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Supersymmetry breaking in the three-dimensional nonlinear sigma model
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In this work, we discuss the phase structure of a deformed N = 1 supersymmetric nonlinear sigma
model in a three-dimensional space-time. The deformation is introduced by a term that breaks super-

symmetry explicitly, through imposing a slightly different constraint to the fundamental superfields of the

model. Using the tadpole method, we compute the effective potential at leading order in a 1/N expansion.
From the gap equations, i.e., conditions that minimize the effective potential, we observe that this model
presents two phases as the ordinary model, with two remarkable differences: 1) the fundamental fermionic
field becomes massive in both phases of the model, which is closely related to the supersymmetry
breaking term; 2) the O(N) symmetric phase presents a metastable vacuum.
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I. INTRODUCTION

The nonlinear sigma model (NLSM) was first proposed
to investigate the interaction between pions and nucleons
[1]. In lower-dimensional systems, it is used to describe
several aspects of condensed matter physics, for example,
applications to ferromagnets [2-5]. In addition, this model
provides a very good theoretical laboratory containing an
interesting phase structure and at same time shares the
wealth of more realistic theories, being a simple example
of an asymptotically free theory [6,7]. Recently, it was
conjectured that the O(6) sigma model emerges as a scal-
ing function in AdS/CFT correspondence [8,9].

The O(N) NLSM can be defined through the action

5= [ de{% anDd)a}, (1)

where the fields ¢, are constrained to satisfy ¢2 = %,D is

the dimension of the space-time, and the index a assumes
the values 1,2, ..., N.

It is useful rewrite the O(N) NLSM action implementing
the constraint over ¢, by the use of Lagrange multiplier,

s= a5 0,06, + o 02 - g)} @)

where the field o is the Lagrange multiplier that constrains
p2 =12,

In the late 1970s, the phase structure and the renomaliz-
ability of the three-dimensional NLSM were established,
showing that this model possesses two phases [10,11]. One
phase is O(N) symmetric and exhibits a spontaneous gen-
eration of mass due to a nonvanishing vacuum expectation
value (VEV) of the Lagrange multiplier field o, i.e., (o) #
0. On the other hand, if the fundamental bosonic field ¢
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acquires a nonvanishing VEV, the O(N) symmetry is spon-
taneously broken to O(N — 1), without any generation of
mass. Several extensions of this model were studied after-
ward showing no changing in its phase structure [12-19].

The three-dimensional supersymmetric (SUSY) NLSM,
in components [14], using the superfield formalism [15]
and their noncommutative extensions [16,17], was shown
to be renormalizable to all orders in the 1/N expansion.
The phase structure of this model was also studied in
Ref. [18]. In all these papers, a similar conclusion was
achieved: no supersymmetry breaking is detected at lead-
ing order in the 1/N expansion.

The aim of this work is to show that, imposing a more
general constraint on the SUSY NLSM, the solutions that
minimize the effective potential present broken supersym-
metry at leading order in the 1/N expansion. Moreover, the
O(N) symmetric phase presents a metastable vacuum.

II. SUPERSYMMETRIC NONLINEAR
SIGMA MODEL

The usual three-dimensional N = 1 SUSY NLSM is
defined through the action

s= [edzo 000,60 + S0 0,600 - g]} 3)

where 3, is the Lagrange multiplier superfield that con-
strains @, to satisfy ®2(z) = %. With signature (—, +, +),
we are using notations and conventions as in Ref. [20].
Such definitions and some useful identities can be found in
the Supplemental Material [21].

The superfields appearing in this model possess the
following 6 expansion:

D,(x, 0) = ¢ (x) + 0P, 5(x) — 07F,(x);
3(x, 0) = p(x) + 0P x5(x) — 020 (x).
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We can see that the SUSY NLSM possesses more
constraints than the nonsupersymmetric one. Once the
equation of motion of 2 constrains

00 = [ 03+ 20,005~ 20(9uF — 5 00|

it is easy to see that the component fields ¢,, ¥§, and F,
must satisfy
, N

a >

1

Viba =0 Foby=50ibap ()
Beyond the usual constraint ¢2 = N/g, the SUSY NLSM
also exhibits the constraints ¢§¢, =0 and F, ¢, =
1,8
2 lﬂa ‘paﬁ-

Integrating the Eq. (3) over d?6, the action of the model
can be cast as

1 | 1
s= [@xl36.00,+5 010, vap + 3 F

+o( 43 —g) +20(Fudu+ 5000 + 200 g}

(6)

Notice that the usual model is obtained setting ¢y = p =
X = 0, and the auxiliary field o must be nonvanishing.

