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In this work, we discuss the phase structure of a deformed N ¼ 1 supersymmetric nonlinear sigma

model in a three-dimensional space-time. The deformation is introduced by a term that breaks super-

symmetry explicitly, through imposing a slightly different constraint to the fundamental superfields of the

model. Using the tadpole method, we compute the effective potential at leading order in a 1=N expansion.

From the gap equations, i.e., conditions that minimize the effective potential, we observe that this model

presents two phases as the ordinary model, with two remarkable differences: 1) the fundamental fermionic

field becomes massive in both phases of the model, which is closely related to the supersymmetry

breaking term; 2) the OðNÞ symmetric phase presents a metastable vacuum.

DOI: 10.1103/PhysRevD.88.067702 PACS numbers: 11.30.Pb, 11.30.Qc

I. INTRODUCTION

The nonlinear sigma model (NLSM) was first proposed
to investigate the interaction between pions and nucleons
[1]. In lower-dimensional systems, it is used to describe
several aspects of condensed matter physics, for example,
applications to ferromagnets [2–5]. In addition, this model
provides a very good theoretical laboratory containing an
interesting phase structure and at same time shares the
wealth of more realistic theories, being a simple example
of an asymptotically free theory [6,7]. Recently, it was
conjectured that the Oð6Þ sigma model emerges as a scal-
ing function in AdS/CFT correspondence [8,9].

The OðNÞ NLSM can be defined through the action

S ¼
Z

dDx

�
1

2
�ah�a

�
; (1)

where the fields�a are constrained to satisfy�
2
a ¼ N

g ,D is

the dimension of the space-time, and the index a assumes
the values 1; 2; . . . ; N.

It is useful rewrite theOðNÞNLSM action implementing
the constraint over �a by the use of Lagrange multiplier,

S ¼
Z

dDx

�
1

2
�ah�a þ �

�
�2

a � N

g

��
; (2)

where the field � is the Lagrange multiplier that constrains
�2

a ¼ N
g .

In the late 1970s, the phase structure and the renomaliz-
ability of the three-dimensional NLSM were established,
showing that this model possesses two phases [10,11]. One
phase is OðNÞ symmetric and exhibits a spontaneous gen-
eration of mass due to a nonvanishing vacuum expectation
value (VEV) of the Lagrange multiplier field �, i.e., h�i �
0. On the other hand, if the fundamental bosonic field �

acquires a nonvanishing VEV, theOðNÞ symmetry is spon-
taneously broken to OðN � 1Þ, without any generation of
mass. Several extensions of this model were studied after-
ward showing no changing in its phase structure [12–19].
The three-dimensional supersymmetric (SUSY) NLSM,

in components [14], using the superfield formalism [15]
and their noncommutative extensions [16,17], was shown
to be renormalizable to all orders in the 1=N expansion.
The phase structure of this model was also studied in
Ref. [18]. In all these papers, a similar conclusion was
achieved: no supersymmetry breaking is detected at lead-
ing order in the 1=N expansion.
The aim of this work is to show that, imposing a more

general constraint on the SUSY NLSM, the solutions that
minimize the effective potential present broken supersym-
metry at leading order in the 1=N expansion. Moreover, the
OðNÞ symmetric phase presents a metastable vacuum.

II. SUPERSYMMETRIC NONLINEAR
SIGMA MODEL

The usual three-dimensional N ¼ 1 SUSY NLSM is
defined through the action

S ¼
Z

d5z

�
1

2
�aðzÞD2�aðzÞ þ�ðzÞ

�
�aðzÞ2 � N

g

��
; (3)

where � is the Lagrange multiplier superfield that con-
strains�a to satisfy�

2
aðzÞ ¼ N

g . With signature ð�;þ;þÞ,
we are using notations and conventions as in Ref. [20].
Such definitions and some useful identities can be found in
the Supplemental Material [21].
The superfields appearing in this model possess the

following � expansion:

�aðx; �Þ ¼ �aðxÞ þ ��c a�ðxÞ � �2FaðxÞ;
�ðx; �Þ ¼ �ðxÞ þ ����ðxÞ � �2�ðxÞ: (4)*andrelehum@ect.ufrn.br
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We can see that the SUSY NLSM possesses more
constraints than the nonsupersymmetric one. Once the
equation of motion of � constrains

