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The geometric approach based on parallel transport and Wilson lines to gain insight into the

decomposition of the gluon gauge 4-vector potential is being developed in the literature to address the

proton spin puzzle. Unfortunately, conflicting claims on the uniqueness of the decomposition have been

made. We reexamine this controversy and argue that Hodge decomposition and the de Rham theorem

resolve this issue in a natural way such that the topological defects acquire a fundamental significance.

It is suggested that qualitatively angular momentum holonomy could be an alternative new mechanism to

account for the deficit proton spin.
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I. INTRODUCTION

The spin structure of nucleons has been probed by
polarized deep inelastic scattering (pDIS) experiments
over the past 25 years: the present accepted estimate of
the fraction of the spin of the proton carried by its con-
stituent quarks is about one-third [1]. Why is it so small?
Wherefrom originates the proton spin? Assuming the pro-
ton spin equals the total angular momentum (TAM) of
quarks and gluons, it becomes crucial to know the separate
contributions of the spin and orbital angular momentum
(SAM and OAM) of quarks and gluons. On the other hand,
it is well known that perturbative quantum chromodynam-
ics (pQCD) [2] applicable for short-distance processes
(due to asymptotic freedom) is only half of the story of
QCD; phenomena in a strong coupling regime, for
example, the hadrons as bound states, are poorly under-
stood. Therefore, it becomes necessary to make reasonable
approximations to interpret the measurements [1,3].
Nevertheless the role of established principles like
relativistic and gauge invariance cannot be ignored: the
current controversy on the proton spin decomposition [4]
underlines this fact.

The main question is that of splitting TAM into SAM
and OAM of quarks and gluons in a gauge invariant way. In
an extensive elaborative study Wakamatsu has sought to
establish that there are only two gauge invariant decom-
positions of proton spin in which OAM of quarks and
gluons have different definitions [5]. At a basic level the
idea is to split the gauge 4-vector potential into a pure
gauge part and a physical part

Aa
� ¼ Aa;pure

� þ Aa;phys
� : (1)

Here a is the gauge group index that we may suppress
sometimes. Lorce develops a geometric approach based on
Wilson lines and the notion of parallel transport in [6].
One of the important consequences following from this
work is the nonuniqueness of the decomposition (1) à la
Stueckelberg symmetry; the role of this symmetry was first

pointed out by Stoilov in this connection [7]. There are
contradictory claims on the question of the uniqueness of
the separation (1) in [5,6]. Could one achieve reconcili-
ation based on mathematical or physical argument? The
aim of the present paper is to propose a resolution of the
controversy invoking the de Rham theorem and topological
concepts. First, we present a critical appraisal of the con-
troversy in Sec. II. In Sec. III it is argued that Wilson lines
naturally lead to the formalism of differential forms and the
de Rham theorem. Gauge transformation in the context of
the de Rham theorem is discussed: the uniqueness of the
decomposition (1) for simply connected space follows
immediately while topological defects lead to infinity of
possible decompositions. In the Sec. IV the significance of
angular momentum holonomy is discussed along with the
concluding remarks.

II. GAUGE 4-VECTOR POTENTIAL
DECOMPOSITION

Recall the assertion [8] that simultaneously satisfying
the requirements of manifest Lorentz covariance and gauge
invariance in the separation of TAM into SAM and OAM is
a formidable, if not impossible, task in gauge theories.
Note that the Lorentz covariant decomposition (1) articu-
lated by Wakamatsu breaks the covariance once longitudi-
nal and transverse interpretation is introduced since one
has to specify a frame of reference [5]. Whether this
amounts to the loss of relativistic invariance is a subtle
issue remembering that even the Maxwell equations writ-
ten in terms of electric and magnetic field vectors E and B
are relativistically invariant but not manifestly Lorentz
covariant. As regards to the gauge invariance one has

