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We present results for matrix elements of �S ¼ 2 four-fermion operators arising generically in

models of new physics. These are needed to constrain such models using the measured values of "K
and �MK. We use lattice QCD with 2þ 1 flavors of improved staggered fermions on lattices generated by

the MILC Collaboration. We extrapolate to the continuum from three lattice spacings ranging down to

a � 0:045 fm. Total errors are �5%–6%, arising primarily from our use of one-loop matching between

lattice and continuum operators. For two of the matrix elements, our results disagree significantly from

those obtained using different fermion discretizations.
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Processes that are highly suppressed in the standard
model (SM) provide a window into beyond-the-standard
model (BSM) physics complementary to that from direct
searches. Indeed, in a given model, such processes can set
lower limits on the scale of BSM physics which are beyond
the reach of present accelerators (see, e.g., Refs. [1–3]).
Here we focus on kaon mixing, which provides some of the
most powerful constraints. For both the CP-conserving
mass difference �MK and the CP-violating part parame-
trized by "K, the sum of contributions from SM and BSM
physics must add to the observed values. BSM contribu-
tions involve heavy particles and are thus short-distance
dominated. In order to determine the contributions in a
given model, one needs to calculate, in QCD, the matrix
elements of local �S ¼ 2 four-fermion operators. A ge-
neric BSM model introduces four operators (listed below)
having Dirac structures different from those that arise in
the SM. Lattice QCD is the only available quantitative tool
for calculating such matrix elements from first principles,
and we present here such a calculation.

In a generic BSM model (be it supersymmetry, extra
dimensions, little Higgs, etc.) �S ¼ 2 processes involve
loops of heavy particles, that, when integrated out, lead to
the effective Hamiltonian

HBSM
�S¼2 ¼

X
i

Cið�ÞQi; (1)

Q1 ¼ ½�sa��ð1� �5Þda�½�sb��ð1� �5Þdb�; (2)

Q2 ¼ ½ �sað1� �5Þda�½�sbð1� �5Þdb�; (3)

Q3 ¼ ½�sa���ð1� �5Þda�½�sb���ð1� �5Þdb�; (4)

Q4 ¼ ½�sað1� �5Þda�½�sbð1þ �5Þdb�; (5)

Q5 ¼ ½ �sa��ð1� �5Þda�½�sb��ð1þ �5Þdb�: (6)

Here Ci are Wilson coefficients that can be calculated in a
given theory (with � the renormalization scale); a, b are
color indices; ��� ¼ ½��; ���=2; and repeated indices are

summed. The local �S ¼ 2 operators Qi are in the chiral
basis of Ref. [4].1Q1 is the ‘‘left-left’’ operator arising in the
SM contribution to "K, while Q2–5 are the BSM operators.
In previous lattice calculations, a different basis (the ‘‘SUSY
basis’’) for the operators has been used. We prefer the chiral
basis as it has been used to calculate the two-loop anoma-
lous dimensions which we use to run the results between
different renormalization scales [4]. Results can be easily
converted to the SUSY basis at the end—see below.
In our lattice setup (described below) we obtain directly

ratios of matrix elements. Specifically, we calculate the
following B parameters for the BSM operators:

Bið�Þ ¼ h �K0jQið�ÞjK0i
Nih �K0j�s�5dð�Þj0ih0j�s�5dð�ÞjK0i

(7)

ðN2; N3; N4; N5Þ ¼ ð5=3; 4;�2; 4=3Þ: (8)

The operators in both numerator and denominator are

renormalized in the MS scheme using naive dimensional

1Our normalization differs from Ref. [4], but this has no
impact on the associated B parameters.
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regularization for �5 and other conventions described in
Ref. [4]. The matrix elements of Qi can be obtained from
the B parameters since the denominators can be expressed
in terms of known quantities (MK, fK, ms þmd).

