being the Cabibbo angle.

Unlike the mixing matrix for quarks UCKM, which does
not show any symmetry, UPMNS demonstrates an approxi-
mate symmetry, for example, the TBM texture and others
listed in this work. Even though in the literature, the
symmetry (approximate) is determined by a symmetry
group such A4, etc., from the physics picture, we should
think that some symmetry exists in the mass matrices of
charged leptons and neutrinos. One can further consider
that the high symmetry might exist at a high energy scale,
say, the seesaw scale, but is broken during the evolution to
a lower energy scale (for example, the �� � symmetry
[34]). That breaking mechanism must apply to the mass
matrices of both charged leptons and neutrinos. We sup-
pose that diagonalizing the original mass matrices of
charged leptons and neutrinos with two unitary matrices
UL and UR, the UPMNS with a complete symmetry is the
result, but the symmetry breaking makes both the eigen-
states of lepton and neutrino undergo perturbations
(equivalent to the mass matrices with certain symmetries)
which correspond to PL and PR. When we deduce the real
physical UPMNS, such perturbations would perturb the

originally symmetric mixing matrix as Py
LUPMNSPR.

Because the perturbations applied to the eigenstates of
charged leptons and neutrinos may be different, it is not

necessary to let them be the same. However, it is natural to
simplify the picture, so that one can assume that, in gen-
eral, one can just keep the eigenstates of either the charged
leptons or neutrinos remaining the same as the eigenstates
of weak interaction while rotating the rest ones. Thus,
following the scheme adopted in the literature, for dealing
only with the mixing matrix, we adopt the simplified
version. As we state above, from origin, it should be
ðPL

x;y;zÞTUPMNSP
R
x;y;z, but, due to the simplification, we let

one of PLðRÞ
x;y;z be a unit matrix.

Generally speaking, the perturbation to the leading
order mixing matrix U0 can be realized by a perturbation
matrix �U:

UPMNS ¼ U0 þ �U ¼ ð1þ�ULÞ � U0 � ð1þ �URÞ
� PT

L � U0 � PR; (18)

where �U ¼ �UL � U0 þU0 � �UR þ�UL �U0 ��UR.
The unitary matrices PL=R are just three-dimensional rota-

tions and can be a combination of the following matrices
which are rotations about three independent axes:

Px ¼
cx e�i�xsx 0

�ei�xsx cx 0

0 0 1

0
BB@

1
CCA;

Py ¼
1 0 0

0 cy e�i�ysy

0 �ei�ysy cy

0
BB@

1
CCA;

Pz ¼
cz 0 e�i�zsz

0 1 0

�ei�zsz 0 cz

0
BB@

1
CCA;

(19)

where �x, �y, and �z are arbitrary phases and sx � sin x,

cx � cos x, and x, y, and z are rotation angles. Without
losing generality, we consider only the minimal modifica-
tions. In this scheme we let one of PL and PR be a unit
matrix, and only the other plays the role of perturbation. It
should be noted that it is more purposeful to correct the
constant mixing patterns from the viewpoint of the neu-
trino mass matrix, and, in this work, we make perturbations
to these patterns formally aiming to provide information
for the origin of symmetry breaking and the physics behind
the mass matrix.
It should be pointed out that this preliminary work is

purely focused on the mixing aspect of the neutrino. As is
noted above, the mixing matrix originates from the diago-
nalizations of the mass matrices of the charged lepton and
neutrino. Therefore, it would be more purposeful to con-
sider the perturbation at the level of the mass matrix from
the viewpoint of model building. In the basis where the
charged lepton mass matrix is real and diagonal, the neu-
trino mass matrix M	 can be diagonalized (assuming
Majorana neutrinos) by
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Uy
PMNSM	U

�
PMNS ¼ Diagðm1; m2; m3Þ; (20)

where UPMNS ¼ U0 þ �U and M	 ¼ M0 þ �M, i.e.,

ðU0 þ �UÞyðM0 þ �MÞðU0 þ�UÞ�: (21)

Here the correction to U0 is (U0 þ�U), and then we can
represent it as PL � U0 � PR. The M0 is the neutrino mass
matrix at some high energy scale which can be achieved
from some flavor symmetry, for instance, A4, etc. U0 is the
corresponding unitary matrix diagonalizing M0 and is
transformed into the realistic lepton mixing matrix
UPMNS by the presence of �M. Now one cannot present
the analysis for the relationship between �U and �M and
the transforming from U0 to UPMNS asM0 toM	; however,
definitely it is the task of solving the flavor issues of
massive neutrinos. One approach to exploring the structure
of mass matrices is texture zero [35] or cofactor zero [36],
which provides some constraints or relationships on the
parameters depicting the mixing and masses of the
neutrino.

