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We analyze the sensitivity of all experimentally observable asymmetries and energy distributions for

the neutron �� decay with a polarized neutron and an unpolarized decay proton and electron, and the

lifetime of the neutron to contributions of order 10�4 of interactions beyond the standard model (SM). We

analyze the contributions of interactions beyond the SM in the linear approximation with respect to the

Herczeg phenomenological coupling constants, introduced at the hadronic level. Such an approximation is

good enough for the analysis of contributions of order 10�4 of interactions beyond the SM. We show that

in such an approximation the correlation coefficients depend only on the axial coupling constant, which

absorbs the contributions of the Herczeg left-left and left-right lepton-nucleon current-current interactions

(vector and axial-vector interactions beyond the SM), and the Herczeg scalar and tensor coupling

constants. In the lifetime of the neutron, in addition to the axial coupling constant, the contributions of

the Herczeg left-left and left-right lepton-nucleon current-current interactions (vector and axial-vector

interactions beyond the SM) are absorbed by the Cabibbo–Kobayashi–Maskawa matrix element.

DOI: 10.1103/PhysRevD.88.073002 PACS numbers: 12.15.Ff, 13.15.+g, 23.40.Bw, 23.50.+z

I. INTRODUCTION

In this paper we propose a consistent analysis of the
sensitivity of all observable asymmetries and energy dis-
tributions of the neutron �� decay n ! pþ e� þ ��e with
a polarized neutron and an unpolarized decay proton and
electron, and the lifetime of the neutron [1,2] to contribu-
tions of order 10�4 of interactions beyond the standard
model (SM), described at the phenomenological level.
Such an order of corrections beyond the SM has been
pointed out by Ramsey-Musolf and Su [3] within the
minimal supersymmetric extension of the SM (MSSM).
As has been shown in [4–7], at the phenomenological level
the neutron �� decay may be described by eight complex
coupling constants determining the strength of interactions
beyond the SM. As a result possible deviations from the
SM, causing the contributions of order 10�4 to the corre-
lation coefficients of the neutron �� decay and the lifetime
of the neutron, may be determined in terms of vector, axial-
vector, scalar and tensor lepton-baryon weak coupling
constants [8].

It is well known [1,2] that in the nonrelativistic approxi-
mation to leading order in the large proton mass expansion,
which is equivalent to the leading order of the heavy-
baryon approximation, and in the rest frame of the neutron
the SM with weak V � A interactions [9] describes the ��
decay of the neutron in terms of two coupling constantsGV

and GA [1,2] (see also [10]). The coupling constant GV is
defined by the product GV ¼ GFVud of the Fermi coupling
constant GF ¼ g2W=8M

2
W [9], where gW and MW are the

electroweak coupling constant and theW-boson mass, and
Vud is the matrix element of the Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing matrix [9]. The coupling
constant GA is equal to GA ¼ �GV , where � ¼ GA=GV is
the axial coupling constant, induced by renormalization of
the axial hadronic current by strong low-energy interac-
tions [11]. For the weak interactions, invariant under time
reversal, the coupling constant � is real.
The observables of the neutron �� decay with unpolar-

ized particles are the lifetime of the neutron �n and the
correlation coefficient a0, describing correlations between
3-momenta of the electron and antineutrino to leading
order in the large proton mass expansion in the rest frame
of the neutron. Experimentally, the correlation coefficient
a0 can be determined, for example, by measuring either the
electron-proton energy distribution aðEe; TpÞ, where Ee

and Tp are the total and kinetic energies of the electron

and proton, respectively, or the proton-energy spectrum
aðTpÞ. As a function of the electron energy Ee the corre-

lation coefficient of correlations between the electron and
antineutrino 3-momenta we denote as aðEeÞ.
The neutron �� decay with a polarized neutron and an

unpolarized decay proton and electron is characterized also
by two additional observable correlation coefficients A0

and B0, describing to leading order in the large proton mass
expansion correlations between the neutron spin and
3-momenta of the electron and antineutrino, respectively.
As functions of the electron energy Ee the correlation
coefficients of correlations between the neutron spin and
3-momenta of the electron and antineutrino we denote as
AðEeÞ and BðEeÞ, respectively. The lifetime of the neutron
and the correlation coefficients under consideration are of*ivanov@kph.tuwien.ac.at
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order �n � 880 s, a0 � aðEeÞ � A0 � AðEeÞ � �0:1 and
B0 � BðEeÞ � 1 [9]. The coupling constants GV and �
define the main contributions to the lifetime of the neutron
and the correlation coefficients [1,2] (see also [10]).

However, for the description of the neutron �� decay at
the modern level of experimental accuracies when the
experimental data on the axial coupling constant � ¼
�1:2750ð9Þ [1] and the lifetime of the neutron �

ðexp Þ
n ¼

878:5ð8Þ s [12] have been obtained with accuracies 0.07%
and 0.09%, respectively, two coupling constants GV and �
are not enough for the correct description of the properties
of the neutron �� decay. Indeed, it is well known that the
radiative corrections to the lifetime of the neutron [13–33]
calculated to leading order in the large proton mass expan-
sion within the SM, with the V � A weak interactions and
quantum electrodynamics, give a contribution of about
3.9% [28] (see also [1]). This allows us to correctly
describe the lifetime of the neutron [10]. The radiative
corrections are very important also for the correct determi-
nation of the Fermi coupling constant GF. It may be ex-
tracted from the experimental data on the weak coupling
constant G� of the ��–decay ��!e�þ��þ ��e, taking

into account the radiative corrections [13–16]. The contri-
butions of the radiative corrections to the ratios of the
correlation coefficients aðEeÞ=a0 andAðEeÞ=A0 are an order
of magnitude smaller compared with the contribution to the
lifetime of the neutron, whereas the correlation coefficient
BðEeÞ has no radiative corrections to order �=� [20,34,35].
We would like to note that Glück [33] has used the
Monte Carlo simulation method for the numerical calcula-
tion of the rates of nuclear and hadronic radiative�� decays
in order to correctly take into account the contributions of
the nucleus-photon and hadron-photon correlations.

Another type of corrections, which may be calculated
within the SM and should be taken into account for the
description of the neutron �� decay on the same footing as
the radiative corrections, are the contributions of the
‘‘weak magnetism’’ and the proton recoil [36,37] (see
also [35]), calculated to next-to-leading order in the large
proton mass expansion.

The radiative corrections and the corrections from the
weak magnetism and the proton recoil, calculated to lead-
ing order and to next-to-leading order in the large proton
mass expansion, respectively, define a complete set of
corrections to the observables of the neutron �� decay,
which should be taken into account within the SM as a
background for the analysis of contributions of order 10�4

of interactions beyond the SM.
Since the observable asymmetries and energy distribu-

tions are defined in terms of the correlation coefficients [1],
for the aim of analyzing the sensitivity of the observables
of the neutron �� decay to contributions of order 10�4 of
interactions beyond the SM, we revise the calculation of
the correlation coefficients of the neutron �� decay with a
polarized neutron and an unpolarized decay proton and

electron, and the lifetime of the neutron within the SM
with V � A weak interactions. In addition to the nonrela-
tivistic terms a0, A0 and B0, calculated to leading order in
the large proton mass expansion, we take into account
(i) the contributions of the weak magnetism and the proton
recoil to next-to-leading order in the large M expansion,
which provide a complete set of corrections of order 1=M,
where M is the average mass of the neutron and proton,
M ¼ ðmn þmpÞ=2, and (ii) the radiative corrections of

order �=�, calculated to leading order in the large M
expansion, where � ¼ 1=137:036 is the fine-structure
constant [9]. The small parameter of the largeM expansion
is E0=M� 10�3, where E0 � 1 MeV is the end-point en-
ergy of the electron-energy spectrum. The parameter
E0=M� 10�3 is commensurable with the parameter of
the radiative corrections �=�� 10�3. As we show below,
due to the strong dependence on the axial coupling con-
stant �, the numerical values of the 1=M corrections vary
from 10�5 to 10�1. In turn, the contributions of the radia-
tive corrections do not depend on the axial coupling
constant �. Following Sirlin [18] we show that the contri-
butions of the radiative corrections, depending on the
axial coupling constant �, may be absorbed by renormal-
ization of the Fermi GF and axial � coupling constants.
The contributions of radiative corrections to the ratios
aðEeÞ=a0 and AðEeÞ=A0 are of order 10

�3. The correlation
coefficients, calculated within the SM to order 1=M and
�=�, determine the theoretical background for the analysis
of contributions of order 10�4 beyond the SM.
A phenomenological analysis of contributions of interac-

tions beyond the SM model shows that these interactions
induce only (i) the energy independent contributions and
(ii) the contributions proportional to me=Ee, where me is
the electron mass. We show below that the contributions of
the weak magnetism and the proton recoil into the terms
proportional to me=Ee of the correlation coefficients aðEeÞ,
AðEeÞ andBðEeÞ are of order 10�3–10�4. Thus, the obtained
theoretical expressions for the correlation coefficients should
be taken into account for a correct experimental determina-
tion of contributions of order 10�4 beyond the SM.
The radiative corrections to the correlation coefficients

aðEeÞ=a0 and AðEeÞ=A0 determine the most important and
complicated part of the corrections of order 10�3. In the
neutron �� decay the radiative corrections are defined by
(i) the contributions to the continuum-state ��-decay mode
from one-virtual photon exchanges, electroweak-boson
exchanges and QCD corrections [24,27–30] and (ii) the
contribution of the radiative ��-decay mode n !
pþ e� þ ��e þ � with emission of a real photon [13–30]
(see also [34,35]). The sum of the electron-energy and
angular distributions of these two decay modes does not
suffer from infrared divergences of virtual and real photons.
We calculate the radiative corrections to the�� decay of

the neutron within the standard finite-photon mass (FPM)
regularization of infrared divergences [13–30]. As has been
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shown byMarciano and Sirlin [22], the FPM regularization
is equivalent to the dimensional regularization [38].

The radiative corrections to the lifetime of the
neutron, calculated within the FPM regularization, obey
the Kinoshita-Lee-Nauenberg theorem [39]. According to
the Kinoshita-Lee-Nauenberg theorem, the radiative correc-
tions to the lifetime of the neutron, integrated over the phase
volume of the final state of the neutron�� decay in the limit
of the massless electron me ! 0, should not depend on the
electron mass me. For the first time such an independence
of the electron mass in the limit me ! 0 has been demon-
strated by Kinoshita and Sirlin [15] (see also [40]).

We reproduce fully the radiative corrections to the life-
time of the neutron and the correlation coefficients aðEeÞ
and AðEeÞ, calculated in [16–30,34,35], respectively [see
Eq. (7) and Appendix D of Ref. [40]]. We show also that
the correlation coefficient BðEeÞ has no radiative correc-
tions to order �=�, calculated to leading order in the large
M expansion. This agrees well with the results obtained by
Gudkov et al. [35]. We calculate the corrections of the
weak magnetism and the proton recoil in complete agree-
ment with the results obtained in [35] (see also [37]).
Above the background of these corrections the contribu-
tions of interactions beyond the SM are calculated to
leading order in the large M expansion and in the linear
approximation with respect to the Herczeg phenomeno-
logical coupling constants, introduced at the hadronic level
in terms of the lepton-nucleon current-current interactions
(see Appendix G of Ref. [40]). Such an approximation is
good enough for the analysis of the sensitivity of the
observables of the neutron �� decay to contributions of
order 10�4 beyond the SM.

The obtained results are applied to the theoretical analy-
sis of (i) the asymmetries Aexp ðEeÞ, Bexp ðEeÞ, the electron-
proton energy distribution aðEe; TpÞ, the proton-energy

spectrum aðTpÞ, and the proton recoil asymmetry Cexp ,

used for the experimental determination of the axial cou-
pling constant � and the correlation coefficients A0, B0, a0
and C0 ¼ �xCðA0 þ B0Þ, where xC ¼ 0:27591 is a theo-
retical numerical factor (see Sec. VII), respectively; (ii)
the lifetime of the neutron; and (iii) the sensitivity of
the electron-proton energy distribution aðEe; TpÞ, the

proton-energy spectrum aðTpÞ, the asymmetries Aexp ðEeÞ,
Bexp ðEeÞ and Cexp , and the lifetime of the neutron �n to

contributions of order 10�4 of interactions beyond the SM.
The experimental analysis of the asymmetries Aexp ðEeÞ,
Bexp ðEeÞ, the proton-energy spectrum aðTpÞ, and the

proton recoil asymmetry Cexp has been carried out in

[1,41–44] (see also [45]) and [46], respectively.

II. ORGANIZATION OF PAPER

The paper is organized as follows. In Sec. III we calculate
the electron-energy and angular distribution of the neutron
�� decay with a polarized neutron and an unpolarized

decay proton and electron. We take into account a complete
set of corrections of order 1=M, caused by the weak mag-
netism and the proton recoil, and the radiative corrections of
order �=�. Then we analyze (i) in Sec. IV the electron
asymmetry Aexp ðEeÞ, which has been used in [1,41] for the

experimental determination of the axial coupling constant

� ¼ �1:2750ð9Þ and the correlation coefficient A
ðexp Þ
0 ¼

�0:11933ð34Þ, (ii) in Sec. V the antineutrino asymmetry
Bexp ðEeÞ, which has been used for the experimental deter-

mination of the correlation coefficient BðexpÞ
0 ¼0:9802ð50Þ

in [42,43], (iii) in Sec. VI the electron-proton energy distri-
bution aðEe; TpÞ and the proton-energy spectrum aðTpÞ,
which may be used for the experimental determination of
the axial coupling constant � and the correlation coefficient
a0, (iv) in Sec. VII the proton recoil asymmetry Cexp ,

which has been used for the experimental determination

of the correlation coefficient C
ðexp Þ
0 ¼ �xCðA0 þ B0Þ ¼

�0:2377ð26Þ [46], and (v) in Sec. VIII the lifetime of the
neutron. In Sec. IX we propose the theoretical analysis of
the sensitivity of the electron-proton energy distribution
aðEe; TpÞ, the proton-energy spectrum aðTpÞ, the asymme-

tries Aexp ðEeÞ, Bexp ðEeÞ and Cexp , and the lifetime of the

neutron to contributions of order 10�4 of interactions be-
yond the SM. We show that to linear approximations with
respect to the Herczeg phenomenological coupling con-
stants, the Herczeg coupling constants ahLL and ahLR of the
left-left and left-right lepton-nucleon current-current inter-
actions (vector and axial-vector interactions beyond the
SM) can be fully absorbed by the axial coupling constants
and cannot be determined from the experimental data on the
electron-proton energy distribution aðEe; TpÞ, the proton-

energy spectrum aðTpÞ, and the asymmetries Aexp ðEeÞ,
Bexp ðEeÞ and Cexp ðEeÞ. This agrees well with the results

obtained in [47–49]. In the lifetime of the neutron the
contributions of the Herczeg left-left and left-right lepton-
nucleon current-current interactions (vector and axial-
vector interactions beyond the SM) become unobservable
after the renormalization of the CKMmatrix element Vud!
ðVudÞeff¼Vudð1þahLLþahLRÞ (see Sec. IX), in agreement
with [47–49]. In Sec. X we summarize the obtained results.
In the Appendix we given a short derivation of the functions
gnðEeÞ and fnðEeÞ, describing radiative corrections to the
lifetime of the neutron and the correlation coefficients a0
and A0. A detailed calculation of the 1=M corrections and
the radiative corrections of order �=� to the observables of
the neutron��–decay is given in Appendixes A, B, C, D, E,
F, H, and I of Ref. [40].

