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In this work the generation of generalized Chern-Simons terms in three-dimensional quantum electro-

dynamics with high spatial derivatives is studied. We analyze the self-energy corrections to the gauge field

propagator by considering an expansion of the corresponding amplitudes up to third order in the external

momenta. The divergences of the corrections are determined and explicit forms for the Chern-Simons

terms with high derivatives are obtained. Some unusual aspects of the calculation are stressed and the

existence of a smooth isotropic limit is proved. The transversality of the anisotropic gauge propagator is

also discussed.
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I. INTRODUCTION

A great deal of attention has been devoted to the analysis
of possible effects of the spacetime anisotropy [1–3]. In the
context of quantum field theory, this possibility appears as
a tool to study nonrenormalizable theories since it im-
proves the ultraviolet behavior of the perturbative series,
in spite of violating the Lorentz symmetry which in turn
has been considered in several situations [4–7].

The different behavior between space and time coordi-
nates xi ! bxi, t!bzt [8] ameliorates the ultraviolet be-
havior and it has been argued that four-dimensional gravity
becomes renormalizable when z¼3 [9]. However, the
implementation of this kind of anisotropy introduces un-
usual aspects and therefore it is important to carefully
investigate the consequences of this new approach [10,11].

One special situation concerns the Chern-Simons (CS)
term [12,13]; when it is added to the quantum electro-
dynamics (QED) Lagrangian, the generation of mass for
the gauge field happens without gauge symmetry breaking
and it naturally emerges from quantum corrections to the
gauge field propagator [14]. Beyond that, applications have
been devised in diverse areas [6,15–18]. Therefore, the
study of the spacetime anisotropy in the theories involving
the CS term is certainly relevant.

In this work we will analyze the new contributions to the
self-energy of the gauge field in the z ¼ 2 case up to one-
loop order in the small-momenta regime. In particular,
corrections to the CS term will be studied. On general
grounds we expect that the leading CS corrections have
the following form:

LCS ¼ a����A�@�A� þ b�����A�@�A�

þ c����@20A�@�A�; (1)

where� denotes the Laplacian. In an interesting work [19]
where the isotropic spacetime was considered, a CS term
with a structure similar to Eq. (1) was employed. There, the
Laplacian was replaced by a D’Alambertian and c ¼ 0, so
that the gauge propagator shows two massive excitations,
one of them being ghost like.
By starting from Eq. (1) with c ¼ 0, so that there is at

most one time derivative, and adding the Maxwell term,

LA¼�1

4
F��F

����

2
ð@�A�Þ2; (2)

we obtain the propagator

D��ðkÞ

¼ �i

½k2 � ða� b ~k2Þ2�
�
g�� � k�k�

k2
� iða� b ~k2Þ����k�

k2

�

þ� ik�k�

�k2½k2 � ða� b ~k2Þ2� þ
iða� b ~k2Þ2k�k�

�k2½k2 � ða� b ~k2Þ2� ;

(3)

which does not contain particle like poles and, for small
momenta, indicates disturbances propagating with squared
velocity (1–2ab). In this work we will also check the
consistency with respect to the gauge symmetry of these
corrections through the verification of the transversality
of the self-energy contributions to the gauge field pro-
pagator. Our calculations show that, analogously to the
relativistic situation, although finite the coefficient a is
regularization dependent. Actually, if dimensional reduc-
tion (see Appendix A) is employed, the constant a turns out
to be equal to zero whereas in the relativistic situation it is
nonvanishing.
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This work is organized as follows. In Sec. II we intro-
duce high-derivative terms in the Dirac and Maxwell
Lagrangians and analyze the CS generation and the
characteristics of the self-energy of the gauge field. For
simplicity, our calculations will be restricted to the small-
momenta regime. In Sec. III we discuss the transversality
of the corrections to the gauge field propagator. Section IV
presents some concluding remarks. Two appendices are
dedicated to detail some aspects of the calculations.