2 We also
calculate BK.

There have been two previous calculations of the BSM
matrix elements using dynamical quarks, one using
domain-wall fermions [5] and the other twisted-mass
fermions [6].3 The former uses the physical complement
of 2þ 1 light sea quarks, but has results only at a single
lattice spacing. The latter uses 2 dynamical flavors, with
the strange quark being quenched. Our calculation uses
2þ 1 flavors of dynamical staggered quarks, with multiple
lattice spacings. It is thus the first to control all sources of
error. We have previously used similar methodology to
calculate BK [11], with results that are consistent with
those from other types of fermion.

An important advantage of staggered fermions is that
they are computationally cheap, allowing calculations at
multiple lattice spacings, quark masses and volumes.4

Their main disadvantage is that each flavor comes in four
copies (‘‘tastes’’), with the associated SUð4Þ symmetry
broken at nonzero lattice spacing a. Removing the extra
tastes requires rooting the fermion determinant, but we
assume that the artifacts this introduces vanish in the
continuum limit a ! 0.

We use ensembles generated with the improved
‘‘asqtad’’ staggered action by the MILC Collaboration
[12]. Those used here are listed in Table I, with m‘ the
average up/down sea-quark mass and ms the strange sea-
quark mass (which lies close to the physical value on all
ensembles). For valence quarks, we use HYP-smeared
staggered fermions [13]. These are known to substantially
reduce both artifacts due to taste symmetry breaking and
perturbative corrections to matching factors [13,14].

Our mixed action setup is identical to that we used
previously to calculate BK, and the detailed lattice meth-
odology is also very similar [11,15]. On each lattice, we
place two wall sources separated by a fixed interval �t.
These create kaons having taste �5 and zero spatial mo-
menta. Lattice versions of the BSM operators are placed
between the two wall sources, as are the pseudoscalar
operators needed for the denominators of the Bi [see
Eq. (7)]. We choose �t such that the contamination from
excited states and from kaons ‘‘propagating around the

world’’ can be ignored. We use the same values as in our
BK calculation, the justification for which has been
discussed in Ref. [15]. Multiple measurements with
random time translations are carried out on each lattice
(see Table I). After averaging over configurations, we form
the ratios needed for the Bi. The overlap of the wall sources
with the kaon states cancels in these ratios, as well as some
of the statistical error. Away from the sources, these ratios
should be independent of t. We find this to be the case
within errors, and we fit them to a constant over a central
‘‘plateau’’ region.
Our lattice operators are matched to those in the con-

tinuum scheme of Ref. [4] using 1-loop, mean-field im-
proved perturbation theory. Previous one-loop matching
calculations matched the lattice operators to those in a
different continuum scheme [16], but we have now deter-
mined the matching between the two continuum schemes
[17]. At each lattice spacing, we match to the continuum
scheme at scale � ¼ 1=a. The one-loop corrections are
typically 10%–20%, with the largest being 30%. This is in
line with the expectation that the coefficient of � should
be of Oð1Þ or smaller.
We use a partially quenched setup with ten different

valence quark masses: amx;y ¼ ams � ðn=10Þ and n ¼
1; 2; . . . ; 10. Here x and y refer to valence d and s quarks,
respectively. Our lightest valence pions have Mx �x �
200 MeV. For our valence kaons, we use the lightest
four values of amx and the heaviest three of amy. These

combinations satisfy mx � my �m
phys
s , so that our

result lies in the regime in which heavy-kaon SU(2) chiral
perturbation theory (ChPT) is applicable [18,19].
For our chiral extrapolations, we use BK (whose behav-

ior is well understood from prior work) as well as the four
‘‘golden’’ combinations

G23 ¼ B2

B3

; G45 ¼ B4

B5

; G24 ¼ B2B4; G21 ¼ B2

BK

:

(9)

TABLE I. MILC ensembles used in this work, with ‘‘ens’’ the
number of gauge configurations and ‘‘meas’’ the number of
measurements per configuration. ID identifies the ensemble,
with F ¼ fine, S ¼ superfine and U ¼ ultrafine.

