Supersymmetry breaking in the three-dimensional nonlinear sigma model

A.C. Lehum^{1,2,*} and A.J. da Silva^{1,†}

¹Instituto de Física, Universidade de São Paulo Caixa Postal 66318, 05315-970 São Paulo, São Paulo, Brazil

²Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, Caixa Postal 1524, 59072-970 Natal,

Rio Grande do Norte, Brazil

(Received 25 July 2013; published 17 September 2013)

In this work, we discuss the phase structure of a deformed $\mathcal{N} = 1$ supersymmetric nonlinear sigma model in a three-dimensional space-time. The deformation is introduced by a term that breaks supersymmetry explicitly, through imposing a slightly different constraint to the fundamental superfields of the model. Using the tadpole method, we compute the effective potential at leading order in a 1/N expansion. From the gap equations, i.e., conditions that minimize the effective potential, we observe that this model presents two phases as the ordinary model, with two remarkable differences: 1) the fundamental fermionic field becomes massive in both phases of the model, which is closely related to the supersymmetry breaking term; 2) the O(N) symmetric phase presents a metastable vacuum.

DOI: 10.1103/PhysRevD.88.067702

PACS numbers: 11.30.Pb, 11.30.Qc

I. INTRODUCTION

The nonlinear sigma model (NLSM) was first proposed to investigate the interaction between pions and nucleons [1]. In lower-dimensional systems, it is used to describe several aspects of condensed matter physics, for example, applications to ferromagnets [2–5]. In addition, this model provides a very good theoretical laboratory containing an interesting phase structure and at same time shares the wealth of more realistic theories, being a simple example of an asymptotically free theory [6,7]. Recently, it was conjectured that the O(6) sigma model emerges as a scaling function in AdS/CFT correspondence [8,9].

The O(N) NLSM can be defined through the action

$$S = \int d^D x \left\{ \frac{1}{2} \phi_a \Box \phi_a \right\},\tag{1}$$

where the fields ϕ_a are constrained to satisfy $\phi_a^2 = \frac{N}{g}$, *D* is the dimension of the space-time, and the index *a* assumes the values 1, 2, ..., *N*.

It is useful rewrite the O(N) NLSM action implementing the constraint over ϕ_a by the use of Lagrange multiplier,

$$S = \int d^{D}x \left\{ \frac{1}{2} \phi_{a} \Box \phi_{a} + \sigma \left(\phi_{a}^{2} - \frac{N}{g} \right) \right\}, \qquad (2)$$

where the field σ is the Lagrange multiplier that constrains $\phi_a^2 = \frac{N}{g}$.

In the late 1970s, the phase structure and the renomalizability of the three-dimensional NLSM were established, showing that this model possesses two phases [10,11]. One phase is O(N) symmetric and exhibits a spontaneous generation of mass due to a nonvanishing vacuum expectation value (VEV) of the Lagrange multiplier field σ , i.e., $\langle \sigma \rangle \neq$ 0. On the other hand, if the fundamental bosonic field ϕ acquires a nonvanishing VEV, the O(N) symmetry is spontaneously broken to O(N - 1), without any generation of mass. Several extensions of this model were studied afterward showing no changing in its phase structure [12–19].

The three-dimensional supersymmetric (SUSY) NLSM, in components [14], using the superfield formalism [15] and their noncommutative extensions [16,17], was shown to be renormalizable to all orders in the 1/N expansion. The phase structure of this model was also studied in Ref. [18]. In all these papers, a similar conclusion was achieved: no supersymmetry breaking is detected at leading order in the 1/N expansion.

The aim of this work is to show that, imposing a more general constraint on the SUSY NLSM, the solutions that minimize the effective potential present broken supersymmetry at leading order in the 1/N expansion. Moreover, the O(N) symmetric phase presents a metastable vacuum.

