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We determine the all-loop dressing phases of the AdS3=CFT2 integrable system related to type IIB

string theory on AdS3 � S3 � T4 by solving the recently found crossing relations and studying their

singularity structure. The two resulting phases present a novel structure with respect to the ones appearing

in AdS5=CFT4 and AdS4=CFT3. In the strongly coupled regime, their leading order reduces to the

universal Arutyunov–Frolov–Staudacher phase as expected. We also compute their subleading order and

compare it with recent one-loop perturbative results and comment on their weak-coupling expansion.
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I. INTRODUCTION

The gauge/string correspondence [1] is a remarkable
relation between quantum gauge and gravity theories.
In the planar limit [2] of certain dual pairs, the correspon-
dence can be understood in terms of an integrable system
with the ’t Hooft coupling constant � entering as a free
parameter.1 At small values of �, the integrable system
reduces to an integrable spin chain with local interactions
[5]. At large values of �, in the thermodynamic limit, the
integrable system is described by a set of integral equations
known as the finite-gap equations [6]; these integral equa-
tions can be obtained using the classical (Lax) integrability
of the string theory equations of motion [7].

Integrable systems’ S matrices satisfy the Yang–Baxter
equation, which allows for an arbitrary scalar factor in its
solution. Fixing this factor requires imposing additional
constraints, the most powerful of these being crossing
symmetry. In the context of the AdS5=CFT4 integrable
system, crossing symmetry constraints were first identified
in Ref. [8]. The solution of these constraints [9–14], the so-
called dressing phase, conventionally written as� � ei�, is
a key ingredient in matching the strong and weak coupling
limits of the dualilty [15].

In theAdS5=CFT4 andAdS4=CFT3 integrable systems, a
nonperturbative dressing phase was found by Beisert, Eden,
and Staudacher in Ref. [10]; we will denote it by �BES. At
small coupling the dressing phase is trivial at the leading
two orders: �BES ¼ 1þOð�3Þ, while for large �, it ap-
pears already at the leading order. It is conventional to refer
to the first two orders in the strong coupling expansion of a

dressing phase as the Arutyunov–Frolov–Staudacher (AFS)
[15] and Hernández–López (HL) [16,17] orders, which

appear at order Oð�1=2Þ and Oð�0Þ, respectively.
Expanding �BES at strong coupling, one finds the leading
AFS phase [15], which is expected to be universal for many
integrable string theory backgrounds. The next-to-leading
term gives the HL phase. This was first found through a
one-loop sigma-model computation [16–18] and can also
be obtained through a semiclassical quantization of the
finite gap equations [19]. This latter derivation shows ex-
plicitly that the HL phase is the same for all states in a given
background. Finally, since the dressing phase is the same in
AdS5=CFT4 andAdS4=CFT3, one may ask whether�BES is
a universal dressing phase of AdS/CFT integrable systems.
The AdS3=CFT2 correspondence [20] for theories

with 16 supercharges has recently been investigated using
integrability methods. There are in fact two distinct classes
of AdS3 backgrounds with this amount of supersymmetry:
AdS3 � S3 � T4 and AdS3 � S3 � S3 � S1; these were
studied following Maldacena’s seminal paper; see, for
example, Ref. [21].
The integrablity approach to the AdS3=CFT2 correspon-

dence was initiated in Ref. [22]. Building on the actions
[23] (see also Ref. [24]), string theories, in a certain kappa
gauge, on such AdS3 backgrounds were shown to be clas-
sically integrable [22].2 The finite gap equations [22] and
conjectured all-loop Bethe Ansätze were written down in
Refs. [22,27]. However, this procedure keeps track only of
the excitations which remain massive in the Berenstein-
Maldacena-Nastase limit [28]. Fully incorporating the
massless modes remains an open issue; for recent progress
on this, see Ref. [29].
In Refs. [30,31] an S matrix and Bethe Ansatz for

the AdS3 � S3 � S3 � S1 integrable system was written
down. Expanding on this, in Ref. [32] the exact integrable
S matrix and associated Bethe Ansatz of the integrable
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Ref. [3]. A detailed exposition of integrable string theory on
AdS5 can be found in Ref. [4].

2Classical integrability has also been investigated independent
of any kappa-gauge fixing [25,26].
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system associated to type IIB string theory onAdS3 � S3 �
T4 with Ramond-Ramond (R-R) flux was constructed.3

A number of recent papers has performed important
perturbative calculations for string theory on AdS3 back-
grounds [26,34–40]. Further, the integrability of a family of
AdS3 � S3 � T4 theories with both R-R and Neveu-
Shwarz-Neveu-Shwarz (NS-NS) flux has been investigated
[41]. Integrability appears also to play an important role in
AdS3 black-hole solutions [42].

The integrable system related to type IIB string
theory on AdS3 � S3 � T4 with R-R flux has two dressing
phases, as can be expected on fairly general grounds
[32,43].4 The phases satisfy two crossing relations [32]
[see Eq. (2.8) below].5 One can check that these crossing
relations imply that the two dressing phases behave differ-
ently under double-crossing, and therefore the two phases
must be distinct. In this paper we find the nonperturbative
dressing phases of the AdS3=CFT2 S matrix by solving the
crossing relations. We identify the bound states of the
system and show that the full S matrix including these
dressing phases has the right pole structure to account for
such bound states.

We perform a strong coupling expansion of our dressing
phases and find that at the AFS order, both dressing phases
are the same as the AFS phase of AdS5=CFT4 and
AdS4=CFT3, confirming its universality. This is in agree-
ment with an explicit strong-coupling regime calculation
done in Refs. [34,36,38]. At the HL order, our phases are
different from one another, confirming that the system does
have two distinct dressing phases. Only the sum of these
two phases is the same as the HL phase of AdS5=CFT4 and
AdS4=CFT3. This shows that, unlike the AFS-phase, the
HL-order phase is not universal. We find that at the HL
order, our dressing phases are almost, though not quite, the
same as the ones obtained in Ref. [36]. We discuss the
possible origins of this discrepancy and how it may be
resolved. In the near-flat space limit, our dressing
phases agree with the results of Ref. [38]. We also give a
weak-coupling expansion of our dressing phases.

This paper is organized as follows. In Sec. II we review
the crossing relations derived in Ref. [32] and their inter-
pretation in terms of the rapidity torus. In Sec. III we
solve the crossing relations nonperturbatively. In Sec. IV
we analyze the Bogomolnyi-Prasad-Sommerfield bound
state spectrum and the corresponding singularities of the
S matrix. In Sec. V we perform a strong-coupling expansion
of the two phases, compare with the results of Refs. [36,38],
and give the weak-coupling expansion of the phases. Some
technical results are relegated to the appendices.

II. RAPIDITY TORUS AND
CROSSING EQUATIONS

In this section we will consider the crossing equations of
Ref. [32] on the rapidity torus, where the AdS3 � S3 � T4

dispersion relation is uniformized.

