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Gravity duals for little string theories—which give rise to four-dimensional theories that undergo

permanent confinement in the infrared—have not been studied in great detail. We address this question in

the framework of heterotic SOð32Þ and E8 � E8 string theory, constructing these backgrounds by

wrapping heterotic 5-branes on calibrated two-cycles of non-Kähler resolved conifolds. Related to

deformations of the underlying little string theories, we find numerous analytic solutions preserving

N ¼ 1 supersymmetry in four dimensions. These theories all have non-Abelian global symmetries that

generally arise from both the heterotic vector bundle and from certain orbifold states. In the decoupling

limit, we argue that the gravity duals are given by non-Kähler manifolds that have both blown-up two-

cycles and three-cycles at the origin. We argue this following certain duality sequences that include

M-theory torsional manifolds at an intermediate step, which help us to construct new type I0 gauge/gravity
duality pairs. In the M-theory duality frame, we also elucidate new sequences of flips and flops.

DOI: 10.1103/PhysRevD.88.066003 PACS numbers: 11.25.Tq, 04.65.+e

I. INTRODUCTION

Geometric transitions have long been exploited to
explore strong-coupling regimes of field theories, begin-
ning with [1] in the context of type II string theories where
powerful topological string methods were available. The
basic setup is to wrap branes on compact two- or three-
cycles of Calabi–Yau threefolds; in the limit where the
number of branes is very large, we can shrink the wrapped
cycle until it vanishes so that the manifold develops a
singularity. That singularity is then resolved (or deformed)
via an extremal transition, where a different vanishing
cycle grows and where the branes are replaced by fluxes
that thread a dual cycle. In terms of the gauge theory
living on the original branes, the size of the new cycle is
determined by strong-coupling effects, such as gluino
condensation.

A natural question to ask is how this generalizes to
heterotic string theory, where, in principle, one could
have world sheet descriptions of both sides of the duality.
However, there are a few immediate hurdles that must be
overcome. The first is that the gauge theory side, described
by little string theory (LST), is quite mysterious. This is in
contrast to the type II case, where the gauge theories are
simply given by super Yang-Mills theories in various
dimensions with well-understood dynamics. The second
hurdle is on the gravity side, where we generally expect the
manifolds to have non-Kähler metrics. For these kinds of

manifolds, it is much more difficult to solve the supersym-
metry conditions and Bianchi identity as well as to single
out the relevant cycles. Finally, while in the type II cases
we could gain more information by using topological
methods, the heterotic theory generally only admits a
‘‘half-twist’’ which is not nearly as powerful.
Nevertheless, some recent progress has been made in a

series of papers (Refs. [2,3] as well as Ref. [4]), starting
with the program initiated in Ref. [5]. In fact, the first
hurdle regarding themysterious gauge theories can actually
be turned to our advantage: having a gravity dual to a more
mysterious LST could be a fruitful way to extract informa-
tion about these theories. In earlier works of some of the
present authors [2,3], we adopted this viewpoint and argued
for the gravity duals using various consistency arguments
stemming from the duality cycle advertised in Refs. [5–7].
These consistency arguments also helped us overcome the
second hurdle, finding non-Kähler backgrounds, without
the need to appeal to half-twisted topological theories.
However, no direct proof of the gauge/gravity duality was
provided in Refs. [2,3], and, furthermore, most of the analy-
sis focussed on the SOð32Þ heterotic string.
In the current work, we will begin to address these

shortcomings in a more unified approach, setting up a
geometric transition route in the E8 � E8 heterotic theory.
Our construction will exploit the F theory and the E8 � E8

heterotic duality by using D3-branes to probe a system of
two orthogonal sets of D7/O7 branes/orientifolds that wrap
a P1. This additional P1 makes the issue of supersymmetry
much more subtle since we need to switch on additional
fluxes to preserve supersymmetry. In Sec. IV, we show
that these fluxes force the heterotic geometries to be
non-Kähler resolved conifolds, with the NS5-branes
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wrapping calibrated two-cycles. In Sec. IVB, we deter-
mine metric, three-form, and dilaton, presenting three dis-
tinct cases that correspond to different configurations of
wrapped NS5-branes. In Sec. IVC, we present simple non-
Abelian vector bundles that, together with the other fields,
preserve supersymmetry and satisfy the Bianchi identity.
We also discuss the asymptotic behavior and range of
applicability of these solutions. To our knowledge, this
is the first time most of these backgrounds have been
determined for the E8 � E8 theory.

Through the course of Sec. V, we argue for the gravity
duals by following a duality chain that incorporates type I,
type I0, and M theory. Compared to some of our earlier
works [2,3], this is a more direct way to integrate these
theories into a single duality chain. Using this chain, we
obtain two distinct limits: a non-Kähler resolved conifold
and a non-Kähler deformed conifold. For the present work,
we focus on the resolved conifold side. The LSTs have
global degrees of freedom, and we argue that they reside
both in the heterotic vector bundle as well as in certain
orbifold states. Of course, vector bundle degrees of free-
dom can also be viewed as small instantons in certain
limits, which are intimately connected to singularities in
the torsion and, hence, NS5-branes [8]. In the three classes
of solutions that we study in Sec. IVB, the torsion asymp-
totes to the constant value required to maintain the non-
Kählerity, as well as zero potential (4.13), of the resolved
conifold backgrounds—this is shown in Sec. VA. In the
dual gravity description, we do not expect these singular-
ities to be present, which we know can happen if the small
instantons dissociate into smooth gauge flux. This raises
the intriguing possibility that the gauge/gravity duality in
the heterotic theory is directly related to a small instanton
transition. We discuss this further in Secs. VA and VF,
where we also show how to look for the confining strings
and new exotic states in the dual LST.

II. HETEROTIC AND LITTLE STRING
THEORY BACKGROUND

As shown in Ref. [9], the supersymmetric variations in
heterotic string theory allow for a complex but non-Kähler
internal manifold, satisfying

dyJ ¼ ið@� �@Þ ln k � k
Ja

�bFa �b ¼ Fab ¼ F �a �b ¼ 0

i@ �@J ¼ �0
�
trðRþ ^ RþÞ � 1

30
trðF ^ FÞ

�
;

(2.1)

where J is the fundamental (1, 1) Hermitian form on the
internal manifold, � is the holomorphic (3, 0)-form, F is
the SOð32Þ or E8 � E8 gauge field strength, and Rþ is the
Ricci two-form constructed from the !þ connection:

!ij
þ� � �ij

� þ 1
2H

ij
�, where H ij

� �H ���e
�ie�j and e�i

is the vielbein. The Neveu-Schwarz (NS) three-form flux
H and dilaton � are related via

H ¼ �e2� � dðe�2�JÞ ¼ ið �@� @ÞJ; (2.2)

so the final equation in Eq. (2.1) is the Bianchi identity for
H . Heterotic NS5-branes appear on the right-hand side
of the Bianchi identity in Eq. (2.1), as delta-function
contributions to dH .
In Ref. [8], six-dimensional theories with N ¼ 1

supersymmetry, arising from the SOð32Þ heterotic theory
compactified on K3, were studied. There it was argued that
when k small gauge theory instantons on K3 shrink to zero
size, they become a stack of k NS5-branes, emerging
from the vector bundle mist.1 In the Bianchi identity
(2.1), this corresponds to tuning vector bundle moduli so
that trðF ^ FÞ develops delta-function contributions, aris-
ing from ‘‘small instantons’’ that shrink to zero size, that
can be reinterpreted as source terms for NS5-branes. It was
also argued there that there is an Spð2kÞ gauge group that
lives on the k NS5-branes. This was generalized to the
E8 � E8 heterotic theory in Ref. [11], where it was argued
that similar zero-size instantons give rise to LSTs. This was
further analyzed in Ref. [12], where the author studied a
broad class of six-dimensional theories with N ¼ 1
superconformal symmetry—which could arise, for
example, from compactification of the E8 � E8 heterotic
theory on K3—and found singularities arising from
tensionless strings at boundaries between phases with
different instanton numbers.2

When compactified on tori, LSTs enjoy T-duality
symmetry, arising from the fact that they are nonlocal
theories [14].3 They also have no gravitational degrees of
freedom. Most familiar examples of LSTs are obtained
by studying the dynamics of multiple 5-branes in various
limits of string theory. A LST is labeled by N, the number
of 5-branes, but it does not become weakly coupled at
large N, i.e., there is no 1=N expansion [15]. LSTs can
also arise from the dynamics of string theory at a singu-
larity; for example, they can arise in type IIA and IIB
theories on an orbifold singularity C2=�G, as reviewed in
Refs. [13,16].
Holographic duals for LSTs from multiple coincident

NS5-branes in type IIA were studied in Ref. [17]. Along
these lines, in Ref. [18] the authors found the holographic
dual of a single heterotic NS5-brane. In Ref. [19], another
LST was studied using a technique called deconstruction,
obtaining a six-dimensional LST on a torus as a special
limit of four-dimensional gauge theory. There they also

1This can also be seen from a sigma model analysis of the
background; see Ref. [10].

2For an early history and progress report on LSTs, see the
excellent review of Ref. [13].

3This is different from D-branes, which have local quantum
field theories (QFTs) because the LSTs, being given by the NS5-
branes, do not change dimension under longitudinal T dualities.
Since the world volume theories just shift from one description
to another, they do not have a well-defined energy-momentum
tensor [12].
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briefly discussed confinement, but a more detailed study of
confinement is still lacking.4

In the rest of our paper, we consider similar setups, but
without studying the LSTs directly. Instead, we aim to use
geometric transitions in heterotic string theory to shed light
on LSTs. The usual problem with LSTs is that they cannot
be treated on the same footing as many of the systems
studied using AdS/CFT techniques. On the other hand,
geometric transitions work predominantly in nonconfor-
mal cases, so they can be used to study strong-coupling
effects in setups that are not covered by AdS/CFT. Our
goal, then, is twofold: one is to obtain a large set of
supergravity solutions corresponding to wrapped NS5-
branes in E8 � E8 heterotic string theory, and the other is
to conjecture possible gravity duals of these theories,
obtained via geometric transitions.

III. TYPE II DUALITY FRAME

Our aim is to extend 5-brane gauge/gravity duality to the
E8 � E8 heterotic theory. In Sec. IV, we will return to the
heterotic setting, but for now we begin in type II, where we
have a better handle on gauge/gravity duality. We
begin with a large number of 5-branes wrapped on a
calibrated two-cycle of a non-Kähler resolved conifold.
The duality chain that we will follow is depicted in

Fig. 1. The solutions that we obtain using the duality chain
will have ranges of validity that we need to keep track of,
so some of these details are illustrated in Fig. 2.
The resolved and the deformed conifold that we will

consider support non-Kähler metrics that will be relevant
to our work. The main feature we want to highlight is the
presentation of them as P1 fibrations over an asymptoti-
cally locally Euclidean (ALE) space, so we describe the
geometry next.

FIG. 1 (color online). The duality sequence that will be used in this paper to argue for the gravity duals in heterotic, type I, and
M-theories. The boxes in red in the left-hand column are related to the theories on the branes, i.e., the strongly coupled gauge theories in the
IR, except for the M-theory case. The boxes in green in the right-hand column are the possible gravity duals. F-theory origins of these
theories are depicted by the boxes in white. The alphabetical ordering of the leftmost boxes are related to a refinement of the parameter
regimesof the theories, described inFig. 2 below.TheboxesA,C, andDappearing herewill bedefinedmore chronologically inFig. 2 below.

FIG. 2 (color online). This flow diagram depicts the various
refinements and regimes of interest of the theories that we study
here. The duality that we study in the early sections of the paper
are related to the boxes marked A, C, and D. These are the
regions where the orientifold descriptions are most useful. The
heterotic analyses that we perform later in the text are related to
the boxes marked H and G. Other interconnections between the
theories are depicted by arrows.

4The theories that we are most interested in are the LSTs
compactified on a two-sphere, giving rise to four-dimensional
theories below a certain energy scale. In this paper, we will be
particularly interested in the confiningbehavior in thedeep infrared,
so the UV completion will be beyond the scope of our discussions.
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A. Resolved and deformed conifolds, revisited

The standard deformed conifold, as embedded inC4, has
equation

z21 þ z22 þ z23 þ z24 ¼ �2 (3.1)

for any � 2 C�. For fixed �, this can be viewed as a
fibration over the z4 plane, with fiber

z21 þ z22 þ z23 ¼ �2 � z24: (3.2)

If z4 is not��, this fiber is a noncompact smooth complex
surface, a K3 surface in the sense that its canonical bundle
is trivial. If z4 equals ��, the fiber is an ALE space, a
singular K3. In other words, this is essentially the same
fibration as for the conifold case, with the parameter values
altered. This realizes the conifold as an ALE fibration over
P1.5 In our case, as we will momentarily see, it will be
more useful to instead view the warped deformed and
warped resolved conifolds as P1 fibrations over a warped
ALE space.

First let us show this for the warped deformed conifold.
The metric of the warped deformed conifold can be written
in the following way:

ds2 ¼ ds2ALE þ ds2fiber; (3.3)

where the metrics of the ALE base and two-sphere fiber are
given by

ds2ALE ¼ f1dr
2 þ f2ðdc þ cos �1d�1Þ2

þ �3ðdc þ cos �1d�1Þ þ f3ðd�1 þ �1Þ2
þ f3ðsin �1d�1 þ �2Þ2

ds2fiber ¼
�
f3 � f24

4f3

�
ðd�22 þ �4sin

2�2d�
2
2Þ; (3.4)

where we have defined various variables, fi, �i, and �i,
to be

f1 ¼ r2�̂0 � �̂

r2
þ r2�̂

r4 ��4
; f2 ¼ r4 ��4

4r2
f1; f3 ¼ �̂

4
; f4 ¼ 2�2

r2
f3;

�1 ¼ f4
2f3
ðcos c d�2 þ sin c sin �2d�2Þ; �2 ¼ f4

2f3
ðsin c d�2 � cos c sin �2d�2Þ;

�3 ¼ 2�ð�1; �1; c Þf2 cos �2d�2; �4 ¼ 1þ 4f2f3
4f23 � f24

cot 2�2

(3.5)

and where �̂ is given by

�̂� r
4
3

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �4

r4

q
� �4

r4
cosh�1ð r2

�2Þ
�1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �4

r4

q ; �̂0 � @�̂

@r2
: (3.6)

Finally, the function�ð�1; �1; c Þ appearing in Eq. (3.12) is
typically an even or odd function of the variables
ð�1; �1; c Þ under aZ2 reflection, i.e.,�ð��1;��1;�c Þ ¼
��ð�1; �1; c Þ. For the standard deformed conifold with
Kähler metric, we have � ¼ 1, but for a warped deformed
conifold, � will be nontrivial.

To see the fibrational structure, fix a point on the P1 with
coordinates ð�2; �2Þ; then

�1 ¼ �2 ¼ �3 ¼ 0; (3.7)

and so the metric (3.3) becomes

ds2ALE ¼ f1dr
2 þ f3ðd�21 þ sin 2�1d�

2
1Þ

þ f2ðdc þ cos�1d�1Þ2: (3.8)

Defining a radial variable � �
ffiffi
3
2

q
r2=3, we see that the

metric has the asymptotic form

ds2ALE ! d�2 þ 1

6
�2ðd�21 þ sin 2�1d�

2
1Þ

þ 1

9
�2ðdc þ cos�1d�1Þ2: (3.9)

This is not quite an ALE space because the constant factors
1
6 and 1

9 would have to both be 1
4 . Instead, we call this a

warped ALE space, though we may drop the ‘‘warped’’
adjective at times. Next, fixing a point on the warped ALE
space, we see that the fiber metric is that of a squashed P1,
with squashing �4 depending on where we are in the
warped ALE space.
In a similar vein, the warped resolved conifold can be

presented as a P1 fibration over a warped ALE. The metric
of the resolved conifold can be written as

ds2 ¼ �0dr2 þ �þ a2

4
ðd�21 þ sin 2�1d�

2
1Þ

þ �0r2

4
ðdc þ cos�1d�1Þ2 þ �1ðdc þ cos �1d�1Þ

þ �

4
ðd�22 þ �2sin

2�2d�
2
2Þ

� ds2ALE þ ds2fiber; (3.10)

where a is the resolution parameter; ds2ALE denotes the
metric of the warped ALE space plus mixed terms with5We thank Sheldon Katz for explaining these details to us.
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the fiber; ds2fiber denotes the metric of a squashed

two-sphere with coordinates ð�2; �2Þ; � is given by [20]

� ¼ �2a2 þ 4a4NðrÞ�1
3 þ NðrÞ13;

NðrÞ ¼ 1

2

�
r4 � 16a6 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r8 � 32a6r4

p �
;

(3.11)

and �1 and �2 describe the ALE
6 warping and the squash-

ing of the two-sphere, respectively, given by

�1 � �0r2�ð�1; �1; c Þ
2

cos �2d�2;

�2 � 1þ r2�0

�
cot 2�2; �0 � @�

@r2
;

(3.12)

away from the origin of ð�2; �2Þ. At any other point on
sphere, we have an ALE space, as seen from the first line of
Eq. (3.10).

Just as for the warped deformed conifold, for the warped
resolved conifold, we can fix a point on the P1 fiber by
ð�2; �2Þ to constant values. This implies �1 ¼ 0 so the
metric (3.10) becomes

ds2ALE ¼ �0dr2 þ �þ a2

4
ðd�21 þ sin 2�1d�

2
1Þ

þ �0r2

4
ðdc þ cos �1d�1Þ2; (3.13)

which is the metric for a warped resolved ALE space.

B. F-theory picture

In our previous papers [2,3], we have argued for the
existence of gauge/gravity duality in the SOð32Þ heterotic
theory by duality chasing the original type IIB geometric
transition. In particular, the technique for going from a
local heterotic description to a global description with
wrapped 5-branes gives us a way to generate the gravity
solution before the geometric transition.

Another way to study the type IIB transition is through
compactification of F-theory on fourfolds. For example,
consider F theory on an elliptically fibered Calabi–Yau
fourfold X!	B, where B is the threefold base. We will
assume that B contains a smooth curve E ’ P1 with nor-
mal bundle Oð�1Þ �Oð�1Þ, which implies that locally,
nearE, the base looks like a resolved conifold. We can then
perform an extremal transition from B to B0, obtained by
contracting the P1 to a point and then smoothing. Under
this transition, we obtain another elliptically fibered
Calabi–Yau fourfold

X0!	 B0; (3.14)

which is the manifold that, in the presence of both RR and
NS fluxes in type IIB, can be deformed to yield a metrically

non-Kähler manifold (which still has the same topology as
B0) [2,7]. This construction yields the same result as the
one discussed earlier, namely, that the branes disappear
in the process so that the final result just contains the
gravitational dual with fluxes and no extra branes.7

The duality map between F theory and heterotic theory
could now, in principle, help us understand the transition
on the heterotic side. Unfortunately, this is easier said than
done since the dualities between the heterotic theories
and F theory on fourfolds are involved. One has to tread
carefully to find the appropriate duality.
As discussed above, our aim is to connect a specfic

F-theory compactification with a compactification of
E8 � E8 heterotic theory. One way to do this would be to
exploit the duality between the Gimon–Polchinski model
[23] and F theory on a particular Calabi–Yau threefold with
Hodge numbers (3, 243), which admits an elliptic fibration
over P1 � P1 [24,25]. This duality is useful because of its
connection to the E8 � E8 heterotic theory on a K3 mani-
fold, where the 24 instantons are divided equally between
the two E8’s. Our next step then would be to express the
resolved conifold as a K3 fibration over a P1. We could
then extend the duality to heterotic on a resolved conifold
by dualizing along the K3 fiber.8

Our starting point is then to study the theory generated
by k D3-branes probing type IIB backgrounds with inter-
secting 7-branes and orientifold planes. We expect the
gauge theory on the k D3-branes to be Spð2kÞ � Spð2kÞ
in the presence of one set of intersecting branes and planes.
Local charge cancellation then imposes a global Uð4Þ �
Uð4Þ symmetry, where a set of four D7-branes is placed
perpendicular to another set of four D7-branes. We will
discuss soon how other global symmetries may appear.

C. Type II picture

Our starting point, as we mentioned above, would be to
take k D3-branes in the type IIB theory to probe the

6The warping, as mentioned above, takes us away from the
standard ALE metric [21] (see also the recent paper, Ref. [22],
for more details on ALE and asymptotically locally flat spaces).

7Although, in more general cases, the gravity duals can be
nongeometric. This feature was discussed in detail in Refs. [2,3].