II. SUPERSYMMETRIC NONLINEAR SIGMA MODEL

The usual three-dimensional $\mathcal{N} = 1$ SUSY NLSM is defined through the action

$$S = \int d^{5}z \left\{ \frac{1}{2} \Phi_{a}(z) D^{2} \Phi_{a}(z) + \Sigma(z) \left[\Phi_{a}(z)^{2} - \frac{N}{g} \right] \right\}, \quad (3)$$

where Σ is the Lagrange multiplier superfield that constrains Φ_a to satisfy $\Phi_a^2(z) = \frac{N}{g}$. With signature (-, +, +), we are using notations and conventions as in Ref. [20]. Such definitions and some useful identities can be found in the Supplemental Material [21].

The superfields appearing in this model possess the following θ expansion:

$$\Phi_{a}(x,\theta) = \phi_{a}(x) + \theta^{\beta}\psi_{a\beta}(x) - \theta^{2}F_{a}(x);$$

$$\Sigma(x,\theta) = \rho(x) + \theta^{\beta}\chi_{\beta}(x) - \theta^{2}\sigma(x).$$
(4)

^{*}andrelehum@ect.ufrn.br

[†]ajsilva@fma.if.usp.br

We can see that the SUSY NLSM possesses more constraints than the nonsupersymmetric one. Once the equation of motion of Σ constrains

$$\begin{split} \Phi_a^2(z) &= \left[\phi_a^2 + 2\theta^\beta \phi_a \psi_{a\beta} - 2\theta^2 \Big(\phi_a F_a - \frac{1}{2} \psi_a^\beta \psi_{a\beta} \Big) \right] \\ &= \frac{N}{g}, \end{split}$$

it is easy to see that the component fields ϕ_a , ψ_a^{α} , and F_a must satisfy

$$\phi_a^2 = \frac{N}{g}, \qquad \psi_a^\alpha \phi_a = 0, \qquad F_a \phi_a = \frac{1}{2} \psi_a^\beta \psi_{a\beta}.$$
(5)

Beyond the usual constraint $\phi_a^2 = N/g$, the SUSY NLSM also exhibits the constraints $\psi_a^{\alpha} \phi_a = 0$ and $F_a \phi_a = \frac{1}{2} \psi_a^{\beta} \psi_{a\beta}$.

Integrating the Eq. (3) over $d^2\theta$, the action of the model can be cast as

$$S = \int d^3x \left\{ \frac{1}{2} \phi_a \Box \phi_a + \frac{1}{2} \psi_a^{\alpha} i \partial_{\alpha}{}^{\beta} \psi_{a\beta} + \frac{1}{2} F_a^2 + \sigma \left(\phi_a^2 - \frac{N}{g} \right) + 2\rho \left(F_a \phi_a + \frac{1}{2} \psi_a^{\beta} \psi_{a\beta} \right) + 2\chi^{\beta} \psi_{a\beta} \phi_a \right\}.$$
(6)

Notice that the usual model is obtained setting $\psi = \rho = \chi = 0$, and the auxiliary field σ must be nonvanishing.

We can eliminate the auxiliary field F_a using its equation of motion, $F_a = -2\rho\phi_a$. This way, the action

$$S = \int d^{3}x \left\{ \frac{1}{2} \phi_{a} \Box \phi_{a} + \frac{1}{2} \psi_{a}^{\alpha} i \partial_{\alpha}{}^{\beta} \psi_{a\beta} + \sigma \left(\phi_{a}^{2} - \frac{N}{g} \right) - 2\rho^{2} \phi_{a}^{2} + \rho \psi_{a}^{\beta} \psi_{a\beta} + 2\chi^{\beta} \psi_{a\beta} \phi_{a} \right\}$$
(7)

describes the physical content of the model. It is easy to see that, if there exists a phase during which mass is generated to the fundamental fields ϕ and ψ , their masses will be given by the VEV of the fields ρ and σ as

$$M_{\phi}^2 = 4\langle \rho \rangle^2 - 2\langle \sigma \rangle, \qquad M_{\psi}^2 = 4\langle \rho \rangle^2,$$
 (8)