�2
aðzÞ ¼

�
�2

a þ 2���ac a� � 2�2
�
�aFa � 1

2
c �

a c a�

��

¼ N

g
;

it is easy to see that the component fields �a, c
�
a , and Fa

must satisfy

�2
a ¼ N

g
; c �

a�a ¼ 0; Fa�a ¼ 1

2
c �

a c a�: (5)

Beyond the usual constraint �2
a ¼ N=g, the SUSY NLSM

also exhibits the constraints c �
a�a ¼ 0 and Fa�a ¼

1
2 c

�
a c a�.

Integrating the Eq. (3) over d2�, the action of the model
can be cast as

S¼
Z
d3x

�
1

2
�ah�aþ1

2
c �

a i@�
�c a�þ1

2
F2
a

þ�

�
�2

a�N

g

�
þ2�

�
Fa�aþ1

2
c �

a c a�

�
þ2��c a��a

�
:

(6)

Notice that the usual model is obtained setting c ¼ � ¼
� ¼ 0, and the auxiliary field � must be nonvanishing.

We can eliminate the auxiliary field Fa using its equa-
tion of motion, Fa ¼ �2��a. This way, the action

S ¼
Z

d3x

�
1

2
�ah�a þ 1

2
c �

a i@�
�c a� þ �

�
�2

a � N

g

�

� 2�2�2
a þ �c �

a c a� þ 2��c a��a

�
(7)

describes the physical content of the model. It is easy to see
that, if there exists a phase during which mass is generated
to the fundamental fields � and c , their masses will be
given by the VEVof the fields � and � as

M2
� ¼ 4h�i2 � 2h�i; M2

c ¼ 4h�i2; (8)

from which we observe that SUSY should be spontane-
ously broken if h�i � 0, as commented before. For
h�i ¼ 0 and for a nonvanishing VEVof �, the fundamental
bosonic and fermionic fields acquire the same squared
mass 4h�i2, indicating the generation of mass in a super-
symmetric phase as is well known [14–18]. Here, we find
an intriguing point. While in the non-SUSY model the
spontaneous generation of mass occurs due to � acquiring
a nonvanishing vacuum expectation value, in the SUSY
version, the field that acts like a ‘‘mass generator’’ to the
fundamental fields is �, which is not present in the non-
SUSY model. There is no soft transition or anything that
we can interpret as a non-SUSY limit of the spontaneous
generation of mass from the SUSY model.

Now, let us define a slightly deformed SUSY NLSM by

S ¼
Z

d5z

�
1

2
�aðzÞD2�aðzÞ þ �ðzÞ

�
�aðzÞ2 � N

g
�ðzÞ

��
;

(9)

with the single difference that � is a Lagrange multiplier
superfield that constrains �a to satisfy �2

aðzÞ ¼ N
g �ðzÞ,

where �ðzÞ is a constant superfield that possesses the �
expansion �ðzÞ ¼ �1 � �2g�2. Doing �2 ¼ 0 and �1 ¼ 1,
we obtain the usual supersymmetric action for the SUSY
NLSM, Eq. (3).
The equation of motion of the Lagrange multiplier

superfield � obtained from Eq. (9) generates new con-
straints to the components of the fundamental superfields
�a, namely,

�2
a¼N

g
�1; c �

a�a¼0; Fa�a¼1

2
c �

a c a�þg�2: (10)

To study the phase structure of the model, let us assume
that the� and theNth component�Nðx; �Þ have a constant
nontrivial VEV given by

h�i¼�cl¼�cl��2�cl; h�Ni¼
ffiffiffiffi
N

p
�cl¼

ffiffiffiffi
N

p ð�cl��2FclÞ:
(11)

Therefore, let us dislocate these superfields by � ! ð�þ
�clÞ and �N ! ffiffiffiffi

N
p ð�N þ�clÞ. So, we can rewrite the

action, Eq. (3), in terms of the new fields as

S ¼
Z

d5z

�
1

2
�aðD2 þ 2�clÞ�a þ�

�
�2

a þ N�2
cl

þ 2N�cl�N � N

g
�

�
þ N�NðD2�cl þ 2�cl�clÞ

þ N

2
�clD

2�cl þ N�cl

�
�2

cl �
1

g

��
: (12)

