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Classical scalar fields have been considered as a possible effective description of dark matter. We show

that, for any metric theory of gravity, no static, spherically symmetric, regular, spatially localized,

attractive, stable spacetime configuration can be sourced by the coherent excitation of a scalar field

with positive definite energy density and no Noether charges. In the weak field regime, the result also

applies for configurations with a repulsive gravitational potential. This extends Derrick’s theorem to the

case of a general (noncanonical) scalar field, including the self-gravitational effects. Some possible ways

out are briefly discussed.
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I. INTRODUCTION

There is not yet a definite answer to the dark matter
(DM) problem. At the fundamental level, DM should
probably be described in terms of a quantum field theory.
There has been much progress in this direction within the
last few decades [1], although direct [2] and indirect [3]
detection methods are still inconclusive. From a different
perspective, it would be possible that, at the effective level,
DM admits a classical description, e.g. if the DM particles
develop a Bose-Einstein condensate [4] or reach a hydro-
dynamic regime [5]. In this paper we will consider that a
metric theory (not necessarily Einstein) describes the
gravitational interaction, and restrict our attention to
classical scalar field theories.

As candidates to describe the DM, scalar fields are
expected to develop static, spherically symmetric, regular,
spatially localized, attractive, stable, self-gravitating
spacetime configurations that can be identified with galac-
tic halos. We show that, with no global symmetries in the
action, these configurations are only possible at the
expense of having negative energy densities.

In flat spacetime, and for the case of a canonical scalar
field, this is a consequence of Derrick’s theorem [6]: in
three spatial dimensions there are no regular, static, local-
ized scalar field configurations with positive definite
energy density (today we know several means, either
topological [7] or nontopological [8], to evade this
theorem). Here we extend this result to the case of a general
scalar field with an arbitrary kinetic term, including the
self-gravitational effects.

This is not only a purely academic exercise. In flat
spacetime a static, spherically symmetric, spatially local-
ized perfect fluid distribution is necessarily trivial, but
nontrivial self-gravitating solutions do exist [9]. These
solutions have been used thoroughly for the study of stellar
structure [10]. Nothing prevents something similar from
happening for scalar field configurations; it is then natural

to look for a version of Derrick’s theorem in the presence
of gravity. Real galaxies may not match all the conditions
in the theorem; however, large deviations are not
expected—presumably DM halos have a small angular
momentum [11] and triaxiality [12]; see Ref. [13] for a
debate. The existence of a smooth transformation from
idealized halos to actual ones gives some (astro)physical
support to the results in this paper.
To proceed, wewill consider the most general action that

can be constructed from a real, minimally coupled scalar
field and its first derivatives,

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
M4Lð�=M;X=M4Þ: (1)

We assume that the theory is local and Lorentz invariant.
Here L is the Lagrangian density, and X � � 1

2@��@��

the kinetic scalar. The coupling of this field to the standard
model of particle physics is highly constrained by obser-
vations, and in this paper it is considered to be negligible.
We are adopting the mostly plus signature ð�;þ;þ;þÞ for
the spacetime metric and taking units with 4�G ¼ c ¼
ℏ ¼ 1. The characteristic scaleM and the scalar field� are
measured in units of energy. A theory of the form in Eq. (1)
is appropriate for the description of a single scalar degree
of freedom, and is usually dubbed k-essence [14]. We will
discuss the case with more than one field at the end of the
paper.
With the notation in Eq. (1), the Lagrangian density

for a canonical scalar field takes the form Lcan ¼
X�M4Vð�=MÞ, with M4Vð�=MÞ a potential term [15].
If the Lagrangian density depends only on the kinetic
scalar, the resulting theory is called purely kinetic [16].
In order to have a sensible theory, the Hamiltonian

should be bounded from below. In particular, we will adopt
the weak energy condition; that is, for every future-
pointing timelike vector field t�, the energy density mea-
sured by the corresponding observers should always be
non-negative, �t � T��t

�t� � 0. Otherwise, a vacuum
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energy scale would appear in the theory, bringing back
fine-tuning issues usually associated with the cosmological
constant problem.

We also neglect higher-derivative terms in Eq. (1): On
the one hand, they source extra dynamical degrees of
freedom, most of which are not—generically—well
behaved; see, however, Ref. [17]. Additionally, these new
degrees of freedom couple gravitationally to the standard
matter, introducing departures from general relativity.
(If dark matter exists, general relativity would probably
describe the gravitational interaction at galactic scales.)

