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Motivated by the scenario of resonant leptogenesis in which lepton number creation in the electroweak

scale is relevant, we investigate the spectral properties and possible collective nature of the standard model

neutrinos at electroweak scale temperature (T). We adopt the R� gauge fixing, which includes the unitary

gauge as a limiting case, and allows us to study the broken as well as the restored phases of the gauge

symmetry in a unified way. We show that the spectral density of the neutrino has a three-peak structure

in the low-momentum region due to the scattering with the thermally excited particles (i.e., Landau

damping) for T * MW;ZðTÞ, with MW;ZðTÞ being the weak-boson masses in the plasma. The three peaks

are identified with a novel ultrasoft mode, the usual quasiparticle, and antiplasmino modes. Varying the

gauge-fixing parameter �, we show that the three-peak structure appears independently of the gauge fixing

and thus has a physical significance. We discuss possible implications of the neutrino spectral density

obtained in the present work on particle cosmology, in particular in the context of resonant leptogenesis.
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I. INTRODUCTION

Thermodynamic properties of gauge theories are of com-
mon interest in various fields of physics [1,2], including
baryogenesis and leptogenesis, the physics of quark-gluon
plasma (QGP), neutrino physics in big-bang nucleosynthesis
and in compact stars, and many others. A novel ingredient in
the dynamics at finite temperature (T) is due to the existence
of thermally excited particles, with which a probe particle
is scattered in the classical level, leading to a damping
known as Landau damping and a modification of the spec-
tral properties of the probe particle. In this paper, partly
motivated by the recent development of the resonant
leptogenesis scenario [3,4], we study the spectral properties
of neutrinos at finite T, specifically in the electroweak scale,
in a way where the gauge (in)dependence is manifestly
checked.

Although the standardmodel (SM) seems to fail to explain
the observed baryon asymmetry of the universe (BAU), an
extension of the SM by adding right-handed Majorana
neutrinos (NR) may have a chance to account for the BAU.
Indeed, a thermal leptogenesis scenario based on such an
extended model [5,6] gives a simple and promising account
of the BAU. In this scenario, a decay ofNR out of equilibrium
via Yukawa interactions generates a net lepton number,
which is partially converted into the baryon numbers through
sphaleron processes [7–9] in the electroweak phase transi-
tion. Furthermore, if the mass difference between two right-
handed neutrinos is on the order of theirCP-violating decay
width, the CP asymmetry is dynamically enhanced and so

is leptogenesis [3,4]. This resonant leptogenesis scenario
implies that NR with a TeV-scale or electroweak-scale mass
is relevant to the BAU and thus has opened a possibility to
create a lepton number at electroweak scale temperature.
Figure 1 shows the CP-violating decay process of NR,

which gives one of the most important contributions to
lepton number creation, where both the Higgs particle and
leptons are involved. In the present work, we suppose that
the relevant processes occur at finite T of the electroweak
scale. In this T region, the following two finite-T effects
come into play: 1) the Landau damping of the Higgs
particle and leptons by thermally excited particles including
massive gauge bosons; 2) the T dependence of the masses
of the involved particles, generated by the Englert-Brout-
Higgs-Guralnik-Hagen-Kibble mechanism [10], which will
be called simply the Higgs mechanism from now on in this
paper. If the standard model leptons have nontrivial spectral
properties due to the aforementioned two effects, lepton
number creation via the NR decay in Fig. 1 will be signifi-
cantly modified.
The important role of the Landau damping for modifying

the fermion spectral properties is known and established in
QED and QCD in the context of QGP physics. A fermion
interacting with thermally excited gauge bosons and

FIG. 1. A decay process of a right-handed Majorana
neutrino (NR).
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antifermions admits a novel collective excitation mode
known as a (an anti)plasmino as well as the normal quasi-
particle excitation with thermal mass [11]. Such collective
excitations in the QGP at extremely high T are shown to
exist and their dispersion relations are obtained in a
gauge-invariant way, at least at one-loop order, which is
now known as the hard thermal loop (HTL) approximation
[12]. A full spectral property beyond the dispersion relations
of massive electrons in QED plasma is investigated in
Ref. [13], where a physical account of the interplay between
the electron-mass and temperature-effects that leads to a
Landau damping were presented.

As first discussed in Ref. [14], we expect that the leptons
appearing in Fig. 1 should also admit nontrivial collective
excitations at finite T. Recently, the neutrino spectral prop-
erties at electroweak scale temperature in the broken phase
have been investigated by using the HTL approximation in
the unitary gauge [15]. A remarkable finding there was the
possible existence of a novel branch of the dispersion
relation with a collective nature in the ultrasoft-energy
region. Here, an important question is whether such an
ultrasoft mode is physically significant with regards to the
gauge invariance, which cannot be checked within the uni-
tary gauge. In fact, the gauge (in)dependence of the spectral
properties of neutrinos in the ultrasoft-energy region has
not been fully investigated yet, except for those at
T ¼ 1–10 MeV [14].

Here, we note that the gauge (in)dependence of the
spectral properties of massless fermions (quarks) in the
ultrasoft-energy region has been discussed in the physics
of QGP. It was shown [16,17] that the spectral function of
massless quarks coupled to massive vector soft modes in
QGP can have a novel peak in the ultrasoft-energy region
as well as those corresponding to the normal and the
antiplasmino modes, and it was later demonstrated [18]
that their properties are gauge independent by using the
Stueckelberg formalism [19,20].

Now, one should recognize that the relevant ingredients
for the description of hot neutrinos at the electroweak scale
temperature are the same as those in Ref. [18], i.e., a
massless fermion and a massive vector boson with a mass
comparable with T. Thus, a natural and intriguing question
is whether the neutrino spectral density at T of the electro-
weak scale should also develop a three-peak or three-bump
structure including an ultrasoft mode without gauge depen-
dence, as quarks do in the QGP [16–18,21–23].

In the present work, we investigate in a gauge-invariant
way the spectral properties of neutrinos at weak coupling,
without restricting ourselves to their dispersion relations,
in the full energy-momentum plane at finite T around the
electroweak scale. We show that the neutrino develops
an ultrasoft excitation mode as well as the normal and
plasmino ones without recourse to the HTL approximation.
We shall employ the R� gauge [24] for examining the

possible gauge-fixing dependence of the spectral density

in both broken and symmetric phases. Furthermore, we also
discuss the implications of the resulting neutrino spectral
properties to the cosmology by considering electroweak-
scale resonant leptogenesis.
This paper is organized as follows. In the next section,

we introduce the Lagrangian of the electroweak theory in
the R� gauge [24] and the basic quantities to evaluate the

spectral properties of neutrinos in field theory at finite
temperature. In Sec. III, we show the numerical results
for the self-energy and the spectral density of neutrinos
in the broken phase. The results will be compared with the
unitary-gauge HTL results [15]. In Sec. IV, we extend our
study into the symmetric phase, and investigate the fate of
collective modes for neutrinos. Then in Sec. V, we discuss
possible implications of the neutrino spectral density
obtained in the present work in the context of resonant
leptogenesis. Finally, we make concluding remarks in
Sec. VI. Appendices A, B, C, D, E, and F are devoted to
explaining technical details.

II. PRELIMINARIES

A. Electroweak theory at finite
temperature in R� gauge

The Lagrangian to be considered is composed of the
lepton L, the Higgs �, and the gauge boson G� ¼ A�,

B� sectors,

L½�; L;G�� ¼ LL½L;G�� þLH½�;G�� þLG½G��; (1)

up to gauge fixing and Faddeev-Popov ghost terms.
The Higgs sector is given by

LH ¼ ðD��ÞyðD��Þ þ�2
0�

y�� �ð�y�Þ2; (2)

D�� ¼
�
@�1� ig

�aAa
�

2
� ig0

2
B�1

�
�; (3)

where �a¼1;2;3 are Pauli matrices, andA� andB� are the

gauge fields of the SUWð2Þ and UYð1Þ groups, respectively.
The field � represents the weak doublet scalar, which can
be parametrized as

�ðxÞ ¼ 1ffiffiffi
2

p �2ðxÞ þ i�1ðxÞ
vþ hðxÞ � i�3ðxÞ

" #
: (4)

Here, the constant v represents the vacuum expectation
value (VEV). The fluctuations of the Higgs field and the
Nambu-Goldstone modes are denoted by hðxÞ and �aðxÞ,
respectively, the latter of which is to be eaten by the gauge
fields.
The gauge-fixing term in the R� gauge reads

LGF ¼ � 1

2�
ððFa

AðxÞÞ2 þ ðFBðxÞÞ2Þ; (5)

where
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Fa
AðxÞ ¼ @�A�;aðxÞ þ �mA�

aðxÞ; (6)

FBðxÞ ¼ @�B�ðxÞ � �mB�
3ðxÞ; (7)

with ðmA; mBÞ ¼ ðg�0=ð2
ffiffiffiffi
�

p Þ; g0�0=ð2
ffiffiffiffi
�

p ÞÞ. The gauge-
fixing conditions are specified by the parameter �.