A. Uniformizing the dispersion relation

The all-loop dispersion relation for massive excitations
on AdS3 � S3 � T4 reads6 [32]

EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16h2sin 2 p

2

r
: (2.2)

In analogy with the relativistic case, it is convenient
to introduce a rapidity variable z, which uniformizes
the dispersion relations. In the present setting, given the
similarity with the AdS5 � S5 dispersion relations, the
rapidity will also live on a complex torus [8]. Following
the conventions of Ref. [4], let us define

pðzÞ ¼ 2am z; sin
pðzÞ
2

¼ snðz;�Þ; EðzÞ ¼ dnðz;�Þ;
(2.3)

in terms of Jacobi’s elliptic functions, where the elliptic
modulus is � ¼ �16h2. This defines a torus with a real
period 2!1 and an imaginary period 2!2 that depend on h
through

!1 ¼ 2Kð�Þ; !2 ¼ 2iKð1� �Þ � 2Kð�Þ; (2.4)

where K is the complete elliptic integral of the first kind.
The Zhukovski variables x�ðzÞ are meromorphic functions
on the torus,

x�ðzÞ ¼ 1

4h

�
cnðz; �Þ
snðz; �Þ � i

�
ð1þ dnðz; �ÞÞ: (2.5)

They satisfy the shortening condition [32]�
xþðzÞ þ 1

xþðzÞ
�
�

�
x�ðzÞ þ 1

x�ðzÞ
�
¼ i

h
: (2.6)

One can check that the Zhukovski variables and the
dispersion relations are also !1 periodic, so that we can
always restrict to jReðzÞj � !1=2, corresponding to��<
p � �. In this parametrization the real z axis lies in the
physical region, since it corresponds to real momentum
and positive energy.
The crossing transformation corresponds to changing

the sign of momentum and energy. In terms of x�ðzÞ, this

3For other work in this direction, see Ref. [33].
4This is quite natural since in AdS3=CFT2 the left and right

movers are independent.
5By inspection, there is no straightforward linear combination

of the two phases whose crossing relation would reduce to the
AdS5 crossing relations [8].

6We express the dispersion relation in terms of the coupling
constant hð�Þ, which is related to the world sheet coupling � by

hð�Þ ¼
ffiffiffiffi
�

p
4�

þOð1= ffiffiffiffi
�

p Þ: (2.1)

In Ref. [36] it was shown that there is no Oð1Þ term in the strong
coupling expansion of hð�Þ.
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is achieved by sending x� ! 1=x�, which amounts to a
shift by half of the imaginary period of the rapidity torus,
z ! z�!2. For a meromorphic function on the torus,
shifting up or down makes no difference, but the S matrix
that we are interested in will not be meromorphic on the
product of two such tori. In fact, due to the presence of the
dressing factors, we expect it to have and infinite number
of cuts there.

Based on the experience with the AdS5 � S5 case, it is
convenient to identify distinct regions on the z torus. The
curves jx�ðzÞj ¼ 1 divide the torus into four nonintersect-
ing regions, depicted in Fig. 1(a), and so do the curves
Imðx�Þ ¼ 0; see Fig. 1(b). These two sets of curves
intersect in eight points that lie on ReðzÞ ¼ �!1=4;
see Fig. 1(c).

B. Crossing equations

In Ref. [32] the all-loop S matrix for AdS3 � S3 � T4

strings was proposed. It contained two undetermined dress-
ing factors �ðp1; p2Þ and ~�ðp1; p2Þ. Unitarity and physical
unitarity constrain them to be of the form

�ðp1; p2Þ ¼ ei�ðp1;p2Þ; ~�ðp1; p2Þ ¼ ei
~�ðp1;p2Þ; (2.7)

where �ðp1; p2Þ and ~�ðp1; p2Þ are antisymmetric real ana-
lytic functions for real p1, p2.

It was also shown that crossing invariance requires these
factors to obey a set of crossing equations,

�ð �p1; p2Þ2 ~�ðp1; p2Þ2 ¼ gðp1; p2Þ;
�ðp1; p2Þ2 ~�ð �p1; p2Þ2 ¼ ~gðp1; p2Þ;
�ðp1; �p2Þ2 ~�ðp1; p2Þ2 ¼ 1

~gð �p2; p1Þ ;

�ðp1; p2Þ2 ~�ðp1; �p2Þ2 ¼ 1

gð �p2; p1Þ ;

(2.8)

where the bar indicates crossing and

gðp1; p2Þ ¼
�
x�2
xþ2

�
2

�
1� 1

xþ
1
xþ
2

��
1� 1

x�
1
x�
2

�
�
1� 1

xþ
1
x�
2

�
2

x�1 � xþ2
xþ1 � x�2

;

~gðp1; p2Þ ¼
�
x�2
xþ2

�
2 ðx�1 � xþ2 Þ2
ðxþ1 � xþ2 Þðx�1 � x�2 Þ

1� 1
x�1 x

þ
2

1� 1
xþ
1
x�
2

:

(2.9)

Antisymmetry requires that in Eq. (2.8) the shift by !2 is
done in opposite directions in the first and the second
variables of the dressing factors; this leaves us with two
distinct choices. Fixing the direction of the shift amounts to
choosing a path for analytic continuation of the dressing
phase from the physical to the crossed region. As discussed
in Appendix B, compatibility with the perturbative results
requires

�p1 � pðz1 þ!2Þ; �p2 � pðz2 �!2Þ: (2.10)

This is the same convention as in the case ofAdS5 � S5 [4].
By iterating the crossing transformation twice, we find

that the dressing factors are not 2!2 periodic,

FIG. 1 (color online). The rapidity torus with several significant curves. The solid blue line is the real z axis (physical region), the
dashed blue line is the z ¼ !2 axis (‘‘crossed’’ region). In the leftmost figure, the torus is divided in four regions by jx�j ¼ 1, and in
the central figure, it is divided by Imðx�Þ ¼ 0. The rightmost picture depicts both sets of curves, which intersect in eight points with
real part �!1=4.
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�ðz1 þ 2!2; z2Þ2
�ðz1; z2Þ2

¼ gðz1 þ!2; z2Þ
~gðz1; z2Þ

¼
�
xþ1 � xþ2
xþ1 � x�2

x�1 � x�2
x�1 � xþ2

�
2
;

~�ðz1 þ 2!2; z2Þ2
~�ðz1; z2Þ2

¼ ~gðz1 þ!2; z2Þ
gðz1; z2Þ

¼
0@1� 1

xþ
1
x�
2

1� 1
xþ
1
xþ
2

1� 1
x�
1
xþ
2

1� 1
x�
1
x�
2

1A2

: (2.11)

This confirms our expectation that the dressing factors
have cuts on the rapidity torus.

We are interested in solving the crossing equations

�ðz1 þ!2; z2Þ2 ~�ðz1; z2Þ2 ¼ gðz1; z2Þ;
�ðz1; z2Þ2 ~�ðz1 þ!2; z2Þ2 ¼ ~gðz1; z2Þ:

(2.12)

Our result will be manifestly antisymmetric, so that the
crossing equations in the second variable will automati-
cally follow.

We have to give a prescription for performing the
continuation from z to zþ!2 on the torus. To construct
the dressing factors � and ~�, we will exploit some prop-
erties of the Beisert–Eden–Staudacher (BES) phase [10],
which compels us to choose a path compatible with the
crossing transformation for that phase. This has been
discussed in detail in Ref. [13], and we will follow the
procedure outlined there. Figure 2 depicts the paths we will
use to reach the crossed region along curves �ðzÞ that go

from z to zþ!2 with constant Reð�Þ, which lie close to
the boundaries of the region jReð�Þj<!1=4 and crossing
the lines jx�j ¼ 1 in the region Imðx�Þ< 0.7

III. SOLUTIONS OF THE CROSSING EQUATIONS

To solve Eq. (2.12), we will consider the crossing
equations for the sum and the difference of the two phases

�ðp1; p2Þ and ~�ðp1; p2Þ. Let us denote the product and the
ratio of the dressing factors by

�þðp1; p2Þ � �ðp1; p2Þ~�ðp1; p2Þ;

��ðp1; p2Þ � �ðp1; p2Þ
~�ðp1; p2Þ

(3.1)

and corresponding phases by �þðp1; p2Þ and ��ðp1; p2Þ. It
is also useful to rewrite each phase as [44]

�ðp1; p2Þ ¼ �ðxþ1 ; xþ2 Þ þ �ðx�1 ; x�2 Þ
� �ðxþ1 ; x�2 Þ � �ðx�1 ; xþ2 Þ; (3.2)

where � is an antisymmetric function, with similar expres-

sions for ~�ðp1; p2Þ; �þðp1; p2Þ, and ��ðp1; p2Þ.

