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Exact configurations of the four-dimensional Skyrme model are presented. The static configurations

have the profile. Which behaves as a kink and, consequently, the corresponding energy-momentum tensor

describes a domain wall. Furthermore, a class of exact time-periodic Skyrmions is discovered. Within

such a class, it is possible to disclose a remarkable phenomenon that is a genuine effect of the Skyrme

term. For a special value of the frequency the Skyrmions admit a nonlinear superposition principle. One

can combine two or more exact ‘‘elementary’’ Skyrmions (which may depend in a nontrivial way on all

the spacelike coordinates) into a new exact composite Skyrmion. Because of such a superposition law,

despite the explicit presence of nonlinear effects in the energy-momentum tensor, the interaction energy

between the elementary Skyrmions can be computed exactly. The relations with the appearance of Skyrme

crystals are discussed.
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I. INTRODUCTION

The Skyrme theory is one of the most important models
of theoretical physics due to its wide range of applications.
Skyrme [1] introduced his famous term into the action of
the nonlinear sigma model to allow the existence of static
soliton solutions with finite energy, called Skyrmions (see
[2–4] for detailed pedagogical reviews). A further impor-
tant property of the Skyrme theory is that excitations
around Skyrme solitons may represent fermionic degrees
of freedom (see the detailed analysis in [5] and references
therein) suitable to describe nucleons (nice examples are
[6–9]). Besides the great importance of Skyrmions in
particles, nuclear physics, and astrophysics (see, for
instance, [10] and references therein), many intriguing
observations such as [11–19] show that Skyrmions play a
very important role also in Bose-Einstein condensates,
nematic liquids, multiferric materials, chiral magnets,
and condensed matter physics in general. However, in
condensed matter systems (such as the ones considered
in [17]), Skyrmions are stabilized by specific interactions
imposed by handedness of the underlying structure (for
details, see [18,19]). This mechanism is absent in the
original Skyrme model and, consequently, as it is well
known it is extremely difficult to construct analytical con-
figurations in that case. Another issue that makes the task
to construct nontrivial analytical configurations of the
original Skyrme model particularly difficult is the fact
that, unlike what happens, for instance, in the case of
monopoles and instantons in Yang-Mills-Higgs theory
(see, for instance, [3,4,20]), the Skyrme-Bogomol’nyi-
Prasad-Smmerfield (BPS) bound on the energy (which
was derived by Skyrme himself well before the modern
formulation of soliton theory became available) cannot be

saturated for nontrivial spherically symmetric Skyrmions.
Nevertheless, in [21] it has been shown that the Skyrme
model supports knotted excitations (but they are not known
analytically) as it also happens in Yang-Mills theory (see,
in particular, [22]).
Among the many open problems of the Skyrme theory

(in which exact configurations are very rare1) a fundamen-
tal theoretical challenge is to construct exact configurations
in which the nonlinear effects are explicitly present. This
would shed considerable light on the peculiar interactions
of the Skyrme model. A further theoretical problem is to
explain how, in a nonlinear and nonintegrable theory such
as the Skyrme model in four dimensions, nice crystal-like
structures (see [24] and references therein) are able to
appear. These beautiful configurations, which have been
constructed numerically, look almost like nontrivial super-
positions of ‘‘elementary solutions’’ but, at first glance, it
appears to be impossible to accommodate both nonlinear
effects and (any sort of) superposition law.
One often adopts suitable ansatz to make the field

equations more tractable. Until recently, the only ansatz
able to reduce the complexity of Skyrme field equations is
the hedgehog ansatz for spherically symmetric systems and
its rational map generalization2 in [25]. However, the field
equations are still unsolvable in these cases, since the
corresponding Skyrme-BPS bound cannot be saturated.

*canfora@cecs.cl

1One of the very few examples (which is not of the type
analyzed in the present paper) of exact solutions of the Skyrme
field equation is in [23]. Because of the nonlinearities of the
theory, explicit solutions are available only under severe sim-
plifying assumptions.