II. GENERATION OF CHERN-SIMONS TERMS
IN THE ANISOTROPIC QED

The modified Dirac Lagrangian containing a high spatial
derivative of second order is

L ¼ �c ði�0D0Þc þ b1 �c ði�iDiÞc
þ b2 �c ði�iDiÞ2c �m �c c ; (4)

where i ¼ 1, 2 and D� ¼ @� � ieA� (� ¼ 0, 1, 2) is the
covariant derivative and �� indicates a 2� 2 representa-
tion of the Dirac gamma matrices. To obtain the QED
Lagrangian we add to Eq. (4) the Maxwell term with
high derivatives,

LM ¼ 1

4
ðFij�Fij þ 2F0iF0iÞ

¼ 1

4
Fij�Fij þ 1

2
@iA0@iA0 � @0Ai@iA0 þ 1

2
@0Ai@0Ai;

(5)

in which Fij ¼ @iAj � @jAi. The above contribution ex-

hibits a mixture among space and time components, which
may cause complications in the calculations involving the
gauge field propagator. It is possible to avoid the mixed
propagators by conveniently choosing the gauge fixing
[11]. As the gauge field propagator does not appear in
our calculations we will keep an nonspecific gauge fixing,
LF. Despite the mixing terms or gauge choice, notice that
the determination of the transversal and longitudinal parts
of the gauge field propagator is highly nontrivial in the
anisotropic theory, and thus we will dedicate a section to an
analysis of the transversality of the corrections to the gauge
field propagator.

We can rewrite Eq. (4) and define the Dirac anisotropic
Lagrangian,

LD ¼ �c ði�0@0Þc þ b1 �c ði�i@iÞc
þ b2 �c ði�i@iÞ2c �m �c c ; (6)

and, up to irrelevant surface terms, the interaction
Lagrangian

LI ¼ e �c ð�0A0 þ b1�
iAiÞc þ e2b2 �c ð�iAiÞ2c

þ ieb2ð �c�j�i@ic � @i �c�i�jc ÞAj

¼ V1 þ V2 þ V5 þ V4 þ V3; (7)

such that the total Lagrangian isLT ¼ LM þLF þLD þ
LI. In Eq. (7) we introduced a notation for the vertices
where V1 ¼ e �c ð�0A0Þc , V2 ¼ eb1 �c ð�iAiÞc , etc. These
vertices, fixed by LI, are graphically represented in Fig. 1.
For the free fermion propagator we obtain

SðkÞ ¼ ið^6kþ b1
�6kþ b2k

2 þmÞ
k20 � ðb21 þ 2Mb2Þk2 � b22k

4 �m2
;

where the hat and the bar denote the time and space

components, respectively, i.e., ^6k ¼ �0k0,
�6k ¼ �iki and

k2 ¼ kiki (we will also use the notations k̂0 ¼ k0 and �ki ¼
ki, and thus �k2 ¼ �ki �ki).
The corrections to the gauge field propagator at one loop

are represented in Fig. 2, and their analytical expressions
are

���
ab ¼ Cab

Z
dzk̂dd �kTr½V�

a SðkÞV�
bSðkþ pÞ�; (8)

�ij
5 ¼ C5

Z
dzk̂dd �kTr½�i�jSðkÞ�; (9)

(a) (b) (c)

FIG. 1. Graphical representation of the interaction vertices.
The continuos line stands for the fermion field, the dashed and
wavy lines are for the A0 and Ai components, respectively. The
diagram (a) is the trilinear vertex with two fermion fields and the
A0 component. Figure (b) is the vertex with two fermion fields
and the Ai component; besides that, it may contain a spatial
derivative. Graph (c) is the quadrilinear vertex with two fermion
fields and two Ai components.

(a) (c)

(b) (d)

FIG. 2. One-loop contributions to the gauge field self-energy.
The figures (a), (b) and (c) involve two triple vertices with
external fields ðA0; A0Þ, ðA0; AiÞ and ðAi; AjÞ, respectively.

The diagram (d) contains the quadrilinear vertex with ðAi; AjÞ
external fields.
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where V
�
a is the time or spatial component (� ¼ 0, i)

associated to the vertices as defined in Eq. (7), and thus
a, b ¼ 1; . . . ; 4 and Cab is the momentum-independent
coefficient corresponding to each amplitude. The develop-
ment of these expressions are discussed in Appendices A
and B.

By power counting we find that the Fig. 2(c) is line-
arly or logarithmically divergent if the vertex attached to
the wavy line has or does not have a derivative; the
divergences of Fig. 2(b) are quadratic if both vertices
have one derivative, are linear when one vertex has a
derivative and the other does not, and finally are loga-
rithmic when no derivative appears in the vertices, just
like in the Fig. 2(a), which is composed of two external
A0ðpÞ components.