A. BES and HL phases

In what follows we will use some properties of the
BES [10] and HL phases [16], which we briefly recall
here. The AdS5 S matrix contains a single dressing phase,
which satisfies the crossing equation [8]

�BESðz1; z2Þ�BESðz1 þ!2; z2Þ ¼ hðx�1 ; x�2 Þ;

hðx�1 ; x�2 Þ �
x�2
xþ2

x�1 � xþ2
x�1 � x�2

1� 1
xþ
1
xþ
2

1� 1
xþ
1
x�
2

:
(3.3)

The solution is given by the BES phase [10]. A particularly
useful representation of this phase in the physical region
was given by Dorey, Hofman, and Maldacena (DHM) [12]:

�BESðx; yÞ ¼ i
I dw

2�i

I dw0

2�i

1

x� w

1

y� w0

� log
�½1þ ihðwþ 1=w� w0 � 1=w0Þ�
�½1� ihðwþ 1=w� w0 � 1=w0Þ� :

(3.4)

The leading term in the strong coupling limit (h ! 1) of
this phase8 is given by the AFS phase [15]

1 2 1 4 0 1 4 1 2
2 2

0

2 2

2

3 2 2
1 2 1 4 0 1 4 1 2

2 2

0

2 2

2

3 2 2

FIG. 2 (color online). The paths used for analytic continuation
from z to zþ!2 are vertical segments (vertical purple lines with
arrows) that lie close to the boundary of jReð�Þj<!1=4. They

cross the red lines jx�j ¼ 1 when Imðx�Þ< 0.

7This is a subset of the paths used in the case of AdS5; see
sec. 4 in Ref. [13].

8To find the asymptotic expansion of the BES phase at strong

coupling, one can expand the integrand using that i log �ð1þixÞ
�ð1�ixÞ ¼

�x log x2

e2
� �

2 ðRexÞ � 2
P1

n¼0
�ð�2n�1Þ

2nþ1
ð�1Þn
x2nþ1 for Rex � 0. This

expression corrects some typos in the expansion given in
Ref. [45].
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�AFSðx1; x2Þ

¼
0@1� 1

x�
1
xþ
2

1� 1
xþ1 x

�
2

1A0@1� 1
xþ
1
x�
2

1� 1
xþ1 x

þ
2

1� 1
x�
1
xþ
2

1� 1
x�
1
x�
2

1Aihðx1þ1=x1�x2�1=x2Þ
;

(3.5)

while the next-to-leading order correction is the HL
phase [16],

�HLðx; yÞ ¼ �

2

I dw

2�i

I dw0

2�i

1

x� w

� 1

y� w0 signðw0 þ 1=w0 � w� 1=wÞ: (3.6)

For later convenience, let us perform one of the two
integrals in Eq. (3.6) and obtain the representation

where the two integrals are performed in the upper and
lower unit semicircle, respectively, counterclockwise in
both cases.

The HL phase solves the ‘‘odd’’ part of the AdS5
crossing equation [9],

�HLðz1; z2Þ�HLðz1 þ!2; z2Þ ¼
ffiffiffiffiffiffiffi
h12
h�12

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h12ðh12Þ�

q
; (3.8)

where

h12ðh12Þ� ¼ ‘HLðxþ1 ; x�2 Þ‘HLðx�1 ; xþ2 Þ
‘HLðxþ1 ; xþ2 Þ‘HLðx�1 ; x�2 Þ

;

‘HLðx; yÞ � x� y

1� xy
;

(3.9)

where complex conjugation amounts to sending
x�k ! x�k .

9

B. Solution for the sum of the phases

Taking the product of the two crossing equations (2.12),
we find an equation for �þ,

�þðz1; z2Þ2�þðz1 þ!2; z2Þ2 ¼ g12~g12: (3.10)

We observe that the rhs of this equation can be written in
terms of the function h12 appearing on the rhs of the AdS5
crossing equation (3.3),

g12~g12 ¼ ðh12Þ3
ðh12Þ� ; (3.11)

where the shortening condition (2.6) is used. The above
relation allows us to solve the crossing equation (3.10)
using parts of the AdS5 dressing phase:

�þ
12 ¼

ð�BES
12 Þ2
�HL

12

; i:e: �þ12 ¼ 2�BES12 � �HL12 : (3.12)

To show that �þ
12 defined in this way satisfies Eq. (3.10),

one need only use Eqs. (3.3) and (3.8). It is convenient to

express �þ
12 in terms of a DHM-like double-integral

representation, by defining �þðx; yÞ as
�þðx; yÞ ¼ 2�BESðx; yÞ � �HLðx; yÞ

¼
I dw

2�i

I dw0

2�i

1

x� w

1

y� w0

�
�
2i log

�½1þ ihðwþ 1=w� w0 � 1=w0Þ�
�½1� ihðwþ 1=w� w0 � 1=w0Þ�

� �

2
signðw0 þ 1=w0 � w� 1=wÞ

�
(3.13)

in the physical region. Notice that the above expression is
exact to all orders in the coupling h.
Let us comment on the strong-coupling behavior of the

above expression for �þ. In the next subsection, we will
show that the difference of the two phases has no term at
the AFS order. Taking this into account, it follows that both
� and ~� reduce to �AFS at leading order, as expected on
general grounds and confirmed by the explicit calculations

in Ref. [36]. Moreover, this result confirms that �þ ~�
is equal to �HL—the AdS5 HL term, as predicted by
Ref. [36].

C. Solution for the difference of the phases

Taking the ratio of the two crossing equations (2.12),
we get

��ðz1; z2Þ2
��ðz1 þ!2; z2Þ2

¼ ~g12
g12

; (3.14)

where

~g12
g12

¼ ‘�ðxþ1 ; x�2 Þ‘�ðx�1 ; xþ2 Þ
‘�ðxþ1 ; xþ2 Þ‘�ðx�1 ; x�2 Þ

;

‘�ðx; yÞ � ðx� yÞ
�
1� 1

xy

�
:

(3.15)

Notice that this equation involves the ratio rather than the
product of the dressing factor with its analytic continu-
ation. As we show in Appendix A 2, defining ��ðx; yÞ in
the physical region (jxj, jyj> 1) by the integral

9One can check that in order for Eq. (3.7) to solve Eq. (3.8), it
is necessary to choose the path of analytic continuation as in
Fig. 2. To do this one can mimic the arguments presented in
Appendix A.
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solves the crossing equation (3.14). By construction, �� is
antisymmetric. As mentioned in the previous subsection, in
the strong coupling expansion, �� is zero at leading (AFS)
order; at the next-to-leading (HL) order, it has a nonzero term,
which we discuss in detail in Sec. V. Finally, we note that the
integrand of �� has a trivial expansion in the coupling h, in
contrast to the solution of the crossing equation (3.10), which
is solved by an integrand with a nontrivial series expansion in
h. This is because Eq. (3.14) is odd in the sense of Ref. [9].

The all-loop expressions for � and ~� are then given by

�ðx; yÞ ¼ �BESðx; yÞ þ 1

2
ð��HLðx; yÞ þ ��ðx; yÞÞ;

~�ðx; yÞ ¼ �BESðx; yÞ þ 1

2
ð��HLðx; yÞ � ��ðx; yÞÞ:

(3.17)

These solutions are expressed in terms of the nonperturba-
tive BES phase plus terms at the HL order. These latter
contributions to � and ~� are independent of h. As such,
they can be added to the DHM representation of the BES
phase without affecting the h resummation.

4. SINGLE POLES AND BOUND STATES

There is a close connection between simple poles in
the physical region of the S matrix and the bound states
of the model. In this section we will first give a brief
overview of the expected bound state spectrum and then
discuss the corresponding simple poles.