from which we observe that SUSY should be spontaneously broken if $\langle \sigma \rangle \neq 0$, as commented before. For $\langle \sigma \rangle = 0$ and for a nonvanishing VEV of ρ , the fundamental bosonic and fermionic fields acquire the same squared mass $4\langle \rho \rangle^2$, indicating the generation of mass in a supersymmetric phase as is well known [14–18]. Here, we find an intriguing point. While in the non-SUSY model the spontaneous generation of mass occurs due to σ acquiring a nonvanishing vacuum expectation value, in the SUSY version, the field that acts like a "mass generator" to the fundamental fields is ρ , which is not present in the non-SUSY model. There is no soft transition or anything that we can interpret as a non-SUSY limit of the spontaneous generation of mass from the SUSY model. Now, let us define a slightly deformed SUSY NLSM by

$$S = \int d^5z \left\{ \frac{1}{2} \Phi_a(z) D^2 \Phi_a(z) + \Sigma(z) \left[\Phi_a(z)^2 - \frac{N}{g} \delta(z) \right] \right\},\tag{9}$$

with the single difference that Σ is a Lagrange multiplier superfield that constrains Φ_a to satisfy $\Phi_a^2(z) = \frac{N}{g} \delta(z)$, where $\delta(z)$ is a constant superfield that possesses the θ expansion $\delta(z) = \delta_1 - \theta^2 g \delta_2$. Doing $\delta_2 = 0$ and $\delta_1 = 1$, we obtain the usual supersymmetric action for the SUSY NLSM, Eq. (3).

The equation of motion of the Lagrange multiplier superfield Σ obtained from Eq. (9) generates new constraints to the components of the fundamental superfields Φ_a , namely,

$$\phi_a^2 = \frac{N}{g} \delta_1, \quad \psi_a^a \phi_a = 0, \quad F_a \phi_a = \frac{1}{2} \psi_a^\beta \psi_{a\beta} + g \delta_2.$$
 (10)

To study the phase structure of the model, let us assume that the Σ and the *N*th component $\Phi_N(x, \theta)$ have a constant nontrivial VEV given by

$$\langle \Sigma \rangle = \Sigma_{\rm cl} = \rho_{\rm cl} - \theta^2 \sigma_{\rm cl}, \quad \langle \Phi_N \rangle = \sqrt{N} \Phi_{\rm cl} = \sqrt{N} (\phi_{\rm cl} - \theta^2 F_{\rm cl}).$$
(11)

Therefore, let us dislocate these superfields by $\Sigma \rightarrow (\Sigma + \Sigma_{cl})$ and $\Phi_N \rightarrow \sqrt{N}(\Phi_N + \Phi_{cl})$. So, we can rewrite the action, Eq. (3), in terms of the new fields as

$$S = \int d^{5}z \left\{ \frac{1}{2} \Phi_{a} (D^{2} + 2\Sigma_{cl}) \Phi_{a} + \Sigma \left(\Phi_{a}^{2} + N \Phi_{cl}^{2} + 2N \Phi_{cl} \Phi_{cl} \Phi_{N} - \frac{N}{g} \delta \right) + N \Phi_{N} (D^{2} \Phi_{cl} + 2 \Phi_{cl} \Sigma_{cl}) + \frac{N}{2} \Phi_{cl} D^{2} \Phi_{cl} + N \Sigma_{cl} \left(\Phi_{cl}^{2} - \frac{1}{g} \right) \right\}.$$
 (12)

We can note that the VEV of the superfield Σ , Σ_{cl} , gives mass to the fundamental superfields Φ_a . This "mass" is θ dependent, generating different masses to the bosonic and fermionic components of the superfield Φ_a , showing a possible phase during which supersymmetry is broken.

At leading order, the propagator of the Φ_a superfield must satisfy the following equation:

$$[D^{2}(z_{1}) + 2\Sigma_{cl}]\Delta(z_{1} - z_{2}) = i\delta^{(5)}(z_{1} - z_{2}), \quad (13)$$

where $\delta^{(5)}(z_1 - z_2) \equiv \delta^{(3)}(x_1 - x_2)\delta^{(2)}(\theta_1 - \theta_2)$, and $\delta^{(2)}(\theta) = -\theta^2$.