In the sequel we will consider the small-momenta re-
gime and Taylor expand the self-energy corrections. The
usual CS term [i.e. the first term in Eq. (1)] is obtained from
the first-order terms of the Taylor derivative expansion,
while the extended CS term [which has a form like the
second and third terms in Eq. (1)] is given by the third-
order terms. Considering that the highest divergence is
quadratic, the extended CS contributions, which are of
third order in the Taylor expansion, are of course finite.
Differently, for the usual CS terms, the algebra reduces the
degree of divergence of some diagrams only to logarithmic
so that they require the introduction of a regularization
scheme. Similarly to the relativistic theory, in the sense that
there is a regularization dependence, there is an ambiguity
in the induced CS term.

For the even terms in the momentum expansion, which
do not contribute to the CS terms, the integration of the
momenta furnishes hypergeometric functions, as indicated
in Appendix A. In this case, the divergences are charac-
terized by the Schwinger parameter, x, which receives
contributions from the hypergeometric functions and
from the coefficients associated to them [see Eq. (A2)].
To integrate the x parameter, we will power expand the
hypergeometric function for small x and d ¼ 2, until its
exponent becomes non-negative. Observe that here the
isotropic limit, b2 ! 0, cannot be taken alone because it
is inconsistent with the small-x expansion. However,
although the divergent terms individually exhibit poles
for d ¼ 2, they are canceled when summed to produce
the total self-energy correction, allowing for a smooth
isotropic limit.

III. TRANSVERSALITY OF THE
GAUGE SELF-ENERGY

The conservation of Noether’s current,

J0 ¼ �c�0c ;

Jk ¼ b1 �c�kc � ib2½ð@i �c Þ�i�kc � �c�k�ið@ic Þ�
þ eb2½ �c�i�kc þ �c�k�ic �Ai; (10)

allows us to prove the transversality of the self-energy
corrections. Indeed, we may writeLI in terms of the above
current as

LI ¼ e

2
½A�J

�
ðA�¼0Þ þ A�J

��; (11)

where in the first term the argument of the current (A�)
must be taken equal to zero.
Now, in computing the self-energy contributions notice

that it is equal to�
T
�SI

�A�

�SI

�A�

�
/ hJ�J�i; (12)

where SI ¼
R
LI is the interaction action; Eq. (12) must be

transversal due to the conservation of the current.

IV. CONCLUDING REMARKS

In this work we studied the effects of the anisotropy of
the spacetime on the generation of the CS term and on the
self-energy correction to the gauge field propagator. We
proved that this correction is transversal by constructing
the conserved Noether’s current which interacts with the
gauge field.
Some interesting aspects of the calculation are related to

the structure of the divergences. For the even part of the
gauge field self-energy, there are seven amplitudes involv-
ing the new vertices which are divergent and their pole
terms break gauge invariance. Nevertheless, a contribution
coming from the usual vertices cancel these divergences.
There are two types of CS terms that may be induced by

the radiative corrections: the usual CS term which contains
just one derivative and the extended CS term with three
derivatives. Whereas the second type of CS term is always
finite, the usual one presents results which are divergent,
but these divergences notably cancel among themselves
when the total contribution is considered. Furthermore, the
coefficient of the usual CS term is regularization dependent
and vanishes if dimensional reduction is adopted. In this
situation, one is forced to consider the extended CS term
which then constitutes the dominant contribution.
When referring to the usual CS terms, we notice that

the contributions coming from the usual vertices are finite
and therefore are free from ambiguities caused by the
regularization. On the other hand, the contributions coming
from the new vertices are regularization dependent.
Besides that, the explicit b2 factor from these vertices is
canceled because it is multiplied by amplitudes which
diverge as b2 ! 0; this furnishes nonzero contributions
when the isotropic limit is considered. Consequently, the
regularization dependence is restored and in the isotropic
limit unexpected results—such as the just-mentioned van-
ishing of the usual CS term if dimensional reduction is
employed—are obtained.
Considering the extended CS, all amplitudes associated

to it are finite even if b2 ! 0. The isotropic limit for these
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terms is smooth with only the contributions coming from
the usual vertices remaining.

