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Following the recent study on the emergent Friedmann equation from the expansion of cosmic space

for a flat universe, we apply this method to a nonflat universe, and modify the evolution equation to lead to

the Friedmann equation. In order to maintain the same form with the original evolution equation, we have

to define the time-dependent Planck length, which shows that the spatial curvature of k ¼ 0 and k ¼ 1 is

preferable to k ¼ �1 since the Planck length of the nonflat open universe is divergent. Finally, we discuss

its physical consequences.
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The thermodynamic quantities of black holes such as its
temperature and entropy are related to geometrical quan-
tities such as surface gravity and horizon area [1]. It has
been shown that the first law of thermodynamics leads to
Einstein’s field equations for an accelerating observer [2],
and then it has been proposed that gravity can be inter-
preted as an entropic force caused by changes of entropy
associated with the information on a holographic screen
[3]. By applying the holographic principle and the equi-
partition rule of energy, the Einstein field equations could
be derived. These make us know that gravity is an emer-
gent phenomenon.

Recently, the Friedmann equation governing the
Friedmann-Robertson-Walker (FRW) universe has been
remarkably derived by Padmanabhan [4] from the expan-
sion of cosmic space due to the difference between the
degrees of freedom on a bulk and in its boundary. It has
been proposed that in an infinitesimal interval dt of cosmic
time, the increase dV of the cosmic volume in the flat
universe is given by

dV

dt
¼ ‘2PðNsur � NbulkÞ; (1)

where ‘P is the Planck length and Nsur and Nbulk are the
degrees of freedom on the surface and in the bulk, respec-
tively, and the boundary of the bulk is characterized by
the Hubble radius. The relation (1) yields the standard
dynamical equation in the Friedmann model only for the
accelerating phase of the universe given by �þ 3p < 0,
where � and p are the energy density and the pressure of a
perfect fluid, respectively. In order to obtain the dynamical
equation for any phases, Eq. (1) was extended to dV=dt ¼
‘2PðNsur � �NbulkÞ ¼ ‘2PðNsur þ Nm � NdeÞ, where Nm and
Nde are the numbers of degrees of freedom of matter with
�þ 3p > 0 and dark energy with �þ 3p < 0 in the bulk,
respectively, and � ¼ þ1 if �þ 3p < 0 and � ¼ �1 if

�þ 3p > 0. Now, applying the continuity equation to
the dynamical equation derived from Eq. (1), the
(nþ 1)-dimensional Friedmann equation can be nicely
obtained for the nonflat universe by taking into account
the integration constant which plays a role of the spatial
curvature [5]. There is another generalization of the
emergence of cosmic space for a (nþ 1)-dimensional
FRW universe corresponding to general relativity, Gauss-
Bonnet gravity, and Lovelock gravity [6]. They proposed
that the dynamical equation (1) was generalized as
dV=dt ¼ ‘2Pfð�N;NsurÞ with �N ¼ Nsur � Nbulk.
On the other hand, there have been extensive studies

for thermodynamics in cosmology [7–10]. In the nonflat
universe, the thermodynamical quantities are related to the
apparent horizon instead of the Hubble radius; that is, the
corresponding temperature is given by the surface gravity
on the apparent horizon and the entropy is proportional to
the area of the apparent horizon. The thermodynamical
quantities associated with the apparent horizon satisfy the
first law of thermodynamics. In this regard, the apparent
horizon is carefully considered to obtain the Friedmann
equation so that ‘2P in Eq. (1) should be replaced by

‘2P~rA=H
�1 in Ref. [11], where ~rA and H are the apparent

horizon and the Hubble parameter, respectively. However,
the bulk is still regarded as a sphere in the Euclidean space
even for the nonflat space, so that the volume is calculated
as the volume of the sphere with the radius of the apparent
horizon.
In this brief report, we would like to extend the evolution

equation by taking into account the appropriate invariant
volume corresponding to the nonflat space instead of the
volume of a sphere for the flat space. We will maintain the
form of Padmanabhan’s evolution equation that the expan-
sion of the universe is due to the difference from the degrees
of freedom in the holographic surface between those in the
emerged bulk. Then, the Planck length in the original
evolution equation can be simply redefined by replacing
the time-dependent Planck length. Finally, we will discuss
its physical consequence.
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Now, let us consider a spatially homogeneous and
isotropic spacetime given by the line element of

ds2 ¼ habdx
adxb þ ~r2ðd�2 þ sin 2�d�2Þ; (2)

where ~r ¼ aðtÞr, x0 ¼ t, x1 ¼ r, and hab¼diagð�1;a2=
ð1�kr2ÞÞ. Here, k denotes the curvature of space with
k ¼ �1, 0, and 1 corresponding to open, flat, and closed
universes, respectively. The apparent horizon can be
calculated from the relation hab@a~r@b~rj~r¼~rA ¼ 0 and is

obtained as

~rA ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ k=a2
p

; (3)

where the Hubble parameter is given by H ¼ _a=a and the
overdot denotes the derivative with respect to comoving
time t. Note that the apparent horizon becomes ~rA ¼ H�1

for flat space with k ¼ 0. We assume that the number of
degrees of freedom on the surface at the apparent horizon is
proportional to its area 4�~r2A and is given by [4,5,11]