III. ELECTRON-ENERGYAND ANGULAR
DISTRIBUTION OF NEUTRON �� DECAY

IN THE STANDARD MODEL

For the analysis of the electron-energy and angular dis-
tribution of the continuum-state �� decay of the neutron,
we use the Hamiltonian of V � A interactions with a real
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axial coupling constant � and the contribution of the weak
magnetism [38,50],

HWðxÞ ¼ GFffiffiffi
2

p Vudf½ �c pðxÞ��ð1þ ��5Þc nðxÞ�

þ 	

2M
@�½ �c pðxÞ
��c nðxÞ�g

� ½ �c eðxÞ��ð1� �5Þc �ðxÞ�; (1)

which is invariant under time reversal. Here c pðxÞ, c nðxÞ,
c eðxÞ and c �ðxÞ are the field operators of the proton,
neutron, electron and antineutrino, respectively; ��, �5

and 
�� ¼ i
2 ð���� � ����Þ are the Dirac matrices [38];

and 	 ¼ 	p � 	n ¼ 3:7058 is the isovector anomalous

magnetic moment of the nucleon, defined by the anomalous
magnetic moments of the proton 	p ¼ 1:7928 and

the neutron 	n ¼ �1:9130 and measured in the nuclear
magneton [9].

For numerical calculations we use GF ¼ 1:1664�
10�11 MeV�2 and jVudj ¼ 0:97428ð15Þ [9]. The value of
the CKM matrix element jVudj ¼ 0:97428ð15Þ agrees well

with jVudj ¼ 0:97425ð22Þ, measured from the superal-
lowed 0þ ! 0þ nuclear �� decays [51]. It also satisfies
well the unitarity condition jVudj2 þ jVusj2 þ jVubj2 ¼
0:99999ð41Þ for the CKM matrix elements [9]. The error
�U ¼ �0:00041 of the unitarity condition is determined
by the errors of the CKM matrix elements jVudj ¼
0; 97427� 0:00015, jVusj ¼ 0:22534� 0:00065 and
jVubj ¼ 0:00351þ0:00015

�0:00014 [see Eq. (11.27) on p. 162 of

Ref. [9]]. As a result the error of the unitarity condition
is equal to

�U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
q

j2Vuq�Vuqj2
s

¼ 0:00041;

where q ¼ d, s, b and �Vud ¼ 0:00015, �Vus ¼ 0:00065
and �Vub ¼ 0:00015, respectively.
The amplitude of the continuum-state �� decay of the

neutron, calculated in the rest frame of the neutron and to
next-to-leading order in the largeM expansion, taking into
account the contributions of the weak magnetism and the
proton recoil, is (see Appendix A of Ref. [40])

Mðn ! pe� ��eÞ ¼ �2mn

GFffiffiffi
2

p Vudf½’y
p’n�½ �ue�0ð1� �5Þv ��� � ~�½’y

p ~
’n� � ½ �ue ~�ð1� �5Þv ���

� me

2M
½’y

p’n�½ �ueð1� �5Þv ��� þ
~�

2M
½’y

pð ~
 � ~kpÞ’n�½ �ue�0ð1� �5Þv ���

� i
	þ 1

2M
½’y

pð ~
� ~kpÞ’n� � ½ �ue ~�ð1� �5Þv ���g; (2)

where ’p and ’n are the Pauli spinorial wave functions of the proton and neutron and ue and v �� are the Dirac bispinor
wave functions of the electron and antineutrino, respectively. Then, ~kp is the 3-momentum of the proton related
to the 3-momenta of the electron ~ke and antineutrino ~k as ~kp ¼ � ~ke � ~k, ~� ¼ �ð1� E0=2MÞ, where E0 ¼ ðm2

n �m2
p þ

m2
eÞ=2mn ¼ 1:2927 MeV is the end-point energy of the electron-energy spectrum, calculated for mn ¼ 939:5654 MeV,

mp ¼ 938:2720 MeV andme ¼ 0:5110 MeV [9]. From Eq. (2) one may see that the parameter of the largeM expansion or
the 1=M corrections to the amplitude of the �� decay of the neutron is kp=M� E0=M� 10�3. The detailed calculation of
the amplitude, Eq. (2), is given in Appendix A of Ref. [40].

The electron-energy and angular distribution of the neutron �� decay takes the form [1,35,40]

d5�nðEe; ~ke; ~k; ~�nÞ
dEed�ed�

¼ ð1þ 3�2ÞG
2
FjVudj2
32�5

ðE0 � EeÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q
EeFðEe; Z ¼ 1Þ���

c
ð ~ke; ~kÞ~�ðEeÞ

�
�
1þ ~aðEeÞ

~ke � ~k
EeE

þ ~AðEeÞ
~�n � ~ke
Ee

þ ~BðEeÞ
~�n � ~k
E

þ ~KnðEeÞ ð
~�n � ~keÞð ~ke � ~kÞ

E2
eE

þ ~QnðEeÞ ð
~�n � ~kÞð ~ke � ~kÞ

EeE
2

þ ~DðEeÞ
~�n � ð ~ke � ~kÞ

EeE

�
; (3)

where E ¼ E0 � Ee is the antineutrino energy and d�e and d� are the infinitesimal elements of the solid angles of the
electron and antineutrino 3-momenta relative to the neutron spin, respectively.

The function ���
c
ð ~ke; ~kÞ is defined by the contribution of the proton recoil. To next-to-leading order in the large M

expansion, it is equal to (see Appendix A of Ref. [40])

���
c
ð ~ke; ~kÞ ¼ 1þ 3

M

�
Ee �

~ke � ~k
E

�
: (4)

The function FðEe; Z ¼ 1Þ is the relativistic Fermi function [52,53] (see also [37])
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FðEe; Z ¼ 1Þ ¼
�
1þ 1

2
�

�
4ð2rpme�Þ2�
�2ð3þ 2�Þ

e��=�

ð1� �2Þ�
���������

�
1þ �þ i

�

�

���������
2

; (5)

where � ¼ ke=Ee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

p
=Ee is the electron velocity, � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
� 1, rp is the electric radius of the proton and

� ¼ 1=137:036 is the fine-structure constant. In numerical calculations we will use rp ¼ 0:841 fm [54].
Following [35] we transcribe the right-hand side (r.h.s.) of Eq. (3) into the form

d5�nðEe; ~ke; ~k; ~�nÞ
dEed�ed�

¼ ð1þ 3�2ÞG
2
FjVudj2
32�5

ðE0 � EeÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q
EeFðEe; Z ¼ 1Þ�ðEeÞ

�
�
1þ aðEeÞ

~ke � ~k
EeE

þ AðEeÞ
~�n � ~ke
Ee

þ BðEeÞ
~�n � ~k
E

þ KnðEeÞ ð
~�n � ~keÞð ~ke � ~kÞ

E2
eE

þQnðEeÞ ð
~�n � ~kÞð ~ke � ~kÞ

EeE
2

þDðEeÞ
~�n � ð ~ke � ~kÞ

EeE
� 3

Ee

M

1� �2

1þ 3�2

�ð ~ke � ~kÞ2
E2
eE

2
� 1

3

k2e
E2
e

��
: (6)

The correlation coefficients are given by (see Appendixes A, B, C and D of Ref. [40])

�ðEeÞ ¼
�
1þ�

�
gnðEeÞ

�
þ 1

M

1

1þ 3�2

�
�2�ð��ð	þ 1ÞÞE0þð10�2� 4ð	þ 1Þ�þ 2ÞEe� 2�ð��ð	þ 1ÞÞm

2
e

Ee

�
;

�ðEeÞaðEeÞ ¼ a0

�
1þ�

�
gnðEeÞþ�

�
fnðEeÞ

�
þ 1

M

1

1þ 3�2
½2�ð��ð	þ 1ÞÞE0� 4�ð3��ð	þ 1ÞÞEe�;

�ðEeÞAðEeÞ ¼ A0

�
1þ�

�
gnðEeÞþ�

�
fnðEeÞ

�
þ 1

M

1

1þ 3�2
½ð�2�	��ð	þ 1ÞÞE0�ð5�2�ð3	� 4Þ��ð	þ 1ÞÞEe�;

�ðEeÞBðEeÞ ¼B0

�
1þ�

�
gnðEeÞ

�
þ 1

M

1

1þ 3�2

�
�2�ð��ð	þ 1ÞÞE0þð7�2�ð3	þ 8Þ�þð	þ 1ÞÞEe

�ð�2�ð	þ 2Þ�þð	þ 1ÞÞm
2
e

Ee

�
;

�ðEeÞKnðEeÞ ¼ 1

M

1

1þ 3�2
ð5�2�ð	� 4Þ��ð	þ 1ÞÞEe;

�ðEeÞQnðEeÞ ¼ 1

M

1

1þ 3�2
½ð�2�ð	þ 2Þ�þð	þ 1ÞÞE0�ð7�2�ð	þ 8Þ�þð	þ 1ÞÞEe�;

�ðEeÞDðEeÞ ¼ 0; (7)

where the correlation coefficients a0, A0 and B0 are deter-
mined by [1] (see also [10])

a0 ¼ 1� �2

1þ 3�2
; A0 ¼ �2

�ð1þ �Þ
1þ 3�2

;

B0 ¼ �2
�ð1� �Þ
1þ 3�2

:
(8)

The radiative corrections are determined by the functions
gnðEeÞ and fnðEeÞ, which are given in the Appendix and
derived in Appendix D of Ref. [40].

The functions ð�=�ÞgnðEeÞ and ð�=�ÞfnðEeÞ describe
the radiative corrections to the lifetime of the neutron and
the correlation coefficients aðEeÞ and AðEeÞ, respectively.
They are equal to the radiative corrections, calculated in
[18–30,34,35], respectively. For the first time the radiative
corrections to the correlation coefficients aðEeÞ and AðEeÞ
have been calculated by Shann [20]. The function
ð�=�ÞfnðEeÞ is in analytical agreement with the results
obtained by Shann [20]. We show in Appendix D of

Ref. [40] that the correlation coefficient BðEeÞ has no
radiative corrections to order �=�. This also agrees
well with the results obtained in [35]. The densities
of the radiative corrections ð�=�ÞgnðEeÞ��

c
ðEeÞ and

ð�=�ÞfnðEeÞ��
c
ðEeÞ, where ��

c
ðEeÞ is the electron-

energy spectrum density, Eq. (A8), are plotted in Fig. 1.
The coefficients KnðEeÞ and QnðEeÞ have been

introduced in [34,35] and calculated within the effective
quantum field theory, based on the heavy-baryon chiral
perturbation theory (HBChPT). Our results of the
calculation of the correlation coefficients, carried out to
next-to-leading order in the large M expansion (see
Appendix A of Ref. [40]), agree fully with the expressions
calculated in [35].
The correlation coefficient DðEeÞ relates to a violation

of time reversal invariance. In the SM a nonvanishing
correlation coefficientDðEeÞmay appear due to long-range
[55–58] (see also [36]) and short-range [59] mechanisms
of time reversal violation. In the long-range mechanism of
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time reversal violation the correlation coefficient DðEeÞ is
induced by the electron-proton interaction in the final state
of the decay due to the distortion of the electron wave
function in the Coulomb field of the proton [52,53], the
weak magnetism and the proton recoil. In the short-range
mechanism of time reversal violation the correlation coef-
ficient DðEeÞ takes a contribution from the CP-violating
phase � of the CKM quark mixing matrix [9]. According to
[59], the contribution of the long-range mechanism of time
reversal violation dominates by many orders of magnitude
in comparison with the contribution of the short-range one.
As has been shown in [55–58] the correlation coefficient
DðEeÞ is a function of the electron energy Ee. Using
the results obtained in [55], for the electron kinetic ener-
gies 250 keV � Te � 455 keV [1,41,43] and the axial

coupling constant �¼�1:2750 we obtain that DðEeÞ�
10�5. Hence the contribution of the long-range mechanism
of time reversal violation to the correlation coefficient
DðEeÞ is smaller compared with contributions of order
10�4, which may be induced by interactions beyond the
SM. Recently the correlation coefficient DðEeÞ has been
calculated within heavy-baryon effective field theory by
Ando et al. [60]. The authors have reproduced the result
obtained by Callan and Treiman [55] and have found
a correction, which is smaller compared with 10�7 in
the experimental region of electron kinetic energies
250 keV � Te � 455 keV [1,41,43].
From Eq. (7) we define the correlation coefficients under

consideration, taking into account the contributions of
order 1=M and �=�, as follows:

aðEeÞ ¼ a0

�
1þ�

�
fnðEeÞ

�
þ 1

M

�
2�ð�� ð	þ 1ÞÞ

1þ 3�2
E0 � 4�ð3�� ð	þ 1ÞÞ

1þ 3�2
Ee

�
� a0��ðEeÞ;