II. STATIC SCALAR FIELD CONFIGURATIONS

The behavior of a scalar field depends crucially on the
character of the derivative terms. If they are timelike,
X > 0, the energy-momentum tensor can be formally iden-
tified with that of a perfect fluid, i.e. pk ¼ p? in Eq. (4)

below. On the contrary, if the derivative terms are space-
like, X < 0, the energy-momentum tensor of the scalar
field takes the form of a relativistic anisotropic fluid with

p? ¼ �� ¼ L; pk ¼ L� 2X@L=@X: (2)

Here � is a energy density, and pk and p? a longitudinal

and a transverse pressures, respectively. From now on, and
in order to simplify the notation, we will omit the charac-
teristic scale M.

In cosmology, the homogeneous and isotropic back-
ground guarantees a perfect fluid description. However,
static spacetime configurations restrict the possible scalar
distributions in a different way. In the case of spherical
symmetry, although the perfect fluid analogy is still
allowed (we will discuss that point later in Sec. III), a
static, radial-dependent scalar field � ¼ �ðrÞ is required
in most physical situations. For a static field, the derivative
terms are spacelike, X < 0, and the anisotropic description
necessary. This suggests the following attractive picture:
DM could mimic a perfect fluid ‘‘dust’’ in cosmology, but a
(n anisotropic) relativistic one in galaxies. This is not
possible for a standard perfect fluid, where the observed
nonrelativistic rotation curves guarantee a Newtonian
description, p � �. (Do not confuse the Newtonian with
the weak field regime [18].) This route has been followed
by many authors before [19–21]; however, as we find next,
there are some crucial aspects of these configurations that
have been overlooked until now.

For a static, spherically symmetric configuration, the
most general expression for the spacetime metric in
polar-areal coordinates takes the form

ds2 ¼ � exp ð2c ðrÞÞdt2 þ hðrÞdr2 þ r2d�: (3)

The effective gravitational potential c ðrÞ and the metric
function hðrÞ> 0 are dimensionless, and d� ¼
d�2 þ sin 2d’2 is the standard solid-angle element in three
dimensions, with r 2 ½0;1Þ. A regular spacetime metric
demands c ðr ¼ 0Þ ¼ const, hðr ¼ 0Þ ¼ 1; attractive

spacetime configurations dc =dr � 0. Note that Eq. (3)
is only a possible parametrization for the spacetime metric,
and it does not contain any physical content beyond the
underlying symmetries.
The most general expression for the energy-momentum

tensor compatible with the spacetime symmetries is
given by

T��¼ð�þp?Þu�u�þp?g��þðpk�p?Þn�n�: (4)

Here � is the energy density, pk the pressure in the

direction parallel to n�, and p? the pressure in an orthogo-

nal direction, all measured by an observer at rest with
respect to the four-velocity u�. For static, spherically

symmetric configurations, u� ¼ ð� exp ðc Þ; 0; 0; 0Þ and

n� ¼ ð0; h1=2; 0; 0Þ. Regularity at the origin demands

�ðr ¼ 0Þ ¼ �0, pkðr ¼ 0Þ ¼ pk0, and p?ðr ¼ 0Þ ¼ p?0,

with �0, pk0 and p?0 all finite. By localized matter

distribution, we shall mean one where �ðr ! 1Þ ¼
pkðr ! 1Þ ¼ p?ðr ! 1Þ ¼ 0.

A. A first proof of the no-go theorem

Now we can prove the main result of this paper: that a
static scalar field � ¼ �ðrÞ can source no static, spheri-
cally symmetric, regular, spatially localized, attractive,
stable spacetime configuration with positive definite
energy density.
The argument is simple, and it relies on the impossibility

of fulfilling all the previous conditions at the same time.
From the energy-momentum conservation, r�T

�� ¼ 0,

we obtain the equation for hydrostatic equilibrium,

dpk
dr

¼ �ð�þ pkÞdcdr � 2ðpk � p?Þ
r

: (5)