Nsur ¼ 4S ¼ 4�~r2A
‘2P

; (4)

where S is the entropy. For simplicity, we set kB ¼ c ¼
ℏ ¼ 1. The Hawking temperature associated with the
apparent horizon is given by [8,11]

TH ¼ 1

2�~rA
: (5)

At a given time, an invariant volume of space surrounded
by the apparent horizon can be written as

Vk ¼ 4�a3
Z ~rA=a

0
dr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� kr2
p ; (6)

which reduces to V0 ¼ 4�~r3A=3 for k ¼ 0 and Vk ¼
2�a2½ ffiffiffi

k
p

asin�1ð ffiffiffi

k
p

~rA=aÞ � k~r2AH� for k ¼ �1. Next,
the Komar energy within the bulk [4,5,11] is modified by

Ek ¼ ð�þ 3pÞVk; (7)

where it depends on the spatial curvature k. Using the
equipartition rule of energy, the degrees of freedom in
the bulk can be written as

Nbulk ¼ 2jEkj
TH

: (8)

We assume that in an infinitesimal interval dt, an in-
crease dVk of the invariant volume even in the nonflat FRW
universe including the flat universe is still proportional to
the difference between Nsur and Nbulk as [4]

dVk

dt
¼ ‘2PfkðtÞðNsur � �NbulkÞ; (9)

where �Nbulk is given by �Nbulk ¼ Nde � Nm ¼
�ð2Vk=THÞð�þ 3pÞ and fkðtÞ is a proportional function

which can be chosen appropriately to give the Friedmann
equation such as

fkðtÞ ¼
�Vk½ _~rAH�1=~rA þ ð~rA=H�1ÞðH�1=~rA � Vk= �VkÞ�

Vkð _~rAH�1=~rA þ �Vk=Vk � 1Þ ;

(10)

with �Vk � 4�~r3A=3. We see that f0ðtÞ ¼ 1 for the flat

universe with k ¼ 0, and so it is compatible with the
previous results [8,11].
To show the better motivation for Eq. (10) and discuss

the difference from the previous results, we have to men-
tion the work done in Ref. [11]. The extension to a nonflat
space in this cosmic model has been performed by care-
fully treating the general expression of the apparent
horizon depending on the spatial curvature. For this reason,
the original equation (1) should have been modified so that
the author was able to derive the FRW universe with any
spatial curvatures. The key ingredient is to assume the
nontrivial proportional function instead of the proportional
constant in order to get the correct FRW equation even for
the nonflat universe. However, the volume of the universe
was still defined in the flat space rather than the general
expression of Vk defined for the nonflat universe. All
physical quantities reflected the nontrivial dependence of
k except for the volume in Ref. [11]. It shows that the time
evolution of the flat universe generates the nonflat FRW
equation. To avoid this interpretation, we have started with
the nonflat universe from the beginning. That is the reason
why we have considered the volume increase of the nonflat
universe such as Eq. (9) along with Eq. (10).
By taking the time derivative of the invariant volume (6),

we obtain

dVk

dt
¼ 4�~rAð _~rAH�1 � ~rAÞ þ 3HVk

¼ 4�~r2A

� _~rAH
�1

~rA
þ ~rA

H�1

�

H�1

~rA
� Vk

�Vk

��

: (11)

The relation between the degrees of freedom is calculated
as

Nsur � �Nbulk ¼ 4�~r2A
‘2P

þ 4�~rAð�þ 3pÞVk: (12)

Eliminating p in Eq. (12) by the use of the continuity
equation _�þ 3Hð�þ pÞ ¼ 0, we can obtain

Nsur � �Nbulk ¼ 4�~r2A
‘2P

�

1� ‘2PVk

H~rA
ð _�þ 2�HÞ

�

¼ 4�~r2A
‘2P

�

1� ‘2PVk

H~rAa
2

d

dt
ð�a2Þ

�

: (13)

Substituting Eqs. (10), (11), and (13) into Eq. (9), we get

d

dt

�

a2

~r2A

�

¼ d

dt

�

a2
�

H2 þ k

a2

��

¼ 8�‘2P
3

d

dt
ð�a2Þ: (14)
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Integrating Eq. (14), one can obtain

H2 þ k

a2
¼ 8�‘2P

3
�: (15)

Note that one can regard the integration constant as the
curvature of space ~rA ¼ 1=H [5], while one can set the

integration constant to zero for ~rA ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 þ k=a2
p

[11].
In the present case, we can take the vanishing integration
constant for simplicity.