AðEeÞ ¼ A0

�
1þ�

�
fnðEeÞ

�
þ 1

M

�
�2 �	�� ð	þ 1Þ

1þ 3�2
E0 � 5�2 � ð3	� 4Þ�� ð	þ 1Þ

1þ 3�2
Ee

�
�A0��ðEeÞ;

BðEeÞ ¼ B0 þ 1

M

�
�2�ð�� ð	þ 1ÞÞ

1þ 3�2
E0 þ 7�2 � ð3	þ 8Þ�þ ð	þ 1Þ

1þ 3�2
Ee ��2 � ð	þ 2Þ�þ ð	þ 1Þ

1þ 3�2

m2
e

Ee

�
�B0��ðEeÞ;

KnðEeÞ ¼ 1

M

5�2 � ð	� 4Þ�� ð	þ 1Þ
1þ 3�2

Ee;

QnðEeÞ ¼ 1

M

�
�2 � ð	þ 2Þ�þ ð	þ 1Þ

1þ 3�2
E0 � 7�2 � ð	þ 8Þ�þ ð	þ 1Þ

1þ 3�2
Ee

�
: (9)

Using the following expansion,

1

�ðEeÞ ¼
�
1� �

�
gnðEeÞ

�
� ��ðEeÞ; ��ðEeÞ ¼ 1

M

1

1þ 3�2

�
�1E0 þ �2Ee þ �3

m2
e

Ee

�
;

�1 ¼ �2�ð�� ð	þ 1ÞÞ; �2 ¼ 10�2 � 4ð	þ 1Þ�þ 2; �3 ¼ �2�ð�� ð	þ 1ÞÞ;
(10)

we transcribe the correlation coefficients aðEeÞ, AðEeÞ and BðEeÞ into a form that is similar to the one proposed by
Wilkinson for the correlation coefficient AðWÞðEeÞ [see Eq. (20)]. We get
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FIG. 1 (color online). The densities ð�=�ÞgnðEeÞ��
c
ðEeÞ (left panel) and ð�=�ÞfnðEeÞ��

c
ðEeÞ (right panel), measured in MeV�1,

of the radiative corrections to the lifetime of the neutron and the correlation coefficients aðEeÞ and AðEeÞ, where ��
c
ðEeÞ is the

electron-energy spectrum density, Eq. (A8).
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aðEeÞ ¼ a0

�
1þ 1

M

1

ð1� �2Þð1þ 3�2Þ
�

�
a1E0 þ a2Ee þ a3

m2
e

Ee

���
1þ �

�
fnðEeÞ

�
;

a1 ¼ 4�ð�2 þ 1Þð�� ð	þ 1ÞÞ;
a2 ¼ �26�4 þ 8ð	þ 1Þ�3 � 20�2 þ 8ð	þ 1Þ�� 2;

a3 ¼ �2�ð�2 � 1Þð�� ð	þ 1ÞÞ (11)

and

AðEeÞ ¼ A0

�
1� 1

M

1

2�ð1þ �Þð1þ 3�2Þ
�

�
A1E0 þ A2Ee þ A3

m2
e

Ee

���
1þ �

�
fnðEeÞ

�
;

A1 ¼ ��4 þ 	�3 þ ð	þ 2Þ�2 � 	�� ð	þ 1Þ;
A2 ¼ 5�4 þ 	�3 � ð5	þ 6Þ�2 þ 3	�þ ð	þ 1Þ;
A3 ¼ �4�2ð�þ 1Þð�� ð	þ 1ÞÞ (12)

and

BðEeÞ ¼ B0

�
1� 1

M

1

2�ð1� �Þð1þ 3�2Þ
�

�
B1E0 þ B2Ee þ B3

m2
e

Ee

��
;

B1 ¼ �2�ð�þ 1Þ2ð�� ð	þ 1ÞÞ;
B2 ¼ �4 � ð	� 4Þ�3 � ð5	þ 2Þ�2

� ð3	þ 4Þ�þ ð	þ 1Þ;
B3 ¼ ð�2 � 1Þð�� 1Þð�� ð	þ 1ÞÞ: (13)

For the derivation of Eqs. (11)–(13) we have neglected
the terms of order ð�=�ÞðE0=MÞ � 10�6, which are
smaller compared with contributions of order 10�4 beyond
the SM.
In order to estimate the values of the obtained

1=M corrections we calculate them at � ¼ �1:2750.
This gives

��ðEeÞ ¼ 1

M

1

1þ 3�2

�
�1E0 þ �2Ee þ �3

m2
e

Ee

�
¼ �3:57� 10�3 þ 9:90� 10�3 Ee

E0

� 1:41� 10�3 me

Ee

;

�aðEeÞ
a0

¼ 1

M

1

ð1� �2Þð1þ 3�2Þ
�
a1E0 þ a2Ee þ a3

m2
e

Ee

�
¼ �3:00� 10�2 þ 8:59� 10�2 Ee

E0

þ 1:41� 10�3 me

Ee

;

�AðEeÞ
A0

¼ � 1

M

1

2�ð1þ �Þð1þ 3�2Þ
�
A1E0 þ A2Ee þ A3

m2
e

Ee

�
¼ 3:44� 10�4 þ 1:46� 10�2 Ee

E0

þ 1:41� 10�3 me

Ee

;

�BðEeÞ
B0

¼ � 1

M

1

2�ð1� �Þð1þ 3�2Þ
�
B1E0 þ B2Ee þ B3

m2
e

Ee

�
¼ �4:66� 10�5 � 2:97� 10�4 Ee

E0

þ 1:36� 10�4 me

Ee

;

KnðEeÞ ¼ 7:14� 10�4 Ee

E0

;

QnðEeÞ ¼ 3:19� 10�3 � 7:27� 10�3 Ee

E0

: (14)

Because of a strong dependence on the axial coupling
constant �, the numerical values of the contributions of
the ‘‘weak magnetism’’ and the proton recoil, calculated
at � ¼ �1:2750, vary from 10�5 to 10�1 for energy inde-
pendent and energy dependent terms.

In summary, the correlation coefficients of the electron-
energy and angular distribution of the neutron �� decay
with a polarized neutron and an unpolarized decay proton
and electron are calculated by taking into account a
complete set of the 1=M corrections, caused by the
weak magnetism and the proton recoil, and the radiative
corrections of order �=�, calculated to leading order in
the large M expansion. The obtained expressions for the
correlation coefficients should be used as a theoretical
background for contributions of order 10�4 of interactions
beyond the SM, calculated in Appendix G of Ref. [40].
Contributions of order 10�4 of interactions beyond the
SM may be determined by measuring the asymmetries

Aexp ðEeÞ, Bexp ðEeÞ and Cexp between the neutron spin and

the 3-momenta of the decay particles, the electron-proton
energy distribution aðEe; TpÞ and the proton-energy

spectrum aðTpÞ, related to correlations between the

3-momenta of the electron and proton, and the lifetime
of the neutron �n (see Sec. IX).

IV. STANDARD MODEL ANALYSIS OF
EXPERIMENTAL DETERMINATION

OF CORRELATION COEFFICIENT A0.
ELECTRON ASYMMETRY Aexp ðEeÞ

For the experimental determination of the correlation
coefficient A0, defining correlations between the neutron
spin and the electron 3-momentum in the SM to leading
order in the large M expansion [1], the directions of the
emission of the antineutrino are not fixed and one has to

integrate over the antineutrino 3-momentum ~k. As a result
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we arrive at the following electron-energy and angular
distribution [1,41],

d2�nðEe; ~ke; ~�nÞ
dEed�e

¼ ð1þ 3�2ÞG
2
FjVudj2
8�4

ðE0�EeÞ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e�m2

e

q
EeFðEe;Z¼ 1Þ�ðEeÞ

�
�
1þAðWÞðEeÞ

�
1þ�

�
fnðEeÞ

�
~�n � ~�

�
;

(15)

where we have denoted

AðEeÞ þ 1

3
QnðEeÞ ¼ AðWÞðEeÞ

�
1þ �

�
fnðEeÞ

�
; (16)

d�e ¼ 2� sin �ed�e is an infinitesimal solid angle of the
electron 3-momentum with respect to the neutron spin and
~�n � ~� ¼ P� cos �e with the neutron polarization P ¼
j ~�nj � 1. The correlation coefficients AðEeÞ and QnðEeÞ
are given in Eq. (12) and (9), respectively. We obtain the

contribution, proportional to QnðEeÞ, with structure
~�n � ~ke=Ee, having integrated the term with the structure

ð ~�n � ~kÞð ~ke � ~kÞ=EeE
2 in Eq. (6) over directions of the

antineutrino 3-momentum ~k.
The asymmetry, which may be used for the experimental

determination of the axial coupling constant � and the
correlation coefficient A0, takes the form

Aexp ðEeÞ ¼ NþðEeÞ �N�ðEeÞ
NþðEeÞ þN�ðEeÞ

¼ 1

2
AðWÞðEeÞ

�
1þ�

�
fnðEeÞ

�
P�ðcos�1 þ cos�2Þ;

(17)

where N�ðEeÞ are the numbers of events of the emission of
the electron forward (þ) and backward (�) with respect to
the neutron spin into the solid angle ��12 ¼ 2�ðcos �1 �
cos�2Þ with 0 � ’ � 2� and �1 � �e � �2. They are
determined by [61]

NþðEeÞ ¼ 2�NðEeÞ
Z �2

�1

�
1þ AðWÞðEeÞ

�
1þ �

�
fnðEeÞ

�
P� cos�e

�
sin �ed�e

¼ 2�NðEeÞ
�
1þ 1

2
AðWÞðEeÞ

�
1þ �

�
fnðEeÞ

�
P�ðcos�1 þ cos�2Þ

�
ðcos �1 � cos�2Þ;

N�ðEeÞ ¼ 2�NðEeÞ
Z ���2

���1

�
1þ AðWÞðEeÞ

�
1þ �

�
fnðEeÞ

�
P� cos �e

�
sin �ed�e

¼ 2�NðEeÞ
�
1� 1

2
AðWÞðEeÞ

�
1þ �

�
fnðEeÞ

�
P�ðcos�1 þ cos�2Þ

�
ðcos �1 � cos�2Þ; (18)

where NðEeÞ is the normalization factor equal to

NðEeÞ ¼ ð1þ 3�2ÞG
2
FjVudj2
8�4

ðE0 � EeÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q
EeFðEe; Z ¼ 1Þ�ðEeÞ: (19)

The correlation coefficient AðWÞðEeÞ is

AðWÞðEeÞ ¼ A0

�
1� 1

M

1

2�ð1þ �Þð1þ 3�2Þ
�
AðWÞ
1 E0 þ AðWÞ

2 Ee þ AðWÞ
3

m2
e

Ee

��
;

AðWÞ
1 ¼ 2

3
ð�3�3 þ ð3	þ 5Þ�2 � ð2	þ 1Þ�� ð	þ 1ÞÞ ¼ �2ð�� ð	þ 1ÞÞ

�
�2 � 2

3
�� 1

3

�
;

AðWÞ
2 ¼ 2

3
ð�3�4 þ ð3	þ 12Þ�3 � ð9	þ 14Þ�2 þ ð5	þ 4Þ�þ ð	þ 1ÞÞ ¼ �2ð�� ð	þ 1ÞÞ

�
�3 � 3�2 þ 5

3
�þ 1

3

�
;

AðWÞ
3 ¼ �4�2ð�þ 1Þð�� ð	þ 1ÞÞ: (20)

It agrees well with the result obtained by Wilkinson
[37,62]. We note that the correlation coefficient AðEeÞ þ
1
3QnðEeÞ differs from the Wilkinson correlation coefficient
AðWÞðEeÞ by the contribution of the radiative corrections,
described by the function ð�=�ÞfnðEeÞ. In the replacement
AðEeÞ þ 1

3QnðEeÞ ! AðWÞðEeÞð1þ ð�=�ÞfnðEeÞÞ we have

neglected the contributions of order ð�=�ÞðE0=MÞ�10�6,
which are smaller compared with contributions of order
10�4 in which we are interested. The contribution to the
correlation coefficient AðWÞðEeÞ of the weak magnetism
and the proton recoil, calculated at � ¼ �1:2750, is
equal to
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�AðWÞðEeÞ
A0

¼ � 1

M

1

2�ð1þ �Þð1þ 3�2Þ
�

�
AðWÞ
1 E0 þ AðWÞ

2 Ee þ AðWÞ
3

m2
e

Ee

�

¼ �8:56� 10�3 þ 3:49� 10�2 Ee

E0

þ 1:41� 10�3 me

Ee

: (21)

In the experimentally used region of electron kinetic
energies 250 keV � Te � 455 keV [1,41,43], the radia-
tive corrections ð�=�ÞfnðEeÞ vary over the region 1:53�
10�3 � ð�=�ÞfnðEeÞ � 1:04� 10�3 and increase the
absolute value of the correlation coefficient AðWÞðEeÞ.

In summary, the Wilkinson expression for the correla-

tion coefficient AðWÞðEeÞ [see Eq. (20)], taking into account
a complete set of the 1=M corrections from the weak
magnetism and the proton recoil, is improved by account-
ing for the radiative corrections, described by the function
2:81� 10�3 � ð�=�ÞfnðEeÞ � 0:62� 10�3 for the elec-
tron energies me � Ee � E0 [see Eq. (D.57) of Ref. [40]].
The contribution of the radiative corrections increases the

absolute value of the correlation coefficient AðWÞðEeÞ. The
results obtained in this section should be used as a theo-
retical background for the experimental determination of
contributions of order 10�4 of interactions beyond the SM
from the experimental data on the electron asymmetry
Aexp ðEeÞ (see Sec. IX).