The solution to the above equation can be obtained from the ansatz

$$\Delta(z_1 - z_2) = (C_1 - \theta_1^2 C_2 - \theta_2^2 C_3 + \theta_1^{\alpha} \theta_2^{\beta} \Delta_{\alpha\beta} + \theta_1^2 \theta_2^2 C_4) \delta^{(3)}(x_1 - x_2), \qquad (14)$$

where, after some algebraic manipulations, we can write the propagator of the Φ_a superfield as

$$\Delta(k) = -i \frac{D_1^2 - 2\rho_{cl}}{k^2 + 4\rho_{cl}^2} \left\{ 1 + 2\sigma_{cl} \frac{\delta^{(2)}(\theta_1)(D_1^2 + 2\rho_{cl})}{k^2 + (4\rho_{cl}^2 - 2\sigma_{cl})} \right\} \\ \times \delta^{(2)}(\theta_1 - \theta_2).$$
(15)

Notice that for $\sigma_{cl} = 0$, the above propagator reduces to the usual propagator of a massive scalar superfield. A propagator presenting a similar form was obtained in [22]. See Supplemental Material [21] for details in obtaining the superfield propagator.

From Eq. (12), we can see that there exists a mixing between Φ_N and Σ , but this mixing only contributes to next-to-leading order in the 1/N expansion. For now, we can neglect this mixing, since we will deal with the SUSY NLSM at leading order in 1/N.

With the propagator of the Φ_a superfield, let us evaluate the effective potential through the tadpole method [23–25]. At leading order, the tadpole equation for the Φ_N superfield can be cast as

$$N[D^2\phi_{\rm cl} + 2\Phi_{\rm cl}\Sigma_{\rm cl}]$$

= $N[F_{\rm cl} + 2\phi_{\rm cl}\rho_{\rm cl} - 2\theta^2(\phi_{\rm cl}\sigma_{\rm cl} + F_{\rm cl}\rho_{\rm cl})].$ (16)

On the other hand, the tadpole equation for Σ , Fig. 1, is $[N\Phi_{cl}^2 - \frac{N}{g}\delta + N\int \frac{d^3k}{(2\pi)^3}\Delta(k)]$. Substituting the expression for $\Delta(k)$, and using the fact that $D^2\delta^{(2)}(\theta - \theta) = 1$ and $\delta^{(2)}(\theta - \theta) = 0$, we obtain

$$-\not - \checkmark \bullet + N\Phi_{cl}^2 + \frac{N}{g} = 0$$

FIG. 1. Tadpole equation of Σ at leading order. Continuous lines represent the Φ_a superfield propagator, while the cut dashed line represents a removed external Σ propagator.

$$N\Phi_{\rm cl}^{2} - \frac{N}{g}\delta - iN\int \frac{d^{3}k}{(2\pi)^{3}} \left\{ \frac{1}{k^{2} + (4\rho_{\rm cl}^{2} - 2\sigma_{\rm cl})} + \frac{8\sigma_{\rm cl}\rho_{\rm cl}\theta^{2}}{[k^{2} + (4\rho_{\rm cl}^{2} - 2\sigma_{\rm cl})](k^{2} + 4\rho_{\rm cl}^{2})} \right\}$$
$$= N \left[\phi_{\rm cl}^{2} - \left(\frac{\delta_{1}}{g} - \frac{1}{g_{c}} \right) - \frac{\sqrt{4\rho_{\rm cl}^{2} - 2\sigma_{\rm cl}}}{4\pi} - \theta^{2} \left(2\phi_{\rm cl}F_{\rm cl} - \frac{2}{\pi}\rho_{\rm cl}^{3/2} + \frac{\rho_{\rm cl}}{\pi}\sqrt{4\rho_{\rm cl}^{2} - 2\sigma_{\rm cl}} + \delta_{2} \right) \right],$$
(17)

where $\frac{1}{g_c}$ is defined as usual, $\int_{\Lambda} \frac{d^3k}{(2\pi)^3} \frac{1}{k^2}$. The coupling g_c is the critical value of g so that the NLSM exhibits the phase transition.