2In both cases (the usual spherical hedgehog and the rational
map ansatz), it is necessary that the profile of the hedgehog
depends on the radius, and, consequently, it is not easy to depart
from spherical symmetry.
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Many modifications of the Skyrme theory have been
proposed (see, for instance, [26–31] and references
therein), which change the theory in such a way that
suitable bounds on the energy that can be saturated become
available. All these models have many interesting mathe-
matical features, and their importance goes beyond the
simplification of the original Skyrme theory. However, all
such modifications spoil the original motivations of the
Skyrme theory whose form is compelling from both phe-
nomenological and theoretical points of view.

In the present paper, it will be shown that using the
generalized hedgehog ansatz introduced in [32,33] (which
allows one to study systems without spherical symmetry)
one can construct exact configurations of the four-
dimensional Skyrme theory in its original form that may
be static or periodic in time (but other topologies can be
considered as well). Within the time-periodic configura-
tions, a remarkable resonance phenomenon emerges: for a
special value of the frequency, a nonlinear superposition
law appears that allows one to combine two or more
‘‘elementary’’ Skyrmions3 (whose profile depends in a non-
trivial way on all the spacelike coordinates) into a new exact
composite Skyrmion. In the present case, despite the ex-
plicit presence of nonlinear effects, the interaction energy
between the moduli of N elementary Skyrmions can be
computed exactly for any N. The relations with the appear-
ance of Skyrme crystals is an intriguing property of the
present construction.

This paper is organized as follows: in Sec. II, the gen-
eralized hedgehog will be described and an exact kink of
the Skyrme system will be constructed. In Sec. III, exact
time-periodic Skyrmions will be analyzed, and it will be
shown how a nonlinear superposition law arises. In Sec. IV
will be discussed a mapping from periodic Skyrmions in
which the profile is static and the internal orientation is
time-periodic to periodic Skyrmions in which the profile
depends on timewhile the internal orientation is periodic in
space. In Sec. V, some conclusions will be drawn.

II. GENERALIZED HEDGEHOG
AND AN EXACT KINK

The action of the SUð2Þ Skyrme system in four-
dimensional flat (but topologically nontrivial) space-times is

SSkyrme ¼ K

2

Z
d4x

ffiffiffiffiffiffiffi�g
p

Tr

�
1

2
R�R� þ �

16
F��F

��

�
;

K > 0; � > 0;

R� :¼ U�1r�U ¼ Ri
�ti;

F�� :¼ ½R�; R��; ℏ ¼ 1; c ¼ 1; (1)

where the Planck constant and the speed of light have
been set to 1, the coupling constants K and � are fixed by
comparisonwith experimental data, and the ti are the basis of
the SUð2Þ generators ti (where the Latin index i corresponds
to the group index).
A mass term can also be included: however, it is

well known (see [34] and references therein) that when
the mass term is nonvanishing, the theory is considered in
1þ 1 dimensions and the group is nontrivial solution
corresponding to the Abelian Uð1Þ group saturating suit-
able BPS bounds appear. Here it will be shown that this is
true even without a mass term in 3þ 1 dimensions and
with the SUð2Þ internal symmetry group. Furthermore, the
original action4 in Eq. (1) without the mass term (besides
being a quite good approximation for pion physics when
the pion mass can be assumed to be small) is extremely
useful in applications in condensed matter physics (see, for
instance, [12,14]).
The Skyrme field equations are

r�R� þ �

4
r�½R�; F��� ¼ 0: (2)

The following standard parametrization of the
SUð2Þ-valued scalar Uðx�Þ will be adopted:
U�1ðx�Þ¼Y0ðx�Þ1�Yiðx�Þti; ðY0Þ2þYiYi¼1: (3)

The generalized hedgehog ansatz [32,33] reads

Y0 ¼ cos�; Yi ¼ n̂i sin�; (4)

n̂1 ¼ cos�; n̂2 ¼ sin�;

n̂3 ¼ 0; ðr��Þðr��Þ ¼ 0;
(5)

where � is the profile of the hedgehog while the function
�, through the internal vector n̂i, describes its orientational
degrees of freedom in the internal SUð2Þ space.
As it has been discussed in [32,33], a very convenient

choice is to take� as a linear function of the coordinates in
such a way that, when the metric is flat, one gets

ðr��Þðr��Þ ¼ ðr�Þ2 ¼ const � 0;

since the system becomes rather trivial when ðr�Þ2 van-
ishes (in which case the field equation for � linearizes and,
mainly, the energy-momentum tensor becomes quadratic
in � so that the nonlinear effects disappear). Thus, the full
Skyrme field equations, Eq. (2), reduce to the following
single scalar nonlinear partial differential equation for the
Skyrmion profile �:

3It is worthwhile to emphasize here that, often, in the literature
the term ‘‘Skyrmion’’ is used only to describe configurations
with nonvanishing winding numbers. In the following, this term
will be used in a broader sense to denote exact solutions of the
original four-dimensional Skyrme theory in which nonlinear
effects are explicitly present.

