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In our original paper, we present a simple 5D metric that allows closed timelike curves (CTCs) as viewed by an observer
confined to our 4D brane. The metric mixes time t and the fifth dimension u, as

d�2 ¼ dt2 þ 2gðuÞdtdu� hðuÞdu2 � d~r2: (1)

For definiteness, we assume a ‘‘constraint’’ equation, j �gj< 1, where �g is the value of the metric element g when averaged
over the extra dimension. In a comment on our paper, Gielen [1] has shown that our assumed relation is not consistent with
the timelike condition of the energy-momentum vector in the 5D space. Using ‘‘diagonalized’’ coordinates ~t and ~u, defined
in our paper, and his, Gielen shows, in a simple way, that j �gj> �D must hold for massless particles, where D is the square
root of the metric’s determinant Det ¼ g2 þ h and �D is its averaged value. In our work, we set Det equal to unity, its
Minkowski value on the brane. Thus, Gielen’s condition for us becomes j �gj � 1.

In this erratum, we rederive Gielen’s constraint equation using standard t and u coordinates. Then, with this correct
constraint in hand, we correct the few parts of our original paper that require change. These parts are the examples
presented in Figs. 1 and 2, the parameter region that allows CTCs presented in Fig. 5, and the piece of Sec. VIIB in which
we compute the energy dispersion relation for the time-traveling Higgs singlet particles. The main conclusions of our
original paper are not changed.

We begin with the proof that j �gj � 1 must hold for particle geodesics enabling CTCs or prearrivals. In our published

paper, we identified three constants of geodesic motion, given in Eqs. (3.1), (3.2), and (3.10) as _tþ gðuÞ _u, _~r, and _u,
respectively, where the overdot denotes a derivative with respect to the particle’s proper time �. The first two constants are
the inevitable results of the metric depending only on the coordinate u, while the latter constant occurs when our ansatz
Det ¼ 1 is implemented. Equivalent to any one of the geodesic constants of the motion is the ‘‘first integral’’ constructed
by dividing the line element in Eq. (1) by d�2:

� ¼ _t2 þ 2gðuÞ _t _u�hðuÞ _u2 � _~r2; (2)

where � ¼ 1 for matter and � ¼ 0 for photons. Substituting in the first two constants of motion, and rearranging the
right-hand terms a bit, one gets

� ¼ ð _tþ gðuÞ _uÞ2 � ðDetðuÞ _u2 þ _~r2Þ: (3)

Then, substituting Eq. (3.6) from our original article, we arrive at

� ¼
�
_tþ

�
gðuÞffiffiffiffiffiffiffiffi
Det

p _u0

��
2 � ð _u20 þ _~r2Þ: (4)

Rearranging terms again and then taking the square root gives�������� _tþ
�
gðuÞffiffiffiffiffiffiffiffi
Det

p
�
_u0

��������¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� þ _u20 þ _~r2

q
: (5)

Next, we take the average over the extra-dimensional transit to get��������h _ti þ
�

gffiffiffiffiffiffiffiffi
Det

p
�
_u0

��������¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� þ _u20 þ _~r2

q
: (6)

In our published paper we showed that CTCs and prearrivals require that �g � hgðuÞi and _u0 have the same sign, which
we conventionally choose to be positive (so ‘‘corotating’’ particles may experience CTCs and prearrivals, whereas
‘‘counterrotating’’ particles may not). We note that h _ti ¼ 0 for a CTC and h _ti< 0 for a prearriving particle, so writing

_u0 as ðdu=dtÞ0ðdt=d�Þ0 � �0�0, and
_~r0 as ðd~r=dtÞ0ðdt=d�Þ0 � ~v0�0, we arrive at the final expression for the necessary

and sufficient condition for a CTC or a prearrival to occur:
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�
gffiffiffiffiffiffiffiffi
Det

p
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð�=�2

0Þ þ ~v0
2

�2
0

s
: (7)

(We do not consider here the alternate mathematical solution with very large, negative h _ti; this solution does not connect
continuously to the h _ti ¼ 0 CTC condition.)