With the tadpole equations in hand, the effective potential is obtained integrating Eq. (16) over Φ_N and Eq. (17) over Σ as

$$\frac{V_{\text{eff}}}{N} = -\int d^2\theta \left\{ \int d\Phi_N [F_{\text{cl}} + 2\phi_{\text{cl}}\rho_{\text{cl}} - 2\theta^2(\phi_{\text{cl}}\sigma_{\text{cl}} + F_{\text{cl}}\rho_{\text{cl}})] \\
+ \int d\Sigma \left[\phi_{\text{cl}}^2 - \lambda - \frac{\sqrt{4\rho_{\text{cl}}^2 - 2\sigma_{\text{cl}}}}{4\pi} - \theta^2 \left(2\phi_{\text{cl}}F_{\text{cl}} - \frac{2}{\pi}\rho_{\text{cl}}|\rho_{\text{cl}}| + \frac{\rho_{\text{cl}}}{\pi}\sqrt{4\rho_{\text{cl}}^2 - 2\sigma_{\text{cl}}} + \delta_2 \right) \right] \right\} \\
= -\frac{F_{\text{cl}}^2}{2} - \sigma_{\text{cl}}(2\phi_{\text{cl}}^2 - \lambda) - 6F_{\text{cl}}\rho_{\text{cl}}\phi_{\text{cl}} + \frac{2}{3\pi}(\rho_{\text{cl}}^2)^{3/2} - \frac{4}{3\pi} \left(\rho_{\text{cl}}^2 - \frac{\sigma_{\text{cl}}}{2}\right)^{3/2} - \delta_2\rho_{\text{cl}} + C,$$
(18)

where *C* is a constant of integration to be adjusted through the conditions that minimize the effective potential, the gap equations, and $\lambda \equiv \left(\frac{\delta_1}{g} - \frac{1}{g_c}\right)$ is a parameter that can be positive, negative, or zero. In the thermodynamics of the NLSM, λ is interpreted as a quantity proportional to magnetization of the system [13].

Looking to the tadpole equations in Eqs. (16) and (17), we observe that the VEVs must to satisfy the following conditions:

$$F_{cl} + 2\phi_{cl}\rho_{cl} = 0, \qquad F_{cl}\rho_{cl} + \phi_{cl}\sigma_{cl} = 0,$$

$$\phi_{cl}^{2} - \lambda - \frac{1}{2\pi}\sqrt{\rho_{cl}^{2} - \frac{\sigma_{cl}}{2}} = 0,$$

$$\phi_{cl}F_{cl} + \frac{\rho_{cl}}{\pi} \left(\sqrt{\rho_{cl}^{2} - \frac{\sigma_{cl}}{2}} - |\rho_{cl}|\right) + \frac{\delta_{2}}{2} = 0.$$
(19)

Therefore, setting $C = [\sigma_{cl}\phi_{cl}^2 + 4F_{cl}\rho_{cl}\phi_{cl} + \frac{2}{3\pi} \times (\rho_{cl}^2 - \frac{\sigma_{cl}}{2})^{3/2}]$, the effective potential can be cast as

$$\frac{V_{\rm eff}}{N} = -\frac{F_{\rm cl}^2}{2} - \sigma_{\rm cl}(\phi_{\rm cl}^2 - \lambda) - 2F_{\rm cl}\rho_{\rm cl}\phi_{\rm cl} + \frac{2}{3\pi}(\rho_{\rm cl}^2)^{3/2} - \frac{2}{3\pi} \left(\rho_{\rm cl}^2 - \frac{\sigma_{\rm cl}}{2}\right)^{3/2} - \delta_2\rho_{\rm cl}.$$
(20)

As we did for the classical action, we can eliminate the auxiliary field F_{cl} using its equation of motion,

$$F_{\rm cl} = -2\rho_{\rm cl}\phi_{\rm cl},\tag{21}$$

allowing us to write the effective potential as

$$\frac{V_{\rm eff}}{N} = -\sigma_{\rm cl}(\phi_{\rm cl}^2 - \lambda) + 2\rho_{\rm cl}^2\phi_{\rm cl}^2 + \frac{2}{3\pi} \Big[(\rho_{\rm cl}^2)^{3/2} - \left(\rho_{\rm cl}^2 - \frac{\sigma_{\rm cl}}{2}\right)^{3/2} \Big] - \delta_2\rho_{\rm cl}.$$
 (22)