8There are other variants of this story. For example, the F-
theory fourfold compactification with a P1 � P1 is also con-
nected to another Calabi–Yau with Hodge numbers (51, 3) [and
probably also to (3, 51)], as pointed out by Refs. [26–28]. The
difference between the two compactifications is related to the
number of tensor and charged hypermultiplets. In this paper, we
will concentrate only on the (3, 243) case where the heterotic
dual has only one tensor multiplet. To get more tensors in six
dimensions, we have to redefine the orientifold operation in the
dual type I side. A way to achieve this would be to define the
orientifold operation in such a way that, in addition to reversing
the world sheet coordinate 
 to 	� 
, it also flips the sign of
the twist fields at all fixed points (see, for example,
Refs. [27,29]). This way the closed string sectors of both the
theories match, but in the twisted sector, we get 17 tensor
multiplets instead of hypermultiplets. Therefore, even though
the orientifolding action looks similar in both cases, the massless
multiplets are quite different.
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intersecting D7/O7 system. This is almost like the Gimon–
Polchinski setup [23] but with one crucial difference: the
two intersecting D7/O7 systems wrap a P1. In the absence
of the P1, we would expect the infrared theory to be an
N ¼ 2, Spð2kÞ � Spð2kÞ gauge theory that would, under
some special conditions, flow to a conformal fixed point. In
the presence of the P1, the infrared theory should instead
be anN ¼ 1 gauge theory. The moduli space of the gauge
theory—ignoring the global symmetry, for now—will be k
copies of the following manifold:

M � ALE � P1

ð�1ÞFL �� � 
 ; (3.15)

where 
 is the Nikulin involution [30] if the ALE space is
replaced by a K3 manifold; otherwise, it is the usual
orbifolding for the ALE case, and � denotes a local
product, i.e., there is some nontrivial fibrational structure.
Note that the moduli space is a noncompact manifold. The
global symmetry of the system will be typically G � G,
where we will soon discuss the form of G.

The story now is simple. Under two T dualities along the
two-cycle of the ALE space, followed by an S duality, will
convert this background to the heterotic theory background
(a table of the brane setup appears in Table I).

1. Gauss law constraints

Before moving ahead, let us see how Gauss’s law is
satisfied. Let the k D3-branes in type IIB be oriented along
x0;1;2;3, the ALE space along x4;5;8;9, and the P1 along x6;7

(see Table I). T dualizing along a two-cycle of the ALE
space that we take to have coordinates x4;5, we see that the
heterotic NS5-branes will be along the x0;1;2;3;4;5 directions,
so the x6;7;8;9 directions should be noncompact.

Back in the type IIB picture, there are two sets of ðp; qÞ
7-branes, one set wrapping x0;1;2;3;4;5;6;7, and one set wrap-
ping x0;1;2;3;6;7;8;9. If we did not have the k D3-branes, this
could allow for the x4;5 and x8;9 directions to be compact,
e.g., P1 � P1, over which the F-theory torus would be
nontrivially fibered, giving rise to F theory on a Calabi-
Yau threefold with Fn base [24,25]. In our case, the
D3-brane charge is a problem unless we make the x6;7;8;9

directions noncompact, while the x4;5 directions need to be
compact since wewill be T dualizing along them. Thus, we

see that the ALE space in Eq. (3.15) really has to be
noncompact, as does the P1:
(i) The set of ðp; qÞ 7-branes along x0;1;2;3;4;5;6;7 has

fewer than 24 branes. This can be implemented by
taking only one O7 plane and set of charge canceling
D7-branes.

(ii) The P1 oriented along x6;7 is topologically noncom-
pact, with one or two antipodal points removed.
This can be implemented via making �2 nonperi-
odic or via changing the definition of �2 and �4 in
Eqs. (3.10) and (3.3), respectively.

2. Algebrogeometric picture

To better understand the IIB/F-theory setup, consider the
standard Weierstrass equation governing the F-theory ax-
iodilaton as it varies over the ALE space (the P1 will be
suppressed for this subsection, as will the D3-brane
probes):

y2 ¼ x3 þ fðu; vÞxþ gðu; vÞ; (3.16)

where the coordinate u ¼ x4 þ ix5 corresponds to the
ALE two-cycle along which we will perform T duality
(and is the usual u plane of Seiberg–Witten theory [31]),
and v � x8 þ ix9 corresponds to the other ALE directions.
fðu; vÞ is a polynomial of bidegree (8, 8), and gðu; vÞ is a
polynomial of bidegree (12, 12). These polynomials give
us the physics not only at the orientifold point but also
away from it. In fact, at the orientifold point, the descrip-
tion can be made a little simpler by choosing the functional
forms for fðu; vÞ and gðu; vÞ to be

fðu;vÞ¼Y8
i¼1

Ai
1Wiþ

Y4
i¼1

Ai
2Z

2
i ;

gðu;vÞ¼Y8
i¼1

Y4
j¼1

Aij
3 WiZjþ

Y4
i¼1

Ai
4Z

3
i þ

Y12
i¼1

Ai
5Ui;

(3.17)

where Ai
k are coefficients that are constrained by using

consistency conditions for orientifolds. The other variables
Zi, Wi, and Ui, are defined as

Zi � ðu� ûiÞðv� v̂iÞ;
Wi � ðu� uiÞðv� viÞ;
Ui � ðu� ~uiÞðv� ~viÞ:

(3.18)

TABLE I. The orientations of various branes in the type IIB, intersecting 7-brane duality frame. The check marks denote the
directions along which we have either the branes or the manifold.

Direction 0 1 2 3 4 5 6 7 8 9

D7/O7 ✓ ✓ ✓ ✓ � � ✓ ✓ ✓ ✓

D70=O70 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ � �
k D3s ✓ ✓ ✓ ✓ � � � � � �
ALE � � � � ✓ ✓ � � ✓ ✓

P1 � � � � � � ✓ ✓ � �
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More details about these polynomials (3.17) can be found
in Ref. [32], where the coefficients Ai

k’s were derived.9

The discriminant locus is then given by the curveX
n;p

Cnp
Y
i;j;k

Z6�2n�3p
i Wn

j U
p
k ¼ 0; (3.19)

which can be decomposed as

ðC10F 1 þ C11F 2 þ C02F 3 þ C00F 4 þ C30F 5Þ
� ðC20F þ C01GÞ ¼ 0; (3.20)

where the polynomials F and G are degree 16 in ðu; vÞ,
and where Cmn � Cnm. Thus, we have two curves spanning
the discriminant locus given by

C20F þC01G¼0;

C10F 1þC11F 2þC02F 3þC00F 4þC30F 5¼0:
(3.21)

The first curve specifies the orientifold condition under
which the type IIB theory has a heterotic dual, given by a
heterotic compactification on a K3 manifold. The second
curve should be interpreted as ðp; qÞ 7-branes that form a
nondynamical orientifold plane. Since our concern is
mostly the orientifold background specified by the first
curve in Eq. (3.21), we will ignore the physics behind the
second curve in this paper.

A more general elliptic fibration can be specified, for
example, by

fkðuÞ ¼
Y8
i¼1

Aikðu� aikÞ þ
Y4
i¼1

Bikðu� bikÞ2

þY2
i¼1

Cikðu� cikÞ4 þDkðu� dkÞ8;

gkðuÞ ¼
Y12
i¼1

Mikðu�mikÞ þ
Y6
i¼1

Nikðu� nikÞ2

þY4
i¼1

Sikðu� sikÞ3 þ
Y3
i¼1

Pikðu� pikÞ4

þY2
i¼1

Qikðu� qikÞ6 þ Rkðu� rkÞ12;

(3.22)

where, as before, the coefficients are allowed to take values
determined by the underlying dynamics of F theory. The
polynomials fkðuÞ and gkðuÞ are now used to determine
fðu; vÞ and gðu; vÞ by
fðu; vÞ � f1ðuÞf2ðvÞ; gðu; vÞ � g1ðuÞg2ðvÞ: (3.23)

As we mentioned above, these polynomials give us the
physics not only at the orientifold point but also away from
it, for example, as in Eq. (4.74). We will discuss some of
these curves later when we study vector bundles.

3. Orientifold limit and duality chain

After having provided the algebrogeometric details of
the type IIB background, we now ask: what happens when
we allow k D3-branes to probe the orientifold point? The
orientifold action is similar to the one discussed earlier, and
the space involutions are done via the involution 
. The
type IIB manifold will be

M � Cres
ð�1ÞFL �� � 
 ; (3.24)

where Cres � ALE � P1. For the K3 case, 
 describes the
Nikulin involution of the form ðr; a; �Þ ¼ ð2; 2; 0Þ on the
K3 subspace of Cres (e.g., see Ref. [30] for more details).
Making two T dualities along the x4;5 directions [which is
the resolved P1 of the ALE fiber in Eq. (3.10)] will take us
to type I on the resolved cone Cres, which is then S dual to
heterotic on Cres.
The k D3-branes at the intersecting orientifold point

dualize to k small instantons wrapping the x4;5 two-cycle
of the ALE space on the heterotic side, hence, wrapping the
two-cycle of the resolved conifold. The resolved conifold
will support a non-Kähler metric with SUð3Þ structure.
Interestingly, as we will soon see, our construction then
brings us to the intrinsic torsion and G structures of
Ref. [33]. Recall that for a manifold with SUð3Þ structure,
we have the two conditions

0 ¼ dðe�2��Þ ¼ dðe�2� � JÞ; (3.25)

where J is the fundamental two-form, � is the holomor-
phic (3, 0) form, and � is the dilaton. The torsion H will
lie in

H 2 W3 �W4 �W5; (3.26)

where Wi are torsion classes that describe what type
of manifold we have [34]. In the absence of the probe
D3-branes, the heterotic dual Cres contains a topologically
noncompact K3 surface. Of course, this does not imply that
the metric Cres is conformally Kähler, and in the presence
of the D3-brane probes, the situation is even more differ-
ent. Before we describe the non-Kähler heterotic geometry,
we should ask what happens to the Spð2kÞ � Spð2kÞ gauge
symmetry on the heterotic side.
To do this, we will have to study the orientations

of various branes on the type IIB side. The two Z2 orienti-
fold transformations are generated by f1; gg and f1; hg,
where [35,36]:

g ¼ ð�1ÞFL �� � I45; h ¼ ð�1ÞFL �� � I89; (3.27)

where Iab denotes orbifold action along x
a;b. The Z2 � Z2

action can be suggestively rewritten as9We have also corrected a typo in Ref. [32].

GAUGE/GRAVITY DUALITY IN HETEROTIC STRING THEORY PHYSICAL REVIEW D 88, 066003 (2013)

066003-7



f1; gg � f1; hg ¼ f1; g; h; ghg
¼ f1; ð�1ÞFL �� � I45; ð�1ÞFL ��
� I89; I4589g

¼ f1; ð�1ÞFL �� � I45g � f1; I4589g: (3.28)

This implies the following relation:

R4

f1; gg � f1; hg ¼
R4

f1; I4589g � f1; ð�1ÞFL �� � I45g
� ALE

f1; ð�1ÞFL �� � I45g : (3.29)

Now recall that the warped ALE space is obtained pre-
cisely at a fixed point ð�2; �2Þ of the P1, i.e., we are taking
� in Eq. (3.12) to be an even function of ð�1; �1; c Þ. We
can now extend this orientifold action over the full six-
dimensional internal space. Thus, allowing a global struc-
ture of the form ALE � P1 leads to the space (3.24), i.e.,

Cres
f1; ð�1ÞFL �� � I45g : (3.30)

In a more general setting with a slightly different Z2 action
[26–28], the type IIB manifold is an orientifold of a com-
pact K3 manifold, related to Eq. (3.22).

T dualizing along x4;5 to type IIB, the orientifold actions
(3.27) transform into

ð�1ÞFL �� � I45 ! �;

ð�1ÞFL �� � I89 ! � � I4589;
(3.31)

where the former would lead to O9 planes and the latter
would lead to O5 planes. The two sets of D7-branes
become D9- and D5-branes, while the k probe D3-branes
become k D5-branes. Thus, we actually arrive at the type I
theory. This is the well-known Gimon–Polchinski system
[23], except there is an additional P1. The orientations of
various branes are given in Table II.

This can now be S dualized to the heterotic theory. An
S-duality transformationwill convert theD9/O9 system into
equivalent vector bundles, and the D5/O9 generically trans-
forms intoNS5-branes stuck to an orbifold plane. In the case
that the D5/O5 system has zero net charge, this will S
dualize to only an orbifold plane [37]. Geometrically, using
the fiber-wise duality, we expect to obtain heterotic on Cres,
as discussed in Ref. [38]. The final heterotic configuration is
now expressed in Table III and depicted in Fig. 3.
What about the heterotic gauge symmetry? There are two

kinds of gauge groups involved here: the type IIB Spð2kÞ �
Spð2kÞ pulled to the heterotic side by U dualities (including
the transformations in Ref. [38]) and the remnant of the
E8 � E8 gauge symmetry from the type IIB global symme-
try. For example, if we focus on a single probe D3-brane in
this background, the generic gauge group is Uð1Þ and not
Uð1Þ �Uð1Þ. At the orientifold intersection point, one
might expect the gauge symmetry to enhance to Spð2Þ �
Spð2Þ, but this is broken to Uð1Þ by quantum corrections.
The full theory is then given by an N ¼ 1 SCFT with a
Uð1Þ vector multiplet and a massless charged hypermultiplet
[35,36]. If we move a D3-brane along u ¼ x4 þ ix5 (the
ALE two-cycle), the massless charged hypermultiplet can
be interpreted as the monopole/dyon point for one of the
Spð2Þ groups. Similarly, moving the D3-brane along v ¼
x8 þ ix9 (the other ALE directions), the same massless
charged hypermultiplet may now be interpreted as the
monopole/dyon point of the other Spð2Þ gauge group.
Thus, the nonperturbative effects in this model convert the
monopole/dyon point of one Spð2Þ gauge group to the
monopole/dyon point of the other Spð2Þ gauge group.
One may expect similar behavior for the heterotic

NS5-branes obtained through our U-duality chain. The
discussion of the gauge symmetry in heterotic will appear
in Sec. IVC. Note, however, that the physics of type IIB
probe D3-branes must be a bit different from that of the
heterotic NS5-branes, although they share similar confin-
ing properties, since we expect LST to play a role in the
decoupling limit of the heterotic side [14].

TABLE II. Configuration from Table I after T dualizing along x4;5. Cres is the resolved conifold.

Direction 0 1 2 3 4 5 6 7 8 9

D9/O9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

D50=O50 ✓ ✓ ✓ ✓ � � ✓ ✓ � �
k D5s ✓ ✓ ✓ ✓ ✓ ✓ � � � �
Cres � � � � ✓ ✓ ✓ ✓ ✓ ✓

TABLE III. Configuration from Table II after a U-duality to heterotic. The orbifold 5-plane is denoted by Or5. The vector bundles
are not shown.

Direction 0 (x0) 1 (x1) 2 (x2) 3 (x3) 4 (�1) 5 (�1) 6 (�2) 7 (�2) 8 (r) 9 (c )

Or5=NS5 ✓ ✓ ✓ ✓ � � ✓ ✓ � �
k NS5s ✓ ✓ ✓ ✓ ✓ ✓ � � � �
Cres � � � � ✓ ✓ ✓ ✓ ✓ ✓
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IV. HETEROTIC DUALITY FRAME

Our next set of questions is related to each other.
The first question is how to find the supergravity solution
on the heterotic side with a large number k of NS5-branes
and small string coupling gs ! 0, with g2sk! 1. The
second question is the issue of supersymmetry. Since we
have NS5-brane sources on the resolved conifold, we need
to switch on torsion to preserve supersymmetry, which is
where the torsion classes Wi from Eq. (3.26) enter the
picture.

Let us start with finding the geometric part of the super-
gravity solution; we will turn to the gauge bundle in
Sec. IVC. The setup was described in Table III and
depicted in Fig. 3. We have k small instantons/NS5-branes
along x0;1;2;3;4;5—wrapping the two-cycle of the ALE given
by x4;5—and another (small) set of NS5-branes oriented
along x0;1;2;3;6;7—i.e., wrapping the P1 given by x6;7—on
top an orbifold five-plane. See Table III for the mapping of
these coordinates to those in Eq. (3.10).

This is somewhat similar to the scenario studied in
Ref. [32], where the metric ansatz for this case was called
the ‘‘conformal K3 ansatz.’’ For the present case, we want
to use the resolved conifold metric (3.10), so the simplified
ansatz of Ref. [32] becomes

ds2 ¼ ds20123 þ�mds2ALE þ ds2fiber; e� ¼ �; (4.1)

where � is the warp factor and m is an integer. In our case,
m ¼ 1, which appears from the consistency conditions in
Ref. [33]. Clearly, because of the warp factor �, the
resolved conifold must have a non-Kähler metric on it in
this case.

Let us now see if we can derive the heterotic metric
directly from type IIB using duality chasing. In type IIB,

the moduli space is given by Eq. (3.15). Under two T
dualities followed by an S duality, the orbifolded ALE
space is replaced by just an ALE space. The metric ansatz
of the orbifolded space ALE=hð�1ÞFL �� � 
i can be
written as

ds2 ¼ F0dr
2 þ F1dc

2 þ F2d�
2
1 þ F3d�

2
1: (4.2)

This will solve the equations of motion if we also switch on
Bc�1

� b, along with a dilaton. Note that this B field is not

projected out by the orientifold action. The heterotic dual is
then given by

ds2 ¼ dr2 þ F1

F0

�
dc þ b

F1

d�1

�
2

þ 1

F0

�
1

F3

� b2

F1

�
d�2

1 þ
1

F2F0

d�21; (4.3)

with a dilaton that will be assumed to take the form � �
� logF0. Note that the metric (4.3) has a fibration structure
somewhat similar to the fibration structure in Eq. (3.10).
The fibration can be made exactly as in Eq. (3.10) if we
make the warp factors functions of ð�1; rÞ. The Busher
rules do not actually allow this, but there are more refined
T duality rules given in Ref. [39].
The ALE space that we have here appears as cross

sections at a fixed point of the P1 that is parameterized
by x6;7 ¼ ð�2; �2Þ, just as in the metric (3.13). The P1

fibration should then convert Eq. (3.13) to Eq. (3.10). In
the same vein, we will then take the following as building
blocks for the background metric:

ds245 �
1

F0

�
1

F3

� b2

F1

�
d�2

1 þ
1

F2F0

d�21;

ds267 � ds2fiber;

ds289 � dr2 þ F1

F0

�
dc þ b

F1

d�1

�
2

þ F5

�
dc þ b

F1

d�1

�
d�2; (4.4)

where Fi are functions of ð�1; rÞ. The k small instantons
along x0;1;2;3;4;5 and the other NS5-=Or5-branes/planes
make the background more complicated. Let us assume
that the two sets of 5-branes come with warp factors
hi ¼ hiðx8; x9Þ, with i ¼ 1, 2, such that h1 denotes the
warp factor for k small instantons and h2 denotes the
warp factor for the NS5=Or5-branes/planes.

10 This gives
the geometric background

X 0123

X 45

X 67

k small instantons

Heterotic five−branes
at a fixed orbifold−plane

FIG. 3 (color online). The orientations of the NS5-branes on
the heterotic side. The k D3-branes become heterotic NS5-
branes which we refer them as k small instantons here. One
set of type IIB D7/O7 branes/planes becomes the heterotic gauge
bundle, while the other set generically becomes another set of
NS5-branes on an orbifold plane. In the charge canceled scenario
for the second set of D7/O7 branes/planes, which we will
concentrate on in this paper, the heterotic dual is just the orbifold
five-plane with no NS5-branes on top.

10This can be seen from the type I picture more clearly. If we
have N2 D5-branes and N1 O5-planes in type I, then h2 will be
proportional to the difference, i.e., h2 / 1þOðN2 � N1Þ, since
the net D5 charge ðN2 � N1Þ gives the number of NS5-branes in
the heterotic picture.
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ds2 ¼ ds20123 þ h2ðds245 þ h1ds
2
89Þ þ h1ds

2
67;

T ðlÞ
abi ¼ cl�abik@khl;

(4.5)

where the T ðlÞ
abi are torsion polynomials, cl are constants,

and ða; bÞ runs over (4, 5) and (6, 7) with i ¼ ð8; 9Þ. The �
tensor is related to the volume form on ALE. Note that if

we make h1 ¼ 1 (i.e., remove all the small instantons) and

set � ¼ h2, then we reproduce Eq. (4.1), so our starting

ansatz (4.2) is consistent with this limit. For generic

choices of h1, the metric in Eq. (4.5) is non-Kähler, as

we will see below.
We find it useful to parameterize the background as

ds2 ¼ ds20123 þ h2ðds245 þ h1ds
2
89Þ þ h1ds

2
67

¼ ds20123 þ h2½a1d�2
1 þ a2d�

2
1 þ h1dr

2 þ h1a3ðdc þ a4d�1Þ2	 þ h1ða5d�22 þ a6d�
2
2Þ þ h1h2a7ðdc þ a4d�1Þd�2

¼ ds20123 þ h1h2dr
2 þ h1h2a3

�
dc þ a4d�1 þ a7

2a3
d�2

�
2 þ h2a2

�
d�21 þ

a1
a2

d�2
1

�

þ h1a5

�
d�22 þ

1

a5

�
a6 � a27h2

4a3

�
d�2

2

�
; (4.6)

where a1 through a4 depend on ð�1; rÞ, a5 through a7 depend on ð�i; rÞ, and a1 through a4 are given by

a1 ¼ 1

F0

�
1

F3

� b2

F1

�
; a2 ¼ 1

F2F0

; a3 ¼ F1

F0

; a4 ¼ b

F1

: (4.7)

a5 through a7 will be related to the warp factors h1 and h2
via the torsional equations below, where we will use
N ¼ 1 supersymmetry to impose additional relations
between the metric factors and the torsion.