We can eliminate the auxiliary field F, using its equa-
tion of motion, F,, = —2pd¢,. This way, the action

= 3 1 1 a;g B Z_E
S [d x{z d)alz]d)a + ) d’alaa lr//uﬁ + (T(d)a g)
=200 + p Ul + 2P s ™

describes the physical content of the model. It is easy to see
that, if there exists a phase during which mass is generated
to the fundamental fields ¢ and i, their masses will be
given by the VEV of the fields p and o as

M3, = &Kpy —2Ao), M =4Xp), (8)

from which we observe that SUSY should be spontane-
ously broken if (o) # 0, as commented before. For
(o) = 0 and for a nonvanishing VEV of p, the fundamental
bosonic and fermionic fields acquire the same squared
mass 4{p)?, indicating the generation of mass in a super-
symmetric phase as is well known [14-18]. Here, we find
an intriguing point. While in the non-SUSY model the
spontaneous generation of mass occurs due to o acquiring
a nonvanishing vacuum expectation value, in the SUSY
version, the field that acts like a “mass generator” to the
fundamental fields is p, which is not present in the non-
SUSY model. There is no soft transition or anything that
we can interpret as a non-SUSY limit of the spontaneous
generation of mass from the SUSY model.
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Now, let us define a slightly deformed SUSY NLSM by

s= [edzo 00,0+ s 0,60 - gsw]},
©)

with the single difference that 2 is a Lagrange multiplier
superfield that constrains ®, to satisfy ®2(z) = %6(z),
where 6(z) is a constant superfield that possesses the 6
expansion 8(z) = 8, — #%g5,. Doing §, = 0 and §, = 1,
we obtain the usual supersymmetric action for the SUSY
NLSM, Egq. (3).

The equation of motion of the Lagrange multiplier
superfield 3 obtained from Eq. (9) generates new con-
straints to the components of the fundamental superfields
®,, namely,

N 1
$i=_ 01 Vib, =0 Fuby=30ivastgs (10

To study the phase structure of the model, let us assume
that the 3, and the Nth component @ (x, ) have a constant
nontrivial VEV given by

() ZECI = Pel _920}:1: (Dy)= \/N(I)cl = \/—A_’((bcl _02Fcl)-
(11)
Therefore, let us dislocate these superfields by % — (3 +

3. and &y — /N(®y + d). So, we can rewrite the
action, Eq. (3), in terms of the new fields as

5= f dﬁz{% O, (D +25)b, + E(cpg - ND2

+ 2NO D) — N 5) + NOy(D*D, + 2P, 3)
8

+ %@CIDZ% + NEd(cbgl — 1)} (12)
g

We can note that the VEV of the superfield 3, 3, gives
mass to the fundamental superfields ®,. This “mass” is 0
dependent, generating different masses to the bosonic and
fermionic components of the superfield ®,, showing a
possible phase during which supersymmetry is broken.

At leading order, the propagator of the ®, superfield
must satisfy the following equation:

[D%(z)) + 234]A(z) — 25) = i89(z; — z),  (13)

where  60(z,—2)=6%(x; —x,)8?(0, —6,), and
82(0)=—6.

The solution to the above equation can be obtained from
the ansatz

Alz) — 20) = (C — 67C, — 65C5 + Hi“ﬂanlg
+ 60263C,)6% (x; — xy), (14)

where, after some algebraic manipulations, we can write
the propagator of the ®, superfield as
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D?—2 82(6,)(D? + 2
A(k): —i 1 pzcl 1 +20'L~1 ; ( l)(21 pcl)
k* +4pz, k*+ (4pz — 20,

X 8@(6, — 6,). (15)

Notice that for o, = 0, the above propagator reduces to
the usual propagator of a massive scalar superfield. A
propagator presenting a similar form was obtained in
[22]. See Supplemental Material [21] for details in obtain-
ing the superfield propagator.

From Eq. (12), we can see that there exists a mixing
between @, and 3, but this mixing only contributes to
next-to-leading order in the 1/N expansion. For now, we
can neglect this mixing, since we will deal with the SUSY
NLSM at leading order in 1/N.