From the gauge-boson sector LG and the gauge-fixing
term LGF, the bare propagators of the gauge bosons are
obtained as a sum of the unitary gauge and the �-dependent
parts,

G��ðqÞ ¼ GU
��ðqÞ þG�

��ðqÞ; (8)

GU
��ðqÞ ¼ �X

t¼�

tðg�� � q�q�=M
2ðTÞÞ

2EqðMÞðq0 � tEqðMÞÞ ; (9)

G�
��ðqÞ ¼

X
t¼�

t � q�q�=M2ðTÞ
2E�

qðMÞðq0 � tE�
qðMÞÞ ; (10)

where

EqðMÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj2 þM2ðTÞ

q
; E�

qðMÞ � Eqð
ffiffiffi
�

p
MÞ; (11)

andMðTÞ represents theW boson, Z boson, or photon mass
at finite T: MðTÞ ¼ MWðTÞ, MZðTÞ, MphðTÞ. In the weak

coupling, the weak-boson masses MW;ZðTÞ at finite

temperature are given by simply replacing the VEV at

the vacuum (v0 ¼ �0=
ffiffiffiffi
�

p ¼ 246 GeV) with that at finite
temperature vðTÞ,

ðMWðTÞ;MZðTÞ;MphðTÞÞ ¼
 
gvðTÞ
2

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
vðTÞ

2
; 0

!
:

(12)

In fact, the weak-boson masses (12) acquire thermal
corrections of order gT from the one-loop self-energy, as
was shown by C. Manuel [25] under the condition
MW;ZðTÞ � T and � ! 1 in the Stueckelberg formalism.

However, our main focus is on the region satisfying
MW;Z � gvðTÞ � gT, or equivalently vðTÞ � T, which
means that the thermal corrections to the masses are of
higher order at weak coupling, and can be neglected in
the region of our interest.

Next, we discuss how to choose the effective potential in
the Higgs sector. The lattice Monte Carlo simulations have
shown that the electroweak symmetry breaking or restora-
tion is a smooth crossover [26] for a Higgs mass mH larger
than about�70 GeV in the standard model. Assuming that
the new boson with the mass around 125–127 GeV ob-
served at the LHC [27–30] is the Higgs particle, the
possibility of a strong first-order electroweak transition is
excluded within the standard model. Note that a strong
first-order electroweak transition is not necessary in the
thermal leptogenesis scenario, unlike some other scenarios
of baryon number creation [31]. As pointed out in

Ref. [15], the absence of the first-order transition indicates
that the weak-boson masses in electroweak plasmaMW;ZðTÞ
smoothly go to zero. Therefore, there should exist a tem-
perature regime satisfyingMW;ZðTÞ � T, where we expect a
nontrivial spectral property of the standard model particles.
In order to implement this feature with a smooth transition,
we use the following Higgs effective potential [2]:

Veff ¼ � 1

2
�2ðTÞv2ðTÞ þ �

4
v4ðTÞ; (13)

�2ðTÞ ¼ �2
0

�
1� T2

T2
c

�
; (14)

T2
c ¼ 4�2

0

2�þ 3g2=4þ g02=4
; (15)

where �2
0 ¼ m2

H=2 and � ¼ m2
H=ð2v2

0Þ are the mass and

coupling parameters in the Higgs Lagrangian (2). This
effective potential has been derived in the R� gauge by

taking account of the leading order of the high-T expansion
for thermal one-loop effects of the Higgs and gauge bosons
in addition to the tree-level Higgs potential. The � depen-
dencies cancel out between the Nambu-Goldstone bosons
and the ghost contributions. The effective potential leads to
the second-order phase transition, and the VEVat finite T is
obtained as

v2ðTÞ ¼ v2
0

�
1� T2

T2
c

�
; T 	 Tc: (16)

Figure 2 shows the vðTÞ and the weak-boson masses as a
function of temperature.

B. Self-energy and spectral density
for left-handed neutrinos at finite T

In the broken phase of the electroweak symmetry, the
Lagrangian for the lepton sector takes the following form:

 0

0.2

0.4

0.6
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 1
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1.4

 0  0.2  0.4  0.6  0.8  1  1.2
T/v0
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v(T)/v0

MW(T)/v0
MZ(T)/v0

FIG. 2 (color online). The VEV and gauge-boson masses in
thermal background as a function of temperature T. All quanti-
ties are normalized by the vacuum VEV v0 ¼ 246 GeV.
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LL ¼ X
i¼e;�;�

�
ð ��i; �liLÞi6@

�i

liL

 !
þ �liRi6@liR

�

þ ðWy
�J

�
W þ JyW�W

� þ Z�J
�
Z þ AEM

� J�EMÞ; (17)

where �i ¼ P L�
i
D and liL=R ¼ P L=Rl

i represent the

left-handed neutrinos and left-handed (right-handed)
charged leptons, respectively. Since we are interested in
the temperature region comparable to the weak-boson
masses T �MW;ZðTÞ, where the lepton masses are much

smaller thanMW;ZðTÞ, we have neglected such tinymasses of

the leptons. It is expected that the massless approximation
will not affect the basic spectral properties of the neutrinos, as
is demonstrated in the case of light quarks in QGP [17,32].

The gauge currents in the Lagrangian (17) are found to be

J
�
W ¼ gffiffiffi

2
p X

i¼e;�;�

�li��P L�
i
D; (18)

J�Z ¼ X
i¼e;�;�

"
gsin 2	w
cos	w

�li��li þ g

cos 	w
ð ��i

D;
�liÞ


 P R�
�P L

�3

2

�i
D

li

 !#
; (19)

J
�
EM ¼ �e

X
i¼e;�;�

�li��li; (20)

where the couplings g, g0, e and the Weinberg angle 	w are
given in Table I in Appendix A. The Feynman diagram for
the neutrino self-energy is shown in Fig. 3. We note that a
neutral-current tadpole diagram with a lepton loop does not
appear in the CP-symmetric thermal background, which we
assume because we are motivated by the scenario of thermal
leptogenesis, where the CP violation is considered to arise
from the decay of right-handed neutrinos rather than the
thermal background itself. For the massless neutrinos, it is
sufficient to consider the single-generation case, and thus
we drop the generation index ‘‘i.’’

The Feynman diagrams listed in Fig. 3 include the
following one-loop integral as a common factor:

�ðp; i!m;T;MðTÞÞ ¼ T
X
n

Z d3k

ð2
Þ3 ð�i��ÞGFðk; !nÞ


 ð�i��ÞG��ðp� k; i!m � i!nÞ;
(21)

where GF represents an imaginary-time propagator for a
lepton. Self-energy corrections in GF are of order g2T
and can be neglected at weak coupling. Accordingly, we
can use the massless propagator as GF,

GFðk; !nÞ ¼ i

i!n�
0 � k � � ¼ X

s¼�

�k;s�
0

i!n � sjkj ; (22)

with

��;k ¼ 1� �0k̂ � �
2

; k̂ ¼ k=jkj: (23)

Theweak-boson propagatorG�� is given by Eq. (8) with the

momentum identification q� ¼ ði!m � i!n;p� kÞ, and
the mass MðTÞ is interpreted to be the W or Z mass shown
inEq. (12).We note that the projection operatorP L=R has not

been included in Eq. (21), and will be taken account of later.
The nontrivial thermal effect emerges from the one-loop

momentum integral in the self-energy (21), and we evalu-
ate it in the imaginary-time formalism. Carrying out the
summation over the Matsubara frequency n and applying
the analytic continuation i!m ! !þ i� in Eq. (21), we
obtain the retarded self-energy as

�retðp;!;T;MÞ¼�ret
U ðp;!;T;MÞþ�ret

� ðp;!;T;MÞ;
(24)

where

�ret
U ðp; !;T;MÞ ¼ � X

s;t¼�

Z d3k

ð2
Þ3
t���s;k�

0��

2Eq



�
g�� �

q�q�

M2ðTÞ
�


 NFðsjkj=TÞ þ NBð�tEq=TÞ
!� sjkj � tEqðMÞ þ i�

; (25)