A. Short representations

The ground state is preserved by the algebra
psuð1j1Þ4 � uð1Þ4, where the four uð1Þ factors represent
central charges [30,32]. The excitations transform in a
short representations of this algebra, satisfying a shorten-
ing condition relating the four central charges by [30]

H 2 � 4PPy ¼ M2: (4.1)

Bound states preserving some supersymmetry also
transform in a short representation of the symmetry alge-

bra. Let us consider the two-particle state10 j�þ _þ
p �þ _þ

q i
containing two left-moving bosons.11 For generic values of

the momenta p and q, the tensor product of two funda-
mental left-moving representations is an irreducible long
representation. However, at special points the tensor
product becomes reducible. In particular, we find that the
shortening condition (4.1) is satisfied for xþp ¼ x�q and

x�p ¼ xþq . Only at these points is it possible to construct

short subrepresentations. Therefore, any pole in the S
matrix corresponding to a supersymmetric bound state
will have to satisfy one of these conditions.
An interesting feature of the psuð1j1Þ4 � uð1Þ4 algebra is

that all short irreducible representations are two dimensional
while all long irreducible representations have dimension
four. A two-particle bound state will therefore transform in
a representation which has the same form as the fundamental
representation, differing only in the values of the central
charges. This should be contrasted with the centrally ex-
tended psuð2j2Þ algebra appearing in AdS5 � S5 [46],
where the fundamental representation has dimension four
while the M-particle bound state has dimension 4M [47].
At the points where the tensor product becomes reduc-

ible, some of the elements of the S matrix become zero or
develop poles. In order to fully understand the behavior of
the S matrix at these points, we will need to take the
dressing phase into account. This will be further analyzed
in Sec. IVC. Here we will instead consider the matrix
structure of the S matrix. Since some of the entries in the
matrix vanish, the corresponding bound state representa-
tion is formed from the states on which the S matrix acts
nontrivially. For the point xþp ¼ x�q , we find that the state

j�þ _þ
p �þ _þ

q i belongs to the short representation, and we

will therefore refer to it as an suð2Þ bound state. In the case
x�p ¼ xþq , the short representation includes the state

j�� _�
p �� _�

q i and is a potential slð2Þ bound state.12

To decide which bound state belongs to the physical
spectrum, we need to impose additional constraints on the
momenta of the fundamental excitations. In the region
s1 	 s2, the wave function of a scattering state takes the
general form13

�ðs1; s2Þ ¼ eiðps1þqs2Þ þ Sðp; qÞeiðps2þqs1Þ; (4.2)

where the first term describes the incoming wave and the
second term the outgoing wave. To find a bound state, we

10There is no loss in generality in doing so, since the shortening
condition (4.1) is expressed in terms of central charges.
11Following the notation of Ref. [32], the left-moving bosonic
excitations are �þ _þ and �� _� and correspond to excitations on
AdS3 and S3, respectively. Similarly, the right-moving bosons
are ��þ _þ and ��� _�. The distinction between the ‘‘left-moving’’
and ‘‘right-moving’’ (or L and R) excitations comes from the fact
that�� _� carries positive angular momentum on AdS3, while the
angular momentum of ��� _� is negative. Hence, these excitations
can be thought of as left and right movers in the dual CFT2.

12In AdS5 � S5 the physical bound states correspond to ‘‘suð2Þ
bound states.’’ The ‘‘slð2Þ bound states’’ appear as bound states
of the mirror theory [48].
13To avoid confusion with the dressing phase, we denote the
world sheet coordinate by s.
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analytically continue the wave function to complex values
of the momenta

p ¼ p0

2
þ iv; q ¼ p0

2
� iv: (4.3)

The wave function then behaves as �ðs1; s2Þ 
 evðs2�s1Þ þ
Sðp; qÞe�vðs2�s1Þ (s1 	 s2). For the bound state wave func-
tion to be normalizable, the exponential multiplying Sðp; qÞ
should be decaying. Hence, we are interested in the solution
where the momentum of the first particle has a positive
imaginary part. By solving the condition (2.6) for x�p and

x�q in the physical region, we find that for xþp ¼ x�q , the
momentum p has a positive imaginary part, while x�p ¼ xþq
leads to the imaginary part being negative. We hence con-
clude that only the suð2Þ bound state can appear in the
physical spectrum. In Sec. IVC wewill check that the full S
matrix, including the correct scalar factor and the dressing
phase, has a corresponding pole in the physical region.

So far we have only considered bound states in the LL
sector. If we start with two right-moving excitations, we
again find an suð2Þ bound state at xþp ¼ x�q , since the S

matrix in Ref. [32] is symmetric under exchange of left and

right movers. Let us finally consider the state j�þ _þ
p

��� _�
q i

consisting of one left- and one right-moving excitations.
In this case the shortening condition (4.1) is satisfied for
xþp ¼ 1=xþq and x�p ¼ 1=x�q . Neither of these solutions lies
in the physical region jx�p j> 1, jx�q j> 1, and hence there

are no supersymmetric bound states in the LR sector.
In summary we find that physical two-particle suð2Þ

bound states exist in the LL and RR sectors. The LR sector,
on the other hand, does not contain any bound states.

B. Giant magnons

At strong coupling of the AdS5=CFT4 duality, the
fundamental scalar excitations are described by giant mag-
nons [49]. The simple giant magnon is a string solution
living in a R� S3 subspace of AdS5 � S5. The giant
magnon solution can be extended to a solution in R� S3,
the dyonic giant magnon [50], which carries angular mo-
mentum M along the additional angle. This solution corre-
sponds to a bound state of jMj fundamental magnons [51].

Since both the fundamental giant magnon and the
dyonic extension live in R� S3, they can be directly
embedded in AdS3 � S3 [35]. In AdS5 � S5 a dyonic giant
magnon with positive uð1Þ charge M can be continuously
rotated to the corresponding magnon with negative charge
�M. However, in the case of AdS3 � S3, such a rotation is
not possible since the intermediate states would not sit
inside S3, so the two states with charges þM and �M are
independent. In the scalar sector, the left- and right-moving
excitations are distinguished by the sign of the angular
momentum M. Hence, the dyonic giant magnons with
charges þM and �M correspond to bound states of jMj
left- and right-moving fundamental excitations, respectively.
Setting M ¼ 2 we find exactly the two suð2Þ bound states

expected from the representation theory considerations
above.

C. Simple poles of the S matrix

Scattering processes involving the formation or
exchange of bound states give rise to single poles in the
S matrix for physical values of the spectral parameters. Let
us consider the s-channel diagram in Fig. 3(a). The process
involves two fundamental particles from the same sector,
e.g., two left movers, in the physical region jxij> 1, i ¼ p,
q, which form an on-shell bound state and then split up
again. Similarly to the case of the suð2Þ sector in AdS5
[12], this should lead to a pole in the corresponding
S-matrix element at xþp ¼ x�q . The relevant element is14

Apq ¼ h�þ _þ
q �þ _þ

p jSj�þ _þ
p �þ _þ

q i

¼ xþp
x�p

x�q
xþq

x�p � xþq
xþp � x�q

1� 1
x�p xþq

1� 1
xþp x�q

��2
pq : (4.4)

As discussed in Appendix A 4, the dressing factor is
regular at xþp ¼ x�q so that Apq has a simple pole there.

This s-channel process is related through crossing
symmetry to the exchange of a bound state in the t channel,
depicted in Fig. 3(b). There the particle of momentum p
has been crossed so that x��p ¼ 1=x�p are not in the physical

region. Since the two processes are related by crossing
symmetry, the poles in the s channel automatically fix
the singularities in the t channel. In fact crossing symmetry
implies [32]

Apq
fA �pq ¼ 1; wherefApq ¼ h�þ _þ

q
��þ _þ
p jSj ��þ _þ

p �þ _þ
q i;

(4.5)

so that a pole of Apq corresponds to a pole of fA�1
�pq . We

can check this explicitly by considering

FIG. 3 (color online). On the left two particles in the same
sector (blue solid lines) form an suð2Þ bound state (black thicker
line) in the s channel. Applying the crossing transformation to
�þ _þ

p yields the t-channel diagram on the right, where one

particle has unphysical momentum �p (red dashed lines).
Particles are labeled as in Ref. [32].