We can note that the VEVof the superfield �, �cl, gives
mass to the fundamental superfields �a. This ‘‘mass’’ is �
dependent, generating different masses to the bosonic and
fermionic components of the superfield �a, showing a
possible phase during which supersymmetry is broken.
At leading order, the propagator of the �a superfield

must satisfy the following equation:

½D2ðz1Þ þ 2�cl��ðz1 � z2Þ ¼ i�ð5Þðz1 � z2Þ; (13)

where �ð5Þðz1�z2Þ��ð3Þðx1�x2Þ�ð2Þð�1��2Þ, and

�ð2Þð�Þ¼��2.
The solution to the above equation can be obtained from

the ansatz

�ðz1 � z2Þ ¼ ðC1 � �21C2 � �22C3 þ ��1 �
�
2 ���

þ �21�
2
2C4Þ�ð3Þðx1 � x2Þ; (14)

where, after some algebraic manipulations, we can write
the propagator of the �a superfield as

BRIEF REPORTS PHYSICAL REVIEW D 88, 067702 (2013)

067702-2



�ðkÞ ¼ �i
D2

1 � 2�cl

k2 þ 4�2
cl

8<
:1þ 2�cl

�ð2Þð�1ÞðD2
1 þ 2�clÞ

k2 þ ð4�2
cl � 2�clÞ

9=
;

� �ð2Þð�1 � �2Þ: (15)

Notice that for �cl ¼ 0, the above propagator reduces to
the usual propagator of a massive scalar superfield. A
propagator presenting a similar form was obtained in
[22]. See Supplemental Material [21] for details in obtain-
ing the superfield propagator.

From Eq. (12), we can see that there exists a mixing
between �N and �, but this mixing only contributes to
next-to-leading order in the 1=N expansion. For now, we
can neglect this mixing, since we will deal with the SUSY
NLSM at leading order in 1=N.

With the propagator of the�a superfield, let us evaluate
the effective potential through the tadpole method [23–25].
At leading order, the tadpole equation for the�N superfield
can be cast as

N½D2�clþ2�cl�cl�
¼N½Fclþ2�cl�cl�2�2ð�cl�clþFcl�clÞ�: (16)

On the other hand, the tadpole equation for �, Fig. 1, is

½N�2
cl � N

g �þ N
R

d3k
ð2	Þ3 �ðkÞ�. Substituting the expression

for �ðkÞ, and using the fact that D2�ð2Þð�� �Þ ¼ 1 and

�ð2Þð�� �Þ ¼ 0, we obtain

N�2
cl�

N

g
�� iN

Z d3k

ð2	Þ3
�

1

k2þð4�2
cl�2�clÞ

þ 8�cl�cl�
2

½k2þð4�2
cl�2�clÞ�ðk2þ4�2

clÞ
�

¼N

�
�2

cl�
�
�1

g
� 1

gc

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2

cl�2�cl

q
4	

��2
�
2�clFcl� 2

	
�3=2
cl þ�cl

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2

cl�2�cl

q
þ�2

��
;

(17)

where 1
gc
is defined as usual,

R
�

d3k
ð2	Þ3

1
k2
. The coupling gc is

the critical value of g so that the NLSM exhibits the phase
transition.
With the tadpole equations in hand, the effective poten-

tial is obtained integrating Eq. (16) over �N and Eq. (17)
over � as

Veff

N
¼ �

Z
d2�

�Z
d�N½Fcl þ 2�cl�cl � 2�2ð�cl�cl þ Fcl�clÞ�

þ
Z

d�

�
�2

cl � 
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2

cl � 2�cl

q
4	

� �2
�
2�clFcl � 2

	
�clj�clj þ �cl

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2

cl � 2�cl

q
þ �2

���

¼ �F2
cl

2
� �clð2�2

cl � 
Þ � 6Fcl�cl�cl þ 2

3	
ð�2

clÞ3=2 �
4

3	

�
�2
cl �

�cl

2

�
3=2 � �2�cl þ C; (18)

where C is a constant of integration to be adjusted through
the conditions that minimize the effective potential, the gap

equations, and 
 � ð�1

g � 1
gc
Þ is a parameter that can be

positive, negative, or zero. In the thermodynamics of the
NLSM, 
 is interpreted as a quantity proportional to mag-
netization of the system [13].