A
pure
� ! UðxÞ

�
A
pure
� � i

g
@�

�
UyðxÞ; (2)

and the corresponding field tensor is zero,

F
pure
�� ¼ @�A

pure
� � @�A

pure
� � ig½Apure

� ;A
pure
� � ¼ 0: (3)
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The physical gauge potential under gauge transformation
becomes

A
phys
� ! UðxÞAphys

� UyðxÞ: (4)

The QCD AM tensor has been shown to have two physi-
cally inequivalent decompositions [5] in which SAM parts
of quarks and gluons are identical but OAM parts are
defined differently; the difference between them is a
covariant generalization of the so-called potential angular
momentum

Lpot ¼
Z

�aðr�AaÞd3r: (5)

Note that the gauge group index a is explicitly shown
in (5). The corresponding expression in quantum electro-
dynamics (QED) for the potential angular momentum is

LQED
pot ¼

Z
�ðr�AtrÞd3r: (6)

Here � is charge density and the electromagnetic potential
A is divided into transverse and longitudinal components,

A ¼ Al þAtr; (7)

such that

r:Atr ¼ 0; (8)

r�Al ¼ 0: (9)

In QED these components have the following gauge trans-
formation:

Atr ! Atr; (10)

Al ! Al þ r�: (11)

Lorce points out that the decomposition (1), on which
the construction of the AM tensor and its decomposition
are based, is not unique due to Stueckelberg symmetry; see
transformation equations (6) and (7) in [6]. In QED the
Stueckelberg transformation would be

Apure
� ! Apure

� þ @�B; (12)

A
phys
� ! A

phys
� � @�B: (13)

Here BðxÞ is an arbitrary scalar function of space and time.
Apparently the decomposition is not unique. However,
Wakamatsu asserts that the imposition of the transversality
condition in addition to Eqs. (2)–(4) uniquely fixes the
decomposition (1).

In the geometric approach [6] the idea of parallel trans-
port is used involving Wilson lines. A gauge link or Wilson
line is defined as [2] the path-ordered exponential of the
integral of Aa

� along a path C parametrized by a function

x�ðsÞ where the parameter s varies from 0 to 1,

WðCÞ ¼ P

�
exp

�
�ig

Z 1

0

dx�ðsÞ
ds

Aa
�ðxðsÞ

�
tads

��
: (14)

Here ta are the generator matrices of the gauge group.
Interestingly, the solution of the parallel transport equation
can be written in terms of the Wilson line, and the trans-
formations (2) and (4) could be established using the gauge
transformation of the Wilson line in this approach [6]. The
important point in the present context is that the change in
the path C would change the pure and the physical parts of
A� essentially due to the Stueckelberg transformation: the

expressions for the pure and the physical 4-vector gauge
potentials are in general path dependent. Note that a
Wilson line is invariant under reparametrization but
depends on the path even while the end points are fixed.
The path dependence of Wilson lines has some important
consequences. One implication is that it is imperative to
define the measurable quantities carefully. In a practical
situation, for example, calculating parton densities using
lightlike separation in the minus direction the Wilson
line becomes path independent. However, the difference
between path ordering and time ordering, the role of the
covariant gauge, and the path along the spacelike separa-
tion are delicate issues [2]. The contentious nature of the
uniqueness of the decomposition (1) and the path depen-
dence of Wilson lines has been reemphasized in recent
papers [9,10] and references cited therein.

III. UNIQUENESS: HELMHOLTZ, HODGE,
AND DE RHAM THEOREMS

The most intriguing dimension of the controversy con-
cerns the sharp disagreements on what constitutes an
observable [4,5,9,10]. A nice review on an observable
operator in QED and QCD [4] offers somewhat limited
perspective on the measurable quantities; philosophical
and conceptual issues are, of course, unavoidable. Let us
confine our attention to the formalism aspect.
The key argument to establish the uniqueness of the

decomposition (1) runs as follows [5]. It is admitted that
conditions (2) to (4) by themselves are insufficient to
uniquely determine the decomposition (1). Next, QED
case is considered, and the noncovariant form of the
decomposition is identified with the standard transverse
and longitudinal separation (7); i.e.,Aphys andApure satisfy
the conditions (8) and (9), respectively. The Stueckelberg
transformations (12) and (13) assume the form