For the case of a static scalar field, X < 0, the identities in
Eq. (2) lead to �þ pk ¼ pk � p? ¼ �2X@L=@X. In or-

der to avoid tachyons and ghosts, we should satisfy
@L=@X > 0; see the Appendix for details. Then a static,
spherically symmetric, stable, attractive spacetime sourced
by a static scalar field requires dpk=dr < 0 for hydrostatic

equilibrium. This condition, together with that for a
localized matter distribution, pkðr ! 1Þ ¼ 0, guaran-

tees a positive definite radial pressure, pkðrÞ> 0. A

regular spacetime metric demands @r�ðr ¼ 0Þ ¼ 0; i.e.
Xðr ¼ 0Þ ¼ 0, and then �0 ¼ �pk0 ¼ �p?0. In particu-

lar, since pk is positive definite, that implies �0 < 0; i.e. the
energy density should be negative, at least close to the
center of the configuration.
In general relativity, not only the energy density but the

combination �þ p? þ 2pk sources gravity [22]. For static
scalar fields, �0 þ p?0 þ 2pk0 ¼ �2�0, and then it is

natural to understand why attractive spacetime configura-
tions with positive energy density are not possible in
general relativity. Note, however, that Eq. (5) and the
paragraph below are generic, and apply for any metric
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theory. In the weak field regime, rjdc =drj � 1, the last
term in Eq. (5) dominates, and it is not necessary to assume
an attractive gravitational potential.

Interestingly, for the (i) canonical and the (ii) purely
kinetic scalar fields, static, spherically symmetric, regular,
spatially localized, attractive, stable spacetime configura-
tions are not possible even at the expense of having nega-
tive energy densities. Here the argument goes as follows:

(i) Localized, regular canonical scalar field configura-
tions satisfy @r�ðr ¼ 0Þ ¼ 0, �ðr ! 1Þ ¼ const.
Together with the Klein-Gordon equation, h��
@L=@� ¼ 0, this implies @L=@�ðr ¼ 0Þ ¼
@L=@�ðr ! 1Þ ¼ 0. That is, for two different
values of the scalar field, �ðr ¼ 0Þ ¼ �0 and
�ðr ! 1Þ ¼ �1, we need to satisfy @L=@�j�0

¼
@L=@�j�1 ¼ 0. This is possible only if @2L=@�2

changes sign between �0 and �1, signaling the
appearance of tachyons in the low-energy spectra;
see Eq. (A3) in the Appendix. Here it has not been
necessary to assume an attractive effective gravita-
tional potential.

(ii) For the case of a purely kinetic scalar field, deriving
Eq. (2) for pk with respect to the radial coordinate,

we obtain

dpk
dr

¼ �
�
@L
@X

þ 2X
@2L
@X2

�
@X

@r
: (6)

Regular, static scalar field configurations satisfy
Xðr ¼ 0Þ ¼ 0, Xðr > 0Þ � 0. That is, the sign of
@X=@r is negative, at least for some values of the
radial coordinate. Since dpk=dr < 0 for hydrostatic
equilibrium, the sign of @L=@X þ 2X@2L=@X2

should be negative also, at least for this same inter-
val with negative gradients of the kinetic scalar,
signaling the appearance of tachyons in the low-
energy spectra; see again Eq. (A3) in the Appendix.

It is pertinent to mention a couple of examples where the
theorem holds. Negative energy densities are present in the
analytic solution reported in Ref. [19],1 where the authors
demand halos with flat rotation curves, and also in the
numerical solutions obtained in Ref. [21], where the con-
dition on the rotational curves is relaxed. (See also
Ref. [23] for a previous discussion of static scalar field
configurations in the strong field regime.) If the scalar
fields are noncanonical, see Ref. [20]. Here we show that
negative energy densities are generic, and they are not
restricted to the particular solutions in Refs. [19–21,23].

As applied to the galaxies in the Universe, this no-go
theorem assumes a very simple model for the galactic
halos. One could probably argue that the presence of

baryons might play an important role in a more realistic
model, particularly close to the center of these configura-
tions, where the negative energy densities were identified.
We do not expect to recover all the physical properties of
the halo without taking into account the existence of other
matter sources in galaxies, but we consider that baryonic
matter cannot be an essential ingredient for the main
existence of these configurations. After all, according to
the standard cosmological picture, DM sourced the pri-
mordial wells for the subsequent development of cosmic
structure. Furthermore, we know of the existence of dwarf
galaxies which are DM dominated [24]. Even so, and for
the more skeptical of our readers, we use some lines to
show that the presence of additional matter sources cannot
avoid the appearance of negative energy densities.