With the propagator of the ®, superfield, let us evaluate
the effective potential through the tadpole method [23-25].
At leading order, the tadpole equation for the ® superfield
can be cast as

N[D2¢cl + 2(I)clzcl]
:N[Fcl+2¢clpc1_292(¢clacl+Fclpcl)]' (16)

On the other hand, the tadpole equation for 2, Fig. 1, is
[ND N S+NJ[ (;’3" A(k)]. Substituting the expression
for A(k), and using the fact that D26@ (6 — ) = 1 and
5@(9 — 6) = 0, we obtain
|

Veft
N
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FIG. 1. Tadpole equation of 3 at leading order. Continuous
lines represent the ®, superfield propagator, while the cut
dashed line represents a removed external 2, propagator.

N d*k 1
Ncbgl——a—iNf 3{ 5 5
g Qm)’ Ik + (4pg —20y)
80'(;1,0c16 }
[k2 +(4p3 —20)](K* +4p2)

=N[ 2_(ﬁ_i)_\/4p51‘20'd
4 \g g 47

2 Pe
- 92<2¢c1Fc1 le/Q + —1 4py—20a+ 52)],

A7)
where 1 2 is defined as usual, f A (2 )3 k2 The coupling g, is
the critical value of g so that the NLSM exhibits the phase
transition.

With the tadpole equations in hand, the effective poten-
tial is obtained integrating Eq. (16) over ®, and Eq. (17)
over 3 as

/dz {/d(I)N[Fcl + 2¢c1pcl - 202(¢c10-cl + Fclpcl)]

V4pCl 20q Pel '
[dz[ Ao 02(2¢01Fcl - _Pc1|Pc1| +— 4p(2;1 - 2O-cl + 82)]}

4 o.\3/2
= 7«31 — 0023 — A) = 6Fupada + —(pcl)%/z 37T<p§1 - 701) — 8pa + C (18)
I
where C is a constant of integration to be adjusted through v, F? 2
the conditions that minimize the effective potential, the gap ;, = 70 —oa(dg —A) = 2Fapada + 3 (p2)*?
equations, and A = (% — i) is a parameter that can be 2/, a\3/2
positive, negative, or zero. In the thermodynamics of the 377-(/) o 7) = O2pr (20)

NLSM, A is interpreted as a quantity proportional to mag-
netization of the system [13].

Looking to the tadpole equations in Egs. (16) and (17),
we observe that the VEVs must to satisfy the following
conditions:

Fcl + 2¢clpcl = Or Fclpcl + (:bcla-cl = Or

2yt |2 Td_
a— A o Pa ) 0, (19)

Pcl Ol 0y
¢chcl+ 7:_ ( pc] TC_ |Pc1|)+7=0-
setting C = [0g¢? + 4F pada + = X
(p? — %4)%/?], the effective potential can be cast as

Therefore,

As we did for the classical action, we can eliminate the
auxiliary field F; using its equation of motion,

Fcl = _zpcld)cl: (21)

allowing us to write the effective potential as

Vetr
N

= —oy( — A) +2p% P2

g, 3/2
+_[(Pc1)g/2 (pcl 71) ]_52/%1' (22)

From the effective potential, Eq. (22), the conditions that
extremize the effective potential are given by
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0'1 1 0'1
¢c1(ﬂg1_70)20’ 31_/\_% pgl_TC:()’
o, T
pc1<277¢§1 + lpal = 4/p2 — 71) = 552- (23)

Solving these equations, we determine the field configu-
rations that extremize the effective potential. Such solu-
tions are presented in two phases, one O(N) symmetric
phase and another O(N) broken to O(N — 1). In the O(N)
symmetric phase, A <0 or g > g., the solutions are

given by
1

¢q =0, pa = mA| + 5\[277(277'/\2 — ),

1 ) (24)
oy = 5[277'|/\| + \/277(277)\2 - 52)] — 87%\%

1 2
¢aq =0, pa = —mlAl - §V27T(27T/\ + 87),
(25)

1 2
oq = 5[277'|)\| +427Q2mA% + 52)] — 8722

Note for real solutions, the parameter 0, is constrained to
be |8,] = 27A%. Moreover, as we will see, there exists a
65 # 0, which V4 assumes its minimum value. Setting
6, = 0, we have the well-known solutions [14—18]

Pcl = i27T|A|, d)cl = FC] = O = 0. (26)

The solution, Eq. (24), is the global minimum of the
effective potential, while Eq. (25) is a local one. The effec-
tive potential is plotted in Fig. 2 as a function of p and ¢,
where it is possible to see the true and the false vacua.