It is interesting to note that the original form of the
evolution equation (1) can be maintained if we replace the
proportional function along with the Planck length by
the effective Planck length as ‘2PfkðtÞ ¼ ð‘2PÞeffk in the

modified equation (9). What it means is that the Newton
constant may be running depending on the curvature of
space as long as one can take the square of the Planck
length as a gravitational coupling. In particular, the
Newton constant is merely constant for the flat universe
of k ¼ 0. In order to examine the late time behavior of
the effective Planck length, we now consider three
cases: the radiation-dominant, the matter-dominant, and
the �-dominant universes, where � denotes the positive
cosmological constant. First, the radiation-dominant

universe is described by the scale factor a ¼ a0t
1=2, where

a0 is a positive constant. The square of the effective

Planck length goes to ð‘2PÞeffk¼�1 � ‘2Pð1=3Þð1=2�
t1=2=a0Þ�1=2 with t < a20=4. At t ¼ a20=4, it is divergent

for the open universe of k ¼ �1while it is asymptotically

constant since ð‘2PÞeffk¼1 ¼ ‘2P½2� ð3�a0=8Þt�1=2 þ
Oðt�1Þ� for the closed universe of k ¼ 1. Second, in

the matter-dominant universe described by a ¼ a0t
2=3,

the square of the effective Planck length behaves as

ð‘2PÞeffk¼�1 ¼ ‘2P½ð4=9Þð4=9 � t2=3=a20Þ�1=2 þ Oðð4a20=9 �
t2=3Þ1=2Þ� with t < ð2a0=3Þ3, and it is divergent at t ¼
ð2a0=3Þ3. However, it becomes a constant for the closed

universe of k ¼ 1 since ð‘2PÞeffk¼1 ¼ ‘2P½2� ð�a0=2Þt�1=3 þ
Oðt�2=3Þ� at the late time. Thus for the radiation- and
matter-dominant universes, the effective Planck length
is divergent for k ¼ �1 while it approaches ð‘2PÞeffk¼1 ¼
2‘2P for k ¼ 1. Finally, the �-dominant nonflat universe is

governed by the scale factor a ¼ a0e
�t with � � ffiffiffiffiffiffiffiffiffi

�=3
p

.
The square of the effective Planck length behaves as
ð‘2PÞeffk¼�1 ¼ ‘2P½12=7þ ð61=ð343�2a20ÞÞe�2�t þOðe�4�tÞ�,
and both of them approach ð‘2PÞeffk ¼ ð12=7Þ‘2P at the

asymptotic infinity. Therefore, for the radiation- and
matter-dominant cases, the Newton constant can be di-
vergent for the nonflat open universe while it becomes the
constant for the nonflat closed universe. In the vacuum-
energy-dominant case, the Newton constant can be finite

at k ¼ �1 and k ¼ 0. It shows that if the nonflat open
universe evolves eternally without encountering
the vacuum-energy era, then it undergoes the divergent
gravitational interaction.
As seen from the above calculations, the gravitational

coupling diverges for the nonflat spaces, so that it is natural

to askwhy the present calculation is not compatiblewith the

observations. Before the big bang, all forces were expected

to be unified, and then the gravitational forcewas decoupled

from three forces at 1019 GeV where the temperature was

about 1032 K. It has been claimed that the radiation-

dominant era, matter-dominant era, and the recent

vacuum-energy-dominant era, all can be described in terms

of thermodynamics by assuming a thermal or quasithermal

state of our universe. However, we found some deviations

from the standard results, and the worst case is that the

severely divergent gravitational coupling at k ¼ �1 ap-

pears for these eras. The essential drawback of our formu-

lation is due to the time-dependent temperature (5) and

equipartition law (8). Note that these have something to

do with the assumption of thermal equilibrium. Therefore,

we think that this incompatibility with the observations

should be related to the validity of the temperature (5) and

equipartition law (8) whenwe consider the nonflat universe.

Of course, the best fit appears at the �-dominant era of the

flat universe since the Hawking temperature (5) is no more

time dependent, which is definitely constant, so that we can

use the equipartition law and the related thermal quantities

in equilibrium, which is compatible with the qualitative

behavior of the accelerated expansion of the universe with

k ¼ 0. As a result, we have tried to extend the original idea
that the cosmic expansion appears from the difference of

the degrees of freedom on the bulk and that of the boundary

to the nonflat space; however, it is not easy to obtain mean-

ingful interpretations except for the flat universe since the

time-dependent temperature (5) and the equipartition law

(8) can be inappropriate to the nonflat universe.
In conclusion, following the proposal that the space

evolution is due to the different degrees of freedom on
the holographic surface and its bulk, we have extended the
evolution equation to give the Friedmann equation even in
the nonflat universe corresponding to k ¼ �1 by taking
into account the invariant volume surrounded by the ap-
parent horizon. Moreover, the limit to the flat universe of
k ¼ 0 can be easily recovered.
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