V. STANDARD MODEL ANALYSIS OF
EXPERIMENTAL DETERMINATION

OF CORRELATION COEFFICIENT B0.
ANTINEUTRINO ASYMMETRY Bexp ðEeÞ

In the SM to leading order in the large M expansion the
correlations between the neutron spin and the antineutrino
3-momentum are defined by the correlation coefficient B0

[1], which may be determined from the experimental data
on the asymmetry Bexp ðEeÞ, defined by [42]

Bexp ðEeÞ ¼ N��ðEeÞ � NþþðEeÞ
N��ðEeÞ þ NþþðEeÞ : (22)

It defines the asymmetry of the emission of the antineu-
trinos into the forward and backward hemispheres with
respect to the neutron spin, where N		ðEeÞ is the number
of events of the emission of the electron-proton pairs as
functions of the electron energy Ee. The signs (þþ) and
(��) show that the electron-proton pairs were emitted
parallel (þþ) and antiparallel (��) to a direction of the
neutron spin. This means that antineutrinos were emitted
antiparallel (þþ) and parallel (��) to a direction of the
neutron spin. The numbers of events N��ðEeÞ and
NþþðEeÞ are defined by the electron-energy and angular
distribution of the neutron �� decay, integrated over the

forward and backward hemispheres relative to the neutron
spin, respectively.
The integration region for the electron-proton pairs,

emitted parallel to a direction (þþ) of the neutron spin,

is defined by the following constraints [63]: ~�n � ~ke¼
Pkecos�e>0 and ~�n � ~kp¼ ~�n �ð� ~ke� ~kÞ¼PEð�rcos�e�
cos�Þ>0 or�rcos�e>cos�, where r¼ke=E¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e�m2

e

p
=

ðE0�EeÞ and P ¼ j ~�nj � 1 is the neutron polariza-
tion. For NþþðEeÞ and r < 1 we obtain the following
expression:

NþþðEeÞ ¼ 2�NðEeÞ
��
1� 1

4
a�þ 1

2
P�

�
A� 1

3
Kn�

�

� 1

2
P

�
B� 1

3
Qn�

��
� 1

2
r

�
1þ 2

3
PA�

�

þ 1

8
r2
�
a�þ 4

3
PBþ 4

5
PKn�

2

�

� 1

15
r3PQn�� 1

8
a0�

2rð1� r2ÞEe

M

�
; (23)

whereNðEeÞ is the normalization factor Eq. (19). For r > 1
the upper limit of the integration over cos �e is restricted by
cos�e � 1=r. The result of the interaction is

NþþðEeÞ¼2�NðEeÞ
�
1

2

1

r

�
1�2

3
PB

�

�1

8

1

r2

�
a��4

3
PA��4

5
PQn�

�

� 1

15

1

r3
PKn�

2þ1

8
a0�

2 1

r

�
1� 1

r2

�
Ee

M

�
: (24)

For the calculation of N��ðEeÞ we have to integrate over

the region following [63]: ~�n � ~ke ¼ Pke cos �e < 0 and
~�n � ~kp¼PEð�rcos�e�cos�Þ<0 or cos�>�rcos�e.

The number of events N��ðEeÞ for r < 1 is given by

N��ðEeÞ ¼ 2�NðEeÞ
��
1� 1

4
a�� 1

2
P�

�
A� 1

3
Kn�

�

þ 1

2
P

�
B� 1

3
Qn�

��
� 1

2
r

�
1� 2

3
PA�

�

þ 1

8
r2
�
a�� 4

3
PB� 4

5
PKn�

2

�

þ 1

15
r3PQn�� 1

8
a0�

2rð1� r2ÞEe

M

�
: (25)

For r > 1 the lower limit of the integration over cos�e is
restricted by cos�e >�1=r. The number of events
N��ðEeÞ, calculated for r > 1, is equal to

N��ðEeÞ¼2�NðEeÞ
�
1

2

1

r

�
1þ2

3
PB

�

�1

8

1

r2

�
a�þ4

3
PA�þ4

5
PQn�

�

þ 1

15

1

r3
PKn�

2þ1

8
a0�

2 1

r

�
1� 1

r2

�
Ee

M

�
: (26)
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Using our formulas for the numbers of events we calculate the asymmetry Bexp ðEeÞ. For r�1 or 0�Te�ðE0�meÞ2=
2E0¼236 keV and for r � 1 or ðE0 �meÞ2=2E0 ¼ 236 keV � Te � E0 �me the asymmetry Bexp ðEeÞ is equal to

Bðr<1Þ
exp ðEeÞ ¼ 2P

3

ð3� r2ÞB� ð3� 2rÞA�þ ð1� 3
5 r

2ÞKn�
2 � ð1� 2

5 r
3ÞQn�

ð4� 2rÞ � ð1� 1
2 r

2Þa�� 1
2a0�

2rð1� r2Þ Ee

M

(27)

and

Bðr>1Þ
exp ðEeÞ ¼ 2P

3

B� 1
2 ðAþ 3

5QnÞ �r þ 1
5Kn

�2

r2

1� a �
4r þ 1

4a0�
2ð1� 1

r2
Þ Ee

M

; (28)

respectively. At r ¼ 1 or Te ¼ ðE0 �meÞ2=2E0 ¼
236 keV the asymmetry Bexp ðEeÞ is continuous. To leading
order in the large M expansion the asymmetry Bexp ðEeÞ
reduces to the form

Bexp ðEeÞjM!1 ¼ 2P

3

8>>><
>>>:

Bð32�1
2r

2Þ�ð32�rÞA�
ð2�rÞ�1

2ð1�1
2r

2Þa� r � 1

B�1
2A

�
r

1�1
4a

�
r

r � 1;
(29)

where the correlation coefficients B, A and a are equal to

B¼B0; A¼A0

�
1þ�

�
fnðEeÞ

�
; a¼a0

�
1þ�

�
fnðEeÞ

�
:

(30)

In Fig. 2 we plot the asymmetry Bexp ðEeÞ, given by
Eqs. (27) and (28) and obtained in the SM, accounting
for the contributions of the 1=M corrections, caused by the
weak magnetism and the proton recoil and the radiative
corrections of order �=�, calculated to leading order in
the large M expansion and described by the function
ð�=�ÞfnðEeÞ. In [42,43], for the experimental determina-
tion of the correlation coefficient B0, the experimental data
on the asymmetry Bexp ðEeÞjM!1 were fitted by Eq. (29)
with the replacements B ! B0, A ! A0 and a ! a0, re-
spectively. Such an asymmetry was calculated in [63].
Following [64] we may rewrite the asymmetry Bexp ðEeÞ
in Eqs. (27) and (28) as follows:

Bexp ðEeÞ ¼ Bexp ðEeÞ
�����M!1ð1þ RðEeÞÞ; (31)

where Bexp ðEeÞjM!1 is given by Eq. (29) with B ¼ B0,
A ¼ A0 and a¼a0. The function RðEeÞ is defined for r < 1
and r > 1 by the functions Rr<1ðEeÞ and Rr>1ðEeÞ equal to

Rr<1ðEeÞ ¼
ð3� r2ÞðB� B0Þ � ð3� 2rÞðA� A0Þ�þ ð1� 3

5 r
2ÞKn�

2 � ð1� 2
5 r

3ÞQn�

ð3� r2ÞB0 � ð3� 2rÞA0�

þ ð2� r2Þða� a0Þ�þ a0�
2rð1� r2Þ Ee

M

ð8� 4rÞ � ð2� r2Þa0�
;

Rr>1ðEeÞ ¼
ðB� B0Þ � 1

2 ðA� A0 þ 3
5QnÞ �r þ 1

5Kn
�2

r2

B0 � 1
2A0

�
r

þ ða� a0Þ �
4r � 1

4a0�
2ð1� 1

r2
Þ Ee

M

1� a0
�
4r

: (32)

In Fig. 3 we plot the function RðEeÞ in the electron kinetic
energy region 100 keV � Te � 700 keV, corresponding
to the energy interval used in Table II in [64]. One may
see that in our approach the function RðEeÞ, caused by the
1=M contributions of the weak magnetism and the proton
recoil and the radiative corrections of order �=�, is posi-
tive, 0:17%< RðEeÞ< 0:28%. Our result disagrees with
the numerical corrections calculated in [64]. Our correc-
tions are of order of magnitude larger compared with the
absolute values of the corrections in [63], which become
negative for Te > 470 keV.

The theoretical value B0 ¼ 0:9871ð1Þ of the correlation
coefficient B0, calculated for � ¼ �1:2750ð9Þ, agrees
within 1.5 standard deviations with the experimental val-

ues Bðexp Þ
0 ¼ 0:9802ð50Þ, Bðexp Þ

0 ¼ 0:9821ð40Þ andBðexp Þ
0 ¼

0:9894ð83Þ, obtained in [42,43] (see also [1]), [65,66],
respectively, and within 2 standard deviations with the

experimental one Bðexp Þ
0 ¼ 0:967ð12Þ obtained in [67].

100 200 300 400 500 600 700
Te keV0.4

0.5

0.6

0.7

0.8
Bexp Ee

FIG. 2 (color online). The antineutrino asymmetry Bexp ðEeÞ,
including a complete set of the 1=M corrections, caused by the
weak magnetism and the proton recoil, and radiative corrections
of order �=�, calculated to leading order in the large M
expansion; Te ¼ Ee �me is the electron kinetic energy.
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In summary, the antineutrino asymmetry Bexp ðEeÞ, cal-
culated in [63] and used in [42,43] for the experimental

determination of the correlation coefficient B
ðexp Þ
0 ¼

0:9802ð50Þ, is improved by the contributions of a complete
set of the 1=M corrections, caused by the weak magnetism
and the proton recoil, and the radiative corrections
ð�=�ÞfnðEeÞ, calculated to leading order in the large M
expansion. The obtained expression of the antineutrino
asymmetry Bexp ðEeÞ should be used as a theoretical back-

ground for the experimental determination of contributions
of order 10�4 of interactions beyond the SM (see Sec. IX).

VI. STANDARD MODEL ANALYSIS OF
EXPERIMENTAL DETERMINATION
OF CORRELATION COEFFICIENT
a0. ELECTRON-PROTON ENERGY

DISTRIBUTION aðEe; TpÞ AND
PROTON-ENERGY SPECTRUM aðTpÞ

For the experimental determination of the correlation
coefficient a0, the correlation coefficient aðEeÞ, given by
Eq. (11), can hardly be used since the antineutrino is
difficult to detect. Thus, for the determination of a0 and
the contributions of interactions beyond the SM, one
should measure correlations of the 3-momenta of the decay
charged particles. Using the results obtained in Appendix I
of Ref. [40], the electron-proton energy spectrum for the
neutron �� decay with unpolarized particles can be given
in the following form:

d2BR��
c
ðEe; TpÞ

dEedTp

¼ ð�nÞSMMð1þ 3�2ÞG
2
FjVudj2
4�3

aðEe; TpÞ

�
�
1þ �

�
gnðEeÞ

�
FðEe; Z ¼ 1ÞEe;

(33)

where ð�nÞSM is the theoretical lifetime of the neutron,
calculated in the SM (see Sec. VIII) and Tp is the kinetic

energy of the proton varying from zero to its maximal
value ðTpÞmax¼ðmn�mpÞ2�m2

e=2mn¼ðE2
0�m2

eÞ=2M¼
0:751keV, i.e., 0 � Tp � 0:751 keV. The limits of the

integration over the electron energy Ee, i.e., ðEeÞmin �
Ee � ðEeÞmax , are the functions of the proton kinetic
energy Tp. They are adduced in Appendix I of Ref. [40].

The electron-proton energy distribution aðEe; TpÞ is

defined by (see Appendix I of Ref. [40])

aðEe; TpÞ ¼ �1ðEe; TpÞ þ a0

�
1þ 1

1� �2

E0

M

�

�
�
1þ �

�
fnðEeÞ

�
�2ðEe; TpÞ: (34)

The functions �1ðEe; TpÞ and �2ðEe; TpÞ are given in

Appendix I of Ref. [40]. They are calculated to next-to-
leading order in the large M expansion and do not contain
the radiative corrections. In the electron energy region
ðEeÞmin � Ee � ðEeÞmax the contribution of the radiative
corrections ð�=�ÞfnðEeÞ to the electron-proton energy
distribution aðEe; TpÞ relative to the correlation coefficient
a0 is of order 10�3. Accounting for the radiative correc-
tions is very important for a correct experimental determi-
nation of contributions of order 10�4 of interactions
beyond the SM.
Integrating the electron-proton energy spectrum

Eq. (33) over the electron energy ðEeÞmin �Ee�ðEeÞmax

we obtain the proton-energy spectrum

dBR��
c
ðTpÞ

dTp

¼ ð�nÞSMMð1þ 3�2ÞG
2
FjVudj2
4�3

aðTpÞ; (35)

where aðTpÞ is defined by

aðTpÞ ¼ g1ðTpÞ þ a0

�
1þ 1

1� �2

E0

M

�
g2ðTpÞ: (36)

The functions g1ðTpÞ and g2ðTpÞ are given in Appendix I of
Ref. [40]. Recently the correlation coefficient a0 and the
axial coupling constant � have been determined from the
proton-energy spectrum by Byrne et al. [44]. The obtained

value aðexpÞ0 ¼�0:1054ð55Þ can be fitted by the axial cou-

pling constant � ¼ �1:271ð18Þ. In turn, the experimental

value aðexp Þ0 ¼ �0:1017ð51Þ, obtained in [45], defines the

axial coupling constant equal to � ¼ �1:259ð17Þ. These
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FIG. 3 (color online). The function RðEeÞ defining corrections to the asymmetry Bexp ðEeÞjM!1 (see Eq. (29)) with B ¼ B0, A ¼ A0

and a ¼ a0, including (i) the 1=M corrections of the ‘‘weak magnetism’’ and the proton recoil and the radiative corrections of order
�=� (left) and (ii) the radiative corrections of order �=� only (right).
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experimental values agree with the theoretical value of
the correlation coefficient a0 ¼ �0:1065ð3Þ, calculated
at � ¼ �1:2750ð9Þ, and with the axial coupling constant
� ¼ �1:2750ð9Þ within 1 standard deviation.

From the point of view of the experimental determina-
tion of contributions of order 10�4 of interactions beyond
the SM (see a discussion in Sec. VII) the experimental
accuracy of the determination of the axial coupling con-
stant � by measuring the proton-energy spectrum as well as
the electron-proton energy distribution aðEe; TpÞ should be
improved by more than 2 orders of magnitude in compari-
son with the accuracy of Byrne’s experiment [44]. There
are three major, funded experiments that are currently
attempting to do this. They are (i) the aSPECT experiment
at Institute Laue-Langevin (ILL) in Grenoble, invented to
perform precise measurements of the correlation coeffi-
cient a0 by measuring the proton-energy spectrum in the
decay of unpolarized neutrons, (ii) aCORN at the National
Institute of Standards and Technology (NIST), and
(iii) Nab at the new Spallation Neutron Source (SNS) in
Oak Ridge, Tennessee [68]. The expected experimental
accuracy of the determination of the correlation coefficient
a0 in the aSPECT, aCORN, and Nab experiments is better
than 1% (see also [69]).