From the effective potential, Eq. (22), the conditions that extremize the effective potential are given by

$$\phi_{\rm cl} \left(\rho_{\rm cl}^2 - \frac{\sigma_{\rm cl}}{2} \right) = 0, \qquad \phi_{\rm cl}^2 - \lambda - \frac{1}{2\pi} \sqrt{\rho_{\rm cl}^2 - \frac{\sigma_{\rm cl}}{2}} = 0,$$
$$\rho_{\rm cl} \left(2\pi \phi_{\rm cl}^2 + |\rho_{\rm cl}| - \sqrt{\rho_{\rm cl}^2 - \frac{\sigma_{\rm cl}}{2}} \right) = \frac{\pi}{2} \delta_2. \tag{23}$$

Solving these equations, we determine the field configurations that extremize the effective potential. Such solutions are presented in two phases, one O(N) symmetric phase and another O(N) broken to O(N - 1). In the O(N)symmetric phase, $\lambda < 0$ or $g > g_c$, the solutions are given by

$$\phi_{\rm cl} = 0, \qquad \rho_{\rm cl} = \pi |\lambda| + \frac{1}{2} \sqrt{2\pi (2\pi \lambda^2 - \delta_2)},$$

$$\sigma_{\rm cl} = \frac{1}{2} \Big[2\pi |\lambda| + \sqrt{2\pi (2\pi \lambda^2 - \delta_2)} \Big]^2 - 8\pi^2 \lambda^2;$$
 (24)

$$\phi_{\rm cl} = 0, \qquad \rho_{\rm cl} = -\pi |\lambda| - \frac{1}{2} \sqrt{2\pi (2\pi \lambda^2 + \delta_2)},$$

$$\sigma_{\rm cl} = \frac{1}{2} \Big[2\pi |\lambda| + \sqrt{2\pi (2\pi \lambda^2 + \delta_2)} \Big]^2 - 8\pi^2 \lambda^2.$$
 (25)

Note for *real* solutions, the parameter δ_2 is constrained to be $|\delta_2| \le 2\pi\lambda^2$. Moreover, as we will see, there exists a $\delta_2 \ne 0$, which V_{eff} assumes its minimum value. Setting $\delta_2 = 0$, we have the well-known solutions [14–18]

$$\rho_{\rm cl} = \pm 2\pi |\lambda|, \qquad \phi_{\rm cl} = F_{\rm cl} = \sigma_{\rm cl} = 0. \tag{26}$$

The solution, Eq. (24), is the global minimum of the effective potential, while Eq. (25) is a local one. The effective potential is plotted in Fig. 2 as a function of ρ_{cl} and ϕ_{cl} , where it is possible to see the true and the false vacua.

In the minimum, V_{eff} is negative; this is because we are dealing with an explicit breaking of supersymmetry. The generated masses for the fundamental fields ϕ and ψ in the O(N) symmetric phase are given by

$$M_{\phi}^2 = 4\langle \rho \rangle^2 - 2\langle \sigma \rangle = 16\pi^2 \lambda^2 \tag{27}$$

$$M_{\psi}^{2} = 4\langle \rho \rangle^{2} = 8\pi^{2}\lambda^{2} + 4\pi|\lambda|\sqrt{2\pi(2\pi\lambda^{2} - \delta_{2})} - 2\pi\delta_{2}.$$
(28)

In the limit $\delta_2 \rightarrow 0$, the masses $M_{\phi}^2 = M_{\psi}^2$, and supersymmetry is restored.