As one would expect, this metric is somewhat similar
to the ones that we considered in Ref. [2] and in Ref. [3].
The difference here is that we also have a set of
NS5=Or5-branes/planes. The ultimate question would be
what happens if one performs a geometric transition; but
first we need to fully understand the solution before we can
perform a geometric transition.

A. Supersymmetry and torsion classes

We will start by rewriting Eq. (4.6) as

ds2 ¼ ds20123 þH2dr
2 þH1ðdc þ c4d�1 þ c7d�2Þ2

þH3ðd�21 þ c21d�
2
1Þ þH4ðd�22 þ c25d�

2
2Þ (4.8)

but now with one crucial difference from Eq. (4.6): we will
be away from the orientifold point. This aspect has already
been addressed in Fig. 2, where the orientifold regimes
were depicted by the boxes marked A, C, and D. The
metric (4.6) is derived in this regime. However, we can
go to a more generic setup, marked by boxes G and H in
Fig. 2, where we are no longer restricted by the type I
orientifold constraints.

In this regime, we can allow Hi to depend only r while
the ci depend on �1 and �2. Note that none of the parame-
ters depend on ð�1; �2; c Þ, which is important since we
will perform three T dualities along these directions to
study the mirror later in this paper. Therefore, to proceed,
we choose the following vielbein [40]:

e1¼
ffiffiffiffiffiffi
H3

p ðcosc 1d�1þsinc 1c1d�1Þ;
e2¼

ffiffiffiffiffiffi
H3

p ð�sinc 1d�1þcosc 1c1d�1Þ;
e3¼

ffiffiffiffiffiffi
H4

p ðcosc 2d�2þsinc 2c5d�2Þ;
e4¼

ffiffiffiffiffiffi
H4

p ð�sinc 2d�2þcosc 2c5d�2Þ;
e5¼

ffiffiffiffiffiffi
H1

p ðdc þc4d�1þc7d�2Þ; e6¼
ffiffiffiffiffiffi
H2

p
dr:

(4.9)

This choice suggests a fundamental two-form:

J ¼ e1 ^ e2 þ e3 ^ e4 þ e5 ^ e6

¼ H3c1d�1 ^ d�1 þH4c5d�2 ^ d�2

þ ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p ðdc þ c4d�1 þ c7d�2Þ ^ dr: (4.10)

The torsion H then follows from supersymmetry:11

H ¼ �e2� � dðe�2�JÞ � 2 � d� ^ J � �dJ; (4.11)

along with a dilaton� that generically may be a function of
the internal coordinates ðr; �1; �2Þ.
The torsion is not closed and must additionally satisfy

the Bianchi identity:

dH ¼ sourcesþ �0
�
trðRþ ^ RþÞ � 1

30
trðF ^ FÞ

�

� �0
�
trðRþ ^ RþÞ � 1

30
trð ~F ^ ~FÞ

�
; (4.12)

11Note that the sign for H follows the convention of Ref. [41]
which, in turn, differs from the sign choice of Ref. [9].
Additionally, our choice of the dilaton � is �4 times the choice
of the dilaton in Ref. [41].
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where by sources we mean contributions from all the NS5-
branes. The second equality in Eq. (4.12) is an alternative
way to view the background where the sources are directly
absorbed into the definition of the vector bundle (i.e.,
viewing the NS5-branes as small instantons of the heterotic
gauge theory). We will use the latter interpretation for the
background throughout the paper.

Interestingly, both from our choice of absorbing the
sources into the definition of the vector bundle (4.12) and
from the torsion (4.11), it is easy to argue that the total
scalar potential of the effective four-dimensional theory,
obtained by compactification, is given by the following
expression [41]:

V ¼ � 1

2

Z
e�2�

�
H þ 1

2
e2� � dðe�2�JÞ

�
^ �

�
H þ 1

2
e2� � dðe�2�JÞ

�
(4.13)

plus a D term. The fact that extra 5-brane sources do not break any supersymmetry is related to the concept of generalized
calibration from Ref. [33]: unbroken supersymmetry is restored by 5-branes wrapping the two-cycle that is calibrated by
the same invariant form as the one calibrating the solution involving the full backreactions. This way, the potential V would
be exactly zero for the background satisfying Eq. (4.11). Note that although the vanishing of the potential (4.13) is
necessary to have supersymmetry preserved, it is not sufficient, so we will show the vanishing of the F and the D terms
directly.12

Now, using the torsional equation (4.11), we find

H ¼ ð2B6�A1ÞH4

ffiffiffiffiffiffi
H1

p
c5d�2 ^ d�2 ^ dc � ððA1� 2B6ÞH4

ffiffiffiffiffiffi
H1

p
c5c4� 2ðB1 cosc 1þB2 sinc 1ÞH4

ffiffiffiffiffiffi
H3

p
c1c5Þd�2

^ d�2 ^ d�1� ðA2� 2B6ÞH3

ffiffiffiffiffiffi
H1

p
c1d�1 ^ d�1 ^ dc � ððA2� 2B6ÞH3

ffiffiffiffiffiffi
H1

p
c1c7

� ðA4þ 2B3 cosc 2� 2B4 sinc 2ÞH3

ffiffiffiffiffiffi
H4

p
c1c5Þd�1 ^ d�1 ^ d�2� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1H2H4

p ðB4 cosc 2þB3 sinc 2Þd�2
^ ðdc þ c4d�1þ c7d�2Þ ^ dr� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1H2H4

p ðB4 sinc 2þB3 cosc 2Þc5d�2 ^ ðdc þ c4d�1Þ ^ dr

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1H2H3

p ðB1 sinc 1�B2 cos c 1Þd�1 ^ ðdc þ c4d�1þ c7d�2Þ ^ dr

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1H2H3

p ðB1 cos c 1�B2 sinc 1Þc1d�1 ^ ðdc þ c7d�2Þ ^ dr� 2H3

ffiffiffiffiffiffi
H4

p ðB3 cosc 2�B3 sinc 2Þc1d�1
^ d�2 ^ d�1� 2H4

ffiffiffiffiffiffi
H3

p ðB1 sinc 1�B2 cos c 1Þc1d�1 ^ d�2 ^ d�2þB5

ffiffiffiffiffiffi
H2

p
dr^ ðc1d�1 ^ d�1� c5d�2 ^ d�2Þ

�H1c5c4�2
c1

d�1 ^ d�2 ^ ðdc þ c4d�1þ c7d�2Þ; (4.14)

where to preserve the isometry along c direction, we will take c 1 ¼ c 2 ¼ hc i
2 with hc i being a constant. Furthermore, we

will demand all the coefficients above to be completely independent of ð�1; �2; c Þ, although they could be functions of
ð�1; �2Þ in addition to being functions of r. The coefficients Ai are defined as

A1 ¼
ðH3c1Þr þ

ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p
c4�1

H3

ffiffiffiffiffiffi
H2

p
c1

; A2 ¼
ðH4c5Þr þ

ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p
c7�2

H4

ffiffiffiffiffiffi
H2

p
c5

; A3 ¼
ðH3c1Þ�2ffiffiffiffiffiffi
H4

p
H3c1

; A4 ¼
ðH1H2Þ�2
2H1H2

ffiffiffiffiffiffi
H4

p ; (4.15)

and the Bi coefficients are defined as

B1 ¼
�
��1

sin c 1ffiffiffiffiffiffi
H3

p
c1

þ��1 cos c 1ffiffiffiffiffiffi
H3

p ��c sin c 1c4ffiffiffiffiffiffiffiffiffiffiffiffi
H1H3

p
c1

�
; B2 ¼

�
��1

cos c 1ffiffiffiffiffiffi
H3

p
c1

���1 sin c 1ffiffiffiffiffiffi
H3

p ��c cos c 1c4ffiffiffiffiffiffiffiffiffiffiffiffi
H1H3

p
c1

�
;

B3 ¼
�
��2

sin c 2ffiffiffiffiffiffi
H4

p
c5

þ��2 cos c 2ffiffiffiffiffiffi
H4

p ��c sin c 2c7ffiffiffiffiffiffiffiffiffiffiffiffi
H1H4

p
c5

�
; B4 ¼

�
��2

cos c 2ffiffiffiffiffiffi
H4

p
c5

���2 sin c 2ffiffiffiffiffiffi
H4

p ��c cos c 2c7ffiffiffiffiffiffiffiffiffiffiffiffi
H1H4

p
c5

�
;

B5 ¼
�cffiffiffiffiffiffi
H1

p ; B6 ¼ �rffiffiffiffiffiffi
H2

p :

(4.16)

12Indeed, a contradiction was shown in Ref. [42], where imaginary self-dual fluxes were switched on to break supersymmetry without
generating a potential.
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The subscript on f�, where � is a coordinate, means derivative @�f. The torsion contains all the information of the
heterotic 5-branes as well as information about the vector bundle via the relation (4.12). From above, we also see that the
torsion has the following nonzero components13:

H �1�2�1
; H �1�2�2

; H �1�1�2
; H �1�1r; H �1�2r; H �1�2c ; H �1c r; H �2�1�2

;

H �2�1r; H �2�2c ; H �2�2r; H �2c r; H �1�2r; H �1c r; H �2c r:
(4.17)

All the 5-brane components of the torsion will receive Oð�00Þ contributions from the sources in addition to the Oð�0Þ
anomaly term. All other components will only have theOð�0Þ anomaly term. These can be worked out for the generic case.
In Sec. IVC we will study a scenario—with the torsional components as functions of the radial coordinate r only—where
the Bianchi identity to Oð�0Þ will be satisfied by switching on vector bundles on the internal manifold.

Next, we note the relation to the torsion classes in Eq. (3.26). They are given by

W1 ¼
c4�2

� c7�1
� ðc4c c7 � c7c c4Þ þ ic4�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2H3H4

p

W4 ¼ 1

4

�
1

c1H3

ððc1H3Þrdrþ ðc1H3Þcdc þ ðc1H3Þ�2
d�2 þ ðc1H3Þ�2d�2Þ þ

1

c5H4

ððc5H4Þrdrþ ðc5H4Þc dc Þ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p
�
ð ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p Þc ðc4d�1 þ c7d�2 þ 2dc Þ þ ð ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p Þ�2

�
dc þ c4d�1

c7
þ 2d�2

�
þ ð ffiffiffiffiffiffiffiffiffiffiffiffi

H1H2

p Þ�2d�2
�

þ ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p
dr

�
c7�2
H4c5

þ c4�1
H3c1

��

ReW5 ¼ 1

12

8<
: 4ffiffiffiffiffiffiffiffiffiffiffiffi

H3H4

p
�
1

2
ð ffiffiffiffiffiffiffiffiffiffiffiffi
H3H4

p Þrdrþ ð
ffiffiffiffiffiffiffiffiffiffiffiffi
H3H4

p Þc dc þ ð
ffiffiffiffiffiffiffiffiffiffiffiffi
H3H4

p Þ�2
d�2 þ ð

ffiffiffiffiffiffiffiffiffiffiffiffi
H3H4

p Þ�2d�2
�

þ 2ð ffiffiffiffiffiffiffiffi
H1r

p
drþ ffiffiffiffiffiffiffiffiffiffiffi

H1�2

p
d�2 þ ffiffiffiffiffiffiffiffiffiffi

H1�2

p
d�2 þ ffiffiffiffiffiffiffiffiffi

H1c

p
dc Þffiffiffiffiffiffi

H1

p þ 2ð ffiffiffiffiffiffiffiffiffiffiffi
H2�2

p
d�2 þ ffiffiffiffiffiffiffiffiffiffi

H2�2

p
d�2 þ ffiffiffiffiffiffiffiffiffi

H2c

p
dc Þffiffiffiffiffiffi

H2

p � 2

ffiffiffiffiffiffi
H2

H1

s
dr

9=
;;

(4.18)

and we can similarly determine the W2 torsion class from above.14 In the language of torsion classes, the supersymmetry
conditions can be written as15

W1 ¼ W2 ¼ 0; 2W4 ¼ ReW5: (4.19)

Next, we will find solutions to these conditions.

B. Infinite class of solutions

Some recent studies (for example, Ref. [4]) have found similar types of backgrounds of heterotic 5-branes wrapped on a
resolved conifold. What we will find here is that there is a huge class of solutions related to various possible LSTs [14] on
the heterotic 5-branes. The story then is similar to what we encountered in the SOð32Þ case [3]: there is an infinite class of
LSTs. A small subset of these theories are dual to geometric backgrounds of the type studied in Refs. [2,3,6]. Most of these
theories will be dual to nongeometric backgrounds [2,3].

13Note that the heterotic torsion comes from two different sources in type IIB. The first one is from the BRR fields that have one leg
along the orientifolding direction (so that they are not projected out by the orientifold operation). The second one is from the axion and
four-form fields that survive the orientifold operation. Some part of the torsion, along with the size of the two-sphere on which we have
the wrapped heterotic 5-branes, will eventually be responsible for generating the renormalization group flow in the theory. This will be
clearer from the gravity dual. Furthermore, the powerful machinery of the torsion classes that we are going to use to justify many of the
subsequent results can be compared with the interesting work of Ref. [43]. It would certainly be interesting to make a precise
comparison with the results of Ref. [43], but we think that this comparison would be more appropriately addressed by a separate work.
14The expression for W2 is very long, so we will not write it explicitly.
15In our conventions, the torsion classes W 4 and W 5 of Ref. [41] are related to W4 and W5 of Eq. (4.18) as W 4 ¼ �2W4 and
W 5 ¼ 2W5. This means that the supersymmetry condition 2W 4 þW 5 ¼ 0 will become 2W4 �W5 ¼ 0, which is Eq. (4.19) above.
Furthermore, W 4 � 4d�, where � is the dilaton. In our conventions, the dilaton � is � ¼ �4� (see Footnote 11); this implies that
d� ¼ 2W4. For more details, see Appendix E.
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Keeping this in mind, let us now fix the starting coef-
ficients F0; . . . ; F3 in Eq. (4.2) assuming we are away from
the orientifold point as discussed earlier and independent
of ð�1; �2; c Þ coordinates. A hint may come from the
heterotic metric (4.3) because we expect this to be a warped
ALE space of the form

ds2 ¼ dr2 þ a3ðdc þ cos �1d�1Þ2

þ r2f2

6
ðd�21 þ sin 2�1d�

2
1Þ; (4.20)

where a3 and f are generic functions for which the values
will be determined later.16 This suggests that we choose

F0 ¼ b

a3 cos�1
; F1 ¼ b

cos �1
;

F2 ¼ 6a3 cos�1
br2f2

; F3 ¼ 6a3 cos�1
6ba3cos

2�1 þ br2f2sin 2�1
;

(4.21)

which implies

a1¼ r2f2sin2�1
6

; a2¼ r2f2

6
; a4¼ cos�1; (4.22)

with a3 thus far unfixed. Note that the values for Fi (or,
equivalently, for ai) cannot be determined from T duality
since that would require they be independent of ð�1; �1Þ.

Now looking at the resolved conifold metric of Eq. (4.6),
we can argue from the fibrational structure for dc that

a4 ¼ cos �1; a7 ¼ 2a3 cos�2; (4.23)

where the a4 is consistent with the value quoted in
Eq. (4.22). Similarly, the dependence of the background
(4.6) on the resolution parameter a2 implies we should set

a2h2 � a5h1 ¼ a2: (4.24)

Since a is a constant, it is easy to see that

a5 ¼ h2a2 � a2

h1
� �

h1
; a6 � a27h2

4a3
¼ �sin 2�2

h1
;

a1 ¼ ð�þ a2Þsin 2�1
h2

: (4.25)

Comparing a1 from above with a1 from Eq. (4.22) and
using h2 ¼ 1 when there are no NS5-branes on top of the
orbifold five plane (see Footnote 10), we see that

h2 ¼ 6ð�þ a2Þ
r2f2

¼ 1; (4.26)

which implies that

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð�þ a2Þp

r
; (4.27)

where � and a3 are still undetermined functions of r.
Defining

G1 � e��H2; G2 � e��H1;

G3 � e��H3; G4 � e��H4;
(4.28)

the supersymmetry condition (4.19) becomes

5

6

�
G3r

G3

þ G4r

G4

�
� 1

6

G2r

G2

þ 3

2
�r

¼
�
1

G3

þ 1

G4

� ffiffiffiffiffiffiffiffiffiffiffiffi
G1G2

q
� 1

3

ffiffiffiffiffiffi
G1

G2

s
: (4.29)

We already know thatH3 ¼ �þ a2 andH4 ¼ �, and now
we find that

e� ¼ 4�

r2
; h1 ¼ 2�

r
ffiffiffiffiffi
a3
p : (4.30)

We will also find it useful to define

f1ðrÞ � e��
h1a3
r2

; f2ðrÞ � e��h1; (4.31)

which, using Eq. (4.30), we see satisfy17

a3 ¼ 4r2f21; f1 ¼ 1

4f2
: (4.32)

Then the supersymmetry equation (4.29) becomes

@�

@r
�
2
41

2
@
@rðloga3Þ� 2ffiffiffiffi

a3
p þ 1

r ð11þ 12�
�þa2Þ

4þ 5�
�þa2

3
5�¼ 0: (4.33)

Note that in the limit that a is much smaller than any
other scale in the theory, the differential equation (4.33)
simplifies to

r
@�

@r
�
�
r

18

@ðloga3Þ
@r

� 2r

9
ffiffiffiffiffi
a3
p þ23

9

�
�þOða2Þ¼0; (4.34)

where the Oða2Þ terms involve powers of � and its first
derivative.18 The solution for � from Eq. (4.34) then is

�ðrÞ ¼ �0 exp
Z

dr

�
1

18

@ðlog a3Þ
@r

� 2

9
ffiffiffiffiffi
a3
p þ 23

9r

�
;

r > 0; (4.35)

where �0 is a constant. Then the background metric is

16The radial coordinate chosen here is not quite the same as in
Eq. (3.13). Abusing notation, if we call the radial coordinate in
Eq. (3.13) ~r, then r ¼ R ffiffiffiffiffi

�0
p

d~r. Similarly, f2 in Eq. (4.20) can be
related to � in Eq. (3.13).

17See Appendix D for a proof for Eqs. (4.30) and (4.32).
18In fact, the Oða2Þ term is given by � a2

9 ½a3r2a3
� 2ffiffiffiffi

a3
p þ 11

r �
4 @
@r ðlog�Þ	. This is followed by Oða4Þ terms as can be derived

from Eq. (4.33). It is now easy to see that the nth term can be

derived from ð1þ a2

�Þ�1½ð1þ 4a2

9�Þ @@r ðlog�Þ � 12�
r 	; therefore, no

higher powers of �r appear in the series.
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ds2 ¼ ds20123 þ
2�

r
ffiffiffiffiffi
a3
p dr2 þ 2�

ffiffiffiffiffi
a3
p
r
ðdc þ cos �1d�1

þ cos �2d�2Þ2 þ ð�þ a2Þðd�21 þ sin 2�1d�
2
1Þ

þ �ðd�22 þ sin 2�2d�
2
2Þ: (4.36)

Calculating the torsion classesW1 andW2 from Eq. (4.18),
we see that they vanish and, therefore, that the manifold
admits a complex structure.