�ret
� ðp; !;T;MÞ ¼ � X

s;t¼�

Z d3k

ð2
Þ3
t���s;k�

0��

2E�
qðMÞ


 NFðsjkj=TÞ þ NBð�tE�
q=TÞ

!� sjkj � tE�
qðMÞ þ i�

: (26)

Here, the indices ‘‘U’’ and ‘‘�’’ are associated with the
unitary gauge and the �-dependent gauge-boson propaga-
tors defined in Eqs. (8)–(10). The gauge-boson energy Eq

is defined in Eq. (11), and NF;B represent the Fermi-Dirac

and Bose-Einstein distribution functions, respectively,

NFðxÞ ¼ 1

ex þ 1
; NBðxÞ ¼ 1

ex � 1
: (27)

Similarly to the propagator GF, we decompose the
retarded self-energy �ret as

FIG. 3 (color online). One-loop Feynman diagrams of the
neutrino self-energies with the weak-boson exchanges. The
symbols ‘‘li’’ and ‘‘�i

D’’ represent a charged lepton and a

Dirac neutrino in the ‘‘ith’’ generation, respectively. The ori-
ented lines represent a fermion propagator. The chirality is
managed by the projection operators P L=R ¼ ð1� �5Þ=2 on

the vertex. In the right panel, c ¼ cos	w.
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�retðp;!;T;MðTÞÞ¼ X
s¼�

½�s;p�
0��sðp;!;T;MðTÞÞ; (28)

where the coefficients

��ðp; !;T;MðTÞÞ ¼ 1

2
trspin

�
�retðp; !;TÞ��;p�

0

�
(29)

are responsible for finite-T effects. By using ��, the

retarded self-energy for the left-handed neutrinos �ð�Þ
ret is

now constructed as

�ð�Þ
ret ðp; !;TÞ ¼ X

s¼�
½P R�s;p�

0P L��ð�Þ
s ðjpj; !;TÞ; (30)

where

�ð�Þ
� ðjpj; !;TÞ ¼

�
gffiffiffi
2

p
�
2
��ðjpj; !;T;MWðTÞÞ

þ
�

g

2 cos	w

�
2
��ðjpj; !;T;MZðTÞÞ;

(31)

as read off from the structure of the chirality and the
gauge interaction given by Eqs. (17)–(20) (and Fig. 3).
In Eq. (30), the left-handed nature of massless neutrinos
is taken care of by the spinor matrix P L��;p�

0P R.

We shall now investigate the neutrino spectral density,
which is defined by the imaginary part of the retarded
Green function,

�ð�Þðp; !;TÞ ¼ X
s¼�

½P R�s;p�
0P L��ð�Þ

s ðjpj; !;TÞ

� � 1



ImGð�Þ

ret ðp; !;TÞ; (32)

where

Gð�Þ
ret ðp; !;TÞ ¼ X

s¼�

P R�s;p�
0P L

ð!þ i�Þ � sjpj � �ð�Þ
s ðjpj; !;TÞ ;

(33)

or equivalently,

�ð�Þ
� ðjpj;!;TÞ

¼ �Im�ð�Þ
� ðjpj;!;T;�Þ=


fDð�Þ
� ðjpj;!;T;�Þg2þfIm�ð�Þ

� ðjpj;!;T;�Þg2 ; (34)

Dð�Þ
� ðjpj; !;T; �Þ ¼ !� jpj � Re�ð�Þ

� ðjpj; !;T; �Þ: (35)

The calculational procedure of Im�ð�Þ
� and Re�ð�Þ

� is
summarized in Appendix C.

Note that finite-T effects on the spectral density �ð�Þ of
the left-handed neutrino are solely encoded in the spectral

densities �ð�Þ
� ðjpj; !;TÞ appearing as coefficients in the

decomposition (32). Thus, our focus will be put on the

spectral densities �ð�Þ
� ðjpj; !;TÞ defined in Eq. (34).

Similarly, the thermal effects for the spectral density of
the massless charged lepton are calculable without the
complication of the Dirac spinor structure.
Equations (31) and (34) show that the computation of the

neutrino spectral density �ð�Þ
� ðjpj; !;TÞ is reduced to that of

the self-energy �� defined in Eq. (29). Fortunately, this task
is essentially the same as that of the self-energy of the quark
coupled with massive bosonic excitations in a QGP, and
this been carried out in a series of papers [16–18]. Therefore,
we here omit the technical details but recapitulate them
with adequate modifications for the present context in
Appendices B and C.

III. NEUTRINO SPECTRAL DENSITY:
NUMERICAL RESULTS

In this section, we show our main results for the self-
energy and the spectral density of the massless left-handed

neutrinos. In Sec. IIIA, we present �ð�Þ
þ defined in Eq. (34)

in the !-jpj plane at various temperatures in ’t Hooft-
Feynman gauge (� ¼ 1), and show that the neutrino spectral
density has a three-peak structure in the low-energy and
low-momentum region when the gauge-boson massMW;Z is

comparable to T. Next, in Sec. III B we analyze the three-
peak structure in detail and the novel low-lying collective
mode for � ¼ 1. Finally, we examine the � dependence of
the collective modes in Sec. III C. We clarify the relation
between the present results and those obtained in the pre-
vious work [15], where the HTL approximation is used and
the unitary gauge is adopted. All results have been obtained
by using the values in Table I in Appendix A.

A. Neutrino spectral density in the !-jpj plane
In Fig. 4, we show the neutrino spectral density

�ð�Þ
þ ðjpj; !;TÞ in the !-jpj plane at temperatures T=v0 ¼

0:2, 0.5, and 0.8. Throughout this paper, we do not analyze

�ð�Þ� because that quantity can be calculated from �ð�Þ
þ due

to the particle-antiparticle symmetry [16]. In the T=v0 ¼
0:2 case (left panel), the spectral density has sharp and
narrow peaks almost on the light cone, ! ¼ jpj. As shown
in Fig. 2, the weak-boson masses at T=v0 ¼ 0:2 are still
larger than the temperature, MW=T ’ 1:59, for which the
effects of thermal excitations [Eqs. (B10) and (B11)] are
exponentially suppressed. As a result, the general property
of the spectral density at this temperature region is similar
to that of a massless particle at zero temperature.
This feature drastically changes when T reaches around

T=v0 � 0:35, where the weak-boson masses become com-
parable to T, as is seen in Fig. 2. At this intermediate
temperature regime (T * MW;Z), the weak bosons become

thermally excited with a considerable probability. The

middle panel of Fig. 4 shows the spectral density �ð�Þ
þ at

T=v0 ¼ 0:5, a typical example at intermediate temperature.
We see that a three-peak structure is realized in the
low-energy and low-momentum region: the three peaks
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consist of two peaks in the positive- and negative-energy
regions and the sharp peak around the origin, whose disper-
sion relations are quite different from that for the free
massless particle and are interpreted as collective excita-
tions. As the momentum jpj increases, the peak in the
positive-energy region becomes sharper, while the others
are attenuated. We should remark that a quite similar result
has been obtained for the quark spectral density in a QGP
[16,18], where the quarks are coupled with massive scalar
or vector-bosonic modes in the plasma.

In order to elucidate the physical meanings of the
observed peaks at intermediate temperature T=v0 ¼ 0:5,

we compare in Fig. 5 the peak positions of �ð�Þ
þ seen in

the middle panel of Fig. 4 with the massless-HTL [12]
dispersion relation !HTLðjpjÞ, which is defined as a
solution of

!HTL � jpj � Re�ð�Þ
þ;HTLðjpj; !HTL;TÞ ¼ 0: (36)

Here, the real part of the self-energy Re�ð�Þ
þ;HTL is given by

taking the limit T � !; jpj;MW;Z in the full one-loop

result, as detailed in Appendix D. Figure 5 shows that

the positive (negative) branch in �ð�Þ
þ corresponds to the

quasiparticle (antiplasmino) mode, which is the familiar
solution appearing in the massless-HTL approximation.

Although Eq. (36) has a solution in the ultrasoft region
!HTLðjpjÞ � 0 with jpj being finite, the imaginary part in
the massless-HTL approximation Im��;HTL becomes

huge, and kills the peak structure at the ultrasoft region
!HTLðjpjÞ � 0. Thus, the emergence of the collective
modes near the origin (ultrasoft mode) is characteristic of

the full spectral density �ð�Þ
þ .

In the higher-temperature region T � MW;Z, the two

peaks in the positive- and negative-energy regions become
sharper while the central peak is greatly attenuated [see the
right panel in Fig. 4 (T=v0 ¼ 0:8)]. As shown in Fig. 6,
these two peaks approximately stay at the same position as
the quasiparticle (antiplasmino) mode of the massless-
HTL approximation. Thus, the general property of the spec-
tral density becomes closer to that of the massless-HTL
approximation in the high-temperature region T � MW;Z.