14Here we write the S-matrix elements in the ‘‘string frame’’
[32], but our conclusions here will not depend on this choice.
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fA �pq ¼
xþ�p
x��p

x�q
xþq

1� 1
x��p x

þ
q

1� 1
x��p x

�
q

1� 1
xþ�p x

�
q

1� 1
xþ�p x

þ
q

~��2
�pq : (4.6)

Since ~� is regular when continued inside the unit circle

(see Appendix A 4), fA �pq has a zero at xþ�p ¼ 1=x�q , as
expected.

If we consider S-matrix elements involving one left- and
one right-moving particle, we expect no poles, since there
are no corresponding bound states. Therefore, a process
such as the one depicted in Fig. 4(a) should not happen.
Indeed, the S-matrix element

eBpq ¼ h�þ _þ
q

��� _�
p jSj ��� _�

p �þ _þ
q i

¼ x�q
xþq

1� 1
x�p xþq

1� 1
xþp x�q

1� 1
xþp xþq

1� 1
x�p x�q

~��2
pq (4.7)

is regular in the physical region and in particular has no
pole at xþp ¼ x�q . It is an interesting check that the same

holds in the crossed channel, for which the exchange
diagram would be as in Fig. 4(b), should it exist. Again
crossing symmetry relates the two processes by

eBpqB �pq ¼ 1; where Bpq ¼ h�þ _þ
q �� _�

p jSj�� _�
p �þ _þ

q i;
(4.8)

which implies the first crossing equation in Eq. (2.8). SinceeBpq has no singularity at x
þ
p ¼ x�q , we expectB �pq to have

no singularity at xþ�p ¼ 1=x�q . Explicitly, we have

B �pq ¼
x�q
xþq

ðx��p � x�q Þ2
ðx��p � xþq Þðxþ�p � x�q Þ

1� 1
x��p x

þ
q

1� 1
xþ�p x

�
q

��2
�pq : (4.9)

The rational terms have a pole at xþ�p ¼ 1=x�q , but once the
dressing factor is continued to the crossed region as in
Eq. (A27), this is canceled by a zero of ��2 so that the
result is nonsingular.

The solutions to the crossing equations that we
found can be modified by multiplying them by some

‘‘Castillejo-Dalitz-Dyson (CDD) factors.’’ Similarly to
the AdS5 case [14], we expect them to be meromorphic
functions of the spectral parameters that solve the homo-
geneous crossing equations

�CDD
pq ~�CDD

�pq ¼ 1; �CDD
�pq ~�CDD

pq ¼ 1: (4.10)

Such factors would introduce pairs of zeros and poles in the
two phases, for instance, by letting

�CDD
pq ¼ i

2
log

ðx� yÞc1
ð1� xyÞc2 ; ~�CDD

pq ¼ i

2
log

ðx� yÞc2
ð1� xyÞc1 ;

(4.11)

with c1, c2 integer constants. However, since the pole
structure of the dressing factors and of the resulting
S matrix agrees with the one we expect from the bound
state content of the theory, we can consistently set

�CDD
pq ¼ 1; ~�CDD

pq ¼ 1 (4.12)

so that the full dressing phases are given by Eq. (3.17),
up to nontrivial solutions of the homogeneous crossing
equations with no poles in the physical region, that possess
nontrivial cuts on the torus and for which the singularities
lie in different regions. Such factors are much harder to
rule out.

V. EXPANSIONS OF THE DRESSING FACTORS

In Sec. III we solved the AdS3 crossing equations (2.12)
in terms of Eq. (3.17). In what follows we give the strong-
and weak-coupling expansions of these all-loop phases.

A. Strong-coupling expansion

In this subsection we compute the strong coupling
expansion of the dressing phases in order to compare
with the perturbative string theory calculations of
Ref. [36]. The dressing phases have an expansion in terms
of local conserved charges qrðpkÞ [15],

�ðp1; p2Þ ¼
X1
r¼1

X1
s>r

rþs¼odd

cr;sðhÞ½qrðp1Þqsðp2Þ � qrðp2Þqsðp1Þ�;

(5.1)

where cr;sðhÞ are functions of the coupling constant h with

expansion

cr;sðhÞ ¼ hcð0Þr;s þ cð1Þr;s þ cð2Þr;sh�1 þ � � � (5.2)

and are antisymmetric in r, s. The phase ~�ðp1; p2Þ has a
similar expansion where the coefficients will be denoted
~cr;sðhÞ. The expression above is similar to the correspond-

ing one in AdS5, but unlike that case, we will need to
include the r ¼ 1 terms. This new feature was first noted in
Ref. [36]. For r � 2 the conserved charges are given by

FIG. 4 (color online). On the left the would-be Landau
diagram for one left- and one right-moving particle is depicted.
This process should be absent. Similarly, the crossed process on
the right should be absent, and the corresponding S-matrix
elements have no pole.
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qrðpkÞ ¼ Qrðxþk Þ �Qrðx�k Þ
¼ i

r� 1

�
1

ðxþk Þr�1
� 1

ðx�k Þr�1

�
;

QrðxÞ � i

r� 1

1

xr�1
; (5.3)

where we introduced the function QrðxkÞ for later conve-
nience. For r ¼ 1 the charge is just the momentum

q1ðpkÞ ¼ Q1ðxþk Þ �Q1ðx�k Þ ¼ �i log

�
xþk
x�k

�
;

Q1ðxÞ � i log

�
1

x

�
:

(5.4)

Expressing �ðp1; p2Þ in terms of� [cf. Eq. (3.2)], we obtain
the expansion

�ðx; yÞ ¼ X1
r¼1

X1
s>r

rþs¼odd

cr;sðhÞ½QrðxÞQsðyÞ �QrðyÞQsðxÞ�

(5.5)

with a corresponding expression for ~�. The coefficients cr;s
and ~cr;s can be obtained by expanding the integrands

through which � and ~� are defined at large h and at large
x and y and then performing the integrals. The expansions
for �BES and �HL are well known in the literature, and in
particular we have

�HLðx; yÞ ¼ 2

�

X1
r¼2

X1
s>r

rþs¼odd

ðr� 1Þðs� 1Þ
ðr� sÞðrþ s� 2Þ

� ½QrðxÞQsðyÞ �QrðyÞQsðxÞ�: (5.6)

The expansion for �� [cf. Eq. (3.16)] is

��ðx; yÞ ¼ � 1

�

X1
r¼2

X1
s>r

rþs¼odd

ðr� 1Þ2 þ ðs� 1Þ2
ðr� sÞðrþ s� 2Þ

� ½QrðxÞQsðyÞ �QrðyÞQsðxÞ�

þ 1

2�

X1
s>1

s¼even

½Q1ðxÞQsðyÞ �Q1ðyÞQsðxÞ�: (5.7)

Expanding Eq. (3.17) at large h, we find

�ðx; yÞ ¼ h�AFSðx; yÞ þ 1

2
ð�HLðx; yÞ þ ��ðx; yÞÞ þO

�
1

h

�
;

~�ðx; yÞ ¼ h�AFSðx; yÞ þ 1

2
ð�HLðx; yÞ � ��ðx; yÞÞ þO

�
1

h

�
;

(5.8)

where we have extracted the h scaling of each phase. At
leading order both phases reduce to the AFS one, as it was
found in the perturbative string expressions obtained in
Ref. [36], so that

cð0ÞBLMMTr;s ¼ �cð0ÞBLMMTr;s ¼ cð0Þr;s ¼ ~cð0Þr;s ¼ 	rþ1;s: (5.9)