Looking to the tadpole equations in Eqs. (16) and (17),
we observe that the VEVs must to satisfy the following
conditions:

Fcl þ 2�cl�cl ¼ 0; Fcl�cl þ�cl�cl ¼ 0;

�2
cl � 
� 1

2	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
cl �

�cl

2

r
¼ 0;

�clFcl þ �cl

	

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
cl �

�cl

2

r
� j�clj

�
þ �2

2
¼ 0:

(19)

Therefore, setting C ¼ ½�cl�
2
cl þ 4Fcl�cl�cl þ 2

3	 �
ð�2

cl � �cl

2 Þ3=2�, the effective potential can be cast as

Veff

N
¼ �F2

cl

2
� �clð�2

cl � 
Þ � 2Fcl�cl�cl þ 2

3	
ð�2

clÞ3=2

� 2

3	

�
�2
cl �

�cl

2

�
3=2 � �2�cl: (20)

As we did for the classical action, we can eliminate the
auxiliary field Fcl using its equation of motion,

Fcl ¼ �2�cl�cl; (21)

allowing us to write the effective potential as

Veff

N
¼ ��clð�2

cl � 
Þ þ 2�2
cl�

2
cl

þ 2

3	

�
ð�2

clÞ3=2 �
�
�2
cl �

�cl

2

�
3=2

�
� �2�cl: (22)

From the effective potential, Eq. (22), the conditions that
extremize the effective potential are given by

FIG. 1. Tadpole equation of � at leading order. Continuous
lines represent the �a superfield propagator, while the cut
dashed line represents a removed external � propagator.
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�cl

�
�2
cl �

�cl

2

�
¼ 0; �2

cl � 
� 1

2	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
cl �

�cl

2

r
¼ 0;

�cl

�
2	�2

cl þ j�clj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
cl �

�cl

2

r �
¼ 	

2
�2: (23)

Solving these equations, we determine the field configu-
rations that extremize the effective potential. Such solu-
tions are presented in two phases, one OðNÞ symmetric
phase and another OðNÞ broken to OðN � 1Þ. In the OðNÞ
symmetric phase, 
 < 0 or g > gc, the solutions are
given by

�cl ¼ 0; �cl ¼ 	j
j þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	ð2	
2 � �2Þ

q
;

�cl ¼ 1

2

�
2	j
j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	ð2	
2 � �2Þ

q �
2 � 8	2
2;

(24)

�cl ¼ 0; �cl ¼ �	j
j � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	ð2	
2 þ �2Þ

q
;

�cl ¼ 1

2

�
2	j
j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	ð2	
2 þ �2Þ

q �
2 � 8	2
2:

(25)

Note for real solutions, the parameter �2 is constrained to
be j�2j � 2	
2. Moreover, as we will see, there exists a
�2 � 0, which Veff assumes its minimum value. Setting
�2 ¼ 0, we have the well-known solutions [14–18]

�cl ¼ �2	j
j; �cl ¼ Fcl ¼ �cl ¼ 0: (26)

The solution, Eq. (24), is the global minimum of the
effective potential, while Eq. (25) is a local one. The effec-
tive potential is plotted in Fig. 2 as a function of �cl and�cl,
where it is possible to see the true and the false vacua.