In this work, we carefully analyze only the case for
the tribimaximal mixing, and an explicit illustration on
the results is presented by tables and figures, whereas the
procedure of perturbing the remaining nine symmetric
textures is similar, so we collect corresponding results in
a table in the last section.

There are six possible ways to perturb the symmetric
textures: Px � UTBM, Py �UTBM, Pz �UTBM, UTBM � Px,

UTBM � Py, and UTBM � Pz. We can obtain the real UPMNS

by adjusting the parameters in Px, Py, and Pz. In Table III,

we show the trigonometric functions of the mixing angles,
T12, T23, S13, and the Jarlskog invariant JCP.

Before carrying out the numerical analyses we
would make a discussion on the weak phase in the
perturbation scenario. The strength of CP violation is
fully determined by the Jarlskog invariant JCP¼
1
8 cos�13 sin2�12 sin2�23 sin2�13 sin�, which is expressed

in the standard parametrization, although it does not
depend on any concrete parametrization. The phase(s) in
the mixing matrix is the source of leptonic CP violation

and is of obvious significance. Lam and some other authors
suggest that there exists a high symmetry which a priori
demands Ue3 ¼ 0 even if it breaks, and it would result in
null observation effects of CP violation. Concretely,
Ue3 ¼ 0, jU�3j2 ¼ 1=2, and jUe2j2 ¼ 1=3, which manifest

approximately from the neutrino oscillation data, exist in
the TBM matrix obtained by considering the unitarity of
the mixing matrix. This is the original Ansatz of TBM.
Since Ue3 ¼ sin �13e

�i� in the standard parametrization,
Ue3 ¼ 0 implies that the Jarlskog invariant is always zero,
so that there does not exist any constraint on the Dirac CP
phase �. Moreover, disappearance of � in TBM is due to
the vanishing �13; namely, � is ‘‘hidden’’ in TBM. Then the
perturbation is introduced to slightly change the picture as
UTBM � Py whose results are listed in Table III to illustrate

the relationship between CP phase � and perturbation
phase �y. Then, the appearance of nonzero �13 induced

by the perturbation Py leads to the reemergence of �.

Carrying out the perturbation, ðUTBM�PyÞe3¼ 1ffiffi
3

p sinye�i�y .

With Ue3 ¼ sin �13e
�i� in the standard parametrization,

one obtains sin �13 ¼ jðUTBM � PyÞe3j ¼ 1ffiffi
3

p sin y and � ¼
�y once one assumes � and �y fall in the interval (0, 2�).

Surely, the TBM case is only an example, whereas all ten
Ansätze for the leptonic mixing matrix can also be pre-
sented in the table(s) in a similar way. Some detailed
analyses are given in the following.

IV. NUMERICAL ANALYSES

In this section, we analyze the numerical results
obtained from the formulation derived above. In fact, the
procedures for perturbing all these ten symmetric mixing
patterns are analogous, so we take the tribimaximal mixing
as an example and present the corresponding results of the
rest in the last section.
Our strategy is the following: In the equations presented

in the previous section, we let the left side TijðSijÞ be the

experimentally measured value which is based on a global
fit of the neutrino oscillations and listed in Table II, while the

TABLE III. The results of T12, T23, S13, and JCP as perturbing TBM.

TBM T12 T23 S13 JCP

Px �U 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þsin ð2xÞ cos�x

5þ3 cos ð2xÞ�4 sin ð2xÞ cos�x

q
cos x 1ffiffi

2
p sin x 1

12 sin ð2xÞ sin�x

Py �U 1ffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þsin ð2yÞ cos�y

1�sin ð2yÞ cos�y

r
0 0

Pz �U 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�sin ð2zÞ cos�z

5þ3 cos ð2zÞþ4 sin ð2zÞ cos�z

q
sec z 1ffiffi

2
p sin z 1

12 sin ð2zÞ sin�z

U � Px
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�cos ð2xÞþ2

ffiffi
2

p
sin ð2xÞ cos�x

3þcos ð2xÞ�2
ffiffi
2

p
sin ð2xÞ cos�x

r
1 0 0

U � Py
1ffiffi
2

p cos y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þcos ð2yÞþ2

ffiffi
6

p
sin ð2yÞ cos�y

5þcos ð2yÞ�2
ffiffi
6

p
sin ð2yÞ cos�y

r 1ffiffi
3

p sin y 1
6
ffiffi
6

p sin ð2yÞ sin�y

U � Pz
1ffiffi
2

p sec z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ3 cos ð2zÞ�3

ffiffi
3

p
sin ð2zÞ cos�z

6þ3 cos ð2zÞþ3
ffiffi
3

p
sin ð2zÞ cos�z

r ffiffi
2
3

q
sin z

1
6
ffiffi
3

p sin ð2zÞ sin�z
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right side is the formula we derived by perturbing the
symmetric forms. Equating the two sides, we obtain several
relations between the model parameters; meanwhile, we
take into account the experimental errors. Plotting them in
a figure (Fig. 1, for example), we have three curves which
respectively satisfy the relations for Texp

12 , Texp
23 , and Sexp13 .