At HL order all three terms on the rhs of Eq. (3.17)
contribute, and we find

cð1Þr;s ¼ þ 1

2�

1� ð�1Þsþr

2

�
s� r

sþ r� 2
� 1

2
ð	r;1 � 	1;sÞ

�
;

~cð1Þr;s ¼ � 1

2�

1� ð�1Þsþr

2

�
sþ r� 2

s� r
� 1

2
ð	r;1 � 	1;sÞ

�
;

(5.10)

for s > r > 0. Comparing to the semiclassical results [36],
we find, for r > 1,

cð1ÞBLMMTr;s ¼ 4�cð1Þr;s ; �cð1ÞBLMMTr;s ¼ 4�~cð1Þr;s: (5.11)

The factors of 4� are there since Ref. [36] expanded in
ffiffiffiffi
�

p
and we expand in h ¼

ffiffiffi
�

p
4� [see Eq. (5.2)]. In summary, the

r > 1 coefficients at HL order give the same contribution to
the dressing phases as those found in Ref. [36]. On the
other hand, the r ¼ 1 coefficients, which come exclusively
from the expansion of ��ðx; yÞ are

cð1ÞBLMMT1;s ¼ 8�cð1Þ1;s; �cð1ÞBLMMT1;s ¼ 8�~cð1Þ1;s: (5.12)

Taking into account the factor of 4� discussed above, we
conclude that the r ¼ 1 coefficients of Ref. [36] give twice
the contribution found here.
One possible origin for this discrepancy could have to do

with the antisymmetrization procedure used in Ref. [36].
Unlike r > 1 terms, the r ¼ 1 contributions to the Bethe
ansatz (BA) dressing phases can be simplified using the
momentum conservation condition. As such, this part of
the phase need not be explicitly antisymmetric. In the next
subsection, we discuss another possible likely source of
this discrepancy.

Finally, the higher-order coefficients cðnÞr;s ¼ ~cðnÞr;s with
n > 1 are exactly the same as in the expansion of the
BES phase.

B. Semiclassical and near-flat-space limits

To compare with perturbative results, it is convenient to
write explicit expressions for our phases in the semiclas-
sical limit, i.e., when

x� ¼ x� i

2h

x2

x2 � 1
þO

�
1

h3

�
: (5.13)

Such an expansion for the BES phase is well known: the
leading order Oð1=hÞ is given by the AFS phase (3.5),
which in our normalization reads

�AFSðx;yÞ¼ 1

h

x�y

ðx2�1Þðxy�1Þðy2�1ÞþO

�
1

h3

�
; (5.14)

whereas the next-to-leading order is given by the HL
phase, which can be found by expanding Eq. (3.6) under
the integral. Doing so also for Eq. (3.16), we get to the
expressions
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�ðx; yÞ ¼ �AFSðx; yÞ þ 1

4�h2
x2

x2 � 1

y2

y2 � 1

�
� ðxþ yÞ2ð1� 1

xyÞ
ðx2 � 1Þðx� yÞðy2 � 1Þ þ

2

ðx� yÞ2

� log

�
xþ 1

x� 1

y� 1

yþ 1

��
þO

�
1

h3

�
;

~�ðx; yÞ ¼ �AFSðx; yÞ þ 1

4�h2
x2

x2 � 1

y2

y2 � 1

�
� ðxyþ 1Þ2ð1x � 1

yÞ
ðx2 � 1Þðxy� 1Þðy2 � 1Þ þ

2

ðxy� 1Þ2

� log

�
xþ 1

x� 1

y� 1

yþ 1

��
þO

�
1

h3

�
: (5.15)

As it was expected from the discussion in Ref. [32], the
rational part of these expression differs from the one found
in Ref. [36]. The logarithmic part agrees15 with what
conjectured in Ref. [36], also in agreement with recent
results found by unitarity techniques [39,40]. The discrep-
ancy in the rational part may come from the fact that the
Bethe Ansatz assumed in Ref. [36] differs from the one of
Ref. [32] by terms of the form

1� 1
xþy�

1� 1
x�yþ

1� 1
xþyþ

1� 1
x�y�

or
1� 1

xþy�

1� 1
x�yþ

1� 1
x�y�

1� 1
xþyþ

: (5.16)

The former term in each product is antisymmetric and can
just be absorbed by a redefinition of the phase ~�. This is
not true for the latter term, which is symmetric. This will
contribute to the Bethe Ansatz in the finite gap limit as

1� 1
xþyþ

1� 1
x�y�

¼ exp

�
i

h

xþ y

ðx2 � 1Þðy2 � 1Þ
�
þO

�
1

h3

�
: (5.17)

Such a contribution has presumably to be taken into account
before the antisymmetrization and regularization procedure
performed in Ref. [36] and may nontrivially affect it.

Let us also evaluate the dressing factors in the near-flat-
space limit [52]:

�ðp�;q�Þ¼p�q�ðp��q�Þ
16hðp�þq�Þ

þp2�q2�ðp2�þ2p�q� log
q�
p�

�q2�Þ
256�h2ðp��q�Þ2

þO

�
1

h3

�
;

~�ðp�;q�Þ¼p�q�ðp��q�Þ
16hðp�þq�Þ

�p2�q2�ðp2��2p�q� log
q�
p�

�q2�Þ
256�h2ðp�þq�Þ2

þO

�
1

h3

�
:

(5.18)

Using these results one can check that the dressing phases
are compatible with the near-flat-space results of Ref. [38].

C. Weak-coupling expansion

In this subsection we compute the weak-coupling ex-
pansion of the dressing phases. The results for �BES are
well known from AdS5=CFT4. The leading-order contri-
bution to the dressing phase starts atOðh6Þ [10] and comes
from the r ¼ 2, s ¼ 3 terms in the expansion of �BES.16

The AdS3 dressing phases (3.17) contain extra terms be-
sides the BES phase. The coefficients cr;s and ~cr;s that come

from these extra contributions are all order h0 [see Eqs. (5.7)
and (5.6)]. The coupling constant dependence comes only
from the charges qr and qs in Eq. (5.5). In fact, the leading
contribution comes from the r ¼ 1 and s ¼ 2 term

�ðp; qÞ ¼ 4cð1Þ1;2

�
psin 2 q

2
� qsin 2 p

2

�
hþOðh3Þ; (5.19)

with a similar expression holding for ~�ðp; qÞ. Note that the
Oðh2Þ terms vanish. The above result shows that the r ¼ 1
terms, which are novel to AdS3, contribute at order h to the
BA17 and so should modify the energy of states in theweakly
coupled spin chain at order h3. Notice that a priori, we do not
know how hð�Þ behaves at weak coupling.18 This prevents us
from determining whether the h1 contribution to �ðp; qÞ in
the equation above comes with an integral power of � as one
would expect in a weakly coupled planar limit. Nevertheless,
the above expansion is a new feature of the AdS3 spin chain,
which places it in a different category to the spin chains
investigated in Ref. [53]. This is not surprising since, in
contrast to Ref. [53], the AdS3 spin chain consists of left-
moving and right-moving sectors.19 Spin chains with a left-
and right-moving copy of a symmetry group will have a
larger family of operators that can act on them than the
homogeneous chains of Ref. [53], and it would be interesting
to extend the analysis of Ref. [53] to this case in order to
better understand the role of the r ¼ 1 terms in the dressing
phase.

VI. CONCLUSIONS

We have determined the nonperturbative dressing phases
of the AdS3=CFT2 integrable system associated to type IIB
string theory on AdS3 � S3 � T4 with R-R flux. This was

15One should take into account a factor of �2 coming from the
different definition of the phases in Ref. [36].