In the minimum, Veff is negative; this is because we are
dealing with an explicit breaking of supersymmetry. The
generated masses for the fundamental fields� and c in the
OðNÞ symmetric phase are given by

M2
� ¼ 4h�i2 � 2h�i ¼ 16	2
2 (27)

M2
c ¼4h�i2¼8	2
2þ4	j
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	ð2	
2��2Þ

q
�2	�2:

(28)

In the limit �2 ! 0, the massesM2
� ¼ M2

c , and supersym-

metry is restored.
The second phase, OðNÞ symmetry is broken

to OðN � 1Þ, 
 > 0 or g < gc, and the solutions that
minimize the effective potential are given by

�cl ¼ � ffiffiffiffi



p
; �cl ¼ 	
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	ð2	
2 � �2Þ

q
;

�cl ¼ 1

2
½2	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	ð2	
2 � �2Þ

q
�2;

(29)

�cl ¼ � ffiffiffiffi



p
; �cl ¼ �	
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	ð2	
2 þ �2Þ

q
;

�cl ¼ 1

2

�
2	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	ð2	
2 þ �2Þ

q �
2
;

(30)

where, just as for the OðNÞ symmetric phase discussed
before, for �2 ! 0, the above solutions collapse to

�cl ¼ � ffiffiffiffi



p
; Fcl ¼ �cl ¼ �cl ¼ 0: (31)

Just as in the supersymmetric and nonsupersymmetric
cases, in the OðNÞ symmetric phase, the scalar field � is
kept massless, i.e.,M2

� ¼ 0. But, due to the parameter that

breaks supersymmetry, �2, the fundamental fermion of the
model acquires the mass

M2
c ¼ 4h�i2 ¼

�
2	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	ð2	
2 � �2Þ

q �
2
: (32)

It is easy to see that if �2 ! 0, so M2
c ! 0.

Finally, let us deal with the optimal value of the SUSY-
breaking parameter �2. Eliminating, from Eq. (22), all
fields by the use of their equations of motion, except the
fundamental field �, to 
 > 0, we find

FIG. 2 (color online). Effective potential in the OðNÞ symmetric phase as a function of �cl and �cl. The plot in the right side of the
figure is a slice of the Veff at �cl ¼ 0, evidencing the presence of a metastable vacuum.

BRIEF REPORTS PHYSICAL REVIEW D 88, 067702 (2013)

067702-4



Veff

N
¼1

6

�
�12	
ð�2þ2	
2Þ�3ð4	
2��2Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	ð2	
2��2Þ

q
þ
�
32	4
2�8	3�2

�16	3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	ð2	
2��2Þ

q �
3=2þ144	2
�2

clð
��2
clÞ

þ48	2�6
cl�32	2j
��2

clj
�
: (33)

Minimizing Eq. (33) for �2, we obtain the solution

�2 ¼ 3	

2

2: (34)

The effective potential, Eq. (22), evaluated for �2 ¼
3	
2 
2 is given by

Veff

N
¼��clð�2

cl�
Þþ2�2
cl�

2
cl

þ 2

3	

�
ð�2

clÞ3=2�
�
�2
cl�

�cl

2

�
3=2

�
�3	

2

2�cl: (35)

One interesting note is that �2 ¼ 0 becomes a local maxi-
mum in this model. Once the SUSY-breaking parameter has
been introduced, the supersymmetric solutions are not the
solutions that minimize the effective potential anymore.

III. FINAL REMARKS

Summarizing, the three-dimensional supersymmetric
nonlinear sigma model, deformed by a nonsupersymmetric

constraint, possess two phases. In the first one is the
OðNÞ symmetric phase, 
<0 or g>gc, which possess the
remarkable characteristic of the presence of a metastable
vacuum. In this phase, all fields acquire a nonvanishing
vacuum expectation value, generating masses to the funda-
mental fields � and c . These masses are different for non-
vanishing �2 coupling responsible for supersymmetry
breaking. In the limit �2 ! 0, the masses of � and c tend
to be equal, restoring the supersymmetry. In theOðNÞ broken
phase, only the components of theLagrangemultiplier super-
field acquire a nonvanishing vacuum expectation value, gen-
erating the mass to the fermonic field c and keeping �
massless. Also in this phase, the limit �2 ! 0 can be taken
to restore the supersymmetric solutions. An important note is
the fact that �2 cannot be chosen arbitrarily. It possesses an
optimal value that minimizes the effective potential.
Finally, we think that gauge and noncommutative exten-

sions (with constant noncommutative parameter; see, for

example the SUSY CPðN�1Þ model presented in Ref. [26])
of this model should present a similar structure, including
the presence of themetastable vacuum, since, in general, the
tadpole diagrams in noncommutative models are the same
as the commutative ones.
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