4It is worth mentioning that Skyrme’s original idea was
precisely that the nucleon’s mass is of mesonic origin and that
the meson mass originates from the nucleon coupling.
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0 ¼ ð1þ �ðr�Þ2sin 2�Þh�

þ �ðr�Þ2ðr�Þ2
2

sin ð2�Þ � ðr�Þ2
2

sin ð2�Þ ¼ 0;

h ¼ r�r�; (6)

while the t� t component of the energy momentum
(which represents the energy density) reads

Ttt ¼ K

�
ðrt�Þðrt�Þ þ sin 2�ðrt�Þðrt�Þ � gtt

2
½ðr�Þ2

þ sin 2�ðr�Þ2� þ �sin 2�ððr�Þ2ðrt�Þðrt�Þ
þ ðr�Þ2ðrt�Þðrt�ÞÞ � �gtt

2
sin 2�ððr�Þ2ðr�Þ2Þ

�
:

(7)

It is worth emphasizing the following point. When one
replaces a suitable ansatz into the equations of motion, the
information about the correct boundary conditions are lost.
In such cases, the correct boundary conditions for the
Skyrmion profile � can be derived analyzing, for instance,
the energy density. In the present case, the global minima
of the energy density in Eq. (7) are located at � ¼ n�.
Hence, the two most natural possibilities are to require
periodic boundary conditions for � (in which cases one is
effectively considering the theory defined on a torus with
finite volume5) or to require that � approaches n� at the
boundaries of the region one is analyzing. Both cases will
be considered in the following.

As an interesting static example, one can consider the
following ansatz for the Skyrme field:

� ¼ �ðxÞ;
� ¼ �ðy; zÞ ¼ 1

l
ðn2yþ n3zÞ; n2; n3 2 Z; (8)

ðr�Þ2 ¼ ð�0Þ2; �0 ¼ d�

dx
;

ðr�Þ2 ¼ L�2 ¼ ððn2Þ2 þ ðn3Þ2Þl�2;
(9)

where L and l are constants with dimension of length (so
that both� and the product �L�2 are adimensional) while
x, y, and z are the spatial coordinates. The choice in Eq. (8)
corresponds to the internal vector n̂i periodic in the y and z
spatial directions while the profile � only depends on the
spatial coordinate x. The full Skyrme field equations,
Eq. (6), and the energy density in Eq. (7) reduce to

0 ¼ �00 � L�2

2
sin ð2�Þ

þ �L�2

�
�00sin 2�þ ð�0Þ2

2
sin ð2�Þ

�
; (10)

Ttt ¼ K

2
½ð�0Þ2 þ L�2sin 2�þ �L�2ð�0Þ2sin 2��: (11)

In this case, the correct boundary conditions correspond
to require that � at x ¼ �1 approaches the absolute
minima of the energy density located at n�. It is worth
mentioning that such a boundary condition makes sense
not only from the energetic point of view. The reason is
that, when � is equal to n�, the Skyrmion configurations
defined in Eqs. (3)–(5) reduce to�1, and it is customary to
require that the Skyrme configuration reduces to (plus or
minus) the identity at the boundaries of the domains in
which one is interested.
At a first glance, it is a very difficult task to find exact

solutions of Eq. (10). However, one can observe that any
solution of the following first order differential equation
for �:

�0 ¼ �L�1 sin�

ðFð�ÞÞ1=2 ; (12)

Fð�Þ ¼ 1þ �L�2sin 2�; (13)

is automatically a solution of Eq. (10) as well. Indeed, if �
satisfies Eq. (12), then one can deduce [deriving both sides
of Eq. (12)] the following expression for the second de-
rivative of �:

�00 ¼ L�2

2

�
sin ð2�Þ

1þ�L�2sin 2�
��L�2 sin ð2�Þsin 2�

ð1þ�L�2sin 2�Þ2
�
: (14)

Then, replacing the expressions in Eqs. (12) and (14) for�0
and �00 in Eq. (10), one can easily see that Eq. (10) is
satisfied identically. By writing Eq. (12) in the form of a
one-dimensional Newton equation, one can show there
exist kinklike solutions that interpolate between neighbor-
ing minima of the energy density in Eq. (11) located at n�.
Because of the fact that the profile � interpolates between
neighboring minima, this type of solutions cannot be de-
formed continuously to the trivial solutions � ¼ n�. The
obvious reason is that, to perform such deformation, one
would need an infinite amount of energy per unit of area in
the y-z plane. In particular, the above configuration ac-
tually represents a domain wall (for a detailed pedagogical
review see [35]). Indeed, the full energy momentum is

5This situation is especially relevant for the applications of
Skyrmions in condensed matter physics in which the relevant
dynamics happen in finite domains.
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T�� ¼ Kfðr��Þðr��Þ þ sin 2�ðr��Þðr��Þ
� ���

2
½ðr�Þ2 þ sin 2�ðr�Þ2� þ �sin 2�ððr�Þ2

� ðr��Þðr��Þ þ ðr�Þ2ðr��Þðr��ÞÞ

� ����

2
sin 2�ððr�Þ2ðr�Þ2Þg; (15)

��� being the flat Minkowski metric. Since Eq. (12)

implies that the profile � is a monotone function interpo-
lating between neighboring minima of the energy density,
one can see that the full energy-momentum tensor is differ-
ent from zero only in a narrow region around x ¼ 0 (for
any y and z) and it approaches exponentially fast to zero far
from the x ¼ 0 plane. Consequently, as domain walls are
defined by energy-momentum tensors that are localized
around a plane and that approach zero exponentially fast
far from the plane (see [35]), the above energy-momentum
tensor corresponding to the Skyrmion profile � satisfying
Eq. (12) represents a domain wall. To the best of the
author’s knowledge, this is the first exact domain wall in
the four-dimensional Skyrme theory: because of the great
importance of domain walls in many applications (see
[35]), this result is quite interesting. It is also worth noting
that, obviously, the total energy of a domain wall is diver-
gent because of the integration along the transverse y and z
directions. In fact, the relevant quantity in these cases is the
total energy per unit of area in the y and z directions (which
will be denoted as EA), which reads

EA ¼ K

2

Z þ1

�1
½ð�0Þ2 þL�2sin 2�þ�L�2ð�0Þ2sin 2��dx!

EA ¼ K

2

Z þ1

�1
ð1þ�L�2sin 2�Þ

�
�
ð�0Þ2 þ L�2

ð1þ�L�2sin 2�Þ sin
2�

�
dx:

One can rewrite the above equation as

EA ¼ K

2

Z þ1

�1
ð1þ �L�2sin 2�Þ

�
ð�0Þ2 þ L�2

ð1þ �L�2sin 2�Þ
� sin 2�þ 2�0

�
L�2

ð1þ �L�2sin 2�Þ sin
2�

�
1=2

� 2�0
�

L�2

ð1þ �L�2sin 2�Þ sin
2�

�
1=2

�
dx!

EA ¼ K

2

Z þ1

�1
ð1þ �L�2sin 2�Þ

�
�
�0 �

�
1

ð1þ �L�2sin 2�Þ
�
1=2

L�1 sin�

�
2
dx�Q

(16)

Q ¼ K
Z þ1

�1
½L�1 sin�ð1þ �L�2sin 2�Þ1=2��0dx: (17)

Since the expression for Q in Eq. (17) is a total
derivative and that, because of the boundary conditions,
� approaches at x ¼ �1 the absolute minima of the
energy density itself, and the expression for Q is conver-
gent. Moreover, when the profile � satisfies Eq. (12), the
expression for EA in Eq. (16) reduces to Q, and so it is
convergent as well. Therefore, the above configuration has
the expected physical behavior of a domain wall.
It is worth emphasizing here that the above example

shows that, within Skyrme theory, there are many more
nontrivial topological effects than the ones encoded in the
winding number.6