16See Eq. (5.5) and recall that for the BES phase, there is no
r ¼ 1 term.
17Notice that, despite being linear in one of the momenta, such
terms cannot be re-absorbed into a shift of the Bethe Ansatz
length since cð1Þ1;2 ¼ �~cð1Þ1;2 so that they appear with opposite sign
in � and ~�.
18Recall, for example, that in AdS5=CFT4, h
 ffiffiffiffi

�
p

, while in
AdS4=CFT3, h
 �.
19Something similar happens in the study of general alternating
spin chains [54], where novel operators that do not exist for the
homogeneous spin chains investigated in Ref. [53] modify the
structure of the dressing phase found in Ref. [53].
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done by solving the crossing relations of Ref. [32]. Our
solution differs from the BES dressing phase that enters
AdS5=CFT4 and AdS4=CFT3 integrable systems. The two
phases we have found are different from one another as is
expected from the crossing equations. We have investi-
gated the spectrum of bound states of the system and
show that it is consistent with the full nonperturbative
S matrix. The details of this matching depend crucially
on the analytic properties of the dressing phases. As such,
this represents a strong consistency check of our solution.

We have performed an expansion of the dressing phases
at strong coupling. At the leading order, both phases reduce
to the AFS phase, in agreement with perturbative world
sheet calculations [34,36,38]. At the next-to-leading order,
our phases differ from one another, and only their sum is
the same as the HL phase. We have compared our expres-
sions at this order with the results of Refs. [36,38] and
found almost complete agreement. In Secs. VA and VB,
we discussed the likely origins of the discrepancy.

To further check whether our solutions correspond to the
string theory phases, it is necessary to test them against
stringent perturbative calculations, beyond the HL order. In
addition, studying their analytical properties in the string
and mirror regions may give further insights on the validity
of our proposal. It would also be very interesting to inves-
tigate the double poles/zeros of our phases and compare
them to relevant Landau diagrams as was done in
AdS5=CFT4 in Ref. [12]. Another important direction
would be to build on Ref. [29] in order to understand
how massless modes should be incorporated into the inte-
grable S matrix. Furthermore, it would be interesting to
explore the weakly coupled conformal field theory (CFT)
regime, which could also offer insight on the relation
between h and the ’t Hooft coupling constant �. There is
by now significant evidence that integrable spin chains
play an important role in the context of AdS3=CFT2.
A discussion of how one might construct a weakly
coupled spin chain directly from the CFT2 side can be
found in Ref. [55], where it is argued that finding a
Minahan–Zarembo-type spin chain in the CFT2 remains
an outstanding challenge.
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terms of the ones presented here, even at all loop. We
plan to return to this issue in the near future.

APPENDIX A: USEFUL FORMULAS
AND IDENTITIES

In this appendix we present the proofs of some identities
we used in the main body of the paper. In particular, we
provide the proof that the phase ��ðx; yÞ solves the cross-
ing equation (3.14). This can be easily adapted to check
that the Hernández–López phase as defined in Eq. (3.7)
solves the odd crossing equation (3.8) with the choice of
path depicted in Fig. 2.

1. Solving Eq. (3.14)

Let us define the following integral:
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which is reminiscent of Eq. (3.7). This function satisfies a
property which will be crucial in what follows, that is20

��ðx; yÞ ���ð1=x; yÞ ¼ 0: (A2)

Furthermore, when jyj> 1 is fixed and jxj � 1 approaches
the unit circle, ��ðx; yÞ has a jump discontinuity. As
discussed in Appendix A 3, the value of the discontinuity
depends on whether x approaches the unit circle form
below the real line, in which case

��ðei’þ
; yÞ ¼ ��ðei’�
; yÞ þ 	"ðei’; yÞ þOð
Þ;

 > 0; ��< ’< 0; (A3)

with21

	"ðx; yÞ ¼ � i

2
log

�
ðy� xÞ

�
1� 1

xy

��
; (A4)

or from above, where

��ðei’þ
; yÞ ¼ ��ðei’�
; yÞ þ 	#ðei’; yÞ þOð
Þ;

 > 0; 0<’<�; (A5)

with 	#ðx; yÞ ¼ �	"ðx; yÞ.

These ingredients are all we need to construct a solution
of Eq. (3.14). In the physical region, we define

��ðx; yÞ � ��ðx; yÞ jxj; jyj> 1: (A6)

To continue this function to the crossed region, it is
important to recall our choice of cuts of Fig. 2: both
xþðzÞ and x�ðzÞ will cross the unit circle below the real
line. Therefore, we define

��ðx;yÞ���ðx;yÞþ	"ðx;yÞ jxj<1; jyj>1; (A7)

which is continuous across the lower half-circle by
construction. Using Eq. (A2) we have

��ðx; yÞ � ��ð1=x; yÞ ¼ �	"ð1=x; yÞ ¼ �	"ðx; yÞ;
jxj; jyj> 1: (A8)

Rewriting the left-hand side of Eq. (3.14) in terms of
�ðx; yÞ gives finally

��ðz1; z2Þ2
��ðz1 þ!2; z2Þ2

¼ e�2ið	"ðxþ;yþÞþ	"ðx�;y�ÞÞ

e�2ið	"ðxþ;y�Þþ	"ðx�;yþÞÞ ; (A9)

which coincides with Eq. (3.15).

2. Identity for ��ðx; yÞ ���ð1=x; yÞ
In this subsection we prove Eq. (A2). Define

where F↶, corresponds to the first and second integral, respectively, and

fðw; x; yÞ ¼ 1

8�

1

x� w
log

�
ðy� wÞ

�
1� 1

yw

��
; (A11)

so that ��ðx; yÞ ¼ Fðx; yÞ � Fðy; xÞ. Since fðw; x; yÞ � fðw; x; 1=yÞ ¼ 0, we see that

A change of integration variable, u ¼ 1=w, can be used to derive the following identity:

for arbitrary x with jxj � 1. Sending x ! 1=x in the above equation gives

21More precisely, the following relation holds up to an arbitrary function of y only and in an appropriate branch of the logarithm;
see Appendix A 3. Such a function plays no role in the crossing equation.

20The proof of this is presented in Appendix A 2.

RICCARDO BORSATO et al. PHYSICAL REVIEW D 88, 066004 (2013)

066004-12



Combining Eqs. (A12)–(A14) and writing out � in terms of F↶ and , one may check that Eq. (A2) holds.

3. Discontinuities of ��ðx; yÞ at jxj ¼ 1

Let us split ��ðx; yÞ in terms of F↶, , as in Eq. (A10) and focus on the discontinuities of .

The discontinuity in x follows immediately from Cauchy’s theorem and is given by

crossing the unit circle from below, with

dðxÞ" ðx; yÞ ¼ i

4
log

�
ðy� xÞ

�
1� 1

xy

��
: (A16)

Note that is continuous in x across the upper half-circle.

To find the discontinuity in y, we can consider for jxj, jyj> 1; bringing the derivative under the integral

gets rid of the logarithm. The resulting function has a discontinuity on the lower half-circle:

The appropriate primitive of dðy
0Þ

" ðx; yÞ in y gives the discontinuity of from below. Such a primitive is

dðyÞ" ðx; yÞ ¼ � i

4
log ðx� yÞ þ�"ðxÞ; (A18)

where �"ðxÞ is an arbitrary function. Furthermore, there is also a discontinuity on the upper half-circle:

for which the primitive is

dðyÞ# ðx; yÞ ¼ i

4
ðlog ð1� xyÞ � log x� log yÞ þ�#ðxÞ: (A20)

It is easy to repeat this analysis for F↶ðx; yÞ, where we find essentially the same results up to exchanging the upper and
lower circles. Putting everything together proves Eq. (A4) up to such an arbitrary function of x, which, however, would
drop out of the crossing equation (A9), canceling among the contributions of the four �’s. Since the crossing relations (A9)
are written in exponential form, the logarithmic branch cuts of the discontinuities play no role.

