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We show that a general solution of the Einstein equations that describes the approach to an

inhomogeneous and anisotropic sudden spacetime singularity does not experience geodesic incomplete-

ness. This generalizes the result established for isotropic and homogeneous universes. Further discussion

of the weakness of the singularity is also included.
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I. INTRODUCTION

There has been strong interest in the structure and
ubiquity of finite-time singularities in general-relativistic
cosmological models since they were first introduced by
Barrow et al. [1] as a counterexample to the belief [2] that
closed Friedmann universes obeying the strong energy
condition must collapse to a future singularity. They
were characterized in detail as sudden singularities in
Refs. [3–5] and as ‘‘weak’’ singularities in the senses
defined by Tipler [6] and Krolak [7]. A sudden future
singularity at ts is defined informally in terms of the metric
expansion scale factor, aðtÞ with ts > 0, by 0< aðtsÞ<1,
0< _aðtsÞ<1, €aðt ! tsÞ ! �1. These archetypal ex-
amples have finite values of the metric scale factor, its first
time derivative, and the density at a finite time, but they
possess infinities in the second time derivative of the scale
factor and in the pressure. Higher-order examples exist
with infinities in the (2þ n)th derivatives of the scale
factor and the nth derivative of the matter pressure [4,5].
Other varieties of finite-time singularities have been found
in which a different permutation of physical quantities
takes on finite and infinite values.1

The general isotropic and homogeneous approach to a
sudden finite time singularity introduced in [3] for the
Friedmann universe has been used [9] to construct a
quasi-isotropic, inhomogeneous series expansion around
the finite-time singularity which contains nine indepen-
dently arbitrary spatial functions, as required as a part of
the general cosmological solution when the pressure and
density are not related by an equation of state. The stability
properties of a wide range of possible finite-time singular-
ities were also studied in Ref. [10].

It has also been shown by Fernández-Jambrina and
Lazkoz [11–13] that, in the context of the Friedmann
universe, the sudden singularity introduced in [3] has the
property that geodesics do not feel the sudden singularity
and pass through it. In this paper we will examine the
evolution of geodesics in the general nine-function solution
in the vicinity of an inhomogeneous and anisotropic
sudden singularity to see if this result continues to hold.
We will also formulate these earlier results more precisely.
We will use Latin indices for spacetime components and

Greek indices for space components, and set G ¼ c ¼ 1.

II. GEOMETRIC SETUP

Let �0 be the 3-space defined by the equations xi ¼
�ið�Þ, � ¼ ð�1; �2; �3Þ, located at t ¼ 0. We suppose that
the sudden singularity is located at the time ts in the future,
and we denote by �s the 3-space t ¼ ts. We may attach
geodesic normal (synchronous) coordinates at any point
B 2 �s as follows. Let u

ið�Þ be a C0 vector field over �0,
and through any point on �0 we draw causal geodesics
tangent to uið�Þ in both future and past directions parame-
trized by t. These geodesics have dxi=dt ¼ ui (and t ¼ 0
on �0). Then the geodesic xiðtÞ that passes through B cuts
�0 at the point A with coordinates ð�1; �2; �3Þ where t ¼ 0
and dxi=dt ¼ ui. The coordinates of B are then ðts; �Þ,
where ts is t evaluated at B and � at A.

III. C1 QUASI-ISOTROPIC METRIC

In [9] we found that near a sudden singularity the general
form of the metric in geodesic normal coordinates is

ds2 ¼ dt2 � ���dx
�dx�;

��� ¼ a�� þ b��tþ c��t
n þ � � � ; n 2 ð1; 2Þ;

(1)

and the leading orders of the energy-momentum tensor
components, defined by

Ti
j ¼ ð�þ pÞuiuj � p�i

j; uau
a ¼ 1;

are

1There is an interesting example in Newtonian mechanics of
motion which formally begins at rest with infinite acceleration. It
is motion at a constant power. This means v _v is constant, where
v ¼ _x is the velocity in the x direction, and so v / t1=2 and x /
t3=2 if initially vð0Þ ¼ xð0Þ ¼ 0. Thus, we see that the accelera-
tion formally has _v / t�1=2 and diverges as t ! 0. This motion at
a constant power is an excellent model of drag-car racing. The
singularity in the acceleration as t ! 0 is ameliorated in practice
by the inclusion of frictional effects on the initial motion [8].
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u� ¼ � 3ðb��;� � b;�Þ
2nðn� 1Þc t2�n � t2�n; u� ¼ ���u� � t2;

16�� ¼
�
Pþ b2 � b	
b	


4

�
� n

2
ðb	
c	
 � bcÞtn�1 þ � � � ;

16�p ¼ � 2nðn� 1Þc
3

tn�2 � 3b	
b	
 þ b2 þ 4P

12
� n

2

�
b	
c	
 þ bc

3

�
tn�1 þ � � � :

(2)

The Ricci scalar is

R ¼ Ri
i

¼ �nðn� 1Þctn�2 � b	
b
	
 þ b2 þ 4P

4

� n

2
ðb	
c	
 þ bcÞtn�1 þ � � � ;

where P is the trace of P��, the spatial Ricci tensor
associated with a��.