III. TIME-PERIODIC SKYRMIONS AND
NONLINEAR SUPERPOSITION LAW

Now, a class of exact time-periodic solutions (denoted as
‘‘periodic Skyrmions’’) will be presented. Such a class
corresponds to the following alternative choices of the
profile of the hedgehog � and of the function �:

�¼�ðx;y;zÞ; ðr�Þ2¼ð@x�Þ2þð@y�Þ2þð@z�Þ2; (18)

� ¼ !t; ! 2 R; ðr�Þ2 ¼ �!2; (19)

where the metric is the flat Minkowski metric in Cartesian
coordinates, x, y, and z are the spatial coordinates, while
boundary conditions along the spatial directionwill be speci-
fied below. The ansatz inEq. (19) describes Skyrmionswith a
profile �, which depends on all the spacelike coordinates.7

On the other hand, the internal vector n̂i that describes the
orientation of the Skyrmion in the internal SUð2Þ space
oscillates in time with frequency ! between the first and
the second generators of theSUð2Þ algebra: the description of
this dynamical situation would be impossible with the usual
spherical hedgehog ansatz.
With the above choice of � and �, the Skyrme field

equations, Eq. (2), reduce to (see [32,33]) the following
scalar elliptic nonlinear partial differential equation for the
Skyrmion profile:

0 ¼ ð1� �!2sin 2�Þ 4 �þ!2

2
sin ð2�Þ

� �!2 sin ð2�Þ
2

ðr�Þ2; (20)

where 4 is the flat three-dimensional Laplacian.
In the following, periodic boundary conditions for the

profile � will be considered. This corresponds effectively
to compactify the space to a three-dimensional torus of

6The fact that the winding number by itself is not enough to
describe all the subtle topological properties of the Skyrme
model can be understood, for instance, following the analysis
of [21].

7In the cases in which � depends on only one spacelike
variable, one can find exact solutions following the same con-
struction described in the previous section.
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finite volume. Skyrme theory in finite domains can be quite
relevant in applications in condensed matter physics as
well (as the references cited in the Introduction show).
How the analysis changes with different boundary condi-
tions will be mentioned at the end of this section.

One can observe that in terms of the following function
Hð�Þ of the profile �:

Hð�Þ ¼
Z � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �!2sin 2s
p

ds ) 4Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �!2sin 2�

p

¼
�
4�� �!2

2

sin ð2�Þðr�Þ2
1� �!2sin 2�

�
; (21)

Eq. (20) can be written as

4H þ !2 sin ð2�Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �!2sin 2�

p ¼ 0; (22)

where one should express � in terms of H inverting the
elliptic integral in Eq. (21). A very surprising phenomenon
is now apparent: if

! ¼ !� ¼ 1ffiffiffiffi
�

p ; (23)

then Eq. (20) with the change of variable in Eq. (21)
reduces to the following (linear) Helmholtz equation

4H þ 1

�
H ¼ 0; � ¼ arcsinH; (24)

which, as it will be discussed below, allows one to define an
exact nonlinear superposition law. The energy density
[defined in Eq. (7)] in terms of H becomes

Ttt ¼ K

�
1

2�
H2 þ 1

2

�
1þH2

1�H2

�
ðrHÞ2

�
: (25)

The explicit presence of nonlinear effects in the energy-
momentum tensor in Eq. (25) despite the fact that H
satisfies the linear Helmholtz equation is related to the
breaking of the homogeneous scaling symmetry. Unlike
what happens in free field theories, the energy density does
not scale homogeneously under the rescaling

H ! �H; � 2 R:

In particular, by definition [see Eqs. (24) and (4)], jHj
cannot be larger than 1 and, moreover, from the energetic
point of view, it may be very ‘‘expensive’’ for jHj to get
close to 1 as it is clear from Eq. (25). Therefore, one can
multiply a given solution Hð0Þ for a constant � whenever

the (absolute value of the) new solution �Hð0Þ of the

Helmholtz equation does not exceed 1.
The nonanalytic dependence of the energy density in