a (fm) am‘=ams Size Ens�meas ID

0.09 0:0062=0:031 283 � 96 995� 9 F1

0.09 0:0093=0:031 283 � 96 949� 9 F2

0.09 0:0031=0:031 403 � 96 959� 9 F3

0.09 0:0124=0:031 283 � 96 1995� 9 F4

0.09 0:00465=0:031 323 � 96 651� 9 F5

0.06 0:0036=0:018 483 � 144 749� 9 S1

0.06 0:0072=0:018 483 � 144 593� 9 S2

0.06 0:0025=0:018 563 � 144 799� 9 S3

0.06 0:0054=0:018 483 � 144 582� 9 S4

0.045 0:0028=0:014 643 � 192 747� 1 U1

2In other calculations of the BSM matrix elements [5,6],
different ratios have been used so as to avoid the need to use
quark masses. However, quark masses are now quite well deter-
mined [7], with the �6% error in ðms þmdÞ2 being comparable
to those we obtain for the Bi.

3There have also been earlier quenched calculations, which
established the basic methodology [8–10].

4Staggered fermions also preserve part of the continuum chiral
symmetry, although this is less important for the BSM matrix
elements than for BK, as the former are not constrained by chiral
symmetry to vanish in the SUð3Þ chiral limit.
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These have no chiral logarithms at next-to-leading order
(NLO) [20], and thus have simpler chiral extrapolations
than the Bi and reduced sensitivity to taste-breaking lattice
artifacts. At the end, we invert these relations to determine
the Bi. We have checked that extrapolating the Bi directly
leads to compatible results [21].

We extrapolate to physical quark masses and a ¼ 0 in
three steps. The first two are done on each ensemble

separately: we extrapolate mx to m
phys
d (‘‘X-fit’’) and then

my to mphys
s (‘‘Y-fit’’). For BK the fitting is as described in

Refs. [11,15]. For the Gi we fit to

c1þc2Xþc3X
2þc4X

2ln2Xþc5X
2 lnXþc6X

3; (10)

where X � XP=�
2
�, with XP ¼ M2

x �x and �� ¼ 1 GeV.

This incorporates the absence of the NLO logarithm. The
NNLO chiral logarithms are not known, so we use the
generic form of such terms. We also include a single
analytic NNNLO term, which is required for good fits.
Our X-fits include the full correlation matrix, and constrain
the coefficients c3–6 with Bayesian priors: ci ¼ 0� 1.
Examples of X-fits for G23 are shown in Fig. 1. We see
that the chiral extrapolations are short and the dependence
mild. This holds also for the otherGi. Systematic errors are
estimated by doubling the widths of the Bayesian priors,
and also by comparing with fits using the eigenmode shift
method [22]. These two estimates are then combined in
quadrature.

The my dependence is close to linear, so we use a linear

extrapolation for our central value and a quadratic fit to
estimate a systematic error. After these Y-fits, we evolve
results from all lattices to a common renormalization scale,
either � ¼ 2 or 3 GeV, using the two-loop anomalous
dimensions given in Ref. [4]. It turns out that the standard
form of the solution is singular, but this can be removed by
the analytic continuation method proposed in Ref. [23].
Details will be given in Ref. [17].

In our final extrapolation we simultaneously extrapolate
sea-quark masses to their physical values and a ! 0. As
for BK, we use only the three finest lattice spacings. For our
central values we fit to

f1 ¼ d1 þ d2ða�QÞ2 þ d3LP=�
2
� þ d4SP=�

2
�; (11)

with LP (SP) the squared masses of the taste �5 pseudo-
scalars composed of light (strange) sea quarks. We set
�Q ¼ 0:3 GeV and expect d2 �Oð1Þ. In fact, for the Gi

we find jd2j � 2–7, indicating enhanced discretization
errors. We also find that d3 � d4, indicating substantial
SU(3) breaking, although both coefficients are of the
expected size jd3;4j � 1. Examples of fits are shown in