We have discussed the experimental determination of
the correlation coefficient a0 by measuring the electron-
proton energy distribution aðEe; TpÞ and the proton-energy
spectrum aðTpÞ. However, there are other possibilities to

experimentally determine the correlation coefficient a0. It
can be extracted from the experimental data on the
ðTe; cos �e ��Þ and ðTe; cos �epÞ distributions [70], where

�e �� and �ep are angles of the electron-antineutrino and

electron-proton correlations, respectively.
In summary, the electron-proton energy distribution

aðEe; TpÞ is calculated by taking into account a complete

set of the 1=M corrections, caused by the weak magnetism
and the proton recoil, and the radiative corrections of order
�=�, calculated to leading order in the largeM expansion.
The proton-energy spectrum is improved in comparison
with that used in [44] by taking into account the 1=M and
radiative corrections. The obtained expression for the

electron-proton energy distribution aðEe; TpÞ as well as

the proton-energy spectrum aðTpÞ should provide a theo-

retical background for the experimental determination of
contributions of order 10�4 of interactions beyond the SM
(see Sec. IX). For the analysis of contributions of inter-
actions beyond the SM we propose to multiply the
electron-proton energy spectrum of the rate of the neutron
�� decay by the lifetime of the neutron �n, calculated by
taking into account the contributions of interactions be-
yond the SM (see Appendix G of Ref. [40]). As a result the
analysis of the contributions of vector and axial-vector
interactions beyond the SM by means of the electron-proton
energy distribution �naðEe; TpÞ and the proton-energy spec-
trum �naðTpÞ reduces to the analysis of these contributions

to the axial coupling constant � only (see Sec. IX).

VII. STANDARD MODEL ANALYSIS OF
EXPERIMENTAL DETERMINATION
OF CORRELATION COEFFICIENT
C0. PROTON ASYMMETRY Cexp

The correlations between the neutron spin and the pro-
ton 3-momentum are described by the correlation coeffi-
cient C [71–75]. It defines the proton recoil asymmetry
C0 ¼ �xCðA0 þ B0Þ, where xC is the theoretical numerical
factor, calculated within the SM to leading order in the
large M expansion. The first measurement of the correla-

tion coefficient C
ðexp Þ
0 ¼ �0:2377ð26Þ has been performed

by Schumann et al. [46]. The angular distribution of the
probability of the neutron �� decay, related to the proton
recoil asymmetry, is given by [71]

4�
dWð�pÞ
d�p

¼ 1þ 2PC cos�p; (37)

where d�p ¼ 2� sin �pd�p is the infinitesimal solid angle

of the proton 3-momentum with respect to the neutron

polarization ~�n, i.e., ~�n � ~kp ¼ Pkp cos �p, and P ¼ j ~�nj
is the neutron polarization. The correlation coefficient C,
calculated accounting for the 1=M and �=�-radiative cor-
rections, is equal to (see Appendix I of Ref. [40])

C¼ �1

2

X8

X1

ðA0 þB0Þ þ 1

2

X9

X1

A0 � �

�

1

2

Xeff

X1

ðA0 þ B0Þ þ 1

M

1

1þ 3�2

�
�
1

2

X12

X1

� ð	þ 1Þ�1

2

X13

X1

� ð2	þ 1Þ�1

2

X14

X1

� �ð1þ �Þ1
2

X15 þ Y3

X1

þ �ð1� �Þ1
2

X16 þ Y4

X1

�
þ ðA0 þB0ÞX8

X1

�
�

�

1

2

X2

X1

þ 1

M

1

1þ 3�2

�
1

2

X3

X1

þ ð1þ 3�2Þ1
2

X4 þ Y1

X1

� ð1� �2Þ1
2

X5 þ Y2

X1

þ ð�2 þ 2ð	þ 1Þ�Þ1
2

X6

X1

� ð�2 � 2ð	þ 1Þ�Þ1
2

X7

X1

��
; (38)

where the numerical factors Xj (j ¼ 1; . . . ; 14) and Yj (j ¼
1, 2, 3, 4) are calculated in Appendix I of Ref. [40]. The
factor xC ¼ X8=2X1 ¼ 0:27591 agrees well with the factor
xC ¼ 0:27594, calculated by Glück [72]. As a result the
correlation coefficient C0 is equal to

C0 ¼ �0:27591ðA0 þ B0Þ: (39)

The numerical value C0¼�0:2386, calculated at �¼
�1:2750, agrees well with the experimental one
Cexp
0 ¼ �0:2377ð26Þ [46]. The term proportional to
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Xeff=2X1 ¼ 4:712120 contains the contributions of the
proton-photon correlations in the radiative �� decay of
the neutron, calculated in [76]. The contributions of the
proton-photon correlations make the contributions of the
radiative corrections to the correlation coefficient C
symmetric with respect to a change A0 $ B0 as well as
the main term C0 ¼ �xCðA0 þ B0Þ, calculated for the first
time by Treiman [71].

Defining the proton recoil asymmetry Cexp as we have

defined the asymmetry Aexp ðEeÞ [see Eq. (17)] we obtain
Cexp ¼ PCðcos#1 þ cos#2Þ; (40)

where the polar angles �1 and �2 define the solid angle
��12 ¼ 2�ðcos �1 � cos �2Þ of the proton emission to the
forward and backward hemispheres with respect to the
neutron spin.

In summary, the correlation coefficient C, describing
correlations between the neutron spin and the proton
3-momentum, is calculated by taking into account a com-
plete set of the 1=M corrections, caused by the weak
magnetism and the proton recoil, and the radiative correc-
tions of order �=�, calculated to leading order in the large
M expansion. The obtained result should be used as a
theoretical background for the experimental determination
of contributions of order 10�4 of interactions beyond the
SM (see Sec. IX).

VIII. STANDARD MODEL ANALYSIS
OF THE LIFETIME OFA NEUTRON

Having integrated the electron-energy and angular
distribution, Eq. (6), over the directions of the electron

3-momentum ~ke, the antineutrino 3-momentum ~k and the
electron energy Ee within the limits me � Ee � E0, we
obtain the rate of the neutron �� decay. It is equal to [10]

ð�nÞSM ¼ ð1þ 3�2ÞG
2
FjVudj2
2�3

fnðE0; Z ¼ 1Þ; (41)

where the Fermi integral fnðE0; Z ¼ 1Þ, given by

fnðE0; Z¼ 1Þ ¼
Z E0

me

ðE0 �EeÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q
EeFðEe;Z¼ 1Þ

�
�
1þ�

�
gnðEeÞ

��
1þ 1

M

1

1þ 3�2

�
�
ð10�2 � 4ð	þ 1Þ�þ 2ÞEe � 2�

� ð�� ð	þ 1ÞÞ
�
E0 þm2

e

Ee

���
dEe; (42)

contains the contributions of the weak magnetism, the
proton recoil and the radiative corrections, described by
the function gnðEeÞ. The calculation of the lifetime of
the neutron with the Fermi function, determined by
Eq. (5), the axial coupling constant � ¼ �1:2750ð9Þ and
the CKM matrix element Vud ¼ 0:97428ð15Þ, gives
ð�nÞSM ¼ 879:6ð1:1Þ s. The error bars �1:1 s are defined

by the error bars of the experimental value of the coupling
constant and the CKM matrix element. The theoretical
value of the lifetime of the neutron, ð�nÞSM¼879:6ð1:1Þs,
agrees well with the experimental values �

ðexpÞ
n ¼

878:5ð8Þs, �ðexp Þn ¼ 880:7ð1:8Þ s and �
ðexpÞ
n ¼881:6ð2:1Þs,

measured by Serebrov et al. [12], Pichlmaier et al. [77]
and Arzumanov et al. [78], respectively. It also agrees well
with the new world average values (w.a.v.) of the neutron

lifetime, �ðw:a:v:Þn ¼ 880:1ð1:1Þ s [9], �ðw:a:v:Þn ¼ 880:0ð9Þ s
[79] and �ðw:a:v:Þn ¼ 881:9ð1:3Þ s [80], respectively.
In summary, the lifetime of the neutron is calculated by

taking into account the radiative corrections by Sirlin et al.,
calculated to leading order in the largeM expansion, and a
complete set of the 1=M corrections, caused by the weak
magnetism and the proton recoil. The obtained result
should be used as a theoretical background for the experi-
mental determination of contributions of order 10�4 of
interactions beyond the SM (see Sec. IX). The numerical
value of the lifetime of the neutron, ð�nÞSM ¼ 879:6ð1:1Þ s,
calculated in this section is left unchanged after the
absorption of the Herczeg phenomenological coupling
constants ahLL and ahLR of the left-left and left-right
lepton-nucleon current-current interactions (vector and
axial-vector interactions beyond the SM) by the axial
coupling constant �!�eff¼ð��ahLLþahLRÞ=ð1þahLLþ
ahLRÞ¼��ahLLþahLR��ðahLLþahLRÞ and the CKM matrix
element Vud!ðVudÞeff¼Vudð1þahLLþahLRÞ (see Sec. IX).

IX. SENSITIVITY OF THE ELECTRON-PROTON
ENERGY DISTRIBUTION, ASYMMETRIES

Aexp ðEeÞ, Bexp ðEeÞ AND Cexp , AND LIFETIME
OF NEUTRON �n TO CONTRIBUTIONS OF
ORDER 10�4 OF INTERACTIONS BEYOND

THE STANDARD MODEL

In this section we propose a theoretical analysis of the
sensitivity of the electron-proton energy distribution
aðEe; TpÞ, the proton-energy spectrum aðTpÞ, the asymme-

tries Aexp ðEeÞ, Bexp ðEeÞ and Cexp , and the lifetime of the

neutron �n to contributions of order 10�4 of interactions
beyond the SM.
The electron-proton energy distribution aðEe; TpÞ and

the correlation coefficients aðEeÞ, AðEeÞ and BðEeÞ, includ-
ing the contributions of interactions beyond the SM, can be
written in the form

aðEe; TpÞ ¼ �1ðEe; TpÞeff
þ �aeffðEeÞ

�
1þ �

�
fnðEeÞ

�
�2ðEe; TpÞ;

aðEeÞ ¼ aeffðEeÞ
�
1þ �

�
fnðEeÞ

�
;

AðEeÞ ¼ AeffðEeÞ
�
1þ �

�
fnðEeÞ

�
;

BðEeÞ ¼ BeffðEeÞ; (43)
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where �1ðEe; TpÞeff , �aeffðEeÞ, aeffðEeÞ, AeffðEeÞ and

BeffðEeÞ are the electron-proton energy distribution and
the correlation coefficients, defined by the contributions
of the weak magnetism, the proton recoil and interactions
beyond the SM only. They are given by

�1ðEe; TpÞeff ¼
�
1� a4

a0

�
me

Ee

�
	
me

Ee



SM

��
�1ðEe; TpÞ;

�aeffðEeÞ ¼ ða0Þeff þ 1

M

1

1þ 3�2
E0 þ a4

	
me

Ee



SM

;

aeffðEeÞ ¼ ða0Þeff þ 1

M

1

ð1þ 3�2Þ2

�
�
a1E0 þ a2Ee þ a3

m2
e

Ee

�
þ a4

me

Ee

;

AeffðEeÞ ¼ ðA0Þeff þ 1

M

1

ð1þ 3�2Þ2

�
�
A1E0 þ A2Ee þ A3

m2
e

Ee

�
þ A4

me

Ee

;

BeffðEeÞ ¼ ðB0Þeff þ 1

M

1

ð1þ 3�2Þ2

�
�
B1E0 þ B2Ee þ B3

m2
e

Ee

�
þ B4

me

Ee

;

(44)

where hme=EeiSM is the average value calculated in the SM
with the electron-energy spectrum density, Eq. (A8). The
terms proportional to hme=EeiSM come from the lifetime of
the neutron, calculated accounting for the contributions of
interactions beyond the SM (see Appendix G of Ref. [40]).
The coefficients aj, Aj and Bj for j ¼ 1, 2, 3 are given in

Eqs. (11)–(13), respectively. They are calculated to next-
to-leading order in the large M expansion and include the
contributions of the weak magnetism and the proton recoil
only. The numerical values of these corrections are esti-
mated in Eq. (14) at � ¼ �1:2750. The terms ða0Þeff , ðA0Þeff
and ðB0Þeff are the sums of the correlation coefficients a0, A0

and B0 and energy independent contributions of interactions
beyond the SM (see Appendix G of Ref. [40]). They read

ða0Þeff ¼ a0 þ 1

ð1þ 3�2Þ2 ð4�
2 Reð�CV � � �CVÞ

þ 4�Reð�CA � � �CAÞÞ;
ðA0Þeff ¼ A0 þ 1

ð1þ 3�2Þ2 ð��ð3�2 � 2�� 1Þ
� Reð�CV � � �CVÞ � ð3�2 � 2�� 1Þ
� Reð�CA � � �CAÞÞ;

ðB0Þeff ¼ B0 þ 1

ð1þ 3�2Þ2 ð��ð3�2 þ 2�� 1Þ
� Reð�CV � � �CVÞ � ð3�2 þ 2�� 1Þ
� Reð�CA � � �CAÞÞ: (45)

The coefficients a4, A4 and B4 are induced by interactions
beyond the SM only. They are equal to

a4 ¼ � 1� �2

ð1þ 3�2Þ2 ðReðCS � �CSÞ þ 3�ReðCT � �CTÞÞ;

A4 ¼ 2
�ð1þ �Þ
ð1þ 3�2Þ2 ðReðCS � �CSÞ þ 3�Re ðCT � �CTÞÞ;

B4 ¼ ð1þ �Þð1� 3�Þ
ð1þ 3�2Þ2 ð�ReðCS � �CSÞ � ReðCT � �CTÞÞ:

(46)