Atr ! Atr þ rB; (15)

Al ! Al � rB: (16)

The transformed longitudinal vector potential remains
irrotational obeying Eq. (9); however, the transformed
transverse vector potential is not divergenceless unless

r2B ¼ 0: (17)
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Referring to the Helmholtz theorem it is claimed that
‘‘the transverse-longitudinal decomposition is unique once
the Lorentz frame of reference is fixed’’ [5]. Caution needs
to be exercised regarding the Helmholtz theorem: the
theorem states that a vector field V can be decomposed
into a gradient of a scalar field� and a curl of a vector field
W that is unique up to the addition of a gradient of arbitrary
scalar S,

V ¼ ½r�þ rS� þ ½r�W � rS�; (18)

such that S is a harmonic function

r2S ¼ 0: (19)

We refer to Sec. (2) of [11] for a precise discussion on the
Helmholtz theorem. It is clear that an additional assump-
tion on B, namely that it vanishes at the spatial infinity,
is required to make it zero, and it is not correct to
conclude that Stueckelberg symmetry does not preserve
the transversality condition since the Laplace equation for
B [S], Eq. (17) [Eq. (19)], ensures that transversality is
maintained.

Regarding the specification of a Lorentz frame and
breaking Lorentz covariance in the process, we refer to
our argument [8] that a formalism to maintain rigorous
manifest Lorentz covariance and gauge invariance is non-
trivial. That gauge fixing and the transverse-longitudinal
decomposition are interrelated [5] seems to be a valid
physical argument since gauge fields are massless.

The path dependence of the Wilson line [6] also indi-
cates the nonuniqueness of the separation (1); however, it
has been argued in [5] citing previous works that there are
instances where path independence and gauge invariance
could coexist, and that the decomposition is unique [5].
Lorce, in an attempt to reconcile contradictory claims,
introduces two types of gauge transformations: active and
passive [10]. It is not clear whether terminology could
resolve the problem.

Recall that in the standard interpretation the gauge in-
variance implies the nonobservability of A�. However,

the Aharonov-Bohm effect, experimentally demonstrated
many times, ascribes physical reality to the electromag-
netic vector potential if one considers the phase integral
over a closed path,

WAB ¼ exp

�
� ie

ℏc

I
A:dl

�
; (20)

the covariant form being

WAB ¼ exp

�
� ie

ℏc

I
A�dx

�

�
: (21)

Using Stoke’s theorem the phase integral in (20) could be
converted in terms of the flux of the enclosed magnetic
field: it may be said that it is a nonlocal field effect; i.e., the
local vector potential is not observable. It is straightforward
to recognize the significance of the 1-form in Eq. (21),

A ¼ A�dx
�: (22)

The language of exterior differential forms à la Cartan
seems natural and provides new insights as we discuss it
in the following. The definition (14) of the Wilson line is
transcripted to

W ¼ P

�
exp�ig

I
A

�
; (23)

where the 1-form is defined as

A ¼ Aa
�tadx

�: (24)

The Helmholtz theorem (18) is generally applicable to a
continuous differentiable vector field, though it has been
extended to the case when singularities are present [11].
What is the equivalent decomposition for differential
forms? Note that the Aharonov-Bohm phase integral and
the Wilson line can be interpreted as integrations of differ-
ential forms, and over closed loops or cycles these are
called periods. The homology and cohomology classes
are established by the de Rham theorem.
A physically intuitive picture on the rudiments of the

differential forms is presented; we refer to [12] for techni-
cal details. One defines a chain in analogy to a line integral,
and a cycle corresponds to a loop integral. The set of chains
is dual to the set of differential forms. The exterior differ-
ential operator d on a p-form gives a (pþ 1)-form, for
example, a 0-form f is a scalar function and df is a
gradient of f. The adjoint of d is �, and the Laplacian is
d�þ �d. A differential form � is harmonic if