B. A second proof of the no-go theorem

As was noted in Refs. [19,25], we can always write the
effective gravitational potential in the form

c ðrÞ ¼
Z 1

r

v2
cðrÞ
r

dr; (7)

with 0 � vcðrÞ< 1 the velocities of the test particles
in circular motion around r ¼ 0. A regular spacetime
metric satisfies v2

cðr ¼ 0Þ ¼ 0; an attractive gravitational
potential v2

cðrÞ � 0.
Introducing Eqs. (3) and (4) into Einstein equations, and

using the expression in Eq. (7), we get

1

hr2

�
h0

h
rþ h� 1

�
¼ 2�; (8a)

1

hr2
½ð1þ ‘Þ � h� ¼ 2pk; (8b)

� 1

4hr2

�
ð2þ ‘Þ h

0

h
r� ð‘2 þ 2r‘0Þ

�
¼ 2p?: (8c)

The prime here denotes the derivative with respect to the
radial coordinate, and we have introduced ‘ðrÞ ¼ 2v2

cðrÞ.
Eqs. (8a) and (8b) can be combined to obtain

ð‘þ 2Þ�þ 4p? ¼
�ð2þ ‘Þm

r
þ ‘2 þ 2r‘0

2h

�
1

r2
: (9)

As usual, the effective gravitational massm is defined from
h ¼ 1=ð1� 2m=rÞ, with mðrÞ ¼ R

r
0 �ðrÞr2dr.

Equation (9) is valid for all values of the radial coordi-
nate, and for all the static, spherically symmetric configu-
rations. In galaxies, baryons and DM contribute to � and
p?. However, for those regions dominated by a static
scalar field, if any, p? ¼ ��, Eq. (9) simplifies to

� ¼ � 1

2� ‘

�ð2þ ‘Þm
r

þ ‘2 þ 2r‘0

2h

�
1

r2
: (10)

As long as ‘2 þ 2r‘0 > 0, the only possible way to have
a positive energy density is with a negative effective
gravitational mass; and the opposite, a positive effective

1A close inspection of Eq. (19) reveals a negative definite
energy density. [There is a typo in the printed version, where the
right-hand side of Eq. (19) should be positive definite; see arXiv:
astro-ph/0003398.]
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gravitational mass requires a negative energy density. A
static scalar field with positive energy density still seems
possible, but with a negative effective gravitational mass.
However, both conditions are not compatible with a regular
spacetime metric: in order to have m< 0 for some value
of the radial coordinate, say r ¼ r0, we should demand
� < 0, at least for some region in the interval 0< r < r0.

For regular, attractive spacetime configurations,
‘ðr ¼ 0Þ ¼ 0, ‘ðr > 0Þ> 0, the condition ‘2 þ 2r‘0 > 0
is guaranteed for some region in the distribution. If we
restrict our attention to idealized galaxies without baryons,
Eq. (10) is satisfied for all values of the radial coordinate,
recovering the negative energy densities we identified
close to the center of the configuration by means of the
previous argument in Sec. II A.

In a more realistic model, one should consider the
presence of other matter sources. In spiral galaxies, for
instance, baryons and DM can contribute equally to the
mass within the optical radius [26]. However, the external
regions of spiral galaxies where (nearly) flat rotation
curves are observed are dominated by DM. There are
several examples of galaxies for which the relation
‘2 þ 2r‘0 > 0 is still valid in the outer regions; see, for
instance, NGC 2403 and NGC 3621 in Ref. [27]. Again,
the negative energy densities emerge, no matter what you
could have in the core of the galaxy. Note that, contrary to
the first proof in Sec. II A, we used Einstein equations, but
this time it was not necessary to assume a stable theory.

III. DISCUSSION

All these results extend trivially to the case with more
than one field in the action. For a generic theory, a set of
static scalars �i ¼ �iðrÞ is necessary in order to recover a
static spacetime background. Here i ¼ 1; . . . ; n labels the
different fields. However, if there is an internal continuous
global symmetry,�i ! �0

i ¼ T ð�;�jÞ, the staticity of the
spacetime metric can be recovered in another way: by
proposing a solution of the form �iðt; rÞ ¼ T ð!t;’jðrÞÞ.
Here � is a continuous parameter for the transformation,
and ! a constant with dimensions of the inverse of time.
The fields are now dynamical, but the spacetime metric is
static.