With the experimental errors, the three curves expand into
three contour bands whose boundaries correspond to the
error tolerance. Wewill observe the diagrams and see if they
have overlapping regions. If there exists a common region(s)
for the model parameters where all three equations are
satisfied simultaneously, we would say this scheme is plau-
sible; instead, if there is no such common region, the scheme
is not successful and must be abandoned. For instance, in the
case of UTBM � Py, we have

Texp
12 ¼ 1ffiffiffi

2
p cos y; (22)

Texp
23 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ cos ð2yÞ þ 2

ffiffiffi
6

p
sin ð2yÞ cos�y

5þ cos ð2yÞ � 2
ffiffiffi
6

p
sin ð2yÞ cos�y

s
; (23)

Sexp13 ¼ 1ffiffiffi
3

p sin y; (24)

where the superscript ‘‘exp’’ refers to the experimental
data. Solving these equations, we obtain three curves
which correspond to relations between the model parame-
ters y and �y as shown in Fig. 1. Because of the experi-

mental errors, the curves expand into bands. The rest of the
schemes are similar, and we will not discuss the results
with different perturbation Ansätze in every detail but show
their results in the following section.
For more explicitly demonstrating the fitting effects, we

provide the scatter plots. In the plotswe set�12,�23,�13, and
JCP as horizontal and vertical axes alternatively and then
mark the experimental data of the corresponding quantities,
and each of them spreads into a band whose width is 3
standard deviations (3�). There is an overlapping region
where both experimental data are satisfied within 3�. Then
we plot our theoretical predictions by letting the model
(perturbation) parameters scan their whole allowed ranges
(for example, for UTBM � Py, 0

� 	 y 	 180� and 0� 	
�y 	 180�). If the theoretically predicted values which

are calculated with a given perturbation Ansatz (the red
dots) fall into the overlapping region, it means that the
equation about the model parameters has solutions which
coincide with the data at least within 3� tolerance. If there
are not red dots in the region, the model fails to provide a
solution, so that does notwork at all. Then even though in all
four diagrams solutions for the model parameters seem to
exist, we have to investigate if the solutions provided by the
four scatter plots correspond to the same model parameter
region. Indeed, the answer resides in the curved band dia-
grams, whereas the scatter plots can offer some detailed
information about the mixing angles and JCP which will be
measured in future experiments.
For simplicity, we take UTBM � Py as an example to

demonstrate the procedure of our numerical analyses.
For UTBM � Py the curved bands of the three mixing

angles are shown in Fig. 1. It is noted that �12, �23, and
�13 share an overlapping region within 1�. It indicates that
the perturbation Ansatz UTBM � Py provides a plausible

scheme to accommodate all the experimental values of
three mixing angles.
The scatter plots among the three mixing angles and

Jarlskog invariant in the perturbation Ansatz UTBM � Py are

shown in Fig. 2. The �13 � JCP presents an upper limit of
JCP approximately 4� 10�2. There are large amounts of
points lying in the 3� overlapping regions of �12 � �23 and
�13 � �23, while for �13 � �12 points squeeze on a line.
Even though the line deviates from the crossing point of the
central values of �13 and �12, this line does pass through the
1� overlapping region of �13 � �12.
Whether �23 > 45� or�23 < 45� cannot be determined in

this perturbationAnsatz, and the solution points are observed
to be symmetric about the horizontal line �23 ¼ 45�.
In the scatter plot of �12 � �23, our calculations indicate

that as �y varies in the range ð0; �=2Þ [ ð3�=2; 2�Þ �23 >
45�, whereas �y 2 ð�=2; 3�=2Þ we note �23 < 45�. This

y

y
UTBM Py

0

90°

180°

270°

360°

0 10° 20° 30° 40° 50°

FIG. 1 (color online). The solutions corresponding to the mea-
sured �12, �23, and �13 for the UTBM � Py Ansatz in the space of

parameters y� �y. The red, light red, and pink regions corre-

spond to the 1�, 2�, and 3� tolerance levels of �12 (data from
Table II) which are divided by red solid, dashed, and dotted lines,
respectively. The blue, light blue, and nattier blue regions
correspond to �23 for 1�, 2�, and 3� tolerance levels of �23
(Table II) which are divided by blue solid, dashed, and dotted
lines, respectively. The 1�, 2�, and 3� ranges of �13 (without a
special color mark in the diagram) are divided by black solid,
dashed, and dotted lines, respectively.