The particle’s boost factor �0 may greatly exceed unity, and the particle’s velocity ~v0 along the brane may be zero. Thus,
we may write the necessary but insufficient condition for a CTC or prearrival as simply�

gffiffiffiffiffiffiffiffi
Det

p
�
> 1: (8)

For a photon (with � ¼ 0) but not for massive particles such as Higgs singlet Kaluza-Klein modes (with � ¼ 1) of interest
to us, the inequality becomes ‘‘� .’’ Thus, with Det taken to be unity, we arrive at the constraint �g � 1 for photons, in
agreement with Gielen’s result.

The corrected Figs. 1 and 2 that accommodate the constraint j �gj ¼ jg0 þ Aj> 1 are given here [g0 � gð0Þ and A �
�g� g0]. One can easily see from the example in Fig. 2 that Gielen’s constraint j �gj> 1 allows negative travel time.
Next, we correct the energy dispersion relation for the viable time-traveling particles. In Sec. VIIB of [1], the dispersion

relation was (correctly) obtained from the equation of motion for the free � field:

GAB@A@B�þm2� ¼ 0 ½5DKlein-Gordon ðKGÞ equation�: (9)

The general solution to this equation for the nth energy eigenfunction takes the form

�ðKGÞ
n ¼ e�iEn½tþ

R
u

0
gðuÞdu�ei ~p� ~xei�u; (10)

where En is the energy of the nth mode (at fixed ~p) and ~p is the standard three-momentum along the brane direction. Since
the extra dimension is compactified, we require �nðuþ LÞ ¼ �nðuÞ, which in turn requires that
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FIG. 1 (color online). gðuÞ (dashed line) and hðuÞ ¼ 1� g2ðuÞ (solid line) versus u=L, for parameter choices g0 ¼ �0:5,
a1 ¼ A ¼ 2, and an�1 ¼ bn ¼ 0. (Refer to our original paper for the definition of the Fourier mode notation.)
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FIG. 2. tðuÞ versus u=L, for the same parameter choices as in Fig. 1, and with �0 � ðdudtÞ0 ¼ 2=3.
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� ¼ �gEn � 2�n

L
with n ¼ 0;�1;�2; . . . (11)

Thus, the solution to the KG equation is given by

�ðKGÞ
n ¼ e�iEntei ~p� ~xe�iEn

R
u

0
ðg� �gÞdue�inu=R; (12)

where we have defined an extra-dimensional ‘‘radius’’ R � L=2� to streamline some notation.
To determine the energy dispersion relation, we simply need to plug Eq. (12) into the 5D KG equation above and solve

for En. A bit of algebra yields the quadratic dispersion relation

ð �g2 � 1ÞE2
n � 2 �gEn

n

R
þ ~p2 þ n2

R2
þm2 ¼ 0: (13)

Solving for En then gives

En ¼
�g n
R �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

R2 � ð �g2 � 1Þð ~p2 þm2Þ
q

�g2 � 1
: (14)

Equation (14) makes it clear that the mode energy En depends on ~p as well as on n; nevertheless, for brevity of notation, we

will continue to use the ‘‘fixed ~p’’ notation for both En and �n. In order to ensure that En is real, the condition n2

R2 >

ð �g2 � 1Þð ~p2 þm2Þ needs to be satisfied. Also, we discard the case with �g < 0, which leads to negative En. Both the reality
and positive definiteness of En are required to provide the stable modes for the CTC geodesics.

From Eq. (13) we may also derive a lower bound on the time-traveling particle’s energy. The result is

En > lim
�g!1

En ¼ 1

2

�
n

R
þ ~p2 þm2

ðn=RÞ
�
: (15)

The ultimate conditions on the metric which guarantee CTC solutions are simple: (i) �g > 1 for massive particles (with _u0
taken to be positive by convention), (ii) jg0j � 1, and (iii) jAj ¼ j �g� g0j> 1. The first condition is the result corrected in
this erratum, and the second and third conditions are unchanged from our original paper (and derived therein). In Fig. 3
(which replaces Fig. 5 in our original paper), we display the shaded region in the g0- �g plane that allows CTCs. The allowed
positive values of �g extend to þ1.

[1] S. Gielen, Phys. Rev. D 88, 068701 (2013).
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FIG. 3. The shaded region in the g0- �g plane for which CTCs are possible.
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