A case of particular interest is that of a canonical scalar
field with an internal Uð1Þ symmetry, � ! ei��, leading
to boson stars [28]: scalar field configurations of the form
�ðt; rÞ ¼ ei!t’ðrÞ. Now, for specific radial functions ’ðrÞ
and particular values of the constant !, there are static,
spherically symmetric, regular, spatially localized, attrac-
tive, stable, self-gravitating configurations, but at the
expense of a nonzero Noether charge in the system: the
difference between the number of particles and antiparti-
cles. This charge is associated with the time dependency of
the scalar field, and then the arguments in Sect. II do not
apply.

Another example of interest is provided by perfect flu-
ids. The action principle describing a perfect fluid in
general relativity can be written in terms of the velocity
potentials [29]. Spherical symmetry guarantees no vortic-
ity, and then u� ¼ @�’, with u� the four-velocity of the

fluid. The action for a perfect fluid is invariant under shift
transformations in the velocity potential, ’ ! ’þ const,
and it is this symmetry that makes possible the existence of
static, spherically symmetric, regular, spatially localized,
attractive, stable perfect fluid configurations with positive
definite energy density [9]; see also Ref. [30]. In this case,
the conserved Noether charge associated with the shift
invariance is the total entropy in the system.
As with any no-go theorem, the results in this paper can

be circumvented by relaxing some of the initial assump-
tions: possible ways out involve dynamical spacetimes
[31], galactic halos made of smaller minihalos [32], ther-
mal distributions for the scalar field [33], and dark sectors
with more fields and (gauge) symmetries [34].
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APPENDIX: ABSENCE OF TACHYONS AND
GHOSTS IN THE LOW-ENERGY SPECTRA

In order to have a sensible theory, at least at the effective
level, we should avoid the appearance of classical and
quantum instabilities in the spectrum of low-energy
perturbations.
Let us consider the behavior of the small perturbations

around a static, spherically symmetric scalar field configu-
ration. Two comments are in order here. First, we will
consider only perturbations in the scalar field, neglecting
any possible backreaction on the metric tensor. Second,
since any regular spacetime metric is locally Minkowski,
we can restrict our analysis to flat spacetime. We can then
propose a solution of the form �ðt; ~xÞ ¼ �0ðzÞ þ ��ðt; ~xÞ,
with �0ðzÞ the background solution and z signaling the
direction of the field gradients, ~x ¼ ðx; y; zÞ. Expanding
Eq. (1) to the quadratic order in field perturbations,
��ðt; ~xÞ, we obtain

L� c1ð@0��Þ2 � c1ð@?��Þ2 � c2ð@z��Þ2
� 2c3ð@z��Þ��� c4ð��Þ2; (A1a)

with ð@?��Þ2 ¼ ð@x��Þ2 þ ð@y��Þ2, and

c1 ¼ @L
@X

; c2 ¼ @L
@X

þ 2X
@2L
@X2

; (A1b)
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c3 ¼ 1

2

@2L
@X@�

@z�; c4 ¼ �@2L
@�2

: (A1c)

All these quantities are evaluated at �0, 2X0 ¼ �ð@z�0Þ2.
In order to have a positive definite Hamiltonian density, we
should satisfy

c1 > 0; cþ � � � 0; (A2)

where c� ¼ ðc2 � c4Þ=2, and �2 ¼ c2� þ c23. All the con-

ditions in Eq. (A2) are necessary in order to avoid tachy-
ons. The first condition, @L=@X > 0, guarantees the
absence of ghosts. [Here we are only proving the local

(in)stability of the configurations, but global considera-
tions could make them stable, e.g. global monopoles [35].]
For the particular case in which c3 ¼ 0 (a canonical

scalar field, for instance, or a purely kinetic theory), the
conditions

@L
@X

> 0;
@L
@X

þ 2X
@2L
@X2

� 0;
@2L
@�2

� 0 (A3)

guarantee the absence of classical and quantum instabil-
ities. Notice that these conditions coincide with those
obtained for the stability of a homogeneous and isotropic
background.
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061301 (2000).

[20] C. Armendariz-Picon and E.A. Lim, J. Cosmol. Astropart.
Phys. 08 (2005) 007; D. Bertacca, N. Bartolo, and S.
Matarrese, J. Cosmol. Astropart. Phys. 05 (2008) 005.
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