For the derivation of Eqs. (45) and (46) we have used the
results obtained in Appendix G of Ref. [40], with the
coupling constants CV ¼ 1þ �CV , �CV ¼ �1þ � �CV ,
CA ¼ ��þ �CA and �CA ¼ �þ � �CA, and we have kept
only the linear contributions of the deviations from the
coupling constants of the SM. By assumption, the axial
coupling constant � in Eqs. (45) and (46) is determined by
all interactions within the SM only.
The differences of the phenomenological coupling con-

stants �CV � � �CV , �CA � � �CA, CS � �CS and CT � �CT ,
calculated in terms of the Herczeg phenomenological
lepton-nucleon coupling constants [6] (see Appendix G
of Ref. [40]), take the form

�CV � � �CV ¼ 2ðahLL þ ahLRÞ;
�CA � � �CA ¼ 2ðahLL � ahLRÞ;

CS � �CS ¼ 2ðAh
LL þ Ah

LRÞ ¼ 4aS;

CT � �CT ¼ 4�h
LL ¼ 4aT:

(47)

This means that the phenomenological coupling constants
�CV � � �CV , �CA � � �CA, CS � �CS and CT � �CT describe
interactions beyond the SM of left-handed leptonic cur-
rents and left (right)-handed hadronic currents, i.e., L 
 L
and L 
 R, respectively.
The experimental determination of the correlation coef-

ficients a0, A0 and B0 is as follows. Using the theoretical
expressions for the electron-proton energy distribution
aðEe; TpÞ and the asymmetries Aexp ðEeÞ and Bexp ðEeÞ,
their experimental data can be fit by a tuning of the axial
coupling constant [1]. Such a procedure gives the axial-
coupling constants �a, �A and �B, obtained from the fit of
the experimental data on aðEe; TpÞ, Aexp ðEeÞ and Bexp ðEeÞ,
respectively. In terms of these axial coupling constants one

may define the correlation coefficients ða0Þðexp Þeff , ðA0Þðexp Þeff

and ðB0Þðexp Þeff , respectively, as follows:

ða0Þðexp Þeff ¼ 1� �2
a

1þ 3�2
a

; ðA0Þðexp Þeff ¼ �2
�Að1þ �AÞ
1þ 3�2

A

;

ðB0Þðexp Þeff ¼ �2
�Bð1� �BÞ
1þ 3�2

B

: (48)

The theoretical expressions for the axial coupling constants
�a, �A and �B in terms of the axial coupling constant �,
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defined by interactions within the SM only, and the con-
tributions of interactions beyond the SM are

�a ¼ �� 1

2
ð�Reð�CV � � �CVÞ þ Reð�CA � � �CAÞÞ;

�A ¼ �� 1

2
ð�Reð�CV � � �CVÞ þ Reð�CA � � �CAÞÞ;

�B ¼ �� 1

2
ð�Reð�CV � � �CVÞ þ Reð�CA � � �CAÞÞ:

(49)

Thus, in the linear approximation with respect to the
deviations of the phenomenological coupling constants of
interactions beyond the SM from the coupling constants of
the SM, we obtain that �a ¼ �A ¼ �B. This agrees well
with the results obtained in [47–49]. Replacing �a, �A and
�B by �eff , which includes the contributions of vector
and axial-vector interactions beyond the SM in addition

to the contributions of interactions within the SM, and
denoting

bF ¼ 1

1þ 3�2
eff

ðReðCS � �CSÞ þ 3�eff ReðCT � �CTÞÞ

¼ 4

1þ 3�2
eff

ðReðaSÞ þ 3�eff ReðaTÞÞ (50)

and

cST ¼ 1

1þ 3�2
eff

ð�eff ReðCS � �CSÞ � ReðCT � �CTÞÞ

¼ 4

1þ 3�2
eff

ð�eff ReðaSÞ � ReðaTÞÞ; (51)

where bF is the Fierz term (see Appendix G of Ref. [40]),
we obtain the electron-proton energy distribution aðEe; TpÞ
and the correlation coefficients aðEeÞ, AðEeÞ and BðEeÞ in
the following form:

aðEe; TpÞ ¼
�
1� bF

	
me

Ee



SM

���
1þ bF

me

Ee

�
�1ðEe; TpÞ þ a0

�
1þ 1

1� �2
eff

E0

M

��
1þ �

�
fnðEeÞ

�
�2ðEe; TpÞ

�
;

aðEeÞ ¼ a0

�
1� bF

me

Ee

��
1þ �

�
fnðEeÞ

��
1þ 1

M

1

ð1� �2
effÞð1þ 3�2

effÞ
�
a1E0 þ a2Ee þ a3

m2
e

Ee

��
;

AðEeÞ ¼ A0

�
1� bF

me

Ee

��
1þ �

�
fnðEeÞ

��
1� 1

M

1

2�effð1þ �effÞð1þ 3�2
effÞ

�
A1E0 þ A2Ee þ A3

m2
e

Ee

��
;

BðEeÞ ¼ B0

�
1� ð1þ �effÞð1� 3�effÞ

2�effð1� �effÞ cST
me

Ee

��
1� 1

M

1

2�effð1� �effÞð1þ 3�2
effÞ

�
B1E0 þ B2Ee þ B3

m2
e

Ee

��
;

(52)

where the coefficients aj, Aj and Bj for j ¼ 1, 2, 3 are
defined in Eqs. (11)–(13), respectively, with the replace-
ment � ! �eff . The same replacement defines the correla-
tion coefficients a0, A0 and B0 in terms of �eff [see Eq. (8)].

The correlation coefficients aðEeÞ, AðEeÞ and BðEeÞ,
extended by the contributions of interactions beyond the
SM, together with the correlation coefficients KnðEeÞ and
QnðEeÞ, caused by the contributions of the 1=M corrections
from the weak magnetism and the proton recoil only,
determine the asymmetries Aexp ðEeÞ and Bexp ðEeÞ. For
the calculation of the electron asymmetry Aexp ðEeÞ, taking
into account the contributions of interactions beyond the

SM, we have to replace the correlation coefficient AðWÞðEeÞ
in Eq. (17) by the expression

AðWÞðEeÞ¼A0

�
1�bF

me

Ee

��
1� 1

M

1

2�effð1þ�effÞð1þ3�2
effÞ

�
�
AðWÞ
1 E0þAðWÞ

2 EeþAðWÞ
3

m2
e

Ee

��
; (53)

where the coefficients AðWÞ
j are given in Eq. (20) with the

replacement � ! �eff .
The antineutrino asymmetry Bexp ðEeÞ is defined by

Eqs. (27) and (28) for r � 1 and r � 1, respectively. For

the account of the contributions of interactions beyond the
SM, the correlation coefficients aðEeÞ, AðEeÞ and BðEeÞ
should be taken in the form given by Eq. (52).
The proton recoil asymmetry Cexp completes the set of

asymmetries that can be measured in the neutron �� decay
with a polarized neutron and an unpolarized proton and
electron. The correlation coefficient Ceff (see Appendix I
of Ref. [40]), defining the asymmetry Cexp and extended

by the contributions of interactions beyond the SM, takes
the form

Ceff ¼ �xCðA0 þ B0Þ þ �ð1þ �effÞ
1þ 3�2

eff

bF
X17

X1

� 1

2

ð1þ �effÞð1� 3�effÞ
1þ 3�2

eff

cST
X18

X1

þ CSM; (54)

where CSM ¼ Cþ xCðA0 þ B0Þ and xC ¼ 0:27591 [see
Eqs. (38) and (39)]. The numerical factors X17=X1 ¼
�0:90187 and X18=X1 ¼ 0:39806 are calculated in
Appendix I of Ref. [40].
Using the results obtained in Appendix G of Ref. [40],

the theoretical expression for the rate of the neutron ��
decay, including the contributions of interactions beyond
the SM, is
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�n ¼ ð�nÞSM
�
1þ 1

1þ 3�2
ðReð�CV � � �CVÞ � 3�Reð�CA � � �CAÞÞ þ bF

	
me

Ee



SM

�

¼ G2
FjVudj2
2�3

fnðE0; Z ¼ 1Þð1þ 3�2Þ
�
1þ 1

1þ 3�2
ðReð�CV � � �CVÞ � 3�Reð�CA � � �CAÞÞ þ bF

	
me

Ee



SM

�
; (55)

where ð�nÞSM is the lifetime of the neutron, calculated
within the SM [see Eqs. (41) and (42)], and hme=EeiSM is
the average value, calculated with the electron-energy
spectrum density, Eq. (A8). Now we have to define the
rate of the neutron �� decay, Eq. (55), in terms of the
axial coupling constant �eff , which is related to the axial
coupling constant � as

� ¼ �eff þ 1

2
ð�eff Reð�CV � � �CVÞ þ Reð�CA � � �CAÞÞ:

(56)

Substituting Eq. (56) into Eq. (55) and keeping only
the linear terms in powers of Reð�CV � � �CVÞ and
Reð�CA � � �CAÞ, one may show that

ð1þ 3�2Þ
�
1þ 1

1þ 3�2
ðReð�CV � � �CVÞ

� 3�Reð�CA � � �CAÞÞ þ bF

	
me

Ee



SM

�

¼ ð1þ Reð�CV � � �CVÞÞð1þ 3�2
effÞ

�
1þ bF

	
me

Ee



SM

�
:

(57)

This gives the rate of the neutron �� decay equal to

�n ¼ G2
FjVudj2
2�3

fnðE0; Z ¼ 1Þð1þ Reð�CV � � �CVÞÞ

� ð1þ 3�2
effÞ

�
1þ bF

	
me

Ee



SM

�
; (58)

where the Fermi integral is given by Eq. (42) with the
replacement � ! �eff .

If we introduce again ð�nÞSM, defined by Eqs. (41) and
(42) with the replacement � ! �eff , we get the following
expression for the rate of the neutron �� decay, corrected
by the contributions of interactions beyond the SM taken
to linear approximation with respect to the Herczeg
phenomenological coupling constants,

�n ¼ ð�nÞSMð1þ 2ReðahLL þ ahLRÞÞ
�
1þ bF

	
me

Ee



SM

�
;

(59)

where we have set Reð�CV � � �CVÞ ¼ 2ReðahLL þ ahLRÞ.
Thus, at first glance a deviation of the experimental values
�n ¼ 1=�n of the lifetime of the neutron considered rela-
tive to the theoretical value of the lifetime of the neutron
ð�nÞSM ¼ 1=ð�nÞSM, calculated in the SM at zero Herczeg
coupling constants, may give information about the
contribution of the Herczeg left-left and left-right

lepton-nucleon current-current interactions (vector and
axial-vector interactions beyond the SM) by using the
experimental value of the Fierz term bF, determined
from the experimental data on the electron-proton energy
distribution aðEe; TpÞ, the proton-energy spectrum aðTpÞ,
and the asymmetries Aexp ðEeÞ, Bexp ðEeÞ and Cexp .

However, the problem is, in the following, that the
Herczeg phenomenological interactions beyond the SM,
when they exist, should always exist together with the
interactions of the SM, and a separation of these interac-
tions is rather artificial.
Hence, using the result obtained in Appendix G of

Ref. [40], we may redefine the axial coupling constant
and the CKM matrix element as follows: �eff ¼
ð�� ahLL þ ahLRÞ=ð1þ ahLL þ ahLRÞ and ðVudÞeff ¼
Vudð1þ ahLL þ ahLRÞ, as proposed in [47–49]. After such
a change one may show that the rate of the neutron
�� decay may contain only the contribution of the
Fierz term,

�n ¼ ð�nÞSM
�
1þ bF

	
me

Ee



SM

�
; (60)

where ð�nÞSM is given by Eqs. (41) and (42) with the
replacements � ! �eff and Vud ! ðVudÞeff .
The definition of the effective coupling constant

�eff ¼ ð�� ahLL þ ahLRÞ=ð1þ ahLL þ ahLRÞ and the CKM
matrix element ðVudÞeff ¼ Vudð1þ ahLL þ ahLRÞ at the
Hamiltonian level introduces the imaginary parts to the
axial coupling constant and the CKM matrix element,

�eff ¼ Re�eff þ i Im�eff ;

ðVudÞeff ¼ Vudð1þ ReðahLL þ ahLRÞÞð1þ i ImðahLL þ ahLRÞÞ;
(61)

where Im�eff is equal to

Im�eff ¼ �ð1þ Re�effÞImðahLLÞ þ ð1� Re�effÞImðahLRÞ:
(62)

One may obtain information about the imaginary part of
the axial coupling constant �eff by measuring the correla-
tion coefficient DðEeÞ, describing a violation of time re-
versal invariance. From Eq. (62) and the results obtained in
Appendix G of Ref. [40], we get
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DðEeÞ ¼ DSMðEeÞ � 2