Eq. (25) on the Skyrme coupling � clearly shows both the
nonperturbative nature of the present effect and the fact
that it is closely related to the Skyrme term.8 Here only the

cases in which Eq. (24) has a unique solution up to inte-
gration constants (which play the role of moduli of the
Skyrmions) will be considered since they allow a more
transparent physical interpretation (but more general situ-
ations can be analyzed as well). The periodic Skyrmions
corresponding with such a unique solution will be denoted
as elementary Skyrmions.
Let us consider the case in which the soliton profiles

depend on three spacelike coordinates x, y, and z. Periodic
boundary conditions (with periods 2�Li) in the spatial
directions will be considered. Let

Hi ¼Hð ~x� ~xiÞ
¼ Aiðsin�1ðx� xiÞ sin�2ðy� yiÞ sin�3ðz� ziÞÞ; (26)

1

�
¼ X3

i¼1

�2
i ; �i ¼ 1

Li

;

~xi ¼ ðxi; yi; ziÞ; �i ¼ arcsinHi;

(27)

where Hð ~x� ~xiÞ is the solution of Eq. (24). As one can
check in Eq. (25), the positions of the peaks in the energy
density in Eq. (25) corresponding to the elementary
Skyrmions �i ¼ arcsinHi are determined by ~xi, which
therefore plays the role of the moduli of �i since ~xi
identifies the ‘‘position’’ of the elementary Skyrmion. On
the other hand, the overall constant Ai strictly speaking
does not represent moduli of the elementary Skyrmion
since, when one replaces the expression in Eq. (26) into
Eq. (25), one can see that the total energy depends on Ai

while it does not depend on ~xi.
The most natural way to define a continuous composi-

tion of N elementary Skyrmions �i ¼ arcsinHi with mod-
uli ~xi [defined in Eqs. (26) and (27)] with the property that,
when all the Hi are small, the profile of the sum reduces to
the sum of the profiles is

�1þ2þ���þN ¼ arcsin ðH1 þH2 þ � � � þHNÞ;
if jH1 þH2 � � � þHNj � 1; (28)

�1þ2þ���þN ¼ �

2
; if H1 þH2 � � � þHN > 1; (29)

�1þ2þ���þN ¼ ��

2
; if H1 þH2 � � � þHN <�1; (30)

where one must take into account that arcsin x is only
definedwhen jxj � 1. At a first glance, in the cases inwhich
jH1 þH2 þ � � � j> 1, discontinuities in the first deriva-
tives of the composite Skyrmion can appear. In fact, it is
unlikely that such nonsmooth solutions can survive since
they are very expensive energetically (since the correspond-
ing gradient would be unbounded). Hence, the nonlinear
superposition of elementary Skyrmions is allowed only
when they satisfy jH1 þH2 þ � � � j< 1; otherwise it is
not energetically convenient to combine the elementary
Skyrmions into the composite Skyrmion.8Namely, it disappears when � ! 0 as it is clear from Eq. (21).
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As far as the appearance of crystals is concerned, from
Eqs. (7) and (25) one can see that the energy density of the
composition �1þ2þ���þN of N elementary Skyrmions
(whose integral represents the interaction energy between
the N elementary Skyrmions and can be computed in
principle for any N) depends in a complicated way on
the moduli ~xi. However, one can observe in Eqs. (7) and
(25) that, in the expression of the energy density of the
composition �1þ2þ���þN , in order to find configurations of
the ~xi that are favorable energetically, one should minimize
with respect to the moduli ~xi quadratic sums of the
following type:

� ¼
�XN
i¼1

Hð ~x� ~xiÞ
�
2
:

In all the cases in which Hð ~xÞ involves trigonometric
functions, the theory of interference in optics9 can be
applied to minimize sums of the type appearing in the
above equation since one can interpret � as the interfer-
ence of many elementary waves. Hence, placements in
which the ~xi follow patterns of negative interference are
always favorable energetically (although other local min-
ima of the total energy appear as well). In the cases in
which Hð ~xÞ involves a different basis of functions (such as
the Bessel functions that naturally appear when analyzing
the Helmholtz equation in unbounded domains) the known
results in optics cannot be applied directly, but it is rea-
sonable to expect that also in those cases the ~xi follow
patterns associated with ‘‘negative interference of Bessel
functions.’’