The heterotic torsion can now be read off fromEq. (4.14).
This simplifies quite a bit in the limit where all the Hi in
Eq. (4.8) are just functions of the radial coordinate r because
all Bi ¼ 0 except B6 in Eq. (4.15). The result is

H ¼�
ffiffiffiffiffiffi
H1

H2

s
ðG1sin�2d�2^d�2þG2sin�1d�1^d�1Þ^ec

¼� ffiffiffiffiffi
a3
p �

@�

@r
�2�

r

�
ðsin�2d�2^d�2

þsin�1d�1^d�1Þ^ec ; (4.37)

where ec � ðdc þ cos �1d�1 þ cos �2d�2Þ and we see

that the torsion is asymmetric over the two-spheres because
of the G1 and G2 factors. The precise form shows an
amazing simplification,19 and to Oða2Þ G1 ¼ G2 with the
simplified form being

G1 ¼ H4

H3

ð ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p þ 2�rH3 �H3rÞ ¼ @�

@r
� 2�

r

G2 ¼ H3

H4

ð ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p þ 2�rH4 �H4rÞ ¼ @�

@r
� 2�

r
:

(4.38)

A simpleway to relate� and a3 is to relate h1 to the 5-brane
harmonic function—though when r and a are small, we
will instead use the 3-brane harmonic function since the k
NS5-branes will wrap a collapsed cycle, appearing as
(3þ 1)-dimensional sources—i.e.

h1 ¼ 2�

r
ffiffiffiffiffi
a3
p � f3ðrÞ

�
1þ �0k

r2

�
; (4.39)

with f3 being a dimensionless function. Plugging this into
the supersymmetry condition (4.29) leads to the following
differential equation for a3:

da3
dr

�
1þ 3a2r

4f3
ffiffiffiffiffi
a3
p ðe0 þ r2Þ

�
þ

ffiffiffiffiffi
a3
p
2
� a3

2r

�
7r2 þ 16e0
r2 þ e0

�

þ 9

4

f3ra3
f3
þ a2

�
1þ 2f3r

ffiffiffiffiffi
a3
p

f3
�

ffiffiffiffiffi
a3
p
2r

�
7r2 þ 15e0
r2 þ e0

��

� r

f3ðr2 þ e0Þ
¼ 0; (4.40)

where we have defined

e0 � �0k: (4.41)

In the limit that a2 
 �0, then Eq. (4.40) simplifies to

da3
dr
þ

ffiffiffiffiffi
a3
p
2
� a3

2r

�
7r2 þ 16e0
r2 þ e0

�
þ 9

4

f3ra3
f3
þOða2Þ ¼ 0;

(4.42)

for which the solution can be easily determined if the
functional form for f3 is known. In general, however, to
solve Eq. (4.40), we will analyze different choices for f3.
Case I: f3 ¼ 1
This is the simplest case where h1 in Eq. (4.39) is exactly

the 5-brane harmonic function for k coincident 5-branes.
In this case, a3 will satisfy

da3
dr

�
1þ 3a2r

4
ffiffiffiffiffi
a3
p ðr2 þ e0Þ

�
þ

ffiffiffiffiffi
a3
p
2
� a3

2r

�7þ 16e0
r2

1þ e0
r2

�

þ a2r

r2 þ e0

�
1�

ffiffiffiffiffi
a3
p
2r

�
7r2 þ 15e0
r2 þ e0

��
¼ 0; (4.43)

for which the solution will determine the full metric
of the system. In the limit a2 
 �0, this reduces to
Eq. (4.42), with f3r � @rf3 ¼ 0, of course. In fact, a3ðrÞ
can be solved for exactly, and, in the limit of small a2, the
result is

a3ðrÞ ¼ r2

ð192Þ2
�

9r4F 1;2

e7=80 ðr2 þ e0Þ9=8
�

�
9

ffiffiffiffi
	
p

�ð3=8Þr3
e3=80 ðr2 þ e0Þ9=8

þ 8�ð7=8Þð4e0 þ 13r2Þ
e0 þ r2

��
2 þOða2Þ; (4.44)

where

F 1;2 � 2F1

�
1

2
;
7

8
;
3

2
;� r2

e0

�
: (4.45)

We can also now solve for �, which gives

�ðrÞ ¼ r2

384

�
1þ e0

r2

��
9r4F 1;2

e7=80 ðr2 þ e0Þ9=8

�
�
9

ffiffiffiffi
	
p

�ð3=8Þr3
e3=80 ðr2 þ e0Þ9=8

þ 8�ð7=8Þð4e0 þ 13r2Þ
e0 þ r2

��
:

(4.46)

The small r and large r behaviors of � and a3 are given by

e0
24
 ���0 r

� ���!r!1 r2
6

(4.47)

r2

144
 ���0 r

a3 ���!r!1 r29 ; (4.48)

19Consistent with the fact that for both the conifold as well as
the resolved conifold, where � ¼ r2

6 and a3 ¼ r2

9 , the torsion
(4.37) vanishes, as expected for a Calabi–Yau geometry.
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which would imply that at r ¼ 0, the two two-spheres have
radii e0

24 and
e0
24þ a2.20 So, the gravity dual should be given

by a warped resolved deformed conifold with torsion.21

However, as mentioned earlier, very close to the origin
r! 0 and in the limit that a2 is small, the k 5-branes are
wrapped on an almost vanishing cycle and therefore appear
as 3-brane sources. While the ansatz (4.39) suffices in a
delocalized limit, in the localized limit, a better ansatz
would be to use a 3-brane harmonic function rather than
5-brane harmonic function—i.e., to replace the e0

r2
term in

Eq. (4.39) with�0 e0
r4
. Indeed, we can also replace our above

ansatz (4.39) with a more generic one of the form

h1 � 1þ e0
r2
þ �0e0

r4
; (4.49)

where we see that for r� ffiffiffiffiffi
�0
p

, we recover the warp factor

(4.39), while for small r, r
 ffiffiffiffiffi
�0
p

, this will convert to the
localized 3-brane ansatz. Taking this into account converts
Eq. (4.43) to the following differential equation for a3
(with �0 ¼ 1 for convenience) near r! 0:

da3
dr
þ

ffiffiffiffiffi
a3
p
2
� a3

2r

�
7r4 þ 25e0
r4 þ e0

�
þOða2Þ ¼ 0: (4.50)

As expected, the large r behavior is unaffected, but the
small r behavior does change. Now,

a3 ���!r!0 r2

441
; ����!r!0 e0

42r2
; (4.51)

which means that the dilaton diverges at the origin and that
the metric is affected by the branes near the origin.
Naturally, this change also affects the torsion and the
vector bundle, as we will see later.

To complete the story, of course, we still must find a
vector bundle that satisfies the Donaldson–Uhlenbeck–Yau
equations and the Bianchi identity, which we postpone
until Sec. IVC.

Case II: f3 ¼ f2 � r
2
ffiffiffiffi
a3
p

In this case, the dilaton and � are simply

e� ¼ 1þ �0k
r2
þO

�
1

r3

�
; �ðrÞ ¼ r2 þ e0

4
: (4.52)

As in case I, the two two-cycles at r ¼ 0 will have sizes e0
4

and e0
4 þ a2, until we replace the 5-brane harmonic func-

tion with the 3-brane harmonic function. Thus, the gravity
dual should also be a resolved warped deformed conifold
with torsion.

The differential equation for a3, Eq. (4.40), becomes

da3
dr

�
1þ a2

�

�
� 4

ffiffiffiffiffi
a3
p þ 2a3

r

�
5r2 þ 23e0
r2 þ e0

�
� 16a2

r2 þ e0

�
� ffiffiffiffiffi

a3
p � a3

2r

�
3r2 þ 11e0
r2 þ e0

��
¼ 0: (4.53)

Again, this equation can be solved exactly in terms of
Appell hypergeometric functions, but for simplicity we
will focus on the small a2 limit. In this case, the a3
equation (4.53) is

da3
dr
� 4

ffiffiffiffiffi
a3
p þ 2a3

r

�
5r2 þ 23e0
r2 þ e0

�
þOða2Þ ¼ 0; (4.54)

which appears quite different from the a2 
 �0 case for
the first scenario. The value for a3ðrÞ at zeroth order in a2

can now be written as

a3ðrÞ ¼ r2

ð168Þ2
�
1þ e0

r2

�
2
�
1þ 495

�
e0
r2

�
10 þ 7425

2

�
e0
r2

�
9

þ 12045

�
e0
r2

�
8 þ 87945

4

�
e0
r2

�
7 þ 24519

�
e0
r2

�
6

þ 33789

2

�
e0
r2

�
5 þ 47619

7

�
e0
r2

�
4 þ 75339

56

�
e0
r2

�
3

þ 55

�
e0
r2

�
2 � 11

2

�
e0
r2

�
� 495

�
e0
r2

�
3
�
1þ e0

r2

�
8

� log

�
1þ r2

e0

��
2 þOða2Þ:

Surprisingly, the leading behavior at both large and small r
is precisely the same as in case I!
To get a better feel for how the metric behaves, let us

define a function XðrÞ in the following way:

XðrÞ ¼ 11

2

�
e0
r2

�
� 495

�
e0
r2

�
10 � 7425

2

�
e0
r2

�
9

� 12045

�
e0
r2

�
8 � 87945

4

�
e0
r2

�
7 � 24519

�
e0
r2

�
6

� 33789

2

�
e0
r2

�
5 � 47619

7

�
e0
r2

�
4 � 75339

56

�
e0
r2

�
3

� 55

�
e0
r2

�
2 þ 495

�
e0
r2

�
3
�
1þ e0

r2

�
8
log

�
1þ r2

e0

�
;

(4.55)

using which we can define another function F5ðrÞ as

F5ðrÞ � 1

168
� 1

168

�
XðrÞ þ e0XðrÞ

r2
� e0

r2

�
: (4.56)

With these definitions, we can write the metric as

20In fact, to state the latter radius, we really need to know � at
order a2, not just a0. This can easily be done by solving (4.43) to
the next order.
21Interestingly, this case somewhat resembles the type IIB case
studied in [44], where the authors studied the wrapped five-brane
scenario with closed three-form fluxes. Additionally one may
refer to [45,46] where the d ¼ 4 example studied therein fits into
one of our large class of models.
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ds2 ¼ ds20123 þ
�
1þ e0

r2

��
dr2

2F5

þ r2

2
F5ðdc þ cos�1d�1

þ cos �2d�2Þ2 þ
�
r2

4
þ ~a2

�
ðd�21 þ sin 2�1d�

2
1Þ

þ r2

4
ðd�22 þ sin 2�2d�

2
2Þ
�
; (4.57)

where ~a � 2affiffiffiffiffiffiffiffi
1þe0

r2

p and the behavior of F5ðrÞ is plotted in

Fig. 4. It is interesting that even for very large r, the
manifold does not quite become a Calabi–Yau resolved
conifold as the coefficients differ (see Ref. [47] for details
on the Calabi–Yau resolved conifold).

As in case I, to be careful about the limit that r! 0, we
should employ the 3-brane harmonic function instead of
the 5-brane harmonic function behavior using similar point
of view as employed for case I. This also applies to the
string coupling and to �, which will now be (with �0 ¼ 1)

e� ¼ 1þ e0
r4

; � ¼ r2

4
þ e0

4r2
: (4.58)

Then the equation for a3 (4.54) becomes

da3
dr
� 4

ffiffiffiffiffi
a3
p þ 2a3

r

�
5r4 þ 41e0
r4 þ e0

�
þOða2Þ ¼ 0: (4.59)

The components of the torsion will blow up near the origin
because of the sources but will asymptote to a constant
value for large r.

We will solve for the vector bundle in Sec. IVC.
Case III: f3 � f2
Now the equation for a3 is simply Eq. (4.40). In the limit

with small resolution parameter, Eq. (4.42) tells us that

jf3rj< jf3j; (4.60)

where the inequality should be viewed order by order in a 1
r

expansion; the result will be similar to case I studied above.
For a class of examples in this case, we consider a form

for h1 that has the following piecewise behavior:

h1 ¼

8>>><
>>>:
1þ e0

r2

�
1þ b

r8

��1
; r8 � ~b

e0
r2

�
1þ ~b

r8

�
; r8 
 ~b;

(4.61)

where ~b
 b are two parameters defining the class.22

The ansatz (4.61) is similar to the one considered in
Ref. [4], where the r! 1 behavior was like case I studied
above. The difference is in the intermediate r behavior. The

equation for a3 in the intermediate region ~b
1
8 
 r
 b

1
8

becomes

da3
dr
þ

ffiffiffiffiffi
a3
p
2
� 2a3

r

�
4r8 � 5b

r8 þ b

�
þOða2Þ ¼ 0: (4.62)

Note that e0 does not appear in the a3 equation but does
appear in the definition of � because of the relation (4.61).
In the limit that a2 much smaller than any other scale in the
theory, the solution for a3 becomes

a3ðrÞ ¼
ðbþ r8Þ2

h
24c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ r8

8
p

� 6r6

b

�
1� 5

6

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ r8

b
8

q
D1;2

�i
2

576r10
;

(4.63)

where we have defined another hypergeometric function
D1;2 and a constant c in the following way:

D1;2� 2F1

�
1

8
;
3

4
;
7

4
;�r8

b

�
; c¼5�ð5=8Þ ��ð7=4Þ

24b3=8�ð5=8Þ : (4.64)

The large r behavior of a3 is consistent with our earlier
ansatz in Eq. (4.32), with leading behavior proportional to

r2. On the other hand, for ~b
1
8 
 r
 b

1
8, the leading be-

havior of a3ðrÞ is proportional to b3=2

r10
, as one might have

expected from our ansatz (4.61).
Once we know a3, we can readily get � from the ansatz

(4.61) and find

�ðrÞ ¼ e0r
2

24

�
24c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ r8

8
p

� 6r6

b

�
1� 5

6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r8

b

8

r
D1;2

��
:

(4.65)

� has the following asymptotics:

200 100 100 200
r

0.2

0.4

0.6

0.8

F5 r

FIG. 4 (color online). The behavior of the function F5ðrÞ
plotted with respect to the radial coordinate. Note that the F5

function asymptotes to 1
3 at large r, while there is an expected

singularity at the origin r ¼ 0. For the plot, we have chosen
e0 ¼ 10 in units of �0.

22Alternatively, we could have followed a consistent set of
conventions for h1 across the cases and instead defined f3 in
this of piecewise fashion. See Fig. 6 for details.
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�ðrÞj~b1=8
r
b1=8 ¼
5e0
48

	
�ð5=8Þ�ð7=4Þ

�ð1=4Þ
�
r8

b

�
1=4

�
�
1þ 1

8

�
r8

b

��
� 1

5

�
r8

b

�

þOðr11Þ

�ðrÞjr�b1=8 ¼
�ð7=4Þ
�ð3=4Þ

�
e0
18
� e0

99

�
b

r8

�
þ 10e0

1881

�
b

r8

�
2

� 20e0
5643

�
b

r8

�
3
�
þO

�
1

r32

�
: (4.66)

Since � is vanishing at small r, the background behaves
like a resolved conifold in this regime, but at large r,

r�b
1
8, both cycles attain finite sizes.

To simply encapsulate the metric behavior, we define
another dimensionless function f6ðrÞ as (see Fig. 5):

f6ðrÞ � r2
�
24c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ r8

8
p

� 6r6

b

�
1� 5

6

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r8

b

8

r
D1;2

��
;

(4.67)

which asymptotes to 8�ð7=4Þ
3�ð3=4Þ þOð 1

r8
Þ at large r. Then the

background metric for this case can be expressed as

ds2¼ds20123þ
e0
r2

�
dr2

1þ b
r8

þ r2

576

�
1þ b

r8

�
f26ðdc þcos�1d�1

þcos�2d�2Þ2þr2
�
f6
48
þa2

�
ðd�21þsin2�1d�

2
1Þ

þr2
�
f6
48

�
ðd�22þsin2�2d�

2
2Þ
�
; (4.68)

where for r� b
1
8 the metric resembles the one of Ref. [4]

at the leading order, albeit with a positive value for b. The
metric (4.68) does not cover the patches r! 0 and r! 1,

as the two asymptotes are given by the warp factor (4.61)
and the one studied for case I, respectively.

If we now consider the small r behavior, r
 ~b
1
8, the

equation for a3 becomes

da3
dr
þ

ffiffiffiffiffi
a3
p
2
� 2a3

r

�
4r8 þ 13~b

r8 þ ~b

�
þOða2Þ ¼ 0: (4.69)

The behavior of ða3;�; e�Þ near the origin r! 0 is then
given by

a3 ! r2

2304
þ r2

512

�
r8

~b

�
þ c1r

2

4096

�
r8

~b

�
3=2 þOðr16Þ

e� ! 13e0
96r2

þ e0
24r2

� ~b

r8

�
þ 3c1e0

256r2

�
r8

~b

�
1=2 þOðr6Þ

�! 13e0
384

þ e0
96

� ~b

r8

�
þ 3c1e0

1024

�
r8

~b

�
1=2 þOðr6Þ;

(4.70)

where c1 ¼
ffiffiffi
	
p

�ð3=8Þ
�ð7=8Þ . We see that the dilaton diverges in an

expected fashion.

C. Analysis of the vector bundles:
Global and local symmetries

Now that we have determined the background geometry,
we must find a suitable vector bundle. In heterotic theories
there are two sources of vector bundles related to the global
and the local symmetries. From the original F-theory per-
spective, the two symmetries are easy to see: the global
symmetries come from the intersecting system of D7/O7s,
and the local symmetries come from the probe D3-branes.
In the following we will determine these symmetries
explicitly.

1. Global symmetries and the torsional backgrounds

F-theory models have many enhanced global symmetry
points. In the absence of the second set ofD7/O7s in the type
IIB setup, there would be multiple points with constant
couplings [48,49]. One of the simplest ones is theD4 point,
leading to a SOð8Þ global symmetry [48]. One would then
think that, in the presence of the second set of D7/O7s, the
enhanced symmetry group would be given by theD4 �D4

point from Tate’s algorithm [50]. One might worry that
there would be tensionless strings at such a colliding D4

singularity [51], but this does not happen in our case
because the orbifold singularity associated with the genera-
tor gh in Eq. (3.27) hides half a unit of a BNS flux wrapping
the collapsed two-cycle (for example, see Ref. [52]).
Beyond this, the colliding D4 singularities actually do

not even survive the orientifolding operation that we per-
formed in earlier sections. What we get instead of colliding
D4 singularities is colliding A3 singularities, leading to a
Uð4Þ �Uð4Þ global symmetry. This is because the orienti-
fold projection is coupled with a gauge transformation, so
the surviving symmetry group is the subgroup of SOð8Þ
that commutes with this gauge transformation:

15 10 5 5 10 15
r

0.5

1.0

1.5

2.0

f6 r

FIG. 5 (color online). The behavior of the function f6ðrÞ for
case III that determines the metric (4.68). Note that the f6
function asymptotes to 8�ð7=4Þ

3�ð3=4Þ , while at the origin r ¼ 0, it

vanishes. Of course the behavior at the origin, as well as at large
r, will be different if we include Eq. (4.61). For simplicity we
have chosen b ¼ 100 in units of �0.
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D4

M 0
0 �M

� �
A3; (4.71)

where the 4� 4 matrix M is given by

M �

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

0
BBBBB@

1
CCCCCA: (4.72)

The adjoint hypermultiplet of SOð8Þ picks up a minus sign
when conjugated with the matrixM, leading to two hyper-
multiplets in the 6 of SUð4Þ. Thus, putting four D7 branes
on top of the O7 plane, and including the necessary Uð1Þ
factors, we get a Uð4Þ global symmetry. The full global
symmetry group at the constant coupling point is then
given by Uð4Þ4u �Uð4Þ4v.

Of course, if we arrange the branes slightly differently,
we can have other global symmetry groups. For example,
we could go to break to SUð2Þ8u � SUð2Þ8v by allowing the
7-branes to move in pairs [35,36], though this will no
longer correspond to constant coupling. This is exemplified
by the curve (3.22) with the choice given by Eq. (3.23). An
example of this would be the following choices:

fðu; vÞ ¼ ðu� u1ÞFðu; vÞ gðu; vÞ ¼ ðu� u1ÞGðu; vÞ;
(4.73)

where F and G are chosen not to have additional zeros at
u ¼ u1. In terms of the coefficients in Eq. (3.22), this is
equivalent to the following choices:

a11 ¼ b11 ¼ c11 ¼ d1 ¼ m11 ¼ n11 ¼ s11 ¼ p11

¼ q11 ¼ r1 � u1; ðA11;M11Þ � 0; (4.74)

with all other coefficients not equal to u1. The discriminant
locus will then be given by (the discriminant� should not be
confused with the parameter in the metric of the same name)

� ¼ ðu� u1Þ2½4ðu� u1ÞF3 þ 27G2	 � ðu� u1Þ2 ~�ðu; vÞ
(4.75)

so that we have only a pair of 7-branes together, resulting in a
classical Uð2Þ global symmetry [23]. This is the type of
singularity we will study in this paper.23

Of course, we expect that the variety of global symme-
tries that arise in the F-theory construction can be

reproduced by varying moduli on the heterotic side.
Actually verifying this, of course, is quite involved since
we have to satisfy both the Donaldson–Uhlenbeck–Yau
equations as well as the Bianchi identity:

Fab ¼ F �a �b ¼ ga
�bFa �b ¼ 0;

1

30
trF ^ F ¼ trRþ ^ Rþ � 1

�0
dH ;

(4.76)

where, again, Rþ is the Ricci two-form constructed from a
metric-compatible connection with torsion—the ‘‘plus’’
connection. When we have torsion, the dilaton is not
constant, and so on the type II side, we will not be at the
constant coupling point of the Gimon–Polchinski model.
The functional form for the axiodilaton would determine
the resulting positions of the branes and planes in this
scenario and therefore the gauge bundle.
Another reason this is challenging on the heterotic side

is because the global symmetry generically will also arise
from the orbifold 5-planes. This is different from the
SOð32Þ case studied earlier [2], where the global symme-
tries appeared only from the usual heterotic vector bundles
with appropriate Wilson lines. In our case, we expect part
of the non-Abelian global symmetry to appear from the
twisted sectors states of the orbifold.24

In this paper, we will study onlyUð2Þ global symmetries
arising from a nontrivial vector bundle and none from the
orbifold. This corresponds to an F-theory curve of the form
(4.73) with discriminant locus given by Eq. (4.75), leading
to a Uð2Þ �Uð1Þn symmetry. We then decouple the Uð1Þn
so that the heterotic global symmetry is just Uð2Þ, all
coming from the vector bundle and none from the orbifold
planes.25

We now work out an explicit example. We take the
metric ansatz (4.8) with c4 ¼ cos�1, c7 ¼ cos�2,
c1 ¼ sin �1, and c5 ¼ sin �2, and as before Hi only de-
pends on the radial coordinate r [we could just as well have
chosen the metric ansatz (4.36)]. The torsion polynomial
(4.37) then gives us

dH ¼ 1ffiffiffiffiffiffi
H2

p ðAde3 ^ e4 þ Bde1 ^ e2Þ ^ e5 ^ e6; (4.77)

where ei are the vielbeins (4.9), and Ad and Bd are
defined as23Of course, we could have moved in the opposite direction,

enhancing the global symmetry instead. For example, if we
modify Eq. (4.75) to

� ¼ ðu� u1Þ10ðv� v1Þ10 ~�ðu; vÞ;
such that the vanishing of ~�ðu; vÞ leads to no new enhanced
symmetry points [other than the Uð1Þ’s], then we could achieve
the full E8 � E8 global symmetry in our setup, though it is
believed that such a point does not occur along the constant
coupling branches of F theory (see, for example, Ref. [53]).