The second phase, O(N) symmetry is broken to O(N-1), $\lambda > 0$ or $g < g_c$, and the solutions that minimize the effective potential are given by

$$\phi_{\rm cl} = \pm \sqrt{\lambda}, \qquad \rho_{\rm cl} = \pi \lambda - \frac{1}{2} \sqrt{2\pi (2\pi \lambda^2 - \delta_2)},$$

$$\sigma_{\rm cl} = \frac{1}{2} [2\pi \lambda - \sqrt{2\pi (2\pi \lambda^2 - \delta_2)}]^2;$$
(29)

$$\phi_{\rm cl} = \pm \sqrt{\lambda}, \qquad \rho_{\rm cl} = -\pi\lambda + \frac{1}{2}\sqrt{2\pi(2\pi\lambda^2 + \delta_2)},$$

$$\sigma_{\rm cl} = \frac{1}{2} \Big[2\pi\lambda - \sqrt{2\pi(2\pi\lambda^2 + \delta_2)} \Big]^2, \qquad (30)$$

where, just as for the O(N) symmetric phase discussed before, for $\delta_2 \rightarrow 0$, the above solutions collapse to

$$\phi_{\rm cl} = \pm \sqrt{\lambda}, \qquad F_{\rm cl} = \sigma_{\rm cl} = \rho_{\rm cl} = 0.$$
 (31)

Just as in the supersymmetric and nonsupersymmetric cases, in the O(N) symmetric phase, the scalar field ϕ is kept massless, i.e., $M_{\phi}^2 = 0$. But, due to the parameter that breaks supersymmetry, δ_2 , the fundamental fermion of the model acquires the mass

$$M_{\psi}^{2} = 4\langle \rho \rangle^{2} = \left[2\pi\lambda - \sqrt{2\pi(2\pi\lambda^{2} - \delta_{2})} \right]^{2}.$$
 (32)

It is easy to see that if $\delta_2 \to 0$, so $M_{\psi}^2 \to 0$.

Finally, let us deal with the optimal value of the SUSYbreaking parameter δ_2 . Eliminating, from Eq. (22), all fields by the use of their equations of motion, except the fundamental field ϕ , to $\lambda > 0$, we find

FIG. 2 (color online). Effective potential in the O(N) symmetric phase as a function of ρ_{cl} and ϕ_{cl} . The plot in the right side of the figure is a slice of the V_{eff} at $\phi_{cl} = 0$, evidencing the presence of a metastable vacuum.

$$\frac{V_{\rm eff}}{N} = \frac{1}{6} \left\{ -12\pi\lambda(\delta_2 + 2\pi\lambda^2) - 3(4\pi\lambda^2 - \delta_2) \right. \\ \left. \times \sqrt{2\pi(2\pi\lambda^2 - \delta_2)} + \left[32\pi^4\lambda^2 - 8\pi^3\delta_2 \right] \\ \left. -16\pi^3\lambda\sqrt{2\pi(2\pi\lambda^2 - \delta_2)} \right]^{3/2} + 144\pi^2\lambda\phi_{\rm cl}^2(\lambda - \phi_{\rm cl}^2) \\ \left. + 48\pi^2\phi_{\rm cl}^6 - 32\pi^2|\lambda - \phi_{\rm cl}^2| \right\}.$$
(33)

Minimizing Eq. (33) for δ_2 , we obtain the solution

$$\delta_2 = \frac{3\pi}{2}\lambda^2. \tag{34}$$

The effective potential, Eq. (22), evaluated for $\delta_2 = \frac{3\pi}{2}\lambda^2$ is given by

$$\frac{V_{\rm eff}}{N} = -\sigma_{\rm cl}(\phi_{\rm cl}^2 - \lambda) + 2\rho_{\rm cl}^2 \phi_{\rm cl}^2 + \frac{2}{3\pi} \Big[(\rho_{\rm cl}^2)^{3/2} - \left(\rho_{\rm cl}^2 - \frac{\sigma_{\rm cl}}{2}\right)^{3/2} \Big] - \frac{3\pi}{2} \lambda^2 \rho_{\rm cl}.$$
(35)

One interesting note is that $\delta_2 = 0$ becomes a local maximum in this model. Once the SUSY-breaking parameter has been introduced, the supersymmetric solutions are not the solutions that minimize the effective potential anymore.