In the minimum, Vg is negative; this is because we are
dealing with an explicit breaking of supersymmetry. The
generated masses for the fundamental fields ¢ and ¢ in the
O(N) symmetric phase are given by

Mé = Kp)? — 2o) = 1677 A2 27)

PHYSICAL REVIEW D 88, 067702 (2013)
M%/, =4{p)> =81 A2+ 47T|)\|‘\/27T(27T/\2 —8,) —215,.
(28)

In the limit §, — 0, the masses be = Mfl,, and supersym-

metry is restored.

The second phase, O(N) symmetry is broken
to O(N—1), A>0 or g<g,., and the solutions that
minimize the effective potential are given by

1
$a ==V pa=mA = S\27Q7N = 5y),
1
Ty = 5[27T)l —\27(Q27wA% = §,)

L
¢cl = i\/)\, Pcl = —mA + 5 27T(27T/\2 + 62),
1 2 30
oq = 5[277)\ — 272w + 62)] , (30)

where, just as for the O(N) symmetric phase discussed
before, for 6, — 0, the above solutions collapse to

(29)

ba=*VA  Fa=0q=pa=0. (3

Just as in the supersymmetric and nonsupersymmetric
cases, in the O(N) symmetric phase, the scalar field ¢ is
kept massless, i.e., Mé = (. But, due to the parameter that
breaks supersymmetry, d,, the fundamental fermion of the
model acquires the mass

Mlzp = &p)? = |:27T)\ —\2mQRmA* = 8,) ]2. (32)

It is easy to see that if §, — 0, so M7, — 0.

Finally, let us deal with the optimal value of the SUSY-
breaking parameter §,. Eliminating, from Eq. (22), all
fields by the use of their equations of motion, except the
fundamental field ¢, to A > 0, we find

N

FIG. 2 (color online). Effective potential in the O(N) symmetric phase as a function of p,; and ¢. The plot in the right side of the
figure is a slice of the V. at ¢ = 0, evidencing the presence of a metastable vacuum.
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1
‘;;ff = 8{_ 127A(8, +27A2) =347 A2 — §,)

Xy 27(2mA* = 8,) + [32774)l2 — 818,
3/2
—16m a2 2mA - 52)] + 1447204 (A — B2)

+ 487 P8 — 327 A — ¢§1|}. (33)
Minimizing Eq. (33) for §,, we obtain the solution
3
5, = 777/\2. (34)

The effective potential, Eq. (22), evaluated for 6, =
37 )2 is given by

Veff
N

=—04(d— 1) +2p2 2
2 o.\3/2 3
i 23/2_(2_ cl) ]_ 2,
377[(1%1) Pa~ 5 Apa

One interesting note is that 6, = 0 becomes a local maxi-
mum in this model. Once the SUSY-breaking parameter has
been introduced, the supersymmetric solutions are not the
solutions that minimize the effective potential anymore.

(35)

I11. FINAL REMARKS

Summarizing, the three-dimensional supersymmetric
nonlinear sigma model, deformed by a nonsupersymmetric
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constraint, possess two phases. In the first one is the
O(N) symmetric phase, A<<0 or g>g., which possess the
remarkable characteristic of the presence of a metastable
vacuum. In this phase, all fields acquire a nonvanishing
vacuum expectation value, generating masses to the funda-
mental fields ¢ and ¢. These masses are different for non-
vanishing &, coupling responsible for supersymmetry
breaking. In the limit §, — 0, the masses of ¢ and ¢ tend
to be equal, restoring the supersymmetry. In the O(N) broken
phase, only the components of the Lagrange multiplier super-
field acquire a nonvanishing vacuum expectation value, gen-
erating the mass to the fermonic field ¢ and keeping ¢
massless. Also in this phase, the limit 5, — O can be taken
to restore the supersymmetric solutions. An important note is
the fact that &, cannot be chosen arbitrarily. It possesses an
optimal value that minimizes the effective potential.

Finally, we think that gauge and noncommutative exten-
sions (with constant noncommutative parameter; see, for
example the SUSY CP™W~ model presented in Ref. [26])
of this model should present a similar structure, including
the presence of the metastable vacuum, since, in general, the
tadpole diagrams in noncommutative models are the same
as the commutative ones.
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