BIN WANG, JIAN TANG, AND XUE-QIAN LI PHYSICAL REVIEW D 88, 073003 (2013)

073003-6



relationship can be confirmed by scanning the different
parameter ranges of �y presented in Fig. 3. With the Ansatz

UTBM � Py, Ue3 becomes

ðUTBM � PyÞe3 ¼ 1ffiffiffi
3

p e�i�y sin y; (25)

and Ue3 from the PMNS matrix in Eq. (2)is

ðUPMNSÞe3 ¼ e�i� sin �13: (26)

In this case, it is easy to get a conclusion that as y 2
ð0; �=2Þ, �y 2 ð0; 2�Þ, and letting � 2 ð0; 2�Þ, Eqs. (25)
and (26) would demand � ¼ �y. The equivalence between

� and �y implies that the CP phase � determines whether

�23 > 45� or �23 < 45� or vice versa. Table II provides the
1� range of � (the best fit value approximately is 190�)

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

13

J C
P

10
2

UTBM Py

26 28 30 32 34
0

20

40

60

80

12

23

UTBM Py

0 5 10 15
30

31

32

33

34

35

13

12

UTBM Py

0 5 10 15 20 25 30 35
0

20

40

60

80

13
23

UTBM Py

FIG. 2 (color online). The scatter plots for �12, �23, �13, and JCP for UTBM � Py. The central values and 3� ranges (by fitting the data
shown in Table II) of the three mixing angles are labeled by solid lines and dashed lines, and green for the horizontal axis and blue for
the ordinate one, respectively.

0 5 10 15 20 25 30 35

12 12

23

UTBM Py y 0, 2 3 2,2

0 5 10 15 20 25 30 35

23

UTBMPy y 2,3 2

0

20

40

60

80

0

10

20

30

40

FIG. 3 (color online). The solutions corresponding to the measured �12 and �23 for �y 2 ð0; �=2Þ [ ð3�=2; 2�Þ (left panel) and
�y 2 ð�=2; 3�=2Þ (right panel) with y 2 ð0; �=2Þ in the perturbation Ansatz UTBM � Pz. The central values and 3� ranges (from the fit

in Table II) of these two mixing angles are labeled by solid lines and dashed lines, green for the horizontal axis and blue for the
ordinate one, respectively.
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located in (�=2, 3�=2; thus, �23 should be smaller than
45� with the UTBM � Py Ansatz. This implication can also

be derived from the expressions of T23 and S13 given in
Table III as

tan 2�23 ¼
1� sin 2�13 þ 2

ffiffiffi
2

p
sin�13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3sin 2�13

p
cos�y

1� sin 2�13 � 2
ffiffiffi
2

p
sin�13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3sin 2�13

p
cos�y

:

(27)

The relation indicates that �y 2 ð0; �=2Þ [ ð3�=2; 2�Þ
requires �23 > 45� and �23 < 45� as �y 2 ð�=2; 3�=2Þ.
Equality � ¼ �y means that �23 + 45� can be determined

by the CP phase � or vice versa.

V. DISCUSSION AND CONCLUSION

The recent experiments determine a nonzero �13 which
is, contrary to the prediction, made by most of the sym-
metric textures for the lepton mixing matrix. Even though
the real PMNS matrix deviates from the symmetric form,
an approximate symmetry is obvious. Moreover, it is
believed that the symmetric texture results from the phys-
ics at higher energy scales and is broken during its evolu-

tion to lower energy scales. To investigate what physics is
at a high energy scale, we study what mechanism breaks
the symmetry. Following the schemes given in the litera-
ture, we adopt the perturbation to deform the symmetric
texture into the real PMNS matrix. Because the original
symmetry is approximately retained, a perturbation may be
a suitable choice. In this work, we perturb the ten given
matrix textures which possess symmetric patterns by vari-
ous Ansätze. Owing to the similarity in all the cases, we
take the tribimaximal mixing pattern as an example to
exhibit how this perturbation method applies. We summa-
rize the results in Table IV. Various Ansätze by which the
three mixing angles receive corrections are carefully ana-
lyzed, and their effects are marked by a tick