It is worth emphasizing here that the present composite
Skyrmions do not correspond to the Skyrme crystals al-
ready known numerically (see, for instance, [3,24]) since,
in the latter case, the internal SUð2Þ orientation depends
nontrivially on spacelike coordinates while, in the present
case, it depends nontrivially on time. However, the above
result is quite remarkable since, to the best of the author’s
knowledge, it is the first example constructed in a nonlinear
nonintegrable four-dimensional theory in which it is pos-
sible to accommodate both explicit nonlinear effects in the
energy-momentum tensor and a superposition law of ele-
mentary solutions. Hence, the present results shed new
light on the nonlinear interactions that are responsible for
the appearance of composite structures such as the ones in
[3,24].

It is natural to wonder whether the intriguing picture
described above is a ‘‘coincidence’’ that can appear only
when the frequency of the periodic Skyrmion satisfies
Eq. (23). In fact, standard results in perturbation theory

(see the detailed analysis in [36]) ensure that there exists a

nontrivial left neighborhood of ! ¼ 1=
ffiffiffiffi
�

p
in which the

above construction provides a good approximation of the
multi-Skyrmions solutions. To see this, let us consider
�!2 ¼ 1� �where 0<� 	 1. In this case, one can treat
the term proportional to � in the Skyrme field equation,
Eq. (20), as a perturbation and � as the perturbation
parameter. Well-known techniques in the theory of non-
linear partial differential equations can be applied to the
present case (see, in particular, p. 206, Chaps. 4.5B and
4.5C of [36]). The kind of results that one gets in this way is
that, given a solution �ð0Þ of Eq. (20) with � ¼ 0, there

exists a unique solution �ð�Þ of Eq. (20) with �> 0 and

small such that �ð�Þ!�!0�ð0Þ uniformly apart from a

narrow region close to the boundary. The uniqueness result
implies that, for small enough �, the composite periodic
Skyrmions described above when � ¼ 0 will exist also
when � is positive and small enough. Of course, they
will be slightly distorted and their energies will acquire
corrections of order �, but the broad theoretical picture
will remain the same.
Besides periodic boundary conditions, there are two

more interesting cases that can be analyzed easily within
the present framework. The first one corresponds to a finite
domain with a nontrivial boundary. In these situations, it is
reasonable to require that the profile � approaches a global
minimum of the energy density at the boundary. In terms of
the variable H defined in Eq. (21) this implies that H must
vanish on the boundary of the region one is considering.
Because of the fact that, in the sector in which the non-
linear superposition law is available, H satisfies the
Helmholtz equation, one arrives at the well-defined mathe-
matical problem to solve the Helmholtz equation with
vanishing Dirichlet boundary conditions. This problem is
well analyzed in mathematical textbooks, and explicit
solutions exist when the domain has enough symmetries.
As it has been already discussed, the total energy is finite
whenever the absolute value of the solution is strictly less
than one.10 The second case corresponds to infinite do-
mains, and so the mathematical problem is to solve the
Helmholtz equation with vanishing Dirichlet boundary
conditions in infinite domains. In these cases, however, to
require that the absolute value of the solution is strictly less
than 1 is not enough to get a finite total energy: in the
second case, the total energy diverges as for plane waves.
Moreover, the time dependence of the present periodic
Skyrmions is similar to the usual behavior of plane waves.
As it has been discussed in [37] in the case of exact plane
waves in Yang-Mills theory, in order to have well-behaved
configurations it is enough to require that the energy

9Namely, if one considers sums such as
P

N�1
j A exp ði�jÞ, one

can show that it vanishes when �j � �j�1 is equal to 2�=N for
any j. In the present case, the difference between the arguments
in the summands is related to the distance between peaks of
neighboring Skyrmions.

10This can always be achieved since once one solves the
Dirichlet problem one can multiply the solution by a small
enough factor to satisfy the above requirement, satisfying at
the same time the same boundary conditions.
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density is bounded, and this happens in the present case as
well. Actually, the present periodic multi-Skyrmions in
infinite domains are more general than the exact multiplane
waves considered in the case of the Yang-Mills theory, for
instance, in [38]. The reason is that, both in [37] and in
[38], in order to construct exact plane waves of the Yang-
Mills theory in which the nonlinear effects are present,
only configurations with flat wave fronts were considered.
On the other hand, in the present case, the spatial depen-
dence of the profile of the periodic multi-Skyrmion (which
determines the form of the wave front) can be found by
solving the Helmholtz equation, and this allows one to
construct wave front with nontrivial spatial geometries
while keeping both the nonlinear superposition law and
the nonlinear effects alive.