24Unfortunately, this non-Abelian enhancement is not visible
from string perturbation theory. An alternative way to see this
would be to dualize to a singular type IIA geometry, where the
symmetry enhancement could be computed using the techniques
of Refs. [54,55]. We thank Ashoke Sen for clarifying this point.
25Actually, there could still be a single localized Uð1Þ that
would be difficult to decouple. We will ignore this subtlety and
only consider a Uð2Þ bundle for simplicity.
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Ad � A
@

@r
log ðH4

ffiffiffiffiffiffi
H1

p Þ � Ar; Bd � B
@

@r
log ðH3

ffiffiffiffiffiffi
H1

p Þ � Br; (4.78)

with the subscript r being the derivative with respect to r, as before. The two functions A are B are now defined from the
torsion polynomial as

A ¼ � 2�rffiffiffiffiffiffi
H2

p þ H3r

H3

ffiffiffiffiffiffi
H2

p �
ffiffiffiffiffiffi
H1

p
H3

; B ¼ � 2�rffiffiffiffiffiffi
H2

p þ H4r

H4

ffiffiffiffiffiffi
H2

p �
ffiffiffiffiffiffi
H1

p
H4

: (4.79)

The Bianchi identity in Eq. (4.12) then implies that the rhs of Eq. (4.77) should have three contributions: one from the k
5-brane sources, one from trRþ ^ Rþ, and one from trF ^ F. The torsional connections have been worked out in
Appendix C. Using these, we obtain

TrRþ ^ Rþ ¼ ðR1e1 ^ e2 þ R2e3 ^ e4Þ ^ e5 ^ e6; (4.80)

where R1 and R2 are given by

R1 ¼ 3

2

��
8þ 6B

ffiffiffiffiffiffi
H2

p � 3H2

H3

þ B2H2
3 þ

H03
H1H3

��
2H02
H3

� BH02ffiffiffiffiffiffi
H2

p � 2H2H
0
3

H2
3

� 2
ffiffiffiffiffiffi
H2

p
B0
�

þ 4ð ffiffiffiffiffiffi
H2

p � AH4Þ
H3

4

ð2H2H
2
4A
0 � 2

ffiffiffiffiffiffi
H2

p
H02H4 þ AH2

4H
0
2 þ 2H3=2

2 H04Þ

þ 2

H2
1H

2
2H3

ðH2H
0
3 þH3ð2H02 þ B

ffiffiffiffiffiffi
H2

p
H03ÞÞðH1H

02
2 þH2ðH01H02 � 2H1H

00
2 ÞÞ

�
(4.81)

R2 ¼ 3

2

��
8þ 6A

ffiffiffiffiffiffi
H2

p � 3H2

H4

þ A2H2
4 þ

H04
H1H4

��
2H02
H4

� AH02ffiffiffiffiffiffi
H2

p � 2H2H
0
4

H2
4

� 2
ffiffiffiffiffiffi
H2

p
A0
�

þ 4ð ffiffiffiffiffiffi
H2

p � BH3Þ
H3

3

ð2H2H
2
3B
0 � 2

ffiffiffiffiffiffi
H2

p
H02H3 þ BH2

3H
0
2 þ 2H3=2

2 H03Þ þ
2

H2
1H

2
2H4

ðH2H
0
4 þH4ð2H02 þ A

ffiffiffiffiffiffi
H2

p
H04ÞÞ

� ðH1H
02
2 þH2ðH01H02 � 2H1H

00
2 ÞÞ

�
: (4.82)

Away from the origin of r, dH receives no contributions from delta-function sources in Eq. (4.12), so we next work on the
vector bundle, which must satisfy

1

30
trF ^ F ¼

��
R1 � Ad

�0
ffiffiffiffiffiffi
H2

p
�
e1 ^ e2 þ

�
R2 � Bd

�0
ffiffiffiffiffiffi
H2

p
�
e3 ^ e4

�
^ e5 ^ e6: (4.83)

Our aim now is to determine theUð2Þ bundle, which wewill assume comes from the remnants of the 7-branes and 7-planes
in the u � x4 þ ix5 plane, ignoring Uð1Þs from the orbifold states. The Uð2Þ bundle can then be expressed in terms of the
Pauli matrices, and one simple ansatz will be

F ¼ ðf1e1 ^ e2 þ f2e3 ^ e4 þ f3e5 ^ e6ÞI þ ðf4e1 ^ e2 þ f5e3 ^ e4Þ
1; (4.84)

where 
1 is the first Pauli matrices and fi are real functions of r that will be determined shortly. The choice (4.84) then
immediately implies the following value for trF ^ F:

1

30
trF ^ F ¼ 2

15
½ðf1f2 � f4f5Þe1 ^ e2 ^ e3 ^ e4 þ f2f3e3 ^ e4 ^ e5 ^ e6 þ f1f3e1 ^ e2 ^ e5 ^ e6	: (4.85)

Comparing Eq. (4.83) with Eq. (4.85), we see the following conditions on the fi:

f1f2 ¼ f4f5; f1f3 ¼ R1 � Ad

�0
ffiffiffiffiffiffi
H2

p ; f2f3 ¼ R2 � Bd

�0
ffiffiffiffiffiffi
H2

p : (4.86)

We still have to satisfy the Donaldson–Uhlenbeck–Yau conditions, which are equivalent to FmnJ
mn ¼ 0. Imposing this on

our ansatz immediately implies the following two additional constraints on fi:

f1 þ f2 þ f3 ¼ 0; f4 þ f5 ¼ 0: (4.87)

These turn out to be enough to determine the functional forms for fi uniquely. Combining Eqs. (4.87) and (4.86) gives us
the following:
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f1 ¼ � R1 � Ad=�
0 ffiffiffiffiffiffi
H2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�R1 � R2 þ ðAd þ BdÞ=�0

ffiffiffiffiffiffi
H2

pp ; f2 ¼ � R2 � Bd=�
0 ffiffiffiffiffiffi
H2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�R1 � R2 þ ðAd þ BdÞ=�0

ffiffiffiffiffiffi
H2

pp ;

f3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R1 � R2 þ ðAd þ BdÞ=�0

ffiffiffiffiffiffi
H2

pq
; f4 ¼ �f5 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR1 � Ad=�

0 ffiffiffiffiffiffi
H2

p ÞðR2 � Bd=�
0 ffiffiffiffiffiffi
H2

p Þ
R1 þ R2 � ðAd þ BdÞ=�0

ffiffiffiffiffiffi
H2

p
s

;

(4.88)

with R1 & R2, A & B, and the warp factors Hi, given by
Eqs. (4.80), (4.79), and (4.8), respectively. Note that fi are
defined for r > 0. At the origin, we have to account for the
sources in Eq. (4.12) to determine corrections to fi.
Therefore with Eqs. (4.84) and (4.88), we have the Uð2Þ
global symmetries for all the three cases discussed earlier.
We now go to the issue of local symmetries.

2. Local symmetries and gauge groups
in the strongcoupling limit

To study the local symmetries, or the gauge groups on
the wrapped heterotic 5-branes, it will be easier to study
them without going to the decoupling limit. As we dis-
cussed briefly in the introduction, once we are away from
the resolved conifold point, there are two possible theories
in six dimensions: theories with six-dimensional vector
multiplets and theories with six-dimensional tensor
multiplets. These two theories are related to SOð32Þ and
E8 � E8 heterotic theories, respectively. However, our het-
erotic theories appeared in conjunction with other string
theories that were related by a series of dualities. In fact,
we considered three different theories, which are related by
T or S dualities:

(i) Type IIB theory with k D3-branes probing two sets
of D7/O7-branes/orientifolds, as in Table I.

(ii) Type I theory with k D5-branes and
D50=O50-branes/orientifolds, as in Table II.

(iii) Heterotic E8 � E8 with a set of k NS5-branes and a
set of orbifold five-planes Or5 (on top of which we
could also layer NS5-branes), as in Table III.

In the type IIB model, we can displace the D3-branes along
the u ¼ x4 þ ix5 direction and along the v ¼ x8 þ ix9

direction. The gauge group on the kD3-branes is Spð2kÞ �
Spð2kÞ. What happens in the strong coupling regime? We
know that when the type IIB model is lifted to an ellipti-
cally fibered F-theory model, the orientifold planes split
into two sets of nonlocal 7-branes, and so we would expect
to have four different local 7-branes.

Nevertheless, the story is different as we know from
Ref. [35]. There it was shown that the location of a set of
7-branes for large v is identical to the the location of the
other set of 7-branes for large u, which implies that the two
7-branes in which the u plane splits join the two 7-branes in
which the v plane splits. In the nonperturbative regime, the
breaking of the Spð2kÞ � Spð2kÞ group is related to the
existence of massless hypermultiples which are identified
with the monopoles/dyons for either one of the two Spð2kÞ
groups. The interpretation of the results in Ref. [35] is that
these two monopoles can be deformed into each other.

Our question is how we translate the results of Ref. [35]
into type I and then to the heterotic picture. To do this, we are
going to invoke the discussion of Ref. [56]. Since u and �u are
the directions that must be T dualized to relate the
type IIB frame to the type I frame, the IIB position of the
D3-branes in the u plane maps into Wilson lines that are
switched on on both the type I D5-branes as well as the
backgroundD9-/O9-branes/planes. For genericWilson lines,
one of the Spð2kÞ � Spð2kÞ � Spð2kÞ groups is completely
brokenwhile the other Spð2kÞ is kept intact; the gauge group
on the D9-/O9-branes/planes is broken to Uð1Þ16.
After a S duality, one obtains a heterotic string with a

generic Uð1Þ16 vector bundle along with NS5-branes at the
Or5 plane, implying an SpðkÞ local gauge group. In the
previous section, we saw that we then preserved only aUð2Þ
subgroup [ignoring other Uð1Þ factors] of the full global
group.
What happens now if one displaces the D3-branes in the

v and �v directions? The D3-branes would then be moved
away from the D70 branes, and it would then be expected
that the only orientifold projection would be due to the
other set of D7/O7-branes/planes. This then implies that
the gauge group is just Spð2kÞ. After T dualizing in the x4;5

directions, the k type I D5-branes would again be separated
from the D50-=O50-brane/plane system, and the only ori-
entifold projection would now be due to the D9-/O9-
branes/planes. In this case, we again have a gauge group
Spð2kÞ on the D5-branes with the gauge group on the D9/
O9 system appearing as a global symmetry on the D5-
branes [of which again we can only keep the Uð2Þ sub-
group as an illustrative example].
The continuous transformation between the monopoles

of the two Spð2kÞ groups in the Spð2kÞ � Spð2kÞ theory on
the type IIB D3-branes is mapped in the type I language
into a deformation of the group on the D9-/O9-branes/
planes from the unbroken subgroups that are invariant
under orientifold operations to the completely broken
Uð1Þ16. In this scenario the Uð2Þ global symmetry may
be assumed to come from the twisted sector states alone.

V. GEOMETRIC TRANSITIONS AND HETEROTIC
GAUGE/GRAVITY DUALITY

Our analysis in the previous sections yield a heterotic
background with wrapped NS5-branes on a non-Kähler
warped resolved conifold. The full background is26

26A summary of the various backgrounds before and after
geometric transitions is given in Appendix B.
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ds2¼ds20123þ
2�

r
ffiffiffiffiffi
a3
p dr2þ2�

ffiffiffiffiffi
a3
p
r
ðdc þcos�1d�1

þ cos�2d�2Þ2þð�þa2Þðd�21þ sin2�1d�
2
1Þ

þ�ðd�22þ sin2�2d�
2
2Þ

H ¼
ffiffiffiffiffiffi
H1

H2

s
ðG1 sin�2d�2^d�2þG2 sin�1d�1^d�1Þ^ec

e�¼ 4�

r2
; (5.1)

where G1 and G2 are given in Eq. (4.38) in terms of � and
the resolution parameter a2. All we need to do is substitute
the values for a3 and � for the three cases that we studied
in Sec. IVB. For case I, a3 and� are given, respectively, in
Eqs. (4.44) and (4.46); whereas for case II, a3 and � are
given, respectively, in Eqs. (4.55) and (4.52). For both
cases, we see that the string coupling e� has standard
behavior near the NS5-branes; namely, it blows up as 1

r4
.

Thus, the core of the 5-brane is described by a strongly
coupled theory.

For case III, the situation is slightly different because
there are three regimes of interest. For region I, which is
close to the origin, the values for a3 and � can be read off
from Eq. (4.70). For the intermediate region, a3 and � can
be read off from Eqs. (4.63) and (4.65), respectively.
Finally for the asymptotic region r! 1, a3 and � can
be read from the asymptotic region for case I studied
earlier. If we extrapolate the value of the string coupling
in the intermediate region to the origin, then it will appear
as though the string coupling e� does not blow up at the
origin but attains the following finite value:

e� ¼ 5e0

12b1=4
�ð5=8Þ�ð7=4Þ

�ð1=8Þ ; (5.2)

whereas it vanishes at infinity. However, from Eq. (4.70)
we know that e� blows up when r! 0, so the two curves
for the two regions have to be attached at the value where
the string coupling is Eq. (5.2). The plot for the dilaton is
depicted in Fig. 7.
In the absence of the 5-brane sources, the behavior of the

dilaton is completely governed by the warp factor (4.61).
One of the main reasons for such a behavior of the dilaton
may stem from the fact that the f3ðrÞ function for case III
vanishes at the origin (as can be seen from Fig. 6). This is
reminiscent of the configuration studied in Ref. [57], where
the string coupling has somewhat similar behavior. The
difference therein is that the 5-branes are distributed over
some orthogonal S3 in the case of Ref. [57], whereas in our
case, this effect is captured by the f3ðrÞ function that is
distributed over the radial direction. This, however, does
not mean that the 5-branes in our case are distributed along
r, but it implies only that the effective warp factor has the
distribution given by Eq. (4.61).27

A. Torsion in the heterotic theory

The torsion for all the three cases can be computed from
Eq. (4.37) by including the asymmetry factor (4.38).
However, it will be instructive to analyze the functional
form of the torsion to gain more information of the

30 20 10 10 20 30
r

0.2

0.4

0.6

0.8

f3 r

FIG. 6 (color online). The behavior of the function f3ðrÞ for
case III plotted along the direction orthogonal to the wrapped
5-branes without taking into account the source contributions
and asymptotic modification as in Eq. (4.61). Note that the f3
function asymptotes to 0, whereas at the origin r ¼ 0, it van-
ishes. For simplicity we have chosen e0 ¼ 100 and b ¼ 50 in
units of �0. If we include Eq. (4.61), the behavior at r! 0 and at
r! 1 will change.
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e

r

FIG. 7 (color online). The behavior of the string coupling e�

along the direction orthogonal to the wrapped 5-branes for case
III. If we only use the warp factor (4.61) then near the origin,
with e0 ¼ 100 and b ¼ 50 in units of �0, the string coupling

becomes e� ¼ 5e0
12b1=4

�ð5=8Þ�ð7=4Þ
�ð1=8Þ , which is large but finite. This is

where the regime of validity of the curve terminates. The
modification near the origin is shown by the red curve where
we take the warp factor (4.61). We see that the dilaton blows up
near the core of the 5-branes in an expected fashion.

27For example, f3 ¼ 1 for case I does not imply that the
5-branes are distributed equally along the radial direction.
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background. If we ignore the Oða2Þ correction in the
expression for the dilaton, �, then the torsion can be
written in the following form:

H ¼ � ffiffiffiffiffi
a3
p �

�r � 2�

r

�
ð�1 þ�2Þ ^ ec

¼ � ffiffiffiffiffi
a3
p

��rð�1 þ�2Þ ^ ec þOða2Þ; (5.3)

where�i ¼ sin�id�i ^ d�i and�r is the derivative of the

dilaton without the a2 contribution, i.e., �r ¼ �r

� � 2
rþ

Oða2Þ. This form of the torsion, with a derivative of the
dilaton, is reminiscent of the standard 5-brane background.

The plots of the three cases are given in Figs. 8–10. Note
that in all three cases, the torsion blows up near the origin,
signaling the existence of the wrapped 5-brane sources,

while they become constants at large r. The reason for this
asymptotic behavior is because of the potential (4.13),
which needs to vanish for all three cases. We can also
plot the coefficient of dH and can see the presence of
delocalized sources in Fig. 11.
Note that while we performed this analysis at leading

order in small a2, it can be performed to arbitrary orders in
the resolution parameter.
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r
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H r

FIG. 10 (color online). The plot of the torsion coefficient
jHðrÞj for case III plotted for the r! 0 and the intermediate
region. Near the origin the torsion blows up, signifying the
presence of the sources, as depicted by the blue curve using
Eq. (4.61). For large r the blue curve coincides with the red curve
drawn using Eq. (4.61), confirming our ansatz that the warp
factor for small r, which is Eq. (4.61), should smoothly trans-
form to the warp factor for r > j~bj, which is Eq. (4.61). Notice
that for r! 1, the torsion becomes finite as in cases I and II.
Again, this behavior is necessary for maintaining zero energy in
the system (4.13). We have chosen e0 ¼ 100, ~b ¼ 50, and
b ¼ �50 in units of �0.
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FIG. 8 (color online). The plot of the torsion coefficient jHðrÞj for case I, i.e., HðrÞ ¼ � ffiffiffiffiffi
a3
p ð@r�� 2�=rÞ. The curve in blue

represents the localized 3-brane ansatz (4.50), while the curve in red is the standard ansatz without the modification at small r. At large
r, the effect of the blue curve is negligible, and the red curve dominates, asymptoting to a constant value, while near the origin, the blue
curve captures the source contribution. For simplicity, we choose �0 ¼ 1 and e0 ¼ 100. (a) Behavior near the origin, (b) Behavior far
from the origin.
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FIG. 9 (color online). The plot of the torsion coefficient jHðrÞj
for case II. As before, note that the torsion becomes finite at
infinity. We have again chosen e0 ¼ 100 in units of �0. The blue
curve is plotted using the r! 0modification as Eq. (4.59), while
the red curve is for Eq. (4.54).
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B. Type I duality frame

Under an S duality, we go back to the type I back-
ground that we studied earlier. The metric in type I is the
usual S-dual transform of the metric (4.6), or of the
metric (4.8),

ds2 ¼ e��½ds20123þH2dr
2þH1ðdc þ c4d�1þ c7d�2Þ2

þH3ðd�21þ c21d�
2
1Þ þH4ðd�22þ c25d�

2
2Þ	; (5.4)

where the torsion H becomes the RR three-form F3.
The type I background is useful because it is the closest
to the well-known type IIB background with wrapped
D5-branes on the two-cycle of a resolved conifold,
namely, the one studied in Refs. [2,5,58]. The difference
now is that we have an additional set of D5-branes, which
we can trace through a geometric transition and obtain the
S dual of the gravity dual of the heterotic side configura-
tion. Finding the heterotic gravity dual this way also
involves understanding the following:
(i) The type I D9/O9 system will undergo some changes

on its world volume after the geometric transition,
which corresponds to changing the vector bundle.

(ii) The set of type I D5-branes wrapped on the two-
cycle P1, parameterized by x6;7, will also dissolve
into geometry and flux. This means that after the
geometric transition, we will only see torsion, and
all the heterotic 5-branes will have dissolved into
geometry and flux.

We can make the duality more precise as follows: the
type I background that we are interested in, under a mirror
transformation, leads to a type I0 background given by

Type IIB on
Cres
f1;�g ���!mirror

Type IIA on
Cdef

f1;� � I�1�2c � ð�1ÞFLg ; (5.5)

where Cdef is the deformed conifold and the mirror sym-
metry is defined in the usual way by three T dualities along
the isometry directions �1, �2, and c [59]. The fixed
points of the orientifold action in the mirror deformed
conifold are two sets of O6 planes with bound D6-branes.
This D6/O6 system intersects the other set of k wrapped
D6-branes to form an intersecting brane/plane system. As
we saw in the heterotic case, the system is supersymmetric
in the absence of the deformed conifold background. In the
presence of the deformed conifold, supersymmetry is
achieved by turning on fluxes (which are mirror to the
torsion in the heterotic setup). The brane configuration is
shown in Table IV.