We note that the high-temperature region does not satisfy
the condition T � vðTÞ; therefore, higher-loop corrections
may be non-negligible. In fact, it is known that a resumma-
tion of higher-loop diagrams is necessary for the ultrasoft-
momentum region !, jpj & g2T in QED and QCD [32],
where a resummation scheme is developed for obtaining
sensible results. It would be interesting to develop such a
resummation scheme in the electroweak theory and inves-
tigate the spectral properties in thevicinity of the electroweak
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phase transition, which is, however, beyond the scope of
the present work and left as a future task.

B. Emergence of the three-peak structure

In this subsection, we investigate the properties of the
three-peak structure in detail.

In the upper panels of Fig. 7, we show the imaginary part

of the self-energy, Im�ð�Þ
� , given by Eq. (C10) as a function

of !=v0 at ðjpj=v0; T=v0Þ ¼ ð0:02; 0:5Þ. Because of the
growing statistical factors [Eqs. (B10) and (B11)] with
increasing temperature, the Landau damping effect be-
comes significant, and the imaginary part of the self-energy

Im�ð�Þ
þ drastically grows in the space-like region. A re-

markable point is that Im�ð�Þ
þ stays relatively small in the

vicinity of !� 0, and has two peaks in the space-like
region (!2 	 jpj2). By utilizing the Kramers-Kronig-like
dispersion relation (C7) (which we call the Kramers-
Kronig relation to avoid confusion with the dispersion
relation as the momentum dependence of energy), the
real part inevitably shows an oscillatory behavior, as dis-
played in the middle panel of Fig. 7. The crossing points
with the straight dashed line representing y ¼ !� jpj
correspond to the solutions of the equation

Dð�Þ
þ ðjpj; !;T; �Þ ¼ 0: (37)

Here,Dð�Þ
þ is defined in Eq. (35). Two of the solutions lead to

the two peaks of the imaginary part, and hence do not lead to
a peak in the spectral density. The remaining three solutions
contribute to the peaks in the spectral density (lower panel of
Fig. 7). We note that in the previous QGP studies [16,18]
similar results for the real and imaginary parts of the
self-energy have been obtained, and the mechanism of the
emergence of the three peaks in the spectral density was
interpreted in terms of a resonant scattering [16].

In order to have a more complete overview, we show the
solution of Eq. (37) in the full !-jpj plane for T=v0 ¼
0:35, 0.42, and 0.5 cases in Fig. 8; the resultant function
!ðjpjÞ is called the quasidispersion relation. The upper
panel (T=v0 ¼ 0:35) corresponds to the dispersion relation
at a characteristic temperature satisfying T=MW;Z � 1,
where the Landau damping effects start to dominate. The
quasidispersion curve deviates from the light cone, and
shows a rapid increase for 0:03 	 jpj=v0 	 0:04. As T is
increased, this steep-rise behavior is evolved to a ‘‘back-
bending’’ shape as shown in the middle panel of Fig. 8
(T=v0 ¼ 0:42). Eventually, the branch with the back-
bending part crosses the ! axis around T=v0 ’ 0:475, at
which point the additional two branches appear in the
negative-! region; see the lower panel of Fig. 8. Thus,
we get five branches in the low-momentum region.
At jpj=v0 ¼ 0:02, these branches correspond to the five
crossing points in the middle panel of Fig. 7.

We should mention that a similar branch of the neutrino
dispersion relation was found in the HTL approximation

with the unitary gauge in Ref. [15], and the branch that
touches the ! axis is called a pitchfork bifurcation. In
Ref. [15], the pitchfork bifurcation is found to start when
the T-dependent mass scale � ¼ 2M2

WðTÞ=ðgT2Þ exceeds
�c ’ 1:275. In the present study, the pitchfork bifurcation
starts from T=v0 ’ 0:475, corresponding to �c ’ 1:28,
which is consistent with the finding in the previous work
[15], and suggests the gauge independence of the tempera-
ture at which the bifurcation starts.

C. Gauge parameter � dependence of the
three-peak structure

So far, we have investigated the spectral density �ð�Þ
þ in

the ’t Hooft-Feynman gauge (� ¼ 1), and found the
three-peak structure that consists of the ultrasoft mode as
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well as the quasiparticle and antiplasmino modes. In this
subsection, we investigate the � (in)dependence of the
three-peak structure.

In Fig. 9, we show the neutrino self-energies for the
gauge parameter � ¼ 0:1, 1, 10. We also display the
unitary-gauge result which has been obtained by utilizing
the Proca formalism [16], which corresponds to � ! 1.
The momentum and temperature are set to be the same as in
Fig. 7, ðjpj=v0; T=v0Þ ¼ ð0:02; 0:5Þ. As shown in the figure,
the � dependence becomes significant with increasing !.
However, in the low-energy region!=v0 	 0:15, where the
three-peak structure emerges in the neutrino spectral den-

sity, the � dependence is found to be negligible in both the
imaginary part (upper panel) and the real part (lower panel).
This indicates that both the position and the width of the
three peaks are independent of the gauge parameter �.
For the three peaks of the spectral density, the two

conditions MW;Z � !; jpj and T � !; jpj are satisfied.

Because of the former condition, the unitary-gauge part of
the self-energy dominates [see Eqs. (C2) and (C3)], which
accounts for the � independence of the three-peak structure.
By using both conditions, we can define an extension of the
HTL approximation to the case where the boson mass is
finite—which we call the massive-HTL expansion—for the
neutrino self-energy, as detailed in Appendix E. The
leading-order terms reproduce the self-energy derived in
Ref. [15]. The temperature and energy region for the pitch-
fork bifurcation explained in the previous subsection is in
the validity region of this approximation scheme, which
accounts for the gauge invariance of �c and the agreement
of its values in the present and the previous study [15].

IV. NEUTRINO SPECTRAL DENSITYAT T � Tc

In the previous sections, we have investigated the neu-
trino spectral properties in the broken phase. In this section,
we discuss their properties in the symmetric phase T � Tc.
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In the symmetric phase, the weak bosons become
massless, as is clear from Eq. (12). Although higher-loop
corrections for the weak-boson masses as well as the
neutrino self-energy may become non-negligible in the
symmetric phase, in particular, for !; jpj � g2T, we dare
to analyze the neutrino self-energy within the present ap-
proximation and show an advantageous property of R�

gauge: in the unitary gauge, the massless limitM ! 0 leads
to the divergence in the self-energy due to the prefactor
proportional to 1=M2 in the imaginary part [Eq. (C2)], and
hence the massless limit cannot be well defined within the
unitary gauge. This problem is solved in R� gauge by the

additional �-dependent part [Eq. (C3)]: all OðM�2Þ terms
beautifully cancel out between the unitary-gauge part
[Eq. (C2)] and the �-dependent part [Eq. (C3)], and we
find the finite imaginary part of the self-energy in the
vanishing gauge-boson masses (T, !, jpj � M ! 0) as

Im��ðjpj; !;TÞjM!0

¼ �1

32
jpj2 ½�ð1� �Þjpjp2½NFðX�Þ

þ NBðY�Þ� þ ½ð1� �Þð!� jpjÞ2 þ 2p2�
� TISTðXþ; X�;!=TÞ � 4ð!� jpjÞ
� T2JSTðXþ; X�;!=TÞ�; (38)

where IST and JST have been defined in Eqs. (B10) and
(B11), and their arguments X�, Y� are defined by

ðX�; Y�Þ �
�
!� jpj

2T
;
�!� jpj

2T

�
: (39)

The technical details to derive Eq. (38) are provided in
Appendix F.
Furthermore, the cancellations ofOðM�2Þ terms are also

found in the imaginary part of the vacuum self-energy
[Im��;0 � Eqs. (C4) þ (C5)], which reads

Im��;0ðjpj; !ÞjM!0 ¼ �sgnð!Þ�
16


	ðp2Þð!� jpjÞ: (40)

In Fig. 10, we show the neutrino spectral density at
jpj=v0 ¼ 0:02 in the symmetric phase T=v0 ¼ 1:0> Tc

for � ¼ 1, 2, 10. We find the quasiparticle and the anti-
plasmino peaks, whose positions are almost independent of
� and consistent with the HTL results [11]. One sees that
the width seems to have a significant � dependence.
It should be noted, however, that it was shown in
Ref. [18] that at one-loop order the condition � & 1=g
guarantees the smallness of the gauge dependence. Since
g ’ 0:7, the upper limit of � seems to be ’ 1:4. This
estimate shows that the gauge dependence seen in Fig. 10
is consistent with the analysis in Ref. [18] and tells us that
we should restrict ourselves to � & 2 to get a sensible
result.