1þ 3�2
eff

ð�eff ImðahLL þ ahLRÞ

þ ImðahLL � ahLRÞÞ
¼ DSMðEeÞ � 2

1þ 3�2
eff

ðð1þ �effÞImðahLLÞ

� ð1� �effÞImðahLRÞÞ
¼ DSMðEeÞ þ 2 Im�eff

1þ 3�2
eff

; (63)

where we have replaced Re�eff by �eff , having neglected
the contribution of the imaginary part, and DSMðEeÞ is the
contribution to the correlation coefficientDðEeÞ calculated
within the SM [55–60]. As we have estimated in
Sec. III, such a contribution, caused by the electron-proton
interaction in the final state [55–58,60], is of order 10�5 for
the electron kinetic energies 250 keV � Te � 455 keV.
Thus, the correlation coefficient DðEeÞ, defined in the
same energy region, should be sensitive to the contribu-
tions beyond the SM of 10�4. Recently, the experimental
value Dexp ðEeÞ ¼ ð�4� 6Þ � 10�4 of the correlation

coefficient DðEeÞ [1,9] has been substantially improved,
with the resultDexp ðEeÞ ¼ ð�0:96� 1:89stat � 1:01systÞ �
10�4 [81]. However, the new experimental value, as well as
the old one, still implies that to order 10�4 the correlation
coefficient DðEeÞ is commensurable with zero. Hence, to
order 10�4 the imaginary part of the axial coupling con-
stant �eff is also commensurable with zero, i.e., Im�eff ¼
0. Nevertheless, setting �eff ¼ Re�eff ¼ �1:2750 and us-
ing the relation Im�eff ¼ 0, we may obtain ImðahLRÞ ¼�0:12 ImðahLLÞ. This adds an additional phase shift

ei0:88 ImðahLLÞ to the CKM matrix element ðVudÞeff .
The axial coupling constant �a and the correlation

coefficient a0 may also be determined by measuring the
proton-energy spectrum, Eq. (35) (see [44]). The proton-
energy spectrum, taking into account the contributions of
interactions beyond the SM, is

aeffðTpÞ ¼
�
1� bF

	
me

Ee



SM

��
g1ðTpÞeff

þ a0

�
1þ 1

1� �2

E0

M

�
g2ðTpÞ

�
; (64)

where the functions g1ðTpÞeff and g2ðTpÞ are defined by the
integrals

g1ðTpÞeff ¼
Z ðEeÞmax

ðEeÞmin

�
1þ bF

me

Ee

��
1þ �

�
gnðEeÞ

�

� �1ðEe; TpÞFðEe; Z ¼ 1ÞEedEe;

g2ðTpÞ ¼
Z ðEeÞmax

ðEeÞmin

�
1þ �

�
gnðEeÞ þ �

�
fnðEeÞ

�

� �2ðEe; TpÞFðEe; Z ¼ 1ÞEedEe; (65)

where the limits of integration ðEeÞmax =min are given in

Appendix I of Ref. [40].
In summary, we have analyzed the sensitivity of the

electron-proton energy distribution aðEe; TpÞ, the proton-

energy spectrum aðTpÞ, the asymmetries Aexp ðEeÞ,
Bexp ðEeÞ, Cexp , and the lifetime of the neutron �n to con-

tributions of order 10�4 of interactions beyond the SM,
taken to a linear approximation with respect to the Herczeg
phenomenological coupling constants of weak lepton-
nucleon current-current interactions. We have shown that,
in such an approximation, the axial coupling constant �eff

and the CKM matrix element ðVudÞeff absorb the contribu-
tions of the Herczeg left-left and left-right lepton-nucleon
current-current interactions with the coupling constants
ahLL and ahLR. In this approximation the axial coupling
constant does not acquire an imaginary part to order
10�4, but the CKM matrix element becomes an additional

phase ei ImðahLLþahLRÞ. Thus, after the measurements of the
electron-proton energy spectrum aðEe; TpÞ, the proton-

energy spectrum aðTpÞ, the asymmetries Aexp ðEeÞ,
Bexp ðEeÞ and Cexp , and the lifetime of the neutron �n,

one may determine the axial coupling constant �eff and
the real parts of the scalar and tensor coupling constants aS
and aT , defined in Eq. (47),

ReðaSÞ þ 3�eff ReðaTÞ ¼ 1þ 3�2
eff

4
bF;

�eff ReðaSÞ � ReðaTÞ ¼ 1þ 3�2
eff

4
cST;

(66)

where in the r.h.s. of the algebraical equations, �eff , bF and
cST are the experimental values with their experimental
errors.

X. CONCLUSION

We have analyzed the sensitivity of the electron-proton
energy distribution aðEe; TpÞ, the proton-energy spectrum

aðTpÞ, and the asymmetries Aexp ðEeÞ, Bexp ðEeÞ and Cexp of

the correlations between the neutron spin and 3-momenta
of the decay electron, antineutrino and proton, respectively,
for the neutron �� decay with a polarized neutron and an
unpolarized proton and electron to contributions of order
10�4 of interactions beyond the SM. For the analysis of
contributions of order 10�4 we have used the linear approxi-
mation for the correlation coefficient with respect to the
Herczeg phenomenological coupling constants of weak
lepton-nucleon current-current interactions. We have shown
that, in such an approximation, the Herczeg right-left and
right-right lepton-nucleon current-current interactions with
the coupling constants ahRL and ahRR give no contributions
to the correlation coefficients of the neutron �� decay and
the lifetime of the neutron. Then, the contributions of the
Herczeg left-left and left-right lepton-nucleon current-
current interactions with the coupling constants ahLL and
ahLR may be absorbed by the axial coupling constant, which
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we denote as �eff ¼ �� ReðahLL � ahLRÞ þ �ReðahLL þ
ahLRÞ, and the CKM matrix element ðVudÞeff ¼ Vudð1þ
ReðahLL þ ahLRÞÞ. We have shown that the Herczeg coupling
constants ahLL and ahLR in the effective Hamiltonian of weak
interactions may be absorbed by the axial coupling constant
�eff ¼ ð�� ahLL þ ahLRÞ=ð1þ ahLL þ ahLRÞ and the CKM
matrix element ðVudÞeff ¼ Vudð1þ ahLL þ ahLRÞ. Using the
experimental data on the correlation coefficient DðEeÞ, we
have shown that at the level of 10�4 the imaginary part
of the axial coupling constant �eff is equal to zero, whereas
the CKM matrix element acquires an additional phase

ei ImðahLLþahLRÞ. This shows that, in addition to the background
calculated in the SM, the correlation coefficients of the
neutron�� decay and the lifetime of the neutron, calculated
to a linear approximation with respect to the Herczeg
coupling constants of lepton-nucleon current-current inter-
actions, depend on the contributions of the scalar and tensor
interactions only. This agrees with recent results obtained
in [47–49].

We have shown that the contributions of the scalar and
tensor interactions beyond the SM are described by the
Fierz term bF and the coupling constant cST . The Fierz
term may be determined from the experimental data on
the asymmetry Aexp ðEeÞ and the electron-proton energy

distribution aðEe; TpÞ [or the proton-energy spectrum

aðTpÞ]. The coupling constant cST may be determined from

the experimental data on the asymmetry Bexp ðEeÞ and

the proton recoil asymmetry Cexp . This allows us to

determine the scalar ReðaSÞ and tensor ReðaTÞ coupling
constant by solving the system of algebraical equations
[see Eq. (66)]

ReðaSÞ þ 3�eff ReðaTÞ ¼ 1þ 3�2
eff

4
bF;

�eff ReðaSÞ � ReðaTÞ ¼ 1þ 3�2
eff

4
cST:

The lifetime of the neutron is defined by the background
calculated in the SM, and the Fierz term [see Eq. (60)]

�n ¼ ð�nÞSM
�
1� bF

	
me

Ee



SM

�
;

where ð�nÞSM and hme=EeiSM are calculated in the SM.
We would like to note that the experimental analysis

of the neutron �� decay with a polarized neutron and an
unpolarized proton and electron may be carried out in
terms the electron-proton energy distribution aðEe; TpÞ,
the proton-energy spectrum aðTpÞ, the asymmetries

Aexp ðEeÞ, Bexp ðEeÞ, Cexp , and the lifetime of the neutron

�n. From the fit of the experimental data on these energy
distributions, asymmetries and the lifetime, we deter-
mine three parameters, i.e., the axial coupling constant
�eff , the Fierz term bF and the coupling constant cST . In
order to determine these parameters without correlations

between them, it suffices to use experimental data ob-
tained only in three out of five independent experiments.
This means that experimental data obtained from two
other independent experiments should be described well
by the parameters ð�eff ; bF; cSTÞ determined from the
first three experiments. The deviations from the pre-
dicted values should be much smaller compared with
10�4, since they may be explained only by the contri-
butions of higher powers of the Herczeg coupling
constants.
We note that the theoretical analysis of the sensitivity of

the electron-proton energy distribution aðEe; TpÞ, the

proton-energy spectrum aðTpÞ, the asymmetries Aexp ðEeÞ,
Bexp ðEeÞ and Cexp of the neutron �� decay, and the

lifetime of the neutron to contributions of order 10�4 of
interactions beyond the SM has been carried out above the
background, calculated within the SM. We have taken into
account a complete set of the 1=M corrections, caused by
the weak magnetism and the proton recoil, calculated to
next-to-leading order in the large M or the large proton
mass expansion, and the radiative corrections of order
�=�, calculated to leading order in the large M or the
large proton mass expansion.
The corrections caused by the weak magnetism and

the proton recoil are calculated in analytical agreement
with the results obtained by Wilkinson [37] and Gudkov
et al. [35]. We have given the radiative corrections to
the lifetime of the neutron and the correlation coeffi-
cients of the neutron �� decay with a polarized neutron
and an unpolarized decay proton and electron, calcu-
lated in this paper, in terms of two functions,
ð�=�ÞgnðEeÞ and ð�=�ÞfnðEeÞ, given in Appendix D
of Ref. [40]. They are in analytical agreement with
the radiative corrections calculated in [18–30] and in
[34,35], respectively. We would like to note that the
radiative corrections to order �=� to the correlation
coefficients aðEeÞ and AðEeÞ were calculated for the first
time by Shann [20]. The function ð�=�ÞfnðEeÞ is in
analytical agreement with the results obtained by
Shann [20]. We have confirmed Sirlin’s assertion that
an unambiguous definition of the observable radiative
corrections to the lifetime of the neutron is fully caused
by the requirement of gauge invariance of the amplitude
of one-virtual photon exchanges of the continuum-state
�� decay of the neutron [18].
We have improved the theoretical expressions for

the asymmetries Aexp ðEeÞ, Bexp ðEeÞ and Cexp with

respect to the expressions used in [1,41–43,46] for
the experimental determination of the axial coupling con-
stant � ¼ �1:2750ð9Þ and the correlation coefficients

Aðexp Þ
0 ¼ �0:11933ð34Þ, Bðexp Þ

0 ¼ 0:9802ð50Þ and Cðexp Þ
0 ¼

�0:2377ð26Þ, respectively. We have added the radiative
corrections to the electron asymmetry Aexp ðEeÞ and the

1=M and radiative corrections to the antineutrino Bexp ðEeÞ
and proton Cexp asymmetries. In connection with the
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experimental analysis of contributions of order 10�4 of
interactions beyond the SM to the neutron �� decay, we
have calculated the electron-proton energy distribution
aðEe; TpÞ and the proton-energy spectrum aðTpÞ by taking

into account the complete set of 1=M corrections, caused
by the weak magnetism and the proton recoil, and the
radiative corrections of order �=�.

As has been pointed out by Glück [33], the contribu-
tions of the radiative �� decay of the neutron to the
proton-energy spectrum and angular distribution demand
a detailed analysis of the proton-photon correlations,
which appear in the proton recoil energy and angular
distribution of the radiative �� decay of the neutron.
For the aim of a consistent calculation of the contribu-
tions of the nucleus-photon and hadron-photon correla-
tions in the radiative nuclear and hadronic � decays,
Glück has used the Monte Carlo simulation method.
Recently the calculation of the proton-photon correlations
has been performed in [76]. There it has been shown that
the contributions of the proton-photon correlations to the
lifetime of the neutron �n, the proton-energy spectrum
aðTpÞ and the electron-proton energy distribution

aðEe; TpÞ are smaller compared with the contributions

of the radiative corrections described by the functions
gnðEeÞ and fnðEeÞ. At the level of 10�5 accuracy the
contributions of the proton-photon correlations to part of
the proton recoil angular distribution, independent
of cos�p, can be neglected. In turn, the contributions of

the proton-photon correlations to the proton recoil
asymmetry C, i.e., in part of the proton recoil angular
distribution proportional to cos �p, are of order 10�4.

The account of these contributions makes the radiative
corrections to the proton recoil angular distribution and
the proton recoil asymmetry C symmetric with respect

to a change A0 $ B0, as well as the main term
C0 ¼ �xCðA0 þ B0Þ. A detailed analysis of the proton-
energy spectrum aðTpÞ has recently been carried out in

[76]. In addition to the proton-energy spectrum aðTpÞ
calculated in this paper, the authors of Ref. [76] have
included the contributions of the proton-photon correlations
and analyzed the proton energy regions, which are conve-
nient for measurements of the Fierz term bF, caused by
scalar and tensor interactions beyond the SM.
We have also shown that, at the present level of

experimental accuracy, the lifetime of the neutron is
described well by the SM, taking into account a complete
set of 1=M corrections, caused by the weak magnetism
and the proton recoil, calculated to next-to-leading order
in the large proton mass expansion, and the radiative
corrections of order �=�, calculated to leading order in
the large proton mass expansion. The theoretical value of
the lifetime of the neutron, ð�nÞSM ¼ 879:6ð1:1Þ s, where
the error bars are defined by the error bars of the axial
coupling constant � ¼ �1:2750ð9Þ and the CKM matrix
element Vud ¼ 0:97428ð15Þ, agrees well with the experi-

mental values �ðexp Þn ¼ 878:5ð8Þ s, �ðexp Þn ¼ 880:7ð1:8Þ s
and �

ðexp Þ
n ¼ 881:6ð2:1Þ s, measured by Serebrov et al.

[12], Pichlmaier et al. [77] and Arzumanov et al. [78],
respectively, and the world average values of the neutron

lifetime, �ðw:a:v:Þn ¼ 880:1ð1:1Þ s, �ðw:a:v:Þn ¼ 880:0ð9Þ s
and �ðw:a:v:Þn ¼ 881:9ð1:3Þ s, obtained in [9,79,80],
respectively.
In order to demonstrate the sensitivity of the lifetime

of the neutron calculated in the SM to the contributions of
the radiative and 1=M corrections, we propose to rewrite
the Fermi integral fnðE0; Z ¼ 1Þ, given by Eq. (42), in the
following form:

fnðE0; Z ¼ 1Þ ¼
Z E0

me

ðE0 � EeÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q
EeFðEe; Z ¼ 1Þ

��
1þ k1

�

�
gnðEeÞ

�
þ k2

1

M

1

1þ 3�2

�
�
ð10�2 � 4ð	þ 1Þ�þ 2ÞEe � 2�ð�� ð	þ 1ÞÞ

�
E0 þm2

e

Ee

���
dEe; (67)

where the coefficients kj for j ¼ 1, 2 are equal to kj ¼ 0 or
kj ¼ 1, which means without kj ¼ 0 and with kj ¼ 1
corresponding corrections. The numerical values of the
lifetime of the neutron for different kj are adduced in
Table I. We show that the most important contributions
come from the radiative corrections.