C. Type I0 and type IIA duality frames

Our next step would be to find the mirror type IIA
configuration. Naively, this can be obtained by performing
three T dualities along c , �1, and �2, but this would lead
to an erroneous result [2,3,5–7]. The subtlety lies in mak-
ing the base of the manifold, parametrized by �1, �2, and r,
very large. The simplest way to do this would be to make
the following replacements in the background:

dc � dc þ f1c4d�1 þ f2c7d�2

d�1 � d�1 � f1d�1;

d�2 � d�2 � f2d�2;

(5.6)

5 10 15 20 25
r

0.05

0.10

0.15

dH r

FIG. 11 (color online). A plot for the coefficient of dH
for case I, with e0 ¼ 100 as before. The blue curve clearly
depicts the presence of the sources, while the red curve
vanishes near the origin. The color codings are same as in the
earlier plots.

TABLE IV. Configuration after taking a mirror transformation of Table II. The deformed conifold is denoted as Cdef .

Direction 0 1 2 3 4 5 6 7 8 9

D6/O6 ✓ ✓ ✓ ✓ ✓ � ✓ � ✓ �
D60=O60 ✓ ✓ ✓ ✓ � ✓ ✓ � � ✓

k D6 ✓ ✓ ✓ ✓ ✓ � � ✓ � ✓

Cdef � � � � ✓ ✓ ✓ ✓ ✓ ✓
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assuming that f1, c4 are functions of �1 and f2, c7 are functions of �2. Furthermore, as shown in Refs. [2,5], we need to
change the dc fibration structure in Eq. (4.8) to

H1½ð1�
ffiffiffi
�
p Þdc þ c4d�1 þ c7d�2	½ð1þ

ffiffiffi
�
p Þdc þ c4d�1 þ c7d�2	; (5.7)

where we have to take the limit where ðf1; f2Þ is very large and � is very small, which we can do on the mirror metric.
Performing the Strominger-Yau-Zaslow (SYZ) mirror transformation, we find the type IIA mirror metric:

ds2 ¼ e��
�
ds20123 þH2dr

2 þ e2�A

H1H3H4c
2
1c

2
5

�
d��H1H4c4c

2
5

A
d�1 �H1H3c

2
1c7

A
d�2

�
2 þ e2�ðH1c

2
7 þH4c

2
5Þ

A
d�2

1

þ e2�ðH1c
2
4 þH3c

2
1Þ

A
d�2

2 �
2H1c4c7

A
d�1d�2 þ ðH3 � �H1f

2
1c

2
4Þd�21 þ ðH4 � �H1f

2
2c

2
7Þd�22

� 2H1c4c7ð�f1f2Þd�1d�2
�
; (5.8)

with a dilaton �ðbÞ and with A, f1, and f2 defined by

A ¼ H3H4c
2
1c

2
5 þH1H4c

2
4c

2
5 þH1H3c

2
1c

2
7; fi ¼ �iffiffiffi

�
p : (5.9)

Similarly, the BNS field is given by

BNS ¼ �f1H3c
2
1ðH1c

2
7 þH4c

2
5Þd�1 ^ d�1 þ �f2H4c

2
5ðH1c

2
4 þH3c

2
1Þd�2 ^ d�2

þ
�
1� �

�H1H4c
2
1c

2
5

�
ðf1c4d�1 þ f2c7d�2Þ ^ dc ; (5.10)

where � � A�1. In the limit �! 0, the second line is a pure gauge, but the other two components are large. This is
expected as the BNS field appears because we made the base of the SYZ T3 fibration large.28

In addition to metric and B field, we also have gauge flux F2 as well as four-form flux F4. The nonzero components of F2

are given by

Fc �1¼H �1�2�1 ; Fc�2¼H �1�2�2 ; Fc r¼H �1�2r;

F�1r¼H r�2c þ
2H1c4c7

H1c
2
4þH3c

2
1

H �1rc þ
2H1c4

H1c
2
4þH3c

2
1

H r�1�2
;

F�2r¼H �1rc þ2�½H1c7ðH1c
2
4þH3c

2
1Þ�H2

1c
2
4c7	H r�1�2

; F�1�2¼H c �2�2
þ2

H1c4
H1c

2
4þH3c

2
1

H�1�2�2 ;

F�1�1¼2
H1c4c7

H1c
2
4þH3c

2
1

H �1�1c þ2
H1c4

H1c
2
4þH3c

2
1

H �1�2�1 ;

F�2�1¼H c�1�1þ2�½H1c7ðH1c
2
4þH3c

2
1Þ�H2

1c
2
4c7	H �1�2�1 ; F�2�2¼2�½H1c7ðH1c

2
4þH3c

2
1Þ�H2

1c
2
4c7	H �1�2�2 ;

(5.11)

where one may read off the components H mnp from Eq. (4.14). Similarly, the nonzero components of F4 are

F�1�2�1c ; F�1�1�2r; F�1�1c r; F�1�2c r; F�1�2�2c ; F�2�1�2r;

F�2�2c r; F�2�1c r; Frc �1�2 ; F�1�2�1�2
; Fr�1�1�2 ; Fr�2�1�2 : (5.12)

The whole configurations preserves N ¼ 1 supersymmetry in four dimensions.
The metric (5.8) can also be written in a more suggestive way:

28We will discuss another case later where we can gauge away such a BNS field.
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ds2 ¼ e��
	
ds20123 þH2dr

2 þ e2�A

H1H3H4c
2
1c

2
5

�
dc �H1H4c4c

2
5

A
d�1 �H1H3c

2
1c7

A
d�2

�
2

þ
�
ðH4 �H1�

2
2c

2
7Þd�22 þ

e2�ðH1c
2
7 þH4c

2
5Þ

A
d�2

1

�
þ

�
ðH3 �H1�

2
1c

2
4Þd�21 þ

e2�ðH1c
2
4 þH3c

2
1Þ

A
d�2

2

�

� 2H1c4c7

�
�1�2d�1d�2 þ 1

A
d�1d�2

�

: (5.13)

Now we identify the two two-spheres with the sets of coordinates ð�1; �2Þ and ð�2; �1Þ. The supersymmetry variations
again lead to

c4 ¼ cos�1; c7 ¼ cos�2; c5 ¼ sin �2; c1 ¼ sin �1; (5.14)

with ðH1; H2; H3; H4Þ all being functions of r, the radial coordinate. This means the metric along the ð�1; �2Þ direction will
become29

d�21 þ
e2�

A

�
H1c

2
4 þH3c

2
1

H3 �H1�
2
1c

2
4

�
d�2

2 ¼ d�21 þ
e2�

A

�
H1cos

2�1 þH3sin
2�1

H3 �H1�
2
1cos

2�1

�
d�2

2

¼ d�21 þ
e2�

A

�
H1 þ ðH3 �H1Þsin 2�1

H3 �H1�1ð�1Þ2 þH1�1ð�1Þ2sin 2�1

�
d�2

2; (5.15)

meaning that the length of the�2 cycle will vary between e
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1

H3�H1�ð0Þ2
q

and e� as �1 varies as 0< �1  	
2 . Similarly, the

metric along ð�2; �1Þ directions will become

d�22 þ
e2�

A

�
H1 þ ðH4 �H1Þsin 2�2

H4 �H1�2ð�2Þ2 þH1�2ð�2Þ2sin 2�2

�
d�2

1: (5.16)

Note that we can now absorb A into a redefinition of the dilaton30 as e� ¼ e�̂
ffiffiffiffi
A
p

.
The brane setup is composed of k D6-branes wrapping the three-cycle parametrized by ð�1; �2; c Þ, one set of D6/O6

oriented along ð�1; �2; c Þ, and the other set of D6/O6 (coming from type I D9/O9) oriented along ð�1; �2; rÞ. This is
summarized in Table IV.

D. Type IIA detour to brane constructions

At this point, let us take a short detour to discuss geometrical interpretations of the cycles where we wrap our three types
of D6-branes. In the language of Ref. [60], there are several Lagrangian submanifolds that we can wrap our D6-branes on.
Specifying the deformed conifold, as before, by31

z21 þ z22 þ z23 þ z24 ¼ �2; (5.17)

then the base S3 can be identified with the fixed point set of the antiholomorphic involution zi ! �zi , which for
zi ¼ xi þ iyi and real � is given by

yi ¼ 0; x21 þ x22 þ x23 þ x24 ¼ �2: (5.18)

The k D6-branes are wrapped on this S3 with coordinates ð�1; �2; c Þ; i.e., this is S3ð1Þ above.
What about the two pairs of D6/O6? One of the D6/O6 systems is along ð�1; �2; c Þ, and the other is along ð�1; �2; rÞ. In

the language of Ref. [60], there are other Lagrangian submanifolds identified as the fixed point sets of involutions like
ðz1; z2Þ ! ð�z1; �z2Þ and ðz3; z4Þ ! ð��z3;��z4Þ. This is given by

y1 ¼ y2 ¼ x3 ¼ x4 ¼ 0; x21 þ x22 ¼ �2 þ y23 þ y24: (5.19)

The unconstrained values for y3, y4 and the phase of x1 þ ix2 imply that we have a three-cycle of topology C� S1. Note
that the S3 and the C� S1 intersect along

29Note that we will always stay away from the points ð�1; �2Þ ¼ ð0; 0Þ; ð	;	Þ since the metric is singular at those points and the
T3 fibration degenerates.
30Not to be confused with the dilaton �ðbÞ in that frame.
31Since, for the specific purpose of this section we do not need the added complication of non-Kählerity, we will analyze the branes
wrapped on cycles using the Kähler deformed conifold. The analysis can be easily extended to include non-Kählerity.
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x3 ¼ x4 ¼ yi ¼ 0; x21 þ x22 ¼ �2; (5.20)

which represents a cycle S1.
The next question then is: out of the two distinct D6/O6

systems, which one is wrapped on the geometric cycle?
From the discussion of Ref. [60], the branes wrapped on
C� S1 survive the geometric transition, so they must be
the ones wrapped on the ð�1; �2; rÞ three-cycle. On the
other hand, the D60=O60 system wrapped along
ð�1; �2; c Þ become geometry and flux after the geometric
transition, so they cannot be wrapped on C� S1. From
Eqs. (5.15) and (5.16) above, we see that c combines with
�1 and�2 so that the k D6-branes and the D6

0=O60 system
are each wrapped on a Hopf fibration of c over a two-cycle
given by ð�1; �2Þ and ð�1; �2Þ, respectively. To complete
the story, two additional ingredients are required:

(i) Two-form fluxes through the bases of the Hopf fibra-
tions: these are indeed present, as we see from the
nonzero ð�1; �2Þ and ð�1; �2Þ components of F2 in
Eq. (5.11).

(ii) Supersymmetry: of course, this is true since we
determined the background by demanding it pre-
serve supersymmetry (4.19), in addition to the
Bianchi identity.

E. M-theory duality frame and new flips and flops

Our next step is to lift this configuration to M theory. As
we know, in M theory, the k D6-branes become a
k-centered Taub–NUT space while the two sets of D6-/
O6-branes/planes become two sets of Atiyah–Hitchin
spaces, as shown in Table V.
The uplifted geometry of kD6-branes looks like a Taub–

NUT space along the S3ð2Þ given by ð�2; �1; x
11Þ and

stretched along the radial r direction Rþ. Locally, the
geometry would then look like Rþ � S3ð1Þ � S3ð2Þ, where
S3ð1Þ is along ð�1; �2; c Þ. Similarly, one of the D6/O6

systems becomes an Atiyah–Hitchin space with the local
geometryRþ � S3ð3Þ � S3ð4Þ, where S

3
ð3Þ is along ð�2; �1; c Þ,

and S3ð4Þ is along ð�1; �2; x
11Þ. The M-theory metric then

takes the following form:

ds2 ¼ e���
2�ðbÞ

3

	
ds20123 þH2dr

2 þ e2�A

H1H3H4c
2
1c

2
5

�
dc �H1H4c4c

2
5

A
d�1 �H1H3c

2
1c7

A
d�2

�
2

þ
�
ðH4 �H1�

2
2c

2
7Þd�22 þ

e2�ðH1c
2
7 þH4c

2
5Þ

A
d�2

1

�
þ

�
ðH3 �H1�

2
1c

2
4Þd�21 þ

e2�ðH1c
2
4 þH3c

2
1Þ

A
d�2

2

�

� 2H1c4c7

�
�1�2d�1d�2 þ 1

A
d�1d�2

�

þ e

4�ðbÞ
3 ðdx11 þ Ardrþ A�1d�1 þ A�2d�2

þ A�1
d�1 þ A�2

d�2 þ Ac dc Þ2; (5.21)

which is a noncompact G2-structure manifold with G
fluxes.32

Next we will perform a flop. This will be similar to the
one in Ref. [61], in the sense that we will have to exchange
three-cycles, but it will be slightly different. We impose the
following flop operation:

S3ð1Þ $ S3ð2Þ (5.22)

and simultaneously

S3ð3Þ $ S3ð4Þ; (5.23)

where the S3ð3Þ;ð4Þ are the same as S3ð1Þ;ð2Þ but with Hopf fibers
exchanged. In coordinates,

�1 $ �2; �1 $ �2; c $ x11: (5.24)

Under this flip and flop,33 the Taub–NUT space will be
along S3ð1Þ, and the first Atiyah–Hitchin space will be

along S3ð3Þ. The second Atiyah–Hitchin space is actually

unchanged under the flop, which means that when we
dimensionally reduce on x11, it will convert back to the
same D6/O6 system it came from. This is depicted in

Table VI. The dilaton in this frame is �ðcÞ, which is

different from �ðbÞ because of Eq. (5.24).
In the flopped setup, the D6/O6 system arising from the

second Atiyah–Hitchin space converts to a D9/O9 system
after mirror symmetry, returning to a type I model. All
other branes/planes in the original type I configuration
have dissolved into geometry to become fluxes, consistent
with the predictions in Refs. [3,6,7]. S dualizing to heter-
otic then yields the gravity dual that is composed only of
geometry and fluxes, with no localized sources. Following
the procedure in Ref. [2], we deduce that the gravity dual is
also a non-Kähler warped resolved conifold.

F. Gravity duals in the heterotic theories

So, after dimensional reduction back to type IIA, we will
have a manifold that is topologically a resolved conifold

32One could make further local rotations to the M-theory metric
to bring it into a more standard form (see Ref. [2]), but we will
not do so here.
33By flip we mean the exchange c $ x11, whereas flop is the
standard flop operation of a three-sphere.
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with two key differences from the usual geometric transi-
tion of Refs. [58,62]: the first is already known from
Ref. [5], namely, that the metric should be non-Kähler,
and the second is the appearance of a D6-/O6-brane/plane
system (see Table VI). Following the steps and notation in
Ref. [2], we find the metric:

ds2IIA ¼ e� ~�½ds20123 þH2dr
2	 þ ~H1ðdc þ�1 cos �1d�1

þ�2 cos�2d�2Þ2 þ ð ~H3ad�
2
1 þ ~H3bd�

2
2Þ

þ ð ~H4ad�
2
2 þ ~H4bd�

2
1Þ; (5.25)

where ~� is the remnant of the dilaton factor fromM theory
after flop and H2 is the same as in Eq. (4.8). For the other
coefficients, one may look up their values in sec. 4.4 of
Ref. [2].34 The various components of the fluxes could be
traced from the original type I side or from Eqs. (5.11) and
(5.12). If we start off with only two components of torsion
in the heterotic side as in Eq. (5.3), then the field contents in
the subsequent theories will be simple. The list of all the
field contents are depicted in Table VII, where we see that
in the final type I0 theory, the field contents are the two-
form and the NS three-form fields along with the dilaton

�ðcÞ and the metric ~G�� given by Eq. (5.25).

The type I0 configuration that we get is on a non-Kähler
resolved conifold, and therefore we need to perform coor-
dinate transformations of the form (5.6) before performing
SYZ mirror transformation. There are a few subtleties now
compared to Eq. (5.6) that we performed earlier. First, the
coefficients �i appearing in the metric (5.25) may not
necessarily be a function of �i only. Second, even if �i

are functions of �i, the coordinate transformation (5.6) is
not feasible because this will generate a BNS field like
Eq. (5.10) after a mirror transformation to type I, which
should have been projected out by the orientifold action.35

The solution to this puzzle is rather simple and illuminat-
ing. There are twoways to make the base of the T3 fibration
bigger in Eq. (5.25): 1) by making a coordinate transfor-
mation of the form (5.6) and 2) by changing the complex
structures of the two base spheres. Performing the second
operation implies that the metric (5.25) picks up additional
terms of the form

~f1d�1d�1 þ ~f2d�2d�2; (5.26)

where ~fi, unlike the fi before in Eq. (5.6), do not have to be
functions of �i only. This means that we can define the

functional forms for the ~fi in such a way so as to make the

TABLE V. The uplift to M theory of the type IIA configuration in Table IV. These configurations of Taub–NUT and Atiyah–Hitchin
spaces give rise to a supersymmetric G2-structure manifold.

Direction �1 �2 �2 �1 c r x11

Taub–NUT (TN) � � ✓ ✓ � ✓ ✓

Atiyah–Hitchin (AH1) ✓ ✓ � � � ✓ ✓

Atiyah–Hitchin (AH2) � ✓ � ✓ ✓ � ✓

TABLE VI. Type IIA and M branes/planes/geometry before and after the flop (5.22) and (5.23).

Type IIA M theory before flop M theory after flop Type IIA reduction

k D6 k centered TN along S3ð2Þ k centered TN along S3ð1Þ geometryþ fluxes

D60=O60 AH1 along S3ð4Þ AH1 along S3ð3Þ geometryþ fluxes

D6/O6 AH2 along ð�1; �2; c ; x11Þ AH2 along ð�1; �2; c ; x11Þ D6/O6

TABLE VII. Field content traced through much of the duality chain depicted in Fig. 1, starting from the type I theory and ending
with the type I0 theory.

Original (I) gðaÞ�� � H RR
�1�1c

H RR
�2�2c

H RR
�1�2�1

H RR
�1�2�2

gðbÞ��

Mirror (I0) g�� �ðbÞ Fð2Þ�1�2
Fð2Þ�2�1

Fð4Þ�1�2�2c
Fð4Þ�1�2�1c

H NS
�i�ir

H NS
�i�i�k

11D lift (M) G�� Gð4Þ�1�2�2c
Gð4Þ�1�2�1c

Gð4Þ�i�ir;11
Gð4Þ�i�i�k;11

Flop (M) G0�� G0ð4Þ�1�2�1 ;11
G0ð4Þ�1�2�2 ;11

G0ð4Þ�k�krc
G0ð4Þ�k�k�ic

Reduce (I0) ~G��, �ðcÞ ~Fð2Þ�1�1

~Fð2Þ�2�2
H NS

�1�2�1
H NS

�1�2�2
G0ð4Þ�k�krc

G0ð4Þ�k�k�ic

34Note that one has to set to zero all of the bij fields that appear
in the fibrational structure in Ref. [2].

35Note that this subtlety was absent in the case studied in
Ref. [2] because the mirror was type IIB theory, where such a
BNS field can exist.
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BNS field in the mirror type I theory to be a pure gauge.
The additional warpings of the coefficients d�i and d�i of
the base spheres in the type I0 frame can be absorbed in the
definition of ~H3a;3b;4a;4b. Of course, such a change will also

affect the background fields, which in turn are shown in the
list of fields depicted in Tables VII and VIII.

In Table VII we represented the NS three-form fields in

the mirror type I0 theory, coming from the cross-term gðbÞ��

of the original type I metric, by H NS
�i�ir

and H NS
�i�i�k

.

This is the simplest scenario. In general we could have
additional components like

H NS
�1�1c

; H NS
�2�2c

; H NS
�1�1�2

; H NS
�2�2�1

: (5.27)

The latter two are projected out by orientifolding opera-
tion. For the first two fields36—under M-theory lift, flop,
and dimensional reduction— we will get back three-form
fields with the same components but with different magni-
tudes, in addition to the ones mentioned in Table VII.
Changing the complex structure of the base spheres will
further change the values of the fields in type I0 theory
similar to the ones depicted in Table VIII. Finally, after the
mirror and U duality, we get our required heterotic back-
ground with a dilaton and torsion as shown in Table VIII.
From this table and Eq. (5.27), we can easily see that there
are four possible components of the BNS field in the type I

0
reduction:

B�1�1
�b1; B�2�2

�b2; Bc�1
� b3; Bc�2

�b4;

(5.28)

where all other components can be gauged away. Note that
we have components like ðb3; b4Þ, which have both legs
along the T duality directions. This would imply the pos-
sibility of nongeometric background after SYZ mirror
transformation. We will, however, only concentrate on
the geometrical aspect of the mirror and leave the intrigu-
ing possibility of nongeometric backgrounds for future
works.