By considering Eqs. (B1) and (B2), the induced CS
terms can be written as

���
CS ¼�½���þ p̂2þ �p2ðb21þ4mb2Þ�e2b21����p�

48	m2ðb21þ4mb2Þ
; (13)

in accord with our proposal (1). Notice that the breaking of
the Lorentz invariance is a very simple function of b1 and
b2 and that in the isotropic limit with b1 ¼ 1 the Lorenz
symmetry is restored.
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APPENDIX A: THE CALCULATION PROCEDURE

In this appendix we will describe the procedure em-
ployed to calculate the Feynman diagrams. As an example,
we will consider the amplitude given by the vertices
(eb1 �c�icAi) and (eb1 �c�jcAj), which leads us to

�ijðpÞ ¼ ðeb1Þ2
ð2	Þ3

Z
dk̂dd �kTr½�iSðkÞ�jSðk� pÞ�: (A1)

To solve Eq. (A1) we adopt the dimensional reduction
scheme, in which all the algebra of the gamma matrices
is done in d ¼ 2 and afterwards the integral is promoted
to d dimensions [20]. Therefore, the leading term in the
Taylor expansion, i.e. the term with (p̂ ¼ 0, �p ¼ 0) is

�ðeb1Þ2
ð2	Þ3

Z
dk̂dd �k

�
2gij½m2 � k̂2 � b2k

2ð�k2b2 � 2MÞ�
ðk̂2 �k2ðb21 þ 2Mb2Þ �k4b22 �m2Þ2

�
:

To perform the above integral, we use the Schwinger
representation and integrate over the momenta. The re-
sult is very extensive, and therefore we will consider just
one of the terms which leads to a divergent result,

e�iM2xx�d=4
1F1

�
dþ 2

4
;
1

2
;
ixðb21 þ 2Mb2Þ2

4b22

�
; (A2)

where x is the Schwinger parameter and 1F1 denotes the
hypergeometric function. Note that this function is
divergent in the limit x ! 0, so we will Taylor expand
it, up to a non-negative power of x for d ¼ 2. Thus we
obtain

x�d=4
1F1

�
dþ 2

4
;
1

2
;
ixðb21 þ 2Mb2Þ2

4b22

�

! x�d=4

�
1þ 2

dþ 2

4

ixðb21 þ 2Mb2Þ2
4b22

�
: (A3)

The final result is obtained by integrating over x and
expanding the result around d ¼ 2, such that the general
result for this amplitude is given by

ie2b21g
ij

2	b2ðd� 2Þ þ finite: (A4)

Notice that this divergence is absent in the relativistic
theory because it clearly comes from modifications
introduced by the anisotropy. Observe also that from
the argument of the hypergeometric function in
Eq. (A2) the isotropic limit, (b2 ! 0), is incompatible
with the adopted expansion for x ! 0.
On the other hand, if we consider the subleading term in

the Taylor expansion, responsible for the usual CS term,

i.e. @�
ij

@p̂ jp̂¼ �p¼0, the result is

ðeb1Þ2
ð2	Þ3

Z
dk̂dd �k

�
2i�ij0ðm� b2 �k

2Þ
ðk̂2 � k2ðb21 þ 2Mb2Þ � k4b22 �m2Þ2

�
:

(A5)

To compute the above integral, which is finite by power
counting, we simply take d ¼ 2 and integrate over the
momenta.

APPENDIX B: INTERACTION VERTICES

In this appendix we will present the one-loop contri-
butions, for small momenta, to the self-energy of the
gauge field. From the interaction Lagrangian we observe
that we have a total of 12 different amplitudes coming
from the Wick contractions of the vertices. The sum of
all contributions gives (further details will be presented
elsewhere)

�ij
CS ¼ �½�ij þ �p2ðb21 þ 4mb2Þ þ p̂2�e2b21�ij0p̂0

48	m2ðb21 þ 4mb2Þ
(B1)

and

�0i
CS ¼ �½�0i þ �p2ðb21 þ 4mb2Þ þ p̂2�e2b21�0ia �pa

48	m2ðb21 þ 4mb2Þ
; (B2)

where �ij and �0i are constant parameters introduced in

Eqs. (B1) and (B2), respectively, to denote the ambiguity
coming from the regularization scheme. We may note
that there is a cancellation of the usual CS term,
leaving only regularization-dependent terms. This occurs
due to the contributions of the new vertices introduced
by the anisotropy and by the fact that their b2 vertex
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factor is eliminated after performing the momenta
integrals.

In the isotropic limit b2 ! 0 of Eqs. (B1) and (B2) all
the extended CS terms coming from the new vertices’
contributions are cancelled and we get

�ij
CS ¼ � e2ð�ij þ b21 �p

2 þ p̂2Þ�ij0p̂0

48	m2

and

�0i
CS ¼ � e2ð�0i þ b21 �p

2 þ p̂2Þ�0ia �pa

48	m2
:

By taking b1 ¼ 1 we obtain an expression similar to that
introduced in Ref. [19].
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