ðd�þ �dÞ� ¼ 0: (25)

The Hodge theorem states that any p-form! on a compact
manifold can be decomposed uniquely into a closed form,
a coclosed form and a harmonic form

! ¼ d�þ ��þ �: (26)

It is the harmonic part � that determines the cohomology
class and contains the topological information.
Note that in the Euclidean topology the Hodge decom-

position (26) is equivalent to the Helmholtz decomposition
(18). A distinctly new significance of the harmonic form
becomes manifest in the de Rham theorem. Recall the
duality of chains and forms mentioned earlier. Using the
boundary operator @ of a chain, one defines C ¼ @B as a
boundary and @C ¼ 0 as a cycle. The integral of ! over a
cycle C defines a period of the form: it depends on the
cohomology class of ! and the homology class of C. The
first de Rham theorem says that for a given set of periods
½�i� there exists a closed p-form such that

�i ¼
I
Ci

!: (27)

Here ½Ci� is a set of independent cycles. The second
theorem states that if all the periods for a p-form � vanish,
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0 ¼
I
Ci

�; (28)

then � is exact. Thus the closed form is determined up to
the addition of an exact form: this corresponds to the gauge
invariance. The period of the harmonic form characterizes
the number of ‘‘holes’’ in the manifold

�Rham ¼
I

�: (29)

A typical widely discussed example in the literature,
also mentioned in [12], is that of a vector field having

r�A ¼ 0; (30)

given in Cartesian coordinates by

A ¼ yî� xĵ

x2 þ y2
: (31)

It can be rewritten as a closed form ! ¼ df where
f ¼ tan�1 y

x , but it is not exact due to the presence of the

hole at the origin. The nonvanishing period is the loop
integral encircling the origin given by 2	.

In the light of the preceding discussion we make the
following proposition.

Proposition: The natural decomposition of the 4-vector
potential in QED and QCD has to be based on the Hodge
decomposition (26), and the de Rham theorem paves the
way for a unified description incorporating the Wilson
line approach: the geometric approach generalizes to a
topological one.

The above proposition is essentially a conceptual
abstraction of what we have learned from the Aharonov-
Bohm effect: the enclosed magnetic flux changes the
Euclidean topology, creating a hole. Unless the hole is
encircled, the uniqueness of the decomposition (7) is
ensured. A simply connected space by virtue of the pres-
ence of the magnetic flux acquires a multiply connected
structure, and the de Rham theorem shows that the sepa-
ration of the vector potential is not unique. QCD, unlike
QED, is a non-Abelian gauge theory, and there arise new
complications. However, so-called gauge invariant exten-
sions, as repeatedly emphasized by Wakamatsu [5,9], for
an open straight line path in spacetime have both path
independence and gauge invariance. This argument fails
for closed paths where the harmonic form à la the de Rham
theorem may allow an infinity of decompositions if the
topology is nontrivial. The assertions made by Lorce [10]
are justified only in such cases.

What is the role of our proposition in the context of
gauge fixing in the geometric approach? A careful analysis
is required to define the path in spacetime that serves as the
base space of a principal fiber bundle, the fiber being the
gauge group. The 1-form defined in (24) has a nontrivial
structure. At least in the so-called contour gauges the gauge
fixing can be formulated explicitly [5] and the physical

interpretation on the question of unique gauge invariant
decomposition can be understood.
To conclude this section, we have shown that the contra-

dictory claims made on the uniqueness of the decomposi-
tion (1) in the literature can be satisfactorily resolved based
on the de Rham theorem and Hodge decomposition.