Figs. 2 and 3, for BK and G23 respectively. These fits have
�2=d:o:f: ¼ 1:9 and 2.7 respectively. Those for the other
Gi are slightly better, with �2=d:o:f: ¼ 1:6–1:7.
We also consider more elaborate fits, using

f2 ¼ f1 þ d5ða�QÞ2�s þ d6�
2
s þ d7ða�QÞ4; (12)

with �s ¼ �sðMS; 1=aÞ. This form includes all terms ex-
pected at NLO in staggered ChPT [20] plus one NNNLO
term. We impose Bayesian constraints, d2–7 ¼ 0� 2, and
find improved fits with �2=d:o:f: ¼ 0:8–1:5. We take the
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FIG. 1 (color online). G23ðNDR; 1=a GeVÞ vs XP on the F1,
S1, and U1 ensembles. Data points are shown by circles, while
the triangle, pentagon, and diamond show the extrapolated
results.
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FIG. 2 (color online). Chiral-continuum extrapolation of
BKðNDR; 2 GeVÞ. The red circle shows the extrapolated result.
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FIG. 3 (color online). As for Fig. 2 but for G23.

NEUTRAL KAON MIXING FROM NEW PHYSICS: MATRIX . . . PHYSICAL REVIEW D 88, 071503(R) (2013)

RAPID COMMUNICATIONS

071503-3



difference between f2 and f1 fits as the systematic error in
the chiral-continuum extrapolation.

We present our final results and error budgets in
Tables II and III respectively. Statistical errors are esti-
mated by bootstrap and are at the percent-level or smaller.
Of the errors not discussed above, the dominant one comes
from our use of one-loop matching. We estimate this as
�B=B ¼ �2

s , with �s evaluated on our finest lattice [15].
Support for this estimate comes from a recent comparison
of perturbative and nonperturbative renormalization using
staggered bilinears [24]. Since this error is also accounted
for by the d6 term when fitting to Eq. (12), to avoid double
counting we take the largest of ‘‘f2 � f1 error’’ and the
‘‘�2 error’’ for our combined chiral-continuum-matching
error. Finite volume errors are estimated by comparing fits
using ChPT with and without finite-volume corrections.
Since the chiral logarithms in all BSM B parameters have
the same relative magnitude as that in BK, we take this
estimate from our earlier work on BK [11]. Specifically, the
largest error estimate is from the F1 ensemble (see Table I
of Ref. [25]).

We close by comparing our results to those of Ref. [5].5

As noted above, the results for BK agree. For the BSM
B parameters, Ref. [5] finds, at � ¼ 3 GeV, BSUSY

i¼2–5 ¼
0:43ð5Þ, 0.75(9), 0.69(7), 0.47(6). Only B3 differs between

SUSYand chiral bases, withBSUSY
3 ¼ð5Bchiral

2 �3Bchiral
3 Þ=2.

Our results convert to BSUSY
3 ð3 GeVÞ ¼ 0:79ð3Þ. Using this

result and Table II, we find that B2 and B
SUSY
3 are consistent

with Ref. [5] (the former only at 2�), while B4 and B5

differ significantly (by 4� and 5�, respectively). Our B4

and B5 are larger than those of Ref. [5] by 50% and 80%,
respectively.
Given this difference, we have cross-checked the com-

ponents of our calculation in several ways e.g. comparing
our renormalization group running matrices with those in
Refs. [1,5]. Clearly, further investigation is needed to
resolve the disagreement with Refs. [5,6]. One possibility
that we are investigating is that the true truncation errors in
perturbative matching are larger than our estimate, which
can be checked by renormalizing our operators nonpertur-
batively. Another useful test would be for the other calcu-
lations to calculate directly the golden combinations, so as
to pinpoint the source of the disagreement.
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