After a SYZmirror transformation (converting D6/O6 to
D9/O9) and a U duality, we wind up in heterotic with the
metric

ds2 ¼ ds20123 þ
2�

r
ffiffiffiffiffi
a3
p dr2

þ 1
~H1 þA

½dc þ ~�1 cos �1ðd�1 þ �1d�1Þ

þ ~�2 cos�2ðd�2 þ �2d�2Þ	2
þ ½g�1�1d�21 þ g�1�1

ðd�1 þ �1d�1Þ2	
þ ½g�2�2d�22 þ g�2�2

ðd�2 þ �2d�2Þ2	
þ g�1�2d�1d�2 þ g�1�2

ðd�1 þ �1d�1Þ
� ðd�2 þ �2d�2Þ: (5.29)

Note that there is no coefficient in front of the space-time
part. The coefficient, which appears in Eq. (5.25), is in
fact the dilaton in the type I/heterotic frame and is related
to the dilaton �ðcÞ in the type I0 frame by mirror/U-duality

transformation. Therefore, in the heterotic frame, we see
no factor of dilaton in front of the space-time part.
Additionally, preserving G2 structure in M theory and
SUð3Þ structure in heterotic theory gives the following
relation between the dilaton values in various frames [2]:

~� ¼ �þ 2�ðbÞ
3
� 2�ðcÞ

3
; (5.30)

which is perfectly consistent with our duality chain,
equations of motion, and the metrics in various frames.
The final metric (5.29) resembles somewhat the metric

in Eq. (5.13), but the �i’s are nontrivially fibered. The
nontrivial fibrations are given in terms of �i, which we
define as

�1 ¼ �

2
½b1b24 þ ~H1b1ð ~H3b þ ~H1�

2
2cos

2�2

� b1 ~H1�
2
2cos

2�2Þ	
�2 ¼ �

2
½b2b23 þ ~H1b2ð ~H4b þ ~H1�

2
4cos

2�1

� b2 ~H1�
2
1cos

2�1Þ	; (5.31)

where bi are the components of the B field given in
Eq. (5.28) and ~Hk are the components of the metric
(5.25). The coefficient � in Eq. (5.31) is given by

�� 1
~H3b

~H4bþ ~H1ð ~H3b�
2
1cos

2�1þ ~H4b�
2
2cos

2�2Þ
; (5.32)

with ~H3b, etc., to be viewed as the modified warp factors.
Note also that the coefficient of the dc term is not just ~H�11

but has a correction term given byA in the following way:

TABLE VIII. The field content we obtain in the heterotic theory by following the final stages of the duality chain in Fig. 1, starting
from the type I0 theory.

Original (I0) ~G0��, �ðcÞ H 0NS
�1�2�1

H 0NS
�1�2�2

~Gð4Þ�k�krc
~Gð4Þ�k�k�ic

~F0ð2Þ�1�1

~F0ð2Þ�2�2

Mirror (I) G0NK�� , � ~� H RR
�k�jr

H RR
�k�i�l

H RR
�1�2c

H RR
�2�1c

U dual (Het) GNK
�� , ~� H �k�jr H �k�i�l

H �1�2c H �2�1c

36These components do not appear from Eq. (5.10) that we got
using T dualities. We, however, expect that a more generic
choice of the warp factors for the original type I background
may lead to these components.
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A¼�½ð ~H4bþ ~H1�
2
1cos

2�1Þðb24� ~H1�2cos�2Þ
þð ~H3bþ ~H1�

2
2cos

2�2Þðb23� ~H1�1cos�1Þ
�2�1�2cos�1 cos�2ð ~H2

1�1�2cos�1 cos�2�b3b4Þ	;
(5.33)

which is nonzero even in the absence of b3 and b4
components of the BNS field. The other variables in the
metric (5.29) are defined in the following way:

~�1 � ���1
~H3b; ~�2 � ���2

~H4b: (5.34)

The rest of the gij defined in Eq. (5.29) are related to the

corresponding type IIA warped resolved conifold metric
(5.25) by the relations given in appendix C of Ref. [2].
Additionally, we also have nonzero H flux, dilaton, and
vector bundle as depicted in Table VIII. Our claim then is
that the gravity dual of the wrapped heterotic 5-branes in
the heterotic E8 � E8 theory can be extracted from
Eq. (5.29) by performing a geometric transition on the
metric (4.8). In the decoupling limit of Eq. (4.8) and
(5.29) will provide the precise gravity dual. Defining

u ¼ �0
r , we see that the five-dimensional part of

Eq. (5.29) takes the following form:

ds2 ¼ ds20123 þ
du2

GðuÞ ; (5.35)

where GðuÞ can be extracted from 2�
r
ffiffiffiffi
a3
p in Eq. (5.29) in the

decoupling limit. The spacetime part is flat, so we conclude
that, in the string frame, a flat Minkowski space is dual to
LST compactified to four dimensions on a non-Kähler
resolved conifold. Additionally, irrespective of the details
of the internal space, the five-dimensional dual metric will
always be of the form (5.35).

Note that the metric that we get on the heterotic side
cannot be derived using any techniques other than the
duality chains given in Figs. 1 and 2, as our knowledge
of the dual gauge theory, i.e., the dimensionally reduced
LST, is very minimal. Thus, we think that the gravity dual
(5.29) may be the only way to extract nontrivial informa-
tion about the gauge theory.

To complete the story, we should perform a few tests on
the type IIB background to check that the background
describes a dual to the four-dimensional confining theory.
One important consistency check is to find confining
strings, which we examine in Sec. V F 2, but before that
we further discuss the geometry.

1. Geometry and instanton transitions

Looking at the metric (5.29), we see that the two two-
spheres are now given by ð�1; �1Þ and ð�2; �2Þ. The fact
that the two-spheres have asymmetrical coefficients sug-
gests that the metric describes a warped resolved-deformed
conifold, consistent with the expectation from the three
cases studied earlier in Sec. IVB. We can also compute the

torsion H , using the dilaton ~�, using the standard
formula,

H ¼ �e2 ~� � dðe�2 ~�JÞ; (5.36)

which we expect this to satisfy the Bianchi identity (4.12)
without a source term; therefore, trðF ^ FÞ should be
regular.
In the heterotic frame before the geometric transition,

we saw in case I, for example, that trðF ^ FÞ had a singu-
larity at r! 0 (see Fig. 12), signifying the presence of
the k heterotic NS5-branes.37 Now, after the transition, the
branes convert to fluxes (5.36), and the singularity in the
vector bundle should vanish. A puzzling aspect, however,
is what happens to the small instanton singularities? This
can be answered from the M-theory picture that we have.
Before the flop the small instanton singularities become
multicentered TN space. Thus, after the flop the vector
bundle singularities become singularities of the manifold
(as there are no moduli for the small instanton singularities
to blow up). In other words, before transition we have a
vector bundle that has two parts: one singular piece from
the small instantons and another nonsingular piece that is
supported by the underlying non-Kählerity of the back-
ground. After transition, the singular piece becomes part of
the manifold (so it is no longer part of the vector bundle),
and the nonsingular piece gets further deformed by the flop
operation. This is almost like a small instanton transition,
and this is why we assume that geometric transitions in
heterotic theories are closely related to small instanton
transitions.

1 2 3 4 5
r

5.0 10 6

1.0 10 7

1.5 10 7

2.0 10 7

tr F F

FIG. 12 (color online). The behavior of jtrðF ^ FÞj plotted
near the origin for case I. Note that the singularity at r ¼ 0
signifies the presence of zero size instantons. After geometric
transition, we expect that the singularity in the vector bundles
will be absent. This way the branes will convert to geometry and
fluxes. As before we have chosen e0 ¼ 100 in units of �0 with
�0 ¼ 1.

37This singularity can be easily seen from Eq. (4.85) using the
values for fi in Eq. (4.88) at r! 0.
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In this way, a heterotic background with branes is con-
verted into another heterotic background without branes
but with fluxes instead. Thus, the little string background
(4.36) is converted to a closed string background (5.29),
where the singularities of the branes are transformed to the
manifold (and also to the torsion to satisfy the Bianchi
identity), and the vector bundles become smooth. The
whole duality chain depicted in Fig. 1 transforms the brane
background of Eq. (4.36) to a closed string background
(5.29). In the decoupling limit of the LST, the metric given
in Eq. (5.29) will be the gravity dual.

2. In search of the confining strings

Our next check is to look for the confining strings and
potentials from the heterotic gravity dual, studying the
behavior of a string connecting two points on the boundary.
This is easier said than done for two reasons:

(i) Taking a string to the boundary means that we need to
know the r! 1 behavior of the background—i.e., we
need toknow theUVcompletion of the background for
which the IR physics is captured by Eq. (5.29).

(ii) Looking at the metric (5.29), we see that the space-
time part of the metric is flat and comes with no
warp factor. This suggests that even if we know the
UV behavior, a Nambu–Goto action for the string
will not produce a nontrivial result.

The second concern is more subtle because the string
coupling is also typically strong on the heterotic side.
The fact that it is strong on the heterotic side means we
could instead ask this question on the S-dual, type I side
where it will be weak. So we will consider fundamental
strings in the type I frame, which appears to be an appro-
priate candidate for the confining string. This clearly shows
that the confining string from the heterotic frame is a more
exotic object.

To proceed, let us define grr ¼ e2
~�~grr in Eq. (5.29).38

With this the type I metric becomes

ds2 ¼ e� ~�ð�dt2 þ dxidx
iÞ þ e

~�~guudu
2 þ e��ds2internal;

(5.37)

where u ¼ 1=r and ds2internal is the internal metric that can

be read off from Eq. (5.29). Note that there are no NS fluxes
in the type I frame, which will be useful below.
Now we can address the first concern regarding UV

completion. We will assume that for large r, i.e., for
u! 0, the four-dimensional gauge theory becomes almost
conformal. This means, without loss of generality, that we
can take39

e� ~� ¼ X1
n¼0

cnu
n�2; ~guu ¼

X1
n¼0

blu
l�4; (5.38)

where cn and bl are independent of u and of the four
spacetime directions (for simplicity, we will just take
them to be constants with c1 ¼ c2 ¼ 0). With these
choices, the type I metric becomes

ds2 ¼ cnu
n�2ð�dt2 þ dxidx

iÞ þ blu
l

cmu
mþ2 du

2

þ cpu
p�2ds2internal: (5.39)

Next, we want to study a long fundamental string in this
background, but we must first discuss one thing: the type I
theory has no stable fundamental strings. Instead, the only
stable string is the type I D string. Of course, to describe
fluctuations of the D9 background, type I should allow
some form of fundamental strings; otherwise, duality to
type IIB will not work properly. So this means that if we
construct a long open fundamental string, it will break into
small open strings and other radiation. This is exactly what
we want from the gravity dual of a confining theory: the
fundamental string represents the gravity dual of the con-
fining flux tube, which, as we know, is susceptible to break-
ing up into quark-antiquark pairs. These quark-antiquark
pairs are precisely the little open strings that our big

U
max

BABA
D9−Branes

Boundary

(a) )c()b(

FIG. 13 (color online). A long fundamental string in type I theory is unstable and is prone to breaking into small strings on the D9-
brane. In the dual theory, this captures the phenomena of a confining string breaking into small strings connecting quark-antiquark
pairs. (a) An unstable fundamental type I string hanging between two points A and B at the boundary; (b) The type I string breaking up
into small open strings on the D9-brane; and (c) The small open strings are dynamical and move on the D9-brane simulating the quark-
antiquark jet production.

38This is consistent with our convention described in
Footnote 43.

39Note that, although we are using a specific asymptotic ex-
pansion, the confining nature of the string will only depend on
the IR physics! This will be clarified below. The UV completion
is done only to have renormalized results.
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fundamental string breaks into as depicted in Fig. 13. Note
that this also tells us that the matter sector of our theory
contains quarks, which was not easy to decipher directly
from the dimensional reduction of the LSTs. Note that this
was also discussed in Ref. [4].

Now, consider a fundamental string connecting
two boundary points so that it projects into the five-
dimensional space ðx0;1;2;3; uÞ, and let X�: ð
; Þ !
ðx0;1;2;3; u; c ; �i; �iÞ be the embedding of the world sheet
into spacetime. If we choose a parametrization  � t and

 � x and the configuration

X0 ¼ t; X1 ¼ x; X2 ¼ X3 ¼ 0; X8 ¼ uðxÞ;
X9 ¼ c ¼ 0; ðX4;X5Þ ¼ ð�1;�1Þ ¼

�
	

2
;0

�
;

ðX6;X7Þ ¼ ð�2;�2Þ ¼
�
	

2
;0

�
; (5.40)

then this will traverse a path in the five-dimensional
space provided we equip this with an additional boundary
condition:

uð�d=2Þ ¼ 0; (5.41)

where x ¼ �d=2 is the value of x at the two endpoints of
the string. We then have to consider the equation of motion
for uðxÞ.

The Nambu–Goto action for the string is given by

SNG ¼ T0

2	

Z
d
d½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�det ½ðg��þ @��@��Þ@aX�@bX

�	
q

þ �ab@aX
m@bX

n ���m�
pqs�n�H pqs	; (5.42)

where H pqs is the type I RR three-form field strength, T0

is the fundamental string tension, and a, b ¼ 1, 2, @1 � @
@ ,

@2 � @
@
 . Note that once we switch off the fermions �� ¼

� ¼ 0, the RR three-form decouples from the Nambu–
Goto action. Furthermore, the absence of type I NS three-
form fields simplifies things further. Plugging in Eq. (5.38)
in Eq. (5.42), we get

SNG ¼ T0

2	

Z þd=2
�d=2

dx

u2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcnunÞ2 þ glu

lð@u=@xÞ2
q

; (5.43)

with glu
l ¼ bku

k þ dilaton contributions that can be
derived from Eqs. (5.42) and (5.38).

Now the analysis is very similar to that performed in
Refs. [63–65], so the reader may want to look there for
more details. From Refs. [64,65] we know that the string
will take a U shape because of symmetry. Letting umax be
the maximum value of u, one can then show that for d to be
real, we should satisfy Refs. [64,65]:

1

2
ðmþ 1Þcmþ3umþ3max  1: (5.44)

There will generally be multiple solutions for uðxÞ that
satisfy this bound (and, likely, solutions that saturate it as
well). Define umax to be the largest value of umax attained

by solutions uðxÞ satisfying the bound (5.44) (which is
possibly just the value of umax that saturates the bound),
and define M to be

M � n2cnu
n
max

cmu
m
max

� 4: (5.45)

It is then easy to see from Eq. (5.43) that the Nambu–Goto
action has the following dominant behavior [64,65]:

d ¼ lim
�!0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gnu

n
max

p
umax

cmu
m
max

log �ffiffiffiffiffi
M
p ;

SNG ¼ lim
�!0

T0

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gnu

n
max

p
umax

log �ffiffiffiffiffi
M
p ;

(5.46)

which means that both d and SNG have identical logarith-
mic behavior. Thus, the finite quantity is the ratio between
the two, i.e., the action per unit length, which is

SNG
T0

� VQ �Q �
�
cmu

m
max

	u2
max

�
d: (5.47)

Then VQ �Q is the expected confining potential between the

quark and the antiquark.
Note that while the above computation tells us where to

look for the confining string, it does not tell us how the
string breaks into smaller strings. For the latter, we would
presumably require more machinery, such as string field
theory. Furthermore, the result (5.47) is independent of
the UV completion as the details of the UV completion
appears on both d and SNG via the coefficient cm but not
via bl. The details of the full series fcmg appearing in the
dilaton (5.38) are not required to study the IR confining
behavior. Even if the UV completion is not made, the result
(5.47) will continue to hold.

3. New exotic states in LST from the gravity dual

Another interesting direction is to look for exotic states in
the dimensionally reduced LST using exotic stable states in
the type I and heterotic theories. One candidate is the stable
non-BPS D0-brane state in type I SOð32Þ theory that is
constructed by switching on a tachyonic kink solution on
aD1–anti-D1 pair in type IIB [66]. The heterotic dual of this
construction is the lightest spinor state of the SOð32Þ theory
[66]. Unfortunately, this state was constructed in a flat
background, but quantization of open strings in a curved
background is not well understood, so it could be difficult to
properly analyze the spectrum of a type IIB open stringwith
one endpoint on the D1 and the other on the anti-D1.
What we can try, however, is to go to a regime where the

metric is approximately flat.40 Thus, the configuration of a

40For example, if we define R � R
u
1

duffiffiffiffiffiffiffi
GðuÞ
p , where GðuÞ is

as given in Eq. (5.35), then in the local coordinate system

ðx0;1;2;3; RÞ, the five-dimensional metric is flat. On the other
hand, the internal space parametrized by ð�i; �i; c Þ in
Eq. (5.29), however, is now much more complicated.
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D1–anti-D1 pair with one endpoint at the boundary and the
other endpoint at u! 1 in Eq. (5.35) [or in Eq. (5.29)]
should appear as a stable non-BPS state in the dual gauge
theory. From the heterotic SOð32Þ point of view, we could
refine this even further by taking the nontrivial T3 fibration
of the metric (5.29) and looking for the stability region of
this state on a T3. This has recently been discussed in
Ref. [67], where the stability region was shown to satisfy
the inequalities

16R2
a þ 1

R2
b

þ 1

R2
c

> 8; R2
a þ R2

b þ R2
c >

1

2
; (5.48)

where Ra, Rb, and Rc, are the radii of the three cycles of T
3

measured in units of
ffiffiffiffiffi
�0
p

. Thus, in our five-dimensional
space, all regimes where the internal tori parametrized by
ð�1; �2; c Þ satisfy the inequalities (5.48) should have
corresponding stable non-BPS states that should be visible
in the dual gauge theory at all energy scales (including the
far IR). The question of what this state corresponds to in
the E8 theory will be discussed elsewhere.

VI. DISCUSSIONS AND CONCLUSIONS

In this paper we have identified gravity duals for little
string theories that have been dimensionally reduced to
four dimensions—these theories have permanent confine-
ment in the deep infrared. Our constructions focused on
heterotic SOð32Þ and E8 � E8 theories, where we wrapped
heterotic NS5-branes on a P1 of a non-Kähler resolved
conifold. The form of the metric we considered was

ds2 ¼ ds20123 þ
2�

r
ffiffiffiffiffi
a3
p dr2 þ 2�

ffiffiffiffiffi
a3
p
r
ðdc þ cos�1d�1

þ cos �2d�2Þ2 þ ð�þ a2Þðd�21 þ sin 2�1d�
2
1Þ

þ�ðd�22 þ sin 2�2d�
2
2Þ; (6.1)

where � and a3 were determined in Sec. IVB, along with
the values for the torsion and the dilaton. We also discussed
the global and local symmetries in Sec. IVC.
We determined the respective gravity duals through a

series of dualities depicted in Figs. 1 and 2. The gravity
duals take the following form:

ds2 ¼ ds20123 þ
2�

r
ffiffiffiffiffi
a3
p dr2 þ 1

~H1 þA
½dc þ ~�1 cos�1ðd�1 þ �1d�1Þ þ ~�2 cos�2ðd�2 þ �2d�2Þ	2

þ ½g�1�1d�21 þ g�1�1
ðd�1 þ �1d�1Þ2	 þ ½g�2�2d�22 þ g�2�2

ðd�2 þ �2d�2Þ2	 þ g�1�2d�1d�2

þ g�1�2
ðd�1 þ �1d�1Þðd�2 þ �2d�2Þ; (6.2)

where the components of the metric are given in Sec. V F,
along with the other background fields. The gravity duals
have noncompact two- and three-cycles and resemble a
non-Kähler deformed conifold but with an interesting fi-
bration structure for �1 and �2. Also, note that the space-
time directions are flat, so the Einstein-frame background
does not contain an AdS space (because of a nontrivial
dilaton). It will be interesting to see if aspects of the linear
dilaton background [68] could be recovered in some
regime of parameter space.

It would also be informative to study a proper decou-
pling limit of our backgrounds and check whether the final
result will differ significantly from Eq. (6.2).41 One pos-
sible ansatz for the five-dimensional part of the dual met-
ric, in the decoupling limit, is

ds2 ¼ ds20123 þ
du2

GðuÞ ; (6.3)

where u ¼ �0=r and GðuÞ can be extracted from 2�
r
ffiffiffiffi
a3
p in

Eq. (6.2). The various choices of GðuÞ will determine
the gravity duals for various configurations of LSTs
studied here. Note also that the duality sequences given
in Figs. 1 and 2 are possibly the only way to determine the
gravity duals for the configurations studied in Sec. IVB, in
part because our knowledge of the dual gauge theory side is
extremely limited. Of course, this means that the gravity

dual is particularly useful as a way to discover interesting
information about the gauge theory.
One such interesting piece of information is to look for a

candidate confining string in the gauge theory, which we
discussed in Sec. V F 2. The most natural candidate seems
to be the type I fundamental string, which is prone to
breaking into smaller strings, similar to the breaking of a
confining string into quark-antiquark pairs. Our simple
analysis showed a linear potential between quarks and
antiquarks, but a full understanding of the string breaking
remains a challenge. Additionally, it is not clear whether
the theory that we study using our gravity dual has a simple
mass gap, implying that the matter content of the gauge
theory is nontrivial, as can also be seen from the possible
existence of stable, uncharged, non-BPS states in some
region of the moduli space of the gauge theory. A detailed
study of this is left for future work.
Another future direction that could improve our under-

standing of gauge/gravity duality in the context of heterotic

41For example, one of the simplest decoupling limits generi-
cally applied is the so-called double scaling limit, where �0 ! 0,
r! 0 such that u � �0=r is kept fixed. Using this we can easily
check that the form of Eq. (6.2) does not change. However, we
have not verified whether the double scaling limit is effective in
decoupling the bulk degrees of freedom from the brane for our
case.
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string theory stems from the fact that all the background
fluxes are from the NS sector. Thus, one might hope to gain
a better understanding of the backgrounds, and perhaps
even the geometric transition itself, through Ramond-
Neveu-Schwarz world sheet techniques, similar to those
in Refs. [4,69,70], where a nonperturbative (in �0) under-
standing of a class of non-Kähler backgrounds was given.
We hope to return to this in the future.