This solution is only C1, meaning that the metric and its
first derivatives, as well as the Christoffel symbols, will be
continuous through the 3-slice �s containing the sudden
singularity at B, but we expect discontinuities in the second
and higher derivatives of the metric, and at least in the first
derivatives of the Christoffel symbols.

IV. GEODESIC BEHAVIOR AT ts

The Christoffel symbols are C0, and so the geodesic
equations,

€x i þ �i
jku

juk ¼ 0; (3)

will have solutions xiðtÞ with continuous derivatives up
to and including d2xi=dt2. Therefore, we can Taylor
estimate these solutions as follows. For any � > 0 and
t 2 ðts � �; ts þ �Þ, we have

xiðtÞ ¼ xiðtsÞ þ ðt� tsÞuiðtsÞ � 1

2
ðt� tsÞ2ð�i

��u
�u�Þðt�Þ;

(4)

with t� between t and ts. The last term is given in the
Lagrange form for the remainder. Since the error term is
quadratic in t� ts, it vanishes asymptotically for both past
and future sudden singularities. This means that the
geodesic equations (3) have complete C2 solutions through
the sudden singularity at B to the future and the past given
by this form. In higher-order Lagrangian theories of grav-
ity it is possible for sudden singularities to arise because
there are infinities in the third, or higher, time derivatives of
the metric scale factor. In these cases the effect of the
singularity on the geodesics is weaker still and avoids a
violation of the dominant energy condition [5,14].

A spacetime is Tipler (T) strong [6] iff, as the affine
parameter � ! ts, the integral

TðuÞ �
Z �

0
d�0

Z �0

0
Riju

iujd�00 ! 1: (5)

The spacetime is Krolak (K) strong [7] iff, as � ! ts, the
integral

KðuÞ �
Z �

0
Riju

iujd�0 ! 1: (6)

If these conditions do not hold, the spacetime is Tweak or
K weak, respectively. It is possible for a singularity to be K
strong but T weak; for example, the so-called [15] type III
singularities with � ! 1, jpj ! 1 as a ! as have this
property. In our case, the various components of the Ricci
curvature have leading orders of the following forms:

R00 � tn�2, R0� � t0, R�� � t2ðn�1Þ, while u0 � t0,

u� � t2. Therefore,

Riju
iuj � tn�2 þ 2t2 þ t2nþ2: (7)

But since at the sudden singularity, 1< n< 2, we find that

Riju
iuj � tn�2; as t ! ts; (8)

and so after one integration we have

KðuÞ � �n�1 ! tn�1
s ; as � ! ts; (9)

and after a second integration,

TðuÞ � �n ! tns ; as � ! ts; (10)

and so the generic sudden singularity (1) is T weak and K
weak.2 This weakness also suggests that we do not expect
these singularity structures to be modified by quantum
particle production effects. Some studies of the quantum
cosmology of sudden singularities which confirm this have

2If 0< n< 1, and the metric contains a power of ðt� tsÞn,
then it will only have a well-defined meaning as a real function
when t� ts > 0. So, at any point ts (e.g., when ts ¼ 0), it will be
defined asymptotically only in the past direction and not in the
future. Our argument also requires continuity of the Christoffel
symbols, and so it will not be valid when the metric contains a
power of ðt� tsÞn with 0< n< 1, even if we restrict only to the
past direction. For an isotropic solution with a sudden singularity
at t ¼ 0, see [16].
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been made in Ref. [17], but quantum modifications can
occur for particular regularization procedures [18]. There
are also interesting classical questions about the passage
through a sudden singularity in certain examples where the
background matter variables, � and p, do not continue to
be well defined. These problems can be avoided by a
distributional redefinition of the cosmological quantities
involved [19]. It is also interesting to note that extended
objects like fundamental string loops can pass through
weak singularities without their invariant sizes becoming
infinite [20].

V. CONCLUSION

This result generalizes the studies of Fernández-
Jambrina and Lazkoz [11–13] by showing that there is no
geodesic incompleteness at a general inhomogeneous and
anisotropic sudden singularity. The inclusion of anisotropy
and inhomogeneity does not introduce geodesic incom-
pleteness. We expect that these results will also hold for
sudden singularities in loop quantum gravity cosmologies
of the sort studied in Ref. [21] and in higher-order
Lagrangian gravity theories [4].
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