V. DISCUSSION: TOWARD APPLICATION
TO RESONANT LEPTOGENESIS

There is a growing interest in the collective nature of
the fermion quasiparticles in the scenario of thermal
leptogenesis [33–40] because the novel collective fermion
modes may significantly modify lepton number creation.
In this section, we argue that the neutrino collective modes
with the three peaks in the spectral function obtained in the
previous sections could possibly affect leptogenesis and
hence the BAU.
In thermal leptogenesis, the Lagrangian is extended to

include the right-handed neutrinos (Ni
R, i ¼ 1, 2, 3),
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FIG. 11. The diagram of the Ni
R decay to a left-handed lepton Li ¼ ð�i; liLÞT and a Higgs doublet�. Note that the lepton propagators

in all the diagrams are given in terms of the spectral densities �ð�Þ and �ðlLÞ.
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L ¼ �Ni
Ri6@Ni

R þ Yij
�Ni
R�

yLj �Mij
R

2
�Ni
RN

j
R þ H:c:; (41)

where Li and � represent the standard model left-handed
lepton ð�i; liLÞT and the standard model Higgs doublet,
respectively. The Yukawa interaction (Yij) term in

Eq. (41) gives rise to the NR decay shown in Fig. 11, which
causes lepton number creation. The leading effects on the
finite-T interaction rate are given by the left diagram in
Fig. 11, and are expressed as

�i
NðpÞ ¼ � 1

2p0

trspin½ð6pþMi
RÞIm�NðpÞ�; (42)

�NðpÞ ¼ �4ðYyYÞ11T
X
n

Z d3k

ð2
Þ3
~GFðkÞ ~GSðp� kÞ; (43)

where we have adopted the mass basis Mij
R ¼ 
ijMi

R, and
~GF and ~GS represent the full finite-T propagators of a

lepton and the Higgs particle, respectively. The ~GF is

expressed in terms of the spectral density �ð�;lLÞðk; !;TÞ
of the left-handed neutrino � (or the charged lepton lL) as
follows:

~GFðk; i!n;TÞ ¼
Z 1

�1
d!

�ð�;lLÞðk; !;TÞ
!þ i!n

: (44)

At the electroweak scale, the spectral density �ð�Þ in
Eq. (44) can have the three-peak structure, as was shown
in the previous section. Then—assuming resonant
leptogenesis at this scale [4]—these collective modes
corresponding to the peaks would modify the creation rate
of the lepton number �i

N. Moreover, the spectral density
having the three peaks is involved in both the leading and
subleading diagrams shown in Fig. 11, and modifies their
interference effects leading to the CP asymmetry.

Here a natural question is whether the NR decay into �
with the collective nature which leads to leptogenesis can
take place before the sphaleron freeze-out. If not, the three-
peak structure would not have any relation to the BAU. In
order to study this problem, we shall estimate the sphaleron
freeze-out temperature T
, and investigate the spectral
density of � in the vicinity of T
.

The net baryon number Nb is produced in the sphaleron
process when the changing rate of Nb is larger than the
expanding rate of the universe HðTÞ,

�������� 1

Nb

dNb

dt

��������� HðTÞ: (45)

The freeze-out temperature T
 is obtained from the equal-
ity in Eq. (45). The expanding rate HðTÞ is given by the
Hubble parameter in the early universe at temperature T,

HðTÞ¼ 1:66
ffiffiffiffiffiffiffiffiffi
Ndof

p T2

MPL

’T2
1:41
10�18 ðGeVÞ; (46)

with radiation degrees of freedom for the SM Ndof ’
106:75, and the Planck mass MPL ’ 1:22
 1019 ðGeVÞ.
We evaluate the changing rate of the net baryon

number [2],

1

Nb

dNb

dt
¼ �1100 Kð�=g2Þg7vðTÞ


 exp

"
�Esphðg; �; vðTÞÞ

T

#
; (47)

by using the same electroweak parameter set and Higgs
potential as those used in the study of the neutrino spectral
density (see Table I). Under the static sphaleron back-
ground, its free energy is known to have the expression

Esph ¼ 4
vðTÞ
g

F0ð�=g2Þ; (48)

where the dimensionless function F0ð�=g2Þ is estimated
to be

F0ð�=g2Þ ¼ F0ðm2
H=ð2g2v2

0ÞÞ ’ F0ð0:309Þ ’ 1:89: (49)

In the second relation we have used the values listed in
Table I for mH, v0, g. In the final relation, we have taken
the results F0ð0:1Þ ¼ 1:83 and F0ð1:0Þ ¼ 2:10 from
Table II in Ref. [8], and performed a linear interpolation
to estimate F0ð0:309Þ.
The function Kð�=g2Þ is responsible for quantum

fluctuations around the sphaleron vacuum, and is well
approximated by using the expression [41]

K

�
�

g2

�
¼ exp

�
�0:09

�
�

g2
� 0:4

�
2

� 0:13

�
g2

�
� 2:5

�
2
�
’ 0:93; (50)

where again we have used the values listed in Table I.
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FIG. 12 (color online). The neutrino spectral density �ð�Þ
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Substituting Eqs. (48)–(50) into Eq. (47), the changing
rate of the net baryon number is obtained as�������� 1

Nb

dNb

dt

��������’ 51:02vðTÞ exp
�
�36:51

vðTÞ
T

�
: (51)

By using Eqs. (46) and (51) as well as Eq. (16), the
inequality (45) reduces to the following condition:

T � T
 ’ 160 GeV: (52)

The leptons created at a temperature satisfying T=v0 �
T
=v0 � 0:65 can contribute to the BAU via the sphaleron
process. Figure 12 shows the neutrino spectral density

�ð�Þ
þ v0 for various temperatures around T
 at a fixed low

momentum p=v0 ¼ 0:007, for which the sharp peaks are
observed in the ultrasoft region!� 0. Thus, the three-peak
structure is still observed in this temperature region for
small momenta, although the strength of the ultrasoft
mode may not be so strong. This indicates that the three-
peak collective modes of � could affect leptogenesis before
the freeze-out. It is interesting that such a possibility is
shown in the definite setup. We note that the condition
T=v0 � 0:65 corresponds to T � vðTÞ; see Fig. 2. As ex-
plained in Sec. II B, higher-loop corrections start to be
non-negligible around this temperature, and should be taken
into account to get more sensible results. We leave this task
as a future work.

VI. SUMMARYAND CONCLUDING REMARKS

We have investigated the spectral properties of standard
model left-handed neutrinos without restricting ourselves
to the HTL approximation, in the full energy-momentum
plane at finiteT around the electroweak scale. This analysis is
motivated by the scenario of electroweak-scale resonant
leptogenesis [3,4], where the spectral property of
left-handed neutrinos can affect lepton number creation
through the decay process of right-handed neutrinosNR, as
shown in Fig. 1. We have employed the R� gauge in order

to investigate the possible gauge-fixing dependence of the
spectral density.

In the intermediate-temperature regionMW;Z & T (MW;Z

is the weak-boson mass at finite T), the neutrino spectral
density involves an ultrasoft mode as well as normal and
antiplasmino modes, and shows a three-peak structure. The
three-peak structure emerges independently of the gauge
parameter, although a detailed structure of the spectral
density may have a slight gauge dependence. Its emergence
is accompanied by a pitchfork bifurcation of the neutrino
dispersion relation, consistent with the previous finding in
Ref. [15], where the HTL approximation was adopted
solely in the unitary gauge. We have mentioned that the
mechanism of the emergence of the collective excitations
and the three-peak structure is similar to what was discussed
in Ref. [16] in a different context.

We have examined the neutrino spectral densities in the
symmetric phase by taking the limit of vanishing gauge-
boson masses (MW;Z ! 0). In this limit, the self-energy in

the unitary gauge shows a divergence, which completely
cancels out in the R� gauge. Thus, the R� gauge fixing

has allowed us to investigate the symmetric phase.
The neutrino spectral properties in the symmetric phase
are found to be similar to that in the HTL approximation.
We have found that the possible gauge dependence of the
width of the peaks in the spectral function is controllable,
and the gauge parameter � should be restricted to � & 2 to
have a sensible result.
We have also discussed a possible implication of the

present study for particle cosmology, in particular in the
resonant leptogenesis scenario, where it makes sense to
consider a thermal leptogenesis at electroweak scale
temperature. We have pointed out that the collective
modes of left-handed neutrinos provide a novel decay
channel in the decay processes of the right-handed neu-
trinos, and could modify lepton number creation. We
have estimated the sphaleron freeze-out temperature T

and investigated the spectral density in the vicinity of T
.
Within the present setup with the second-order electro-
weak phase transition, the ultrasoft as well as (anti)
plasmino modes can appear at a temperature comparable
to T
, though the strength of ultrasoft modes might not
be so strong. Thus, the novel three-peak collective modes
could affect leptogenesis at T * T
, and, therefore,
baryogenesis.
There are several subjects to be studied in the future.