p
or a cross�

to note if the ansatz is favored or disfavored. The subscripts
S, L, and SL of �23S, �23L, and �23SL in Table IV imply that
�23 acquires values smaller, larger, and smaller or larger
than 45�, respectively. The mark
 signifies the situation in
which the three mixing angles acquire corrections and �13
is nonzero, but the Ansatz cannot make the theoretical
values consistent with that data in Table II. We also mark
the best perturbation Ansatz with a star symbol ? in the
table.
Alternative perturbation schemes have also been

proposed. Let us still take the tribimaximal mixing as an
example to illustrate this new scheme:UTBM ¼ R23ð45�Þ�
R13ð0�ÞR12ðarctan ð1=

ffiffiffi
2

p ÞÞ ¼ R23ð45�ÞR12ðarctan ð1=
ffiffiffi
2

p ÞÞ,
inserting perturbation matrices between R23 and R12,
namely, R23 � P � R12, where P is a suitable perturbation
3� 3 matrix. However, such a perturbation Ansatz cannot
provide feasible mixing angles to be consistent with
the experimental data. Therefore such schemes are not
phenomenologically favorable.
It is observed that the relationship between �23 and �i

(or �) (i ¼ x, y, z) could fix �23 > 45� or �23 < 45�; thus,
more precise measurements on �23 constrain the range of
the CP phase.
The equality � ¼ �i ði ¼ x; y; zÞ is derived as i is con-

strained in the first quadrant i 2 ð0; �=2Þ, but when it is in
the second quadrant i 2 ð�=2; �Þ, the result would not
remain the same. From our analytical equations of JCP,
JCP is proportional to sin ð2iÞ sin�i (for the TMM case,
this relationship does not exist), and from the standard
form of the PMNS matrix (2) and definition of the
Jarlskog invariant (6), we determine JCP � sin�. We
present a relation between JCPð�Þ and the perturbation
parameters in Table V.

TABLE IV. The list of the results for perturbing the nine
symmetric mixing textures with Px, Py, and Pz. The mark

p
denotes that the corrections from the perturbation scheme make
all three mixing angles consistent with data; the mark � means
that, in this Ansatz, the calculated �13 still remains as exact zero,
so such an Ansatz does not work at all; and 
 is for the cases that
the three corrected mixing angles could not be compatible with
the data presented in Table II simultaneously. �23 > 45�, �23 <
45�, and �23 _ 45� are marked by subscripts S, L, and SL,
respectively. The best perturbation Ansatz is labeled with ?.

Constant

pattern Px �U Py �U Pz �U U � Px U � Py U � Pz

TBM
pð�23SÞ � pð�23LÞ � pð�23SLÞ?

pð�23SLÞ
DM 
 � 
 � 
 

BM

pð�23SÞ � pð�23LÞ � 
 

GRM1

pð�23SÞ � pð�23LÞ � pð�23SLÞ
pð�23SLÞ

GRM2
pð�23SÞ � pð�23LÞ � pð�23SLÞ

pð�23SLÞ
HM

pð�23SÞ � pð�23LÞ � 
 

TMM

pð�23SÞ � pð�23SLÞ � 
 

TFH1 
 � pð�23LÞ � 
 pð�23SLÞ
TFH2

pð�23SÞ � 
 � 
 pð�23SLÞ
BDM 
 � pð�23LÞ � � �

TABLE V. The relationship between JCP (�) and perturbation parameters i, �i (i ¼ x, y, z),
with a plus þ for a positive JCP and minus � for a negative one.

JCP (�) �i 2 ð0; �=2Þ �i 2 ð�=2; �Þ �i 2 ð�; 3�=2Þ �i 2 ð3�=2; 2�Þ
i 2 ð0; �=2Þ þð� < �Þ þð� < �Þ �ð� > �Þ �ð� > �Þ
i 2 ð�=2; �Þ �ð� > �Þ �ð� < �Þ þð� < �Þ þð� < �Þ
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Our numerical analysis indicates that the TBM is a
more favorable texture that may accommodate a sizable
�13 after a perturbative correction. With the perturbation,
�23 and �13 deviate from 45� and 0� as required by the
data, and it means that the �� � symmetry [34] origi-

nally embedded in the neutrino mass matrix is broken by

the perturbation. Especially the UTBM � Py provides the

most plausible perturbation Ansatz for the theoretical

mixing angles to be consistent with the experimental

values in the 1� level. This indicates that the most viable

correction to TBM is produced by the rotation in the 2–3

plane, i.e., to break the �� � symmetry [34] by a per-
turbation. This provides us a clue for model building in
the future.
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