If we instead had considered the discontinuities of ��ðx; yÞ when crossing the unit circle in the upper half-plane, we
would have found an extra minus sign upon crossing.

4. Singularities of the dressing phases

Let us investigate the singularities of the dressing phases �ðx; yÞ and ~�ðx; yÞ. They are defined in terms of �ðx; yÞ, ~�ðx; yÞ
by Eq. (3.17). Since the analytic properties of the BES phase are well known [12,13], we will focus on the semisum and
semidifference of the HL phase with ��ðx; yÞ. We are interested in logarithmic singularities as x and y take particular
positions with respect to each other. To find them, let us consider the integrals

��ðx; yÞ ¼ 1

2
ð��HLðx; yÞ ���ðx; yÞÞ; (A21)

where �HLðx; yÞ is the integral defining the HL phase in the physical region,

and��ðx; yÞ is defined in Eq. (A1). Singularities may arise only at y ¼ x or y ¼ 1=x. However, we can evaluate explicitly
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��ðx; yÞjy¼x ¼ 0;

��ðx; yÞjy¼1=x ¼ 1

4�
ð4Li2ðxÞ � Li2ðx2ÞÞ;

(A23)

with jyj> 1, so that no singularity arises from the integral
representation. Since this coincides with the phase in the
physical region, we can conclude that there is no disconti-
nuity for the phases at x ¼ y when both variables are in the
physical region.

When y ¼ 1=x one of thevariables, e.g., x, must be inside
the unit circle. Therefore, as explained in Appendix A 1, we
must continue ��ðx; yÞ in x through the lower half-circle.
To do this we need to find the discontinuity of ��ðx; yÞ
there. In Appendix A 3 we worked out the discontinuity of
��ðx; yÞ to be as in Eq. (A4), i.e.,

	�
" ðx; yÞ ¼ � i

2
log

�
ðy� xÞ

�
1� 1

xy

��
: (A24)

Using Cauchy’s theorem we find that �HLðx; yÞ satisfies
�HLðei’þ
; yÞ ¼ �HLðei’�
; yÞ þ 	HL

" ðei’; yÞ þOð
Þ;

 > 0; ��<’< 0; (A25)

with

	HL
" ðx; yÞ ¼ � i

2
log

�
y� x

y� 1=x

�
: (A26)

Using this to analytically continue Eq. (A21), we have that
when jxj< 1 and jyj> 1, there is no singularity in ~�ðx; yÞ at
y ¼ 1=x. However, �ðx; yÞ has a logarithmic singularity
such that

e2i�ðx;yÞ 
�
y� 1

x

�
; when y  1=x: (A27)

APPENDIX B: CHOICE OFANALYTIC
CONTINUATION

Using the S matrix derived in Ref. [32], one can write
down two sets of crossing equations, which turn out to be
incompatible. This problem is not specific to our case but
also appears, e.g., for AdS5. These two possibilities are
related to the fact that charge conjugation can be imple-
mented either with C or C�. In the first case, the first entry
has to be analytically continued by zþ!2, while in the
second case by z�!2. The opposite is true for the second
entry.
We write these crossing equations for AdS3 � S3 � T4

in the following table. In the first column, we write the
crossing equations explicitly in terms of �, ~� [the func-
tions g, ~g are defined in Eq. (2.9)], and in the second
column, we write them in matrix form.

(I)
�ðz1 þ!2; z2Þ2 ~�ðz1; z2Þ2 ¼ gðx�1 ; x�2 Þ C�1 � 1 � Rt1 ðz1 þ!2; z2Þ � C � 1 ¼ Rðz1; z2Þ�1

�ðz1; z2Þ2 ~�ðz1 þ!2; z2Þ2 ¼ ~gðx�1 ; x�2 Þ

(II)
�ðz1; z2 �!2Þ2 ~�ðz1; z2Þ2 ¼ ~g�1ð 1

x�
2
; x�1 Þ 1 � C�1 � Rt2 ðz1; z2 �!2Þ � 1 � C ¼ Rðz1; z2Þ�1

�ðz1; z2Þ2 ~�ðz1; z2 �!2Þ2 ¼ g�1ð 1
x�
2
; x�1 Þ

(III)
�ðz1 �!2; z2Þ2 ~�ðz1; z2Þ2 ¼ gðx�1 ; x�2 Þ �C�1 � 1 � Rt1 ðz1 �!2; z2Þ � C� � 1 ¼ Rðz1; z2Þ�1

�ðz1; z2Þ2 ~�ðz1 �!2; z2Þ2 ¼ ~gðx�1 ; x�2 Þ

(IV)
�ðz1; z2 þ!2Þ2 ~�ðz1; z2Þ2 ¼ ~g�1ð 1

x�
2
; x�1 Þ

1 � �C�1 � Rt2 ðz1; z2 þ!2Þ � 1 � C� ¼ Rðz1; z2Þ�1

�ðz1; z2Þ2 ~�ðz1; z2 þ!2Þ2 ¼ g�1ð 1
x�
2
; x�1 Þ

Looking at the first column, it is clear that rows I and III are
incomplatible because the rhs is the same, but the analytic
continuation is performed in opposite directions. The same
is true for rows II and IV. Rows I and II are instead related
by using antisymmetry of the factors, as are III and IV.

To fix the convention for analytic continuation, we
compare our results with the perturbative results of

Ref. [38]. We consider the matrix elements Apq,
fApq,

Bpq,
eBpq defined in Sec. IVC, and we write the crossing

equations in the form

A pq
fA �pq ¼ 1; eBpqB �pq ¼ 1: (B1)

For the equations to be satisfied up to one-loop order in
the near-flat-space (NFS) limit, we use that �p� ¼ �p�,

and we note that we need to choose the branch of the
log in such a way that log ð�p�Þ ¼ log ðp�Þ � i�,
which also implies the rule

ffiffiffiffiffiffiffiffiffiffiffi�p�
p ¼ �i

ffiffiffiffiffiffiffi
p�

p
. We can

relate these choices of branches to the choice of the sign
of the shift on the torus by considering the analytic con-
tinuation of

�ðpÞ ¼
�
xþp
x�p

�
1=4

�
ih

2
ðx�p � xþp Þ

�
1=2

¼ dn z
2 ðcn z

2 þ isn z
2 dn

z
2Þ

1þ 16h2sn4 z
2

; (B2)

which is given by [4]

�ðz�!2Þ ¼ � i

xþðzÞ�ðzÞ: (B3)
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By using Eq. (B2), we find that in the NFS limit, �ðp�Þ ¼
1=2

ffiffiffiffiffiffiffi
p�

p
. We can now compare our choice of the log

branch with the crossing transformation, finding

�ð�p�Þ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffi�p�
p ¼ � i

2

ffiffiffiffiffiffiffi
p�

p ¼ �ðzþ!2ÞjNFS limit:

(B4)

This allows us to conclude that crossing holds with a shift
byþ!2 in the first variable. The crossing equations in row
I in the table are the ones that are solved in the main text.

Consistency with this choice allows us to conclude that the
crossing equations written in Refs. [30,31] should follow
the same convention of shifting by �!2 in the second
variable. This corrects footnote 10 in Ref. [30] and foot-
note 3 in Ref. [31].
A posteriori we can check in the same way that the

solutions we found in the finite gap (5.15) and near-
flat-space limit (5.18) do indeed solve the crossing equa-
tions in those limits when shifting the first variable by
z ! zþ!2 and resolving the branch of the log
accordingly.
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[22] A. Babichenko, B. Stefański, Jr., and K. Zarembo, J. High
Energy Phys. 03 (2010) 058.

[23] R. R. Metsaev and A.A. Tseytlin, Nucl. Phys. B533, 109
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