First, it is desirable to estimate how large the effects of
two-loop or higher-order diagrams are on the neutrino
spectral density. Second, the present formulation should
be extended to include the bare-fermion-mass effects
[17]. Finally, it would be interesting to evaluate lepton
number creation with respect to the nontrivial spectral
properties of the neutrinos as well as the charged
leptons by adopting the explicit model of resonant
leptogenesis.
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APPENDIX A: PARAMETERS OF
ELECTROWEAK THEORY

We summarize the parameters of electroweak theory and
their values that were used in this paper in Table I.

APPENDIX B: LANDAU DAMPING WITH
MASSIVE GAUGE BOSON

In this appendix, we briefly review so-called Landau
damping, a scattering of a probe fermion by thermally
excited particles. We closely follow Ref. [16].

The effects of the thermal background on the probe
particle are involved in the one-loop retarded self-energy
�ret given by Eqs. (24)–(26). Taking the imaginary part of
these equations, we obtain

Im�ret
U ðp; !;T;MÞ

¼ �

X

s;t¼�

Z d3k

ð2
Þ3
t���s;k�

0��

2Eq

�
g�� �

q�q�

M2ðTÞ
�


 ½NFðsjkj=TÞ þ NBð�tEq=TÞ�
!�sjkj�tEq
; (B1)

Im�ret
� ðp; !;T;MÞ

¼ �

X

s;t¼�

Z d3k

ð2
Þ3
t���s;k�

0��

2E�
qðMÞ

q�q�

M2ðTÞ

 ½NFðsjkj=TÞ þ NBð�tE�

q=TÞ�
!�sjkj�tE�
q
; (B2)

where NF (NB) represents the Fermi-Dirac (Bose-Einstein)
distribution functions [see Eq. (27)]. The delta functions
provide the momentum-conservation conditions in the
presence of massive gauge-boson effects,

Eq¼p�kðMÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj2 þM2ðTÞ

q
; (B3)

E�
qðMÞ � Eqð

ffiffiffi
�

p
MÞ: (B4)

Here, MðTÞ represents the W-boson, Z-boson, or photon
mass at finite T.

The physical meaning of the delta functions and distri-
bution functions in Eqs. (B1) and (B2) is more transparent
when they are rewritten as

st¼þþ : 
!�jkj�Eq
½ð1�NFÞð1þNBÞþNFNB�;

st¼�þ : 
!þjkj�Eq
½NFð1þNBÞþNBð1�NFÞ�;

st¼þ� : 
!�jkjþEq
½NBð1�NFÞþNFð1þNBÞ�;

st¼�� : 
!þjkjþEq
½NFNBþð1�NFÞð1þNBÞ�;

(B5)

where NF ¼ NFðþjkj=TÞ and NB ¼ NBðþEq=TÞ or

NBðþE�
q=TÞ. These terms can be interpreted in terms of

a scattering process of the probe fermion with the thermal
background. A thermally excited fermion has a statistical
factor NF in the initial state and (1� NF) in the final state
due to Pauli blocking. Similarly, a thermally excited boson
has a factor NB in the initial state and (1þ NB) in the final
state representing the induced emission. These thermal
particles are all on-shell in the present approximation.
We note that the second and third lines in Eq. (B5) involve
the thermal particles as incident particles. Then the first
term in the second line of Eq. (B5) is interpreted as a
scattering process of an external lepton with a thermally
excited lepton carrying a factor NF into a thermally excited
gauge boson carrying a factor 1þ NB. The second term is
its inverse process. The third line in Eq. (B5) describes
processes with the incident and the final states exchanged
in the second line. These processes are known as Landau
damping, and make decay channels in the space-like region.
The same interpretation holds for the �-dependent part with

a replacement Eq ! E�
q. The Landau damping, which is

absent at vanishing temperature, becomes significant at high
temperature where thermally excited particles are abundant.
For the space like–region terms (st ¼ �þ and þ� ),

the momentum integral in the unitary-gauge part of
Eq. (B1) is evaluated as

X
st¼�þ;þ�

st
Z d3k

ð2
Þ3 
!�sjkj�tEq

¼ X
st¼�þ;þ�

st

4
2

Z 1

0
djkjjkj2

Z 1

�1
dðcos�Þ
!�sjkj�tEq

¼ �T3

4
2

�Z xþ

�1
þ
Z 1

x�

�
dx ¼ T3

4
2

�Z x�

xþ
�
Z 1

�1

�
dx;

(B6)

where

x� ¼ p2 �M2

2Tð!� jpjÞ ; (B7)

and cos� denotes the angle between external and internal
fermion momenta p and k. Repeating the same procedure
in the time-like region, only the contribution from the

R
x�
xþ

term remains.

TABLE I. The parameters of electroweak theory. The entries
in the third column are the values used in this paper. The SUWð2Þ
gauge coupling g is chosen to reproduce approximate experi-
mental values of W- and Z-boson masses at T ¼ 0.

Parameters Symbols Values in this work

Higgs VEV at T ¼ 0 v0 246 GeV

Higgs mass at T ¼ 0 mH 126 GeV

Weinberg angle 	w sin 2	w ¼ 0:2325
SUWð2Þ gauge coupling g 0.6515

UYð1Þ gauge coupling g0 ¼ g tan 	w �0:3586
UEMð1Þ gauge coupling e ¼ g sin 	w �0:3141
W-boson mass mW ¼ v0g=2 �80 GeV
Z-boson mass mZ ¼ mW= cos	w �91 GeV
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Substituting Eq. (B6) into Eq. (B1), the combination of
the integrals

R1
�1 and/or

R
x�
xþ with the statistical factors

NFðsjkj=TÞ þ NBð�tEq=TÞ gives rise to two types of

integrals,

ISTðxþ; x�;!=TÞ �
�Z x�

xþ
�	ð�p2Þ

Z 1

�1

�
dx½NFðxÞ

þ NBðx�!=TÞ�; (B8)

JSTðxþ; x�;!=TÞ �
�Z x�

xþ
�	ð�p2Þ

Z 1

�1

�
dxx½NFðxÞ

þ NBðx�!=TÞ�: (B9)

Here, the step function 	ð�p2Þ with p2 ¼ !2 � jpj2 picks
up the space-like region. The integral

R1
�1 is analytically

performed, and reads

ISTðxþ; x�;!=TÞ ¼
�Z x�

xþ
dxNFðxÞ þ

Z y�

yþ
dyNBðyÞ

�

þ 	ð�p2Þ!
T
; (B10)

JSTðxþ; x�;!=TÞ ¼
�Z x�

xþ
dxxNFðxÞ þ

Z y�

yþ
dyyNBðyÞ�

þ!

T

Z y�

yþ
dyNBðyÞ � 	ð�p2Þ



�

2

2
� !2

2T2

�
; (B11)

where

y� ¼ x� �!=T: (B12)

The remaining integrals
R
x�
xþ and

R
y�
yþ will be numerically

evaluated. For the �-dependent part, the counterparts of
IST and JST are obtained by the replacements

x� ! x0� ¼ p2 � �M2

2Tð!� jpjÞ ; (B13)

y� ! y0� ¼ x0� �!

T
: (B14)

As will be shown in the next appendix, IST and JST give
a key ingredient to the imaginary part of the self-energy
[see Eqs. (C2) and (C3)].