For the comparison of the theoretical lifetime of the
neutron, defined by Eq. (41), with the expression that is
usually used for the measurement of the CKM matrix
element Vud [28] (see also [82]), we transcribe Eq. (41)
into the form [28,82]

1

�n
¼ CnjVudj2ð1þ 3�2Þfð1þ RCÞ; (68)

where we have denoted Cn ¼ G2
Fm

5
e=2�

3 ¼ 1:1614�
10�4 s�1 and RC ¼ hð�=�ÞgnðEeÞi ¼ 0:03886, defining
the radiative corrections [1,28] integrated over the phase-
space volume, accounting for the proton-electron final-
state Coulomb interaction. Then, the phase-space factor
f, including the 1=M corrections from theweak magnetism
and the proton recoil, is determined by
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f ¼ 1

m5
e

Z E0

me

ðE0 � EeÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e �m2

e

q
EeFðEe; Z ¼ 1Þ

�
1þ 1

M

1

1þ 3�2

�
ð10�2 � 4ð	þ 1Þ�þ 2ÞEe

� 2�ð�� ð	þ 1ÞÞ
�
E0 þm2

e

Ee

���
dEe ¼ 1:6894: (69)

The numerical value agrees well with the value f ¼ 1:6887
calculated in [28] (see also [82]). We can represent the factor
1þ RC in the following form: 1þ RC ¼ ð1þ �RÞ�
ð1þ �RÞ, where �R¼hð�=�ÞðgnðEeÞ�CWZÞi¼0:01505
is defined by one-photon exchange and emission only
[28,29] and�R ¼ ð�=�ÞCWZ ¼ 0:02381 is part of the radia-
tive corrections induced by electroweak-boson exchanges and
QCD corrections [28,29] (see also [35]). The phase-space
factor fR, including the contributions of the radiative correc-
tions, caused by one-photon exchanges and emission only, is
equal to fR ¼ fð1þ �RÞ ¼ 1:71483. It does not contradict
the value fR ¼ 1:71385ð34Þ used in [82] (see also [83]).

Currently the lifetime of the neutron is proposed to be
measured in TU München within the project PENeLOPE,
using a superconducting magnetogravitational trap of
ultracold neutrons (UCN) for a precise neutron lifetime
measurement [84]. In this experiment the UCN are trapped
in a multipole field of a flux density up to 2 Tand bound by
a gravitational force at the top. This makes the extraction
and detection of the protons possible and allows a direct
measurement of neutron decay. A planing accuracy of 0.1 s
and better demands high storage times and good knowl-
edge of systematic errors, which could result from neutron
spin flip and high energetic UCN that leave the storage
volume only slowly. Therefore, the neutron spectrum is
cleaned by an absorber. The big storage volume of
800 dm3 and the expected high neutron flux of FRMII
give more than 107 neutrons per filling of the storage
volume and meet statistical demands. Of course, the
experimental data on the lifetime of the neutron, which
should be obtained within this project with a planning
accuracy better than 0.1 s, should place new constraints
on contributions of interactions beyond the SM.

For the completeness of our analysis we have calculated
(see Appendix H of Ref. [40]) the contributions of the
proton recoil corrections of order �=M, caused by the
electron-proton Coulomb interaction in the final state of
the neutron �� decay. We have shown that these correc-
tions to the lifetime of the neutron and the correlation
coefficients are of order 10�6–10�5. This allows us to
neglect them for the analysis of contributions of order
10�4 of interactions beyond the SM.

We would like to note that we have used the experimen-
tal value of the axial coupling constant � ¼ �1:2750ð9Þ,
determined from the experimental data on the electron
asymmetry Aexp ðEeÞ [1,41]. Such an experimental value

of the axial coupling constant has been obtained with an
unprecedented accuracy of about 0.07%. The axial cou-
pling constant � ¼ �1:2750ð9Þ agrees well with the axial

coupling constants � ¼ �1:2761ðþ14Þ
ð�17Þ, � ¼ �1:2759þ40:9

�44:5

and � ¼ �1:2756ð30Þ, obtained recently by the PERKEO
(PERKEO II) Collaboration [82] and the UCNA (Ultra-
cold Neutron Asymmetry) Collaboration [85,86], respec-
tively, the accuracies of which are large compared with the
accuracy of the axial coupling constant � ¼ �1:2750ð9Þ.
The lifetimes of the neutron, �n ¼ 879ð2Þ s, �n ¼ 879ð6Þ s
and �n ¼ 879ð4Þ s, calculated for the axial coupling

constants � ¼ �1:2761ðþ14Þ
ð�17Þ, � ¼ �1:2759þ40:9

�44:5 and � ¼
�1:2756ð30Þ, respectively, agree with the experimental

data �ðexp Þn ¼ 878:5ð8Þ s, �ðexp Þn ¼ 880:7ð1:8Þ s and �ðexpÞn ¼
881:6ð2:1Þ s, measured by Serebrov et al. [12], Pichlmaier
et al. [77] and Arzumanov et al. [78], respectively, and

the world average values of the neutron lifetime, �ðw:a:v:Þn ¼
880:1ð1:1Þ s, �ðw:a:v:Þn ¼880:0ð9Þs and �ðw:a:v:Þn ¼881:9ð1:3Þs,
obtained in [9,79,80], respectively.
The other experimental values of the axial coupling

constant, � ¼ �1:266ð4Þ, � ¼ �1:2594ð38Þ and � ¼
�1:262ð5Þ, obtained in [87–89], respectively, and cited
by [9], lead to the lifetimes of the neutron, �n ¼
890ð5Þ s, �n ¼ 898ð5Þ s and �n ¼ 895ð7Þ s, which do not
agree with the world average values of the neutron lifetime,

�ðw:a:v:Þn ¼ 880:1ð1:1Þ s, �ðw:a:v:Þn ¼ 880:0ð9Þ s and �ðw:a:v:Þn ¼
881:9ð1:3Þ s, obtained in [9,79,80], respectively. Moreover,
the experimental methods, used in [87–89] for the mea-
surements of the electron asymmetry Aexp ðEeÞ, have been
recently criticized in [82]. As has been pointed out by
Mund et al. [82], in the experiments [87–89] large correc-
tions of about 15%–30% should be applied to (1) neutron
polarization, (2) magnetic mirror effects, (3) solid angle
and (4) background.
For a long time [13–30] (see also [34,35]), due to

infrared divergences, the calculation of the radiative ��
decay of the neutron has been associated with the calcu-
lation of the radiative corrections to the neutron �� decay.
As has been shown already in [13], the sum of the rates,
as well as the electron-energy and angular distributions of
the continuum-state and radiative ��-decay modes of the
neutron, does not suffer from infrared divergences caused
by one-virtual photon exchanges in the continuum-state
��-decay mode and by the emission of real photons in the
radiative ��-decay mode of the neutron.
Nevertheless, the radiative �� decay of the neutron

n ! pþ e� þ ��e þ � may be treated as a physical pro-
cess, which may be observed separately from the neutron
�� decay n ! pþ e� þ ��e. For the first time, the theo-
retical analysis of the radiative �� decay of the neutron
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n ! pþ e� þ ��e þ � as a physical observable process
has been carried out in [90,91]. The first reliable experi-
mental data on the branching ratio of the radiative ��

decay of the neutron BR
ðexp Þ
��
c �

¼ 3:13ð35Þ � 10�3, mea-

sured for the photon energy region !min ¼ 15 keV �
! � !max ¼ 340 keV, have been reported by Nico et al.
[92]. Then, this result has been updated by Cooper et al.

[93,94], who have obtained BR
ðexp Þ
��
c �

¼ 3:09ð32Þ � 10�3.

These experimental values agree well with the theoretical
value BR��

c � ¼ 2:85� 10�3, calculated by Gardner

within HB�PT for the same photon energy region [91–
93]. In Appendix B of Ref. [40] we have carried out the
calculation of the rate, the electron-photon energy and
photon-energy spectra, and angular distributions of the
radiative �� decay of the neutron with a polarized
neutron and unpolarized decay particles. Our results for
the branching ratios, BR��

c � ¼ 2:87� 10�3 and BR��
c � ¼

4:45� 10�3, calculated for the photon energy regions
!min ¼ 15 keV � ! � 350 keV and !min ¼ 5 keV �
! � E0 �me, respectively, agree well with the results
BR��

c � ¼ 2:85� 10�3 and BR��
c � ¼ 4:41� 10�3 ob-

tained by Gardner [92,93] and Bernard et al. [91], respec-
tively. Within 1 standard deviation the branching ratio
BR��

c � ¼ 2:87� 10�3 agrees also with the experimental

data [92,93]. The Monte Carlo simulation method for the
calculation of the rates of nuclear and hadronic radiative �
decays has been used by Glück in [33].

The rate of the radiative ��–decay of the neutron,
depending on a photon polarization, has been calculated
in [91]. We argue that the more precise theoretical and
experimental analyses of the energy spectra and angular
distributions of the radiative �� decay of the neutron,
depending on the polarizations of the neutron and photon,
should be of great importance for a test of the SM. We are
planning to perform such a theoretical analysis in our
forthcoming publication.

A. Universality of radiative corrections
to order �=�

The radiative corrections of order �=�� 10�3 to the
electron-energy spectrum of the neutron �� decay, de-
scribed by the function gnðEeÞ, are universal for the electron
(positron) energy spectra of nuclear and neutron � decays
[95,96]. A universality of the radiative corrections to order
�=�� 10�3 to neutrino (antineutrino) reactions, induced
by weak charged currents, has been pointed out by Kurylov,
Ramsey–Musolf and Vogel [97] using the example of the
neutrino (antineutrino) disintegration of the deuteron with
the electron (positron) in the final state. Such a universality
has been confirmed in [98] for the cross section for the
inverse � decay. As has been shown in [98] the radiative
corrections calculated in [97] can be described by the func-
tion fAðE ��Þ of the antineutrino energy E ��, calculated by
Vogel [99], Fayans [100], Fukugita and Kubota [101], and

Raha, Myhrer and Kudobera [102] (see also [98]) and
caused by one-virtual photon exchanges and the radiative
inverse � decay, and the constant part, caused by the elec-
troweak boson exchanges. In turn, as has been shown by
Sirlin [103], the radiative corrections, caused by one-virtual
photon exchanges and the bremsstrahlung to neutrino (anti-
neutrino) energy spectra of the � decays, are also described
by the function fAðE ��Þ (see also [98]). A nice review of the
radiative corrections in precision electroweak physics has
recently been written by Sirlin and Ferroglia [104].
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APPENDIX: RADIATIVE CORRECTIONS TO
NEUTRON �� DECAY

The amplitude of the continuum-state �� decay of the
neutron, including a complete set of 1=M and radiative
corrections, takes the form [40]
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(A1)

where ~� ¼ �ð1� E0=2MÞ and ~kp ¼ � ~ke � ~k is the proton 3-momentum in the rest frame of the neutron. The function
ð�=�Þf��

c
ðEe;�Þ describes the radiative corrections induced by one-virtual photon exchanges. It is equal to [40]
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(A2)

where � is an infinitesimal photon mass and LðxÞ is the Spence function. The function gFðEeÞ is given by [40]

gFðEeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
2�

‘n

�
1þ �

1� �

�
: (A3)

From Eq. (A1) it is seen that the function gFðEeÞ defines the coupling constants of effective scalar and tensor lepton-
nucleon weak interactions induced by one-virtual photon exchanges [40].

The radiative corrections to the rate of the continuum-state �� decay of the neutron, which we denote as g��
c
ðEe;�Þ,

acquire an additional contribution of the electromagnetic Fierz term [40],
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where the term proportional to �=2 is defined by

�

2
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�
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1� �

�
¼ 1

2�
‘n

�
1þ �

1� �

�
� gFðEeÞme

Ee

: (A5)

The correlation coefficients of the neutron �� decay with a polarized neutron and an unpolarized decay proton and
electron, including the radiative corrections of order �=� and the 1=M corrections, take the form

�ðEeÞ ¼
�
1þ �

�
gnðEeÞ

�
þOð1=MÞ; aðEeÞ ¼ a0

�
1þ �

�
fnðEeÞ

�
þOð1=MÞ;

AðEeÞ ¼ A0

�
1þ �

�
fnðEeÞ

�
þOð1=MÞ; BðEeÞ ¼ B0 þOð1=MÞ:

(A6)

The correlation coefficient BðEeÞ does not acquire the radiative corrections to order �=�. The exact expressions of the
1=M corrections are given in Eqs. (7) and (11)–(13). The functions gnðEeÞ and fnðEeÞ, describing the radiative corrections
to the rate of the neutron �� decay and the correlation coefficients aðEeÞ and AðEeÞ, are defined by
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(A7)

where the functions gð1Þ��
c �
ðEe;�Þ and gð2Þ��

c �
ðEe;�Þ appear from the contribution of the radiative �� decay of the neutron

(see Appendix B of Ref. [40]). The constant CWZ, defined by the contributions of electroweak-boson exchanges and QCD
corrections [28], is equal to CWZ ¼ 10:249. This numerical value is obtained from the fit of the radiative corrections to the
lifetime of the neutron, ð�=�ÞhgnðEeÞi ¼ 0:03886ð39Þ [1] and ð�=�ÞhgnðEeÞi ¼ 0:0390ð8Þ [28], averaged over the phase
volume of the neutron decay. The gnðEeÞ and fnðEeÞ, multiplied by �=�, are in analytical agreement with results obtained
in [18–30,34,35], respectively. The terms of order Oð1=MÞ are adduced in Eqs. (9)–(13).

The radiative corrections ð�=�ÞgnðEeÞ and ð�=�ÞfnðEeÞ, weighted with the electron energy spectrum density [40]
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c
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fnðE0; Z ¼ 1Þ ; (A8)

where the functions �ðEeÞ and FðEe; Z ¼ 1Þ are given in Eqs. (7) and (5), respectively, and fnðE0; Z ¼ 1Þ is the Fermi
integral Eq. (42), are plotted in Fig. 1.

Finally wewould like to note that, having attributed the terms proportional to ð�þ 1Þ to the renormalization constants of
the Fermi and axial coupling constants only, we arrive at the radiative corrections described by the function [40]
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where � is an ultraviolet cutoff. The function gðEeÞ, multiplied by �=�, agrees analytically with the result calculated by
Kinoshita and Sirlin [15].
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Phys. B830, 95 (2010); V. Cirigliano, M. Gonzáles-Alonso,
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