IV. MAPPING BETWEEN DUAL
PERIODIC SKYRMIONS

In the previous section, it has been shown how to con-
struct exact Skyrme configurations that exhibit a nonlinear
superposition whose internal orientation changes periodi-
cally in time while the Skyrmions profile� is static. Hence,
it is natural to wonder whether it is possible to realize also
the ‘‘dual configurations’’ in which the profile � depends
on time while the internal orientation changes periodically
along some spacelike direction. The equations of motion in
both cases are very similar, but there is an important
difference as will now be shown.

Let us consider the following choices of the profile of the
hedgehog � and of the function �:

� ¼ �ðt; x; yÞ;
ðr�Þ2 ¼ �ð@t�Þ2 þ ð@x�Þ2 þ ð@y�Þ2;

(31)

� ¼ L�1z; ðr�Þ2 ¼ L�2; (32)

where the flat Minkowski metric in Cartesian coordinates
is used, x, y, and z are the corresponding spatial coordi-
nates, and the constant L has the dimension of length. The
ansatz in Eqs. (31) and (32) [which is the natural extension
of the one in Eqs. (8) and (9)] describes Skyrmions with a
time-dependent profile � that depends on two spacelike
coordinates as well. The internal vector n̂i that describes
the orientation of the Skyrmion in the internal SUð2Þ space
depends periodically on z.

With the above choice, the full Skyrme field equations
reduce to

0 ¼ ð1þ �L�2sin 2�Þh�þ �L�2ðr�Þ2
2

� sin ð2�Þ � L�2

2
sin ð2�Þ ¼ 0;

h ¼ �@2t þ @2x þ @2y: (33)

In terms of the new variable u defined as

� ¼ uþ �

2
;

Eq. (33) becomes

0 ¼ ð1� �ð!effÞ2sin 2uÞhuþ ð!effÞ2
2

sin ð2uÞ

� �ð!effÞ2 sin ð2uÞ
2

ðruÞ2; (34)

ð!effÞ2 ¼ L�2

1þ �L�2
; (35)

where trivial trigonometric identities have been used.
Hence, in terms of the variable u, the equation is the
same as Eq. (20) analyzed in the previous section with an
effective frequency !eff given in Eq. (35). In fact, it is now
apparent that the fundamental difference between this case
and the periodic Skyrmions is described in the previous
section. One of the key observations of the previous section
is that Eq. (20), when the critical condition in Eq. (23) is
satisfied, can be mapped into a linear equation. In the
present case, the critical condition corresponding to
Eq. (23) would be

�ð!effÞ2 ¼ 1;

so that, as it is evident from Eq. (35), the above condition
cannot be fulfilled for the ansatz in Eqs. (31) and (32).
This is the crucial difference between the previous case
(in which n̂i depends periodically on time) and the one
discussed in this section. Although a sort of duality map-
ping between the two cases can be constructed, the non-
linear superposition law appears only when the profile �
is static and the internal orientation changes periodically
in time.

V. CONCLUSIONS

In the present paper, exact configurations of the four-
dimensional Skyrme model have been constructed. Such
configurations can be static and kinklike or time periodic.
The static configurations represent domain walls: to the
best of author’s knowledge these are the first exact domain
walls of the original four-dimensional Skyrme theory.
Within the class of the time-periodic configurations (peri-
odic Skyrmions), which can depend in a nontrivial way on
all the spacelike coordinates, it is possible to disclose a
remarkable phenomenon. For a special value of the fre-
quency, a nonlinear superposition law arises that allows
one to compose two (or more) periodic Skyrmions into a
new one. The nonlinear superposition leads to the appear-
ance of crystals of periodic Skyrmions in which the peaks
in the energy densities of elementary Skyrmions are placed
according to patterns of negative interference. Such com-
posite Skyrmions do not disappear if the frequency is close
enough to the resonance frequency (although they will
suffer small distortions). In a nonlinear theory such as the
four-dimensional Skyrme model, these results are very
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surprising and shed considerable new light on the interac-
tions of Skyrmions.
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