APPENDIX C: SELF-ENERGY �� AT FINITE T

Based on previous work [16,18], we review the deriva-
tion of the self-energy �� defined in Eq. (29). We start
from calculating the imaginary part of ��, which is com-
posed of the unitary-gauge part and the �-dependent part,

Im��ðjpj; !;T;MÞ ¼ Im�U�ðjpj; !;T;MÞ
þ Im��

�ðjpj; !;T;MÞ: (C1)

Substituting the imaginary part of the retarded self-energy
[Eqs. (B1) and (B2)] into Eq. (29), the straightforward
computations lead to

Im�U�ðjpj; !;T;MÞ
¼ �1

32
jpj2M2
½ð�p2 þM2Þðð!� jpjÞ2 � 2M2Þ

� TISTðxþ; x�;!=TÞ þ 2ð!� jpjÞðp2 � 2M2Þ
� T2JSTðxþ; x�;!=TÞ�; (C2)

and

Im��
�ðjpj; !;T;MÞ
¼ �1

32
jpj2M2
½ðp2 � �M2Þð!� jpjÞ2

� TISTðx0þ; x0�;!=TÞ � 2p2ð!� jpjÞ
� T2JSTðx0þ; x0�;!=TÞ�: (C3)

The integrals IST and JST are given by Eqs. (B10) and
(B11), respectively. In the zero-temperature limit, keeping
the relations T <M, !, jpj, we obtain the vacuum effects

Im�U
�;0ðjpj; !;MÞ � Im�U�ðjpj; !;M;T ! 0Þ

¼ �sgnð!Þð!� jpjÞ
32


�
2þ 1

z

�

 ð1� zÞ2	ð1� zÞ; (C4)

Im��
�;0ðjpj; !;MÞ � Im��

�ðjpj; !;M;T ! 0Þ

¼ sgnð!Þð!� jpjÞ
32


ð1� �zÞ2
z


 	ð1� �zÞ; (C5)

where we have defined the dimensionless variable
z ¼ M2=p2.
In order to make a renormalization at zero temperature,

we extract the thermal effect from the imaginary part of
the self-energy,

Im��;Tðjpj; !;T;MÞ � Im��ðjpj; !;T;MÞ
� Im��;0ðjpj; !;MÞ; (C6)

and we calculate the real part of the thermal and vacuum
effects separately. The former, Re��;T , is computed by

using the Kramers-Kronig relation,

Re��;Tðjpj; !;TÞ ¼ P
Z 1

�1
d!0




Im��;Tðjpj; !0;TÞ
!0 �!

:

(C7)

Here ‘‘P ’’ represents taking a Cauchy principal value in the
integral. The renormalization at T ¼ 0 can be manipulated
by utilizing the (twice-) subtracted dispersion relation,
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Re��;0ðjpj; !Þ ¼ C0 þ C1 � ð!� jpjÞ þ ð!� jpjÞ2

� P
Z 1

�1
d!0




Im�Uþ�
�;0 ðjpj; !0Þ

ð!0 � jpjÞ2ð!0 �!Þ :

(C8)

The coefficients C0;1 are determined to be zero by imposing

on-shell renormalization conditions,��;0ðjpj;!Þj!¼�jpj ¼0

and @!��;0ðjpj; !Þj!¼�jpj ¼ 0. The straightforward calcu-

lation leads to

Re��;0ðjpj; !Þ ¼ !� jpj
32
2

�
2z� ð2þ �Þ � ð1� �zÞ2

z


 log

��������1� 1

�z

��������þ
�
2þ 1

z

�
ð1� zÞ2


 log

��������1� 1

z

��������� 1

z
log�

�
; (C9)

with z ¼ M2=p2. The Re��;0 is regular in the limit z ! 1
for any finite �.

Once we obtain Im�� and Re�� ¼ Re��;T þ Re��;0

through the aforementioned procedures, the neutrino
self-energy is now calculated by using Eq. (31),

Im�ð�Þ
� ðjpj;!;TÞ¼

�
gffiffiffi
2

p
�
2
Im��ðjpj;!;T;MWðTÞÞ

þ
�

g

2cos	w

�
2
Im��ðjpj;!;T;MZðTÞÞ;

(C10)

Re�ð�Þ
� ðjpj;!;TÞ¼

�
gffiffiffi
2

p
�
2
Re��ðjpj;!;T;MWðTÞÞ

þ
�

g

2cos	w

�
2
Re��ðjpj;!;T;MZðTÞÞ:

(C11)

Substituting these self-energies into Eq. (34), we obtain the

neutrino spectral density �ð�Þ
� ðjpj; !;TÞ.

APPENDIX D: MASSLESS-HTL APPROXIMATION

We consider the limit T � !, jpj, MW;Z in the imagi-

nary part of the self-energy [Eqs. (C1)–(C3)]. In both the
unitary-gauge part [Eq. (C2)] and the �-dependent part
[Eq. (C3)] the leading-order contributions are given by

2T2 terms in T2JST [see Eq. (B11) for the expression of
JST]. The total imaginary part of the self-energy in this
limit reduces to

Im��;HTLðjpj; !;TÞ ¼ 	ð�p2Þ
T2

16jpj2 ð!� jpjÞ: (D1)

The real part is analytically evaluated through the
Kramers-Kronig relation [Eq. (C7)], and reads

Re��;HTLðjpj; !;TÞ ¼ T2

16jpj2
�
2jpj þ ð!� jpjÞ


 log

��������!� jpj
!þ jpj

��������
�
: (D2)

Equations (D1) and (D2) correspond to well-known HTL
results [1,2,12], and in this paper we call them ‘‘massless-
HTL’’ approximations.
By using Eqs. (D1) and (D2), the neutrino self-energy in

the massless HTL is given by

Im�ð�Þ
þ;HTLðjpj; !;TÞ
¼
��

gffiffiffi
2

p
�
2 þ

�
g

2 cos	w

�
2
�
Im�þ;HTLðjpj; !;TÞ; (D3)

Re�ð�Þ
þ;HTLðjpj; !;TÞ
¼
��

gffiffiffi
2

p
�
2 þ

�
g

2 cos	w

�
2
�
Re�þ;HTLðjpj; !;TÞ: (D4)

APPENDIX E: MASSIVE-HTL EXPANSION

We derive the HTL approximation which implements
the massive weak-boson effects at high temperature
(M, T � !, jpj) for the fermion self-energy. We call
this approximation the massive-HTL approximation,
which reproduces the unitary-gauge HTL invented by
Boyanovsky [15].
As explained in Appendix B, the one-loop momentum

integral in the self-energy gives rise to the thermal integral
factor ðIST; JSTÞ given in Eqs. (B10) and (B11). The con-
dition M, T � !, jpj allows us to divide their arguments
ðx�; y�Þ into the dominant part �� and the small perturba-
tion part 
x�,
y�,

x� ¼ �� þ 
x�; y� ¼ �� þ 
y�; (E1)

�� ¼ �M2

2Tð!� jpjÞ ; (E2)

j
x�j ¼
��������!� jpj

2T

��������� 1;

j
y�j ¼
���������!� jpj

2T

��������� 1;

(E3)

j��j � j
x�j; j
y�j: (E4)

We expand the thermal integral factors ðIST; JSTÞ in terms
of 
x�. This massive-HTL expansion keeps the mass
effects in the dominant part ��, in sharp contrast to the
massless-HTL approximation.
We perform the massive-HTL expansion in the imagi-

nary part of the self-energy [Eqs. (C2) and (C3)]. The
leading contributions come from the unitary-gauge part
and are found to be
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Im��;MHTLðjpj; !;T;MÞ
¼ �1

16
jpj2
�
�TM2

Z �þ

��
d�½NFð�Þ þ NBð�Þ�

� 2T2ð!� jpjÞ
Z �þ

��
d��½NFð�Þ þ NBð�Þ�

þ 	ð�p2Þ � 
2T2ð!� jpjÞ
�
: (E5)

We evaluate the leading effects of the real part by
substituting the imaginary part [Eq. (E5)] into the
Kramers-Kronig relation [Eq. (C7)],

Re��;MHTLðjpj; !;T;MÞ

¼ P
Z 1

�1
d!0




Im��;MHTLðjpj; !0; T;MÞ
!0 �!

¼ �1

16
2jpj2
Z 1

�1
d!0X

s¼�
s
X

D¼F;B



�
TM2 ID½�sð!0Þ�

!0 �!
þ 2T2ð!� jpjÞ JD½�sð!

0Þ�
!0 �!

�

�
Z 1

�1
d!0 	ð�p02Þ

16
2jpj2
�

2T2 !

0 � jpj
!0 �!

�
; (E6)

where we have defined

IF;B½��� � IF;B½�þ� �
Z ��

�þ
dxNF;BðxÞ; (E7)

JF;B½��� � JF;B½�þ� �
Z ��

�þ
dxxNF;BðxÞ; (E8)

�� ¼ � M2

2Tð!� jpjÞ ; (E9)

with p02 ¼ !02 � jpj2. We have omitted !-independent
terms, which cancel one another owing to the translation
invariance of

R1
�1 d!0. We introduce the new integration

measure d� ¼ dð�M2=ð2Tð!0 þ sjpjÞÞÞ with s ¼ �, and
evaluate the integral of statistical factors ID¼F;B involved in

Eq. (E6) as

Z 1

�1
d!0 ID¼F;B½�sð!0Þ�

!0 �!
¼
Z 1

�1
d�

�2
M2

2T

ID½��
�sjpj�M2=ð2T�Þ�!