III. FINAL REMARKS

Summarizing, the three-dimensional supersymmetric nonlinear sigma model, deformed by a nonsupersymmetric

constraint, possess two phases. In the first one is the O(N) symmetric phase, $\lambda < 0$ or $g > g_c$, which possess the remarkable characteristic of the presence of a metastable vacuum. In this phase, all fields acquire a nonvanishing vacuum expectation value, generating masses to the fundamental fields ϕ and ψ . These masses are different for nonvanishing δ_2 coupling responsible for supersymmetry breaking. In the limit $\delta_2 \rightarrow 0$, the masses of ϕ and ψ tend to be equal, restoring the supersymmetry. In the O(N) broken phase, only the components of the Lagrange multiplier superfield acquire a nonvanishing vacuum expectation value, generating the mass to the fermonic field ψ and keeping ϕ massless. Also in this phase, the limit $\delta_2 \rightarrow 0$ can be taken to restore the supersymmetric solutions. An important note is the fact that δ_2 cannot be chosen arbitrarily. It possesses an optimal value that minimizes the effective potential.

Finally, we think that gauge and noncommutative extensions (with constant noncommutative parameter; see, for example the SUSY $CP^{(N-1)}$ model presented in Ref. [26]) of this model should present a similar structure, including the presence of the metastable vacuum, since, in general, the tadpole diagrams in noncommutative models are the same as the commutative ones.

ACKNOWLEDGMENTS

This work was partially supported by the Brazilian agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Apoio à Pesquisa do Rio Grande do Norte (FAPERN).

- [1] M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960).
- [2] A. M. Polyakov, Phys. Lett. 59B, 79 (1975).
- [3] E. Brezin and J. Zinn-Justin, Phys. Rev. Lett. 36, 691 (1976).
- [4] E. Brezin and J. Zinn-Justin, Phys. Rev. B 14, 3110 (1976).
- [5] W. A. Bardeen, B. W. Lee, and R. E. Shrock, Phys. Rev. D 14, 985 (1976).
- [6] D. Friedan, Phys. Rev. Lett. 45, 1057 (1980).
- [7] S. Hikami, Phys. Lett. **98B**, 208 (1981).
- [8] L. F. Alday and J. M. Maldacena, J. High Energy Phys. 11 (2007) 019.
- [9] Z. Bajnok, J. Balog, B. Basso, G. P. Korchemsky, and L. Palla, Nucl. Phys. B 811, 438 (2009).
- [10] I. Y. Arefeva, Ann. Phys. (N.Y.) 117, 393 (1979).
- [11] I. Y. Arefeva, E. R. Nissimov, and S. J. Pacheva, Commun. Math. Phys. 71, 213 (1980).
- [12] I. Y. Arefeva and S. I. Azakov, Nucl. Phys. B162, 298 (1980).
- [13] B. Rosenstein, B. J. Warr, and S. H. Park, Nucl. Phys. B336, 435 (1990).
- [14] V.G. Koures and K.T. Mahanthappa, Phys. Rev. D 43, 3428 (1991); 45, 717(E) (1992).

- [15] V.G. Koures and K.T. Mahanthappa, Phys. Rev. D 45, 580 (1992).
- [16] H. O. Girotti, M. Gomes, V. O. Rivelles, and A. J. da Silva, Int. J. Mod. Phys. A 17, 1503 (2002).
- [17] H.O. Girotti, M. Gomes, A. Y. Petrov, V.O. Rivelles, and A.J. da Silva, Phys. Lett. B 521, 119 (2001).
- [18] T. Matsuda, J. Phys. G 22, L119 (1996).
- [19] I. Jack, D. R. T. Jones, and N. Mohammedi, Phys. Lett. B 520, 405 (2001).
- [20] S. J. Gates, M. T. Grisaru, M. Rocek, and W. Siegel, Front. Phys. 58, 1 (1983).
- [21] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevD.88.067702 for details in obtaining the superfield propagator.
- [22] J. L. Boldo, L. P. Colatto, M. A. De Andrade, O. M. Del Cima, and J. A. Helayel-Neto, Phys. Lett. B 468, 96 (1999).
- [23] S. Weinberg, Phys. Rev. D 7, 2887 (1973).
- [24] R. D. C. Miller, Nucl. Phys. B228, 316 (1983).
- [25] R. D. C. Miller, Nucl. Phys. B229, 189 (1983).
- [26] A. F. Ferrari, A. C. Lehum, A. J. da Silva, and F. Teixeira, J. Phys. A 40, 7803 (2007).