ACKNOWLEDGMENTS

We warmly thank Ori Ganor, Sheldon Katz, and Ashoke
Sen for many helpful discussions. The work of F. C. is
supported in part by the National Science Foundation

under Grant No. NSF PHY11-25915. The work of K.D.,
J.M. L., and J. S., is supported in part by the National
Science and Engineering Research Council of Canada.
The work of R. T. is supported partially by STFC.

APPENDIX A: EXPLICIT FORMS FOR H AND dJ

In this section, we will work out the explicit forms for
H that we used in earlier sections. One can also see from
here that dJ � 0. The expression for H is given by

H ¼ �e2� � dðe�2�JÞ ¼ 2 � d� ^ J � �dJ: (A1)

The term �dJ has the following form:

�dJ ¼ ðH3c1Þr þ
ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p
c4�1

H3

ffiffiffiffiffiffi
H2

p
c1

e3 ^ e4 ^ e5 þ
ðH4c5Þr þ

ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p
c7�2

H4

ffiffiffiffiffiffi
H2

p
c5

e5 ^ e1 ^ e2

� ðH3c1Þ�2ffiffiffiffiffiffi
H4

p
H3c1

ðcos c 2e4 ^ e5 ^ e6 þ sin c 2e5 ^ e6 ^ e3Þ �
ðH1H2Þ�2
2H1H2

ffiffiffiffiffiffi
H4

p ðcos c 2e1 ^ e2 ^ e4 þ sin c 2e1 ^ e2 ^ e3Þ

þ
ffiffiffiffiffiffi
H1

p
c4�2ffiffiffiffiffiffiffiffiffiffiffiffi

H3H4

p
c1
ðcos c 2 sin c 1e2 ^ e4 ^ e5 � cos c 1 cos c 2e1 ^ e4 ^ e5 þ sin c 1 sin c 2e2 ^ e3 ^ e5

� sin c 2 cos c 1e1 ^ e3 ^ e5Þ; (A2)

while the first term, involving the dilaton �, has the following form:

�d� ^ J ¼
�
��1

sin c 1ffiffiffiffiffiffi
H3

p
c1

þ��1 cos c 1ffiffiffiffiffiffi
H3

p ��c sin c 1c4ffiffiffiffiffiffiffiffiffiffiffiffi
H1H3

p
c1

�
e2 ^ ðe5 ^ e6 þ e3 ^ e4Þ

þ
�
��1

cos c 1ffiffiffiffiffiffi
H3

p
c1

���1 sin c 1ffiffiffiffiffiffi
H3

p ��c cos c 1c4ffiffiffiffiffiffiffiffiffiffiffiffi
H1H3

p
c1

�
e1 ^ ðe5 ^ e6 þ e3 ^ e4Þ

þ
�
��2

sin c 2ffiffiffiffiffiffi
H4

p
c5

þ��2 cos c 2ffiffiffiffiffiffi
H4

p ��c sin c 2c7ffiffiffiffiffiffiffiffiffiffiffiffi
H1H4

p
c5

�
e4 ^ ðe5 ^ e6 þ e1 ^ e2Þ

þ
�
��2

cos c 2ffiffiffiffiffiffi
H4

p
c5

���2 sin c 2ffiffiffiffiffiffi
H4

p ��c cos c 2c7ffiffiffiffiffiffiffiffiffiffiffiffi
H1H4

p
c5

�
e3 ^ ðe1 ^ e2 � e5 ^ e6Þ þ

�cffiffiffiffiffiffi
H1

p e6 ^ ðe1 ^ e2 � e3 ^ e4Þ

þ �rffiffiffiffiffiffi
H2

p e5 ^ ðe1 ^ e2 þ e3 ^ e4Þ: (A3)

These are the components of H NS presented in Eq. (4.14).

APPENDIX B: BACKGROUND SOLUTIONS USING GEOMETRIC TRANSITIONS

Our starting solution in the heterotic theory before geometric transition, i.e., with wrapped heterotic 5-branes, takes the
following form:

ds2 ¼ ds20123 þH2dr
2 þH1ðdc þ c4d�1 þ c7d�2Þ2 þH3ðd�21 þ c21d�

2
1Þ þH4ðd�22 þ c25d�

2
2Þ; (B1)

where we have not taken the decoupling limit. For the duality chain that we will follow, taking the decoupling limit at this
stage is not necessary. The metric (B1) contains the backreactions of the wrapped 5-branes. The background also has a
nontrivial dilaton �; a three-form H given by
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H ¼ ð2B6 � A1ÞH4

ffiffiffiffiffiffi
H1

p
c5d�2 ^ d�2 ^ dc � ððA1 � 2B6ÞH4

ffiffiffiffiffiffi
H1

p
c5c4 � 2ðB1 cos c 1 þ B2 sin c 1ÞH4

ffiffiffiffiffiffi
H3

p
c1c5Þd�2

^ d�2 ^ d�1 � ðA2 � 2B6ÞH3

ffiffiffiffiffiffi
H1

p
c1d�1 ^ d�1 ^ dc � ððA2 � 2B6ÞH3

ffiffiffiffiffiffi
H1

p
c1c7

� ðA4 þ 2B3 cos c 2 � 2B4 sin c 2ÞH3

ffiffiffiffiffiffi
H4

p
c1c5Þd�1 ^ d�1 ^ d�2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1H2H4

p ðB4 cos c 2 þ B3 sin c 2Þd�2
^ ðdc þ c4d�1 þ c7d�2Þ ^ dr� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1H2H4

p ðB4 sin c 2 þ B3 cos c 2Þc5d�2 ^ ðdc þ c4d�1Þ ^ dr

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1H2H3

p ðB1 sin c 1 � B2 cos c 1Þd�1 ^ ðdc þ c4d�1 þ c7d�2Þ ^ dr

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1H2H3

p ðB1 cos c 1 � B2 sin c 1Þc1d�1 ^ ðdc þ c7d�2Þ ^ dr� 2H3

ffiffiffiffiffiffi
H4

p ðB3 cos c 2 � B3 sin c 2Þc1d�1
^ d�2 ^ d�1 � 2H4

ffiffiffiffiffiffi
H3

p ðB1 sin c 1 � B2 cos c 1Þc1d�1 ^ d�2 ^ d�2 þ B5

ffiffiffiffiffiffi
H2

p
dr

^ ðc1d�1 ^ d�1 � c5d�2 ^ d�2Þ �
H1c5c4�2

c1
d�1 ^ d�2 ^ ðdc þ c4d�1 þ c7d�2Þ; (B2)

where the coefficients Ai’s and Bi’s appearing in Eq. (B2) are given in Eqs. (4.15) and (4.16); and a non-Abelian vector
bundle F, for which the simple Uð2Þ form is given as

F ¼ ðf1e1 ^ e2 þ f2e3 ^ e4 þ f3e5 ^ e6ÞIþ ðf4e1 ^ e2 þ f5e3 ^ e4Þ
1; (B3)

where 
1 is the first Pauli matrix and fi’s are given in Eq. (4.88). One may note that a simplified form of the above
background can be presented as Eq. (5.1), where the coefficients of the metric (B1), the three-form flux (B2), and the
dilaton� take a specific form. The values of these coefficients can be inserted in Eq. (4.88) to determine the vector bundle
for the background (5.1).

For the simple case of Eq. (5.1), one may determine the metric for the gravity dual in the heterotic theory. The full set of
transformations and the duality chain required to describe the final result is depicted in details in the text. The result is

ds2 ¼ ds20123 þ
2�

r
ffiffiffiffiffi
a3
p dr2 þ 1

~H1 þA
½dc þ ~�1 cos�1ðd�1 þ �1d�1Þ þ ~�2 cos�2ðd�2 þ �2d�2Þ	2

þ ½g�1�1d�21 þ g�1�1
ðd�1 þ �1d�1Þ2	 þ ½g�2�2d�22 þ g�2�2

ðd�2 þ �2d�2Þ2	 þ g�1�2d�1d�2

þ g�1�2
ðd�1 þ �1d�1Þðd�2 þ �2d�2Þ: (B4)

Note that there is no coefficient in front of the space-time part. The coefficient, which appears in Eq. (5.25), is in fact the
dilaton in the type I/heterotic frame and is related to the dilaton �ðcÞ in the type I0 frame by mirror/U-duality trans-
formation. Therefore, in the heterotic frame we see no factor of dilaton in front of the space-time part.

Our claim then is that the gravity dual of the wrapped heterotic 5-branes in the heterotic E8 � E8 theory can be extracted
from Eq. (B4) by performing a geometric transition on the metric (B1) or, in the simplified form, Eq. (4.8). In the

decoupling limit of Eq. (4.8) and (B4) will provide the precise gravity dual. Defining u ¼ �0
r , we see that the five-

dimensional part of Eq. (B4) takes the following form:

ds2 ¼ ds20123 þ
du2

GðuÞ ; (B5)

where GðuÞ can be extracted from 2�
r
ffiffiffiffi
a3
p in Eq. (B4) in the decoupling limit. The space-time part is flat, so we conclude that,

in the string frame, a flat Minkowski space is dual to LST compactified to four dimensions on a two-cycle of the non-
Kähler resolved conifold. Additionally, irrespective of the details of the internal space, the five-dimensional dual metric
will always be of the form (B5).

APPENDIX C: TORSIONAL CONNECTION �m
np

The connection that we use throughout this paper is the so-calledþ-connection, constructed from the Christoffel symbol
and H as

��
þ�� � ��

�� ¼ ��
�� þ 1

2
H �

��: (C1)

The various components of ��
�� are given as follows:
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c c ¼�

H01
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ffiffiffiffiffiffi
H2

p ffiffiffiffiffiffi
H1

p ; �c
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ffiffiffiffiffiffi
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p ffiffiffiffiffiffi
H1

p ; ��1

c �1
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ffiffiffiffiffiffi
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p � H1

2H3
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2H4
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ffiffiffiffiffiffi
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2H3
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p
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; �r
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p ffiffiffiffiffiffi
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p ; �r
�1�1
¼� sin�1H
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p ffiffiffiffiffiffi
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ffiffiffiffiffiffi
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2
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H1

p
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2H3

;

��2
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H1
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2H4

; �r
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H2

p ffiffiffiffiffiffi
H1

p ; �r
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ffiffiffiffiffiffi
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p ffiffiffiffiffiffi
H4

p ;
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H1

p ; �c
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¼�ð

ffiffiffiffiffiffi
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2
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ffiffiffiffiffiffi
H3
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2H3
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H4Þ
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H3

p ��1

�1c
¼�

ffiffiffiffiffiffi
H1

p �BH3

2
ffiffiffiffiffiffi
H3

p ; ��1
�1r
¼ H03
2

ffiffiffiffiffiffi
H2

p ffiffiffiffiffiffi
H3

p ; �r
�2�2
¼� H04

2
ffiffiffiffiffiffi
H2

p ffiffiffiffiffiffi
H4

p

�c
�2�2
¼

ffiffiffiffiffiffi
H1

p þAH4

2
ffiffiffiffiffiffi
H4

p ; ��2

�2c
¼�

ffiffiffiffiffiffi
H1

p �AH4

2
ffiffiffiffiffiffi
H4

p ; ��2
�2r
¼ H04

2
ffiffiffiffiffiffi
H2

p ffiffiffiffiffiffi
H4

p : (C2)

APPENDIX D: PROOFS FOR EQS. (4.30) AND (4.32)

Let us now clarify the functional forms for the dilaton and h1 that we used in Eq. (4.30). In the process we will also
justify Eq. (4.32).

A simple dimensional analysis will tell us that all three warp factors in Eq. (4.6), namely, h1a3, a2, and h1a5, are
proportional to the square of the radius r2.42 Additionally, the generic form for the heterotic metric (4.6) should be43

ds2 ¼ ds20123 þ e�ds2internal; (D1)

where the 5-branes wrap the space-time x0;1;2;3 and the two-cycle ð�1; �1Þ, and ds2internal is the internal non-Kähler resolved
conifold metric that we will typically demand takes the following form:

ds2internal �
dr2

F 3ðrÞ þ
r2F 3ðrÞ

4
ðdc þ cos �1d�1 þ cos�2d�2Þ2 þ r2 þ a2e��

4
ðd�21 þ sin 2�1d�

2
1Þ

þ r2

4
ðd�22 þ sin 2�2d�

2
2Þ; (D2)

where F 3ðrÞ will turn out to be 2
ffiffiffiffi
a3
p
r , a fact that will be justified below. Thus, if we isolate the metric of the two-sphere on

which we will have the wrapped 5-branes from Eq. (D2), we will get the metric of the four-dimensional internal space,
which is locally an ALE space. This means, looking at Eqs. (4.6) and (4.25), that we find h1a5 ¼ �, so using Eq. (D1) and
dimensional analysis, the dilaton becomes

e� ¼ 4�

r2
þOða2Þ; (D3)

where we have inserted a factor of 4 just for convenience to comply with the non-Kähler resolved conifold metric (D2) that
we consider here. Interestingly, one may also verify Eq. (D3) using the torsion classes that we derived earlier. Using the
normalization of the dilaton factor that we consider here, the relation is d� ¼ 2W4, as discussed in Footnote 15. Thus,
from the W4 computed in Eq. (4.18), we get the following equation for the dilaton:

GAUGE/GRAVITY DUALITY IN HETEROTIC STRING THEORY PHYSICAL REVIEW D 88, 066003 (2013)

066003-35



�ðrÞ ¼ 1

2

Z
dr

�
1þ �

�þ a2

�
d

dr
log

�
4�

r2

�
; r > 0: (D4)

In the limit that a2 is much smaller than other scales, we immediately reproduce Eq. (D3). For finite a2, Eq. (D4) can give
us the correction to the dilaton due to the resolution parameter of the underlying non-Kähler resolved conifold metric.

From the dimensional analysis, since the dilaton (D3) is the simplest possible ansatz, one might ask whether a more
generic ansatz, with a dimensionless function f0ðrÞ, could be envisioned for the dilaton, i.e.,

e� ¼ 4�

r2f0ðrÞ
; f0ðrÞ � 1þX

n�1
cn

�
rffiffiffiffiffi
�0
p

�
n þ X

m�1
dm

� ffiffiffiffiffi
�0
p
r

�
m
: (D5)

Without doing any computations, we might say that cn ¼ 0
because for large r, where the effect of the wrapped heter-
otic 5-branes is negligible, we expect the standard metric
of a resolved conifold. The rest of f0 could then be ab-
sorbed into the definition of �, implying that the form of
the dilaton (D3) is generic enough. The above conclusions
are almost true, but we will consider a case where positive
powers of rwill sum up asymptotically to yield a result that
will behave as inverse powers of r as r tends to a large
value. Furthermore, the underlying manifold may not ex-
actly become a Calabi–Yau resolved conifold at large r.
Despite these subtleties, we can generically absorb f0ðrÞ
into the definition of the dilaton as long as we have good
asymptotic behavior. This is also consistent with the tor-
sion class analysis (D4).

The dimensional analysis now tells us that the coeffi-

cient a2 in Eq. (4.6) should be a2 � e�r2

4 þ a2, which is of

course consistent with a2 ¼ �þ a2 in Eq. (4.36). The
other two coefficients in Eq. (4.6) now take the form

h1a3 ¼ r2e�f1ðrÞ; h1 ¼ e�f2ðrÞ; (D6)

where f1ðrÞ and f2ðrÞ are dimensionless functions of r.
Only a3 could carry a dimensionful factor of r2. The
question now is: how are f1 and f2 related?

To find the relation between f1 and f2, let us go back to
the metric ansatz (4.20), where a3 first appears.
Dimensionally, a3 should be r2, so we can only attach a
dimensionless factor to it. Motivated by the form of the
other term in Eq. (4.20), let us then make the following
choice for a3:

a3 � 4r2f21; (D7)

where again we put a factor of 4 for later convenience.
Plugging this into Eq. (D6), we immediately get the re-
quired value for h1 in Eq. (4.30) and

f1 ¼ 1

4f2
¼

ffiffiffiffiffi
a3
p
2r

: (D8)

Thus, everything can be expressed either in terms of � or
a3 or both, provided Eq. (D7) holds. Of course, this is not
the only ansatz since we can always express a3 as a
function proportional to r2fn1 or to r2gm1 with ðn;mÞ being

any number (integer or fractional). However, in this paper
we will stick with the simplest choice (D7).

APPENDIX E: SUPERSYMMETRY
CONDITION REVISITED

The supersymmetry condition for the conventions in this
paper is Eq. (4.19), i.e., 2W4 ¼ W5, as our choice of the
dilaton is minus the choice of the dilaton in Ref. [41].
However, it is interesting to see, just for the sake of

curiosity, how the backgrounds change if we take the
supersymmetry condition to be 2W4 ¼ �W5, without wor-
rying about the sign of the dilaton. To be concrete, let us
just consider the scenario depicted in case I. The equation
for a3 changes from Eq. (4.42) to the following:

da3
dr
�

ffiffiffiffiffi
a3
p
4
þ 5a3

12r

�
17r2 þ 8e0
r2 þ e0

�
þOða2Þ ¼ 0: (E1)

This can again be exactly solved, and the solution for a3
will become

a3ðrÞ¼
�

3

6649

�
2

�½45e
2
0þ106e0r

2þ61r4�45e20ðe0þr
2

e0
Þ1=16J 1;2	2

r2ðe0þ r2Þ2 ;

(E2)

which can be compared to Eq. (4.44). The hypergeometric
function now, denoted J 1;2, is

J 1;2 � 2F1

�
1

16
;
1

3
;
4

3
;� r2

e0

�
: (E3)

The behavior of a3 at the origin and at infinity is

a3jr!0 ¼ 9r2

4096
� 405r4

229376e0
þOðr6Þ;

a3jr!1 ¼ 9r2

11881
þ 810e0

724741
þO

�
1

r2

�
:

(E4)

Having obtained a3, we can now work out � from the
warp factor. This is easy to write down since a3 is expres-
sible again as a square [similar to the scenario we encoun-
tered in Eq. (4.46)]. The functional form for � then is
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�ðrÞ ¼ 3

13298r2

�
45e20 þ 106e0r

2 þ 61r4

� 45e20

�
e0 þ r2

e0

�
1=16

J 1;2

�
; (E5)

which immediately tell us that the boundary values for this
will be

�jr!1 ¼ 3r2

218
þ 159e0

6649
þO

�
1

r2

�
;

�jr!0 ¼ 3e0
128
þ 201r2

14336
þOðr4Þ;

(E6)

consistent with the parallel story in Eq. (4.46), although the
numerical coefficients are different from Eq. (4.47).

The picture is not complete until we figure out the r! 0
behavior as the small r behavior in Eq. (E6) does not take
into account the subtlety that the wrapped 5-branes behave
like 3-branes. Therefore, as before, near the origin, we will
assume that the warp factor is given by 1þ �0e0=r4 with
�0 ¼ 1. The a3 equation now changes from Eq. (E1) to

da3
dr
�

ffiffiffiffiffi
a3
p
4
þ 5a3

12r

�
17r4 � e0
r4 þ e0

�
þOða2Þ ¼ 0; (E7)

mirroring the change from Eq. (4.42) to Eq. (4.50). The
solution for a3 now is similar to Eq. (E2):

a3ðrÞ ¼
�

3r

2071

�
2 ½19ðe0 þ r4Þ þ 90e0ð1þ r4

e0
Þ1=16 ~J 1;2	2

ðe0 þ r4Þ2 ;

(E8)

with ~J 1;2 being another hypergeometric function. On the

other hand, � becomes

�ðrÞ ¼
�

3

4142r

��
19ðe0 þ r4Þ þ 90e0

�
1þ r4

e0

�
1=16

~J 1;2

�
;

(E9)

which is similar to Eq. (E5), as one might have expected.
We now only care about the r! 0 behaviors of a3 and �
since the large r behavior should be captured by Eqs. (E2)
and (E5), respectively. They are given by

a3 ! 9r2

361
� 324r6

8303e0
þ 2142936r10

40294459
þOðr14Þ;

�! 3e0
38r2

þ 15r2

874
� 162r6

92207e0
þOðr10Þ:

(E10)

One final computation needed to complete the story is to
determine the torsionsH for both the cases (E1) and (E7).
Near r ¼ 0, the torsion is given by

H ¼ 9

34312328e0r
2

�
e0

e0 þ r4

�
31=16

�
361e20

�
1þ r4

e0

�
31=16

þ 285ð121e20 þ 230e0r
4 þ 109r8Þ ~J 1;2

þ 1350e0

�
1þ r4

e0

�
1=16ð115e0 þ 109r4Þ ~J 2

1;2

�
� ð�1 þ�2Þ ^ ec : (E11)

This is plotted as the blue curve in Fig. 14. The behavior is
no different from the three cases studied earlier. This
confirms the statement that we made earlier: we can go
from one convention to another by redefinitions of the
variables in the problem.
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