¼
Z 1

�1
d�ID½�� � d

d�
log

��������!T þ s
jpj
T

þ M2

2T2�

��������
¼
Z 1

�1
d�

d

d�
½ID½�� � log

��������!T þ s
jpj
T

þ M2

2T2�

��������
�
�
Z 1

�1
d�NDð�Þ � log

��������!T þ s
jpj
T

þ M2

2T2�

��������
¼ ½ID½1�� ID½�1�

�
log

��������!T þ s
jpj
T

���������X
t¼�

Z 1

0
d�NDðt�Þ � log

��������!T þ s
jpj
T

þ t
M2

2T2�

��������: (E10)

In the third equality, we have taken the partial derivative and
used dIF;Bð�Þ=d� ¼ NF;Bð�Þ. Repeating the same procedure
for the integral of JD¼F;B contained in Eq. (E6), we obtainZ 1

�1
d!0JD¼F;B½�sð!0Þ�

!0 �!

¼½JD½1��JD½�1�� log
��������!T þ s

jpj
T

��������
�X

t¼�

Z 1

0
d�t� �NDðt�Þ � log

��������!T þ s
jpj
T

þ t
M2

2T2�

��������:
(E11)

Here, we utilize the following formulas:X
D¼F;B

½ID½1�� ID½�1�� ¼
Z 1

�1
dx

�
1

exþ 1
þ 1

ex� 1

�
¼ 0;

(E12)

X
D¼F;B

½JD½1� � JD½�1��

¼
Z 1

�1
dx

�
x

ex þ 1
þ x

ex � 1

�
¼ 
2

2
; (E13)

X
D¼F;B

NDðt�Þ ¼ t
2e��

1� e�2�
: (E14)

We then evaluate the summation
P

t¼� in Eqs. (E10) and
(E11) as

X
D¼F;B

Z 1

�1
d!0 ID¼F;B½�sð!0Þ�

!0 �!

¼�
Z 1

0
d�

2e��

1�e�2�
log

�������� �!þ sj �pjþ ��=�

�!þ sj �pj� ��=�

��������; (E15)
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X
D¼F;B

Z 1

�1
d!0 JD¼F;B½�sð!0Þ�

!0 �!

¼ 
2

2
log

��������!T þ s
jpj
T

���������
Z 1

0
d�

2�e��

1� e�2�


 log

�������� �!þ sj �pj þ ��=�

�!þ sj �pj � ��=�

��������; (E16)

where we have defined ð �!; j �pjÞ ¼ ð!=T; jpj=TÞ and �� ¼
M2=ð2T2Þ. Substituting Eqs. (E15) and (E16) into Eq. (E6),
and performing

P
s¼�, we obtain the real part of the

massive-HTL self-energy,

Re��;MHTLðjpj; !;T;MÞ

¼ �T2

8jpj �
1

8
2jpj2
Z 1

0
d�

2�e�

1� e�2�



��

2T2ð!� jpjÞ � TM2

�

�
LPð �!; j �pj; ��=�Þ

þ
�
2T2ð!� jpjÞ þ TM2

�

�
LMð �!; j �pj; ��=�Þ

�
; (E17)

where

LPð �!; j �pj; ��=�Þ ¼ 1

2
log

�������� �!þ j �pj þ ��=�

�!þ j �pj � ��=�

��������; (E18)

LMð �!; j �pj; ��=�Þ ¼ 1

2
log

�������� �!� j �pj þ ��=�

�!� j �pj � ��=�

��������; (E19)

which is nothing but the formulas in the unitary gauge
given in Ref. [15].
In summary, the neutrino self-energy in the leading

order of the massive-HTL expansion is given by

Im�ð�Þ
þ;MHTLðjpj; !;TÞ
¼
�
gffiffiffi
2

p
�
2
Im�þ;MHTLðjpj; !;T;MWÞ

þ
�

g

2 cos	w

�
2
Im�þ;MHTLðjpj; !;T;MZÞ; (E20)

Re�ð�Þ
þ;MHTLðjpj; !;TÞ
¼
�
gffiffiffi
2

p
�
2
Re�þ;MHTLðjpj; !;T;MWÞ

þ
�

g

2 cos	w

�
2
Re�þ;MHTLðjpj; !;T;MZÞ: (E21)

APPENDIX F: SELF-ENERGY �� WITH
VANISHING GAUGE-BOSON MASS

We analytically evaluate the imaginary part of the self-
energy at the one-loop level in the limit of vanishing
gauge-boson masses !, jpj, T � M ! 0, and derive the
expression (38).
The imaginary part of the self-energies [Eq. (C1)] can be

rewritten as

Im��ðjpj; !;T;MðTÞÞ ¼ �1

32
jpj2
��p2

M2
ð!� jpjÞ2T

�
IST

�
xþ; x�;

!

T

�
� IST

�
x0þ; x0�;

!

T

��

þ ð!� jpjÞ2T
�
IST

�
xþ; x�;

!

T

�
� �IST

�
x0þ; x0�;

!

T

��
� 2ð�p2 þM2ÞTIST

�
xþ; x�;

!

T

�

þ 2
p2

M2
ð!� jpjÞT2

�
JST

�
xþ; x�;

!

T

�
� JST

�
x0þ; x0�;

!

T

��
� 4ð!� jpjÞT2JST

�
xþ; x�;

!

T

��
;

(F1)

where the statistical integral factors IST and JST are defined
by Eqs. (B10) and (B11), respectively. The arguments of
IST and JST are defined as

ðx�; x0�Þ ¼
�

p2 �M2

2Tð!� jpjÞ ;
p2 � �M2

2Tð!� jpjÞ
�
: (F2)

In order to investigate the gauge boson–mass dependence
of the self-energy (F1) in the limit M ! 0, we expand the
integral factor ðIST; JSTÞ in terms of M2 as

ISTðxþ; x�Þ ¼ ISTðXþ; X�Þ �M2
X
s¼�

Zs½NFðXsÞ þ NBðYsÞ�

þOðM4Þ; (F3)

JSTðxþ; x�Þ ¼ JSTðXþ; X�Þ �M2
X
s¼�

Zs

�
XsNFðXsÞ

þ YsNBðYsÞ þ!

T
NBðYsÞ

�
þOðM4Þ; (F4)

where x� ¼ X� þM2Z�, and

ðX�; Y�Þ ¼
�
!� jpj

2T
;
�!� jpj

2T

�
; (F5)

Z� ¼ 1

2Tð!� jpjÞ : (F6)
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The M2 expansions for the �-dependent sector
[ISTðx0þ; x0�Þ, JSTðx0þ; x0�Þ] are obtained by replacing M2

with �M2 in Eqs. (F3) and (F4).
It turns out that the leading terms ISTðXþ; X�Þ and

JSTðXþ; X�Þ are common between the unitary-gauge and
the �-dependent part. Owing to this property, all terms
proportional to 1=M2 cancel out in Eq. (F1) and read

Im��ðjpj; !;TÞjM!0

¼ �1

32
jpj2
�
ðð1� �Þð!� jpjÞ2 þ 2p2Þ


 TIST

�
Xþ; X�;

!

T

�
� 4ð!� jpjÞT2JST



�
Xþ; X�;

!

T

�
� Tp2ð1� �Þð!� jpjÞ


 X
s¼�

sZsH�ðXs; YsÞ
�
; (F7)

where H� is defined as

H�ðXs; YsÞ ¼ ð!� jpjÞ½NFðXsÞ þ NBðYsÞ� � 2!NBðYsÞ
� 2T½XsNFðXsÞ þ YsNBðYsÞ�: (F8)

Next, we simplify the final line of Eq. (F7). To this end,
we explicitly evaluate H�ðXs; YsÞ,

HþðX�; Y�Þ ¼ �2jpj½NFðX�Þ þ NBðY�Þ�; (F9)

H�ðXþ; YþÞ ¼ 2jpj½NFðXþÞ þ NBðYþÞ�; (F10)

HþðXþ; YþÞ ¼ H�ðX�; Y�Þ ¼ 0; (F11)

which enables us to perform the remaining summation
P

s

in the final line of Eq. (F7) as

X
s

sZsH�ðXs; YsÞ ¼ �2jpjZ�½NFðX�Þ þ NBðY�Þ� ¼ � jpj½NFðX�Þ þ NBðY�Þ�
Tð!� jpjÞ : (F12)

Substituting this expression for Eq. (F7), we obtain the desired expression (38) as the imaginary part of the self-energy with
vanishing gauge-boson masses.
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