IV. DISCUSSION AND CONCLUSION

Though the proton size is of the order of a Fermi, high
energy scattering experiments provide useful data on the
three-dimensional internal structure of the proton. The
hadron tensor is split into four components characterized
by four structure functions F1ðx;Q2Þ, F2ðx;Q2Þ, g1ðx;Q2Þ,
g2ðx;Q2Þ. Here Q denotes the invariant momentum trans-
fer in the process and x the Bjorken variable. In pQCD
essentially the same description holds [2]; however, the
most challenging task is to make realistic calculations and
obtain physical quantities from the measurements on deep
inelastic scattering (DIS) and pDIS. One of the most
important quantities measured in the laboratories the world
over and showing reasonable consistency is the spin struc-
ture function g1; see Fig. 4 in [1]. The crucial factor that
determines the first moment of g1,

R
1
0 g1ðx;Q2Þdx, is the

flavor-singlet axial charge gð0ÞA . The second spin structure
function seems to be

Z 1

0
g2ðx;Q2Þdx ¼ 0: (32)

The charge gð0ÞA is related with the renormalization scale

invariant singlet axial charge that corresponds to gð0ÞA ðQ2Þ
obtained in the limit Q2 ! 1. The scale dependence is
embodied [1] in a renormalization group factor Eð�sÞ.
Next-to-leading order calculations in pQCD show that
the separation of g1 into hard and soft contributions
depends on the factorization schemes: modified minimal
subtraction and chiral invariant are two important schemes
discussed in the literature [1]. However, it has been
emphasized in [13] that both factorization schemes are
on the same footing.

The value of gð0ÞA extracted from pDIS is about 0.3.

The estimates of the octet axial charge gð8ÞA are model-

dependent, and also alter the value of gð0ÞA . The QCD result
may be written as

gð0ÞA ¼ spinð�q;�gÞ þ C1: (33)

Here the first term corresponds to the quark and polarized
gluon contributions [see Eq. (22) in [1]]. The constant term
C1 is interesting: it is related to a nonlocal gluon topo-
logical structure in the proton, vanishes in pQCD, and is
believed to reveal the nontrivial QCD vacuum.
Recent experiments give strong indications that going

beyond spin sums we may have to include OAM of quarks
and gluons. Note that even for gluon polarization the
gauge fixing plays a significant role; in the case of the

S. C. TIWARI PHYSICAL REVIEW D 88, 065022 (2013)

065022-4



decomposition of the spin of the proton into SAM and
OAM of the constituent quarks and gluons, gauge invari-
ance becomes crucial. Assuming specific forms of the
4-vector gauge potential (1), there appear to be mainly
four decompositions of TAM ðJÞ in the literature
[14–17]. The resolution of the uniqueness controversy of
decomposition (1) proposed in the preceding section leads
to a new insight: TAM may have a constant topological
contribution. Using the simple notation

J ¼ Sq þ Sg þLq þLg; (34)

where subscripts q and g refer to quarks and gluons,
respectively, Lorce notes that Sq is the same in all four

schemes [10],

Sq ¼
Z �

�y 1
2
��

�
d3r: (35)

We suggest (34) is modified by a topological term

Jmod ¼ Jþ Jtop: (36)

Expression (36) is motivated by angular momentum hol-
onomy conjecture [18]. Geometric phases in optics, analo-
gous to the Aharonov-Bohm effect found extensive
renewed activity after the discovery of the Berry phase in
1984. Angular momentum exchange was proposed as a
physical mechanism to explain the geometric phases in
optics [18]. Nonvanishing de Rham periods could manifest
as Jtop. Is Jtop associated with gluons? Does it have any

relation with C1? It may seem reasonable to associate Jtop
with gluons but it is not clear whether it is a part of gluon
SAM or OAM.

Experiments providing information on generalized
parton distributions (GPDs) and transverse momentum

dependent (TMD) distributions pose delicate and challeng-
ing issues regarding the formalism and physical interpre-
tation [1,2]. Wakamatsu shows that GPDs and polarized
PDFs are insensitive to a continuous deformation of the
path of Wilson lines [5]. Since the moments of these
distributions are related to the dynamical OAM of quarks
and gluons, it is interesting to ask how this result will be
changed for closed paths, not just deformations. In fact,
theoretically Hatta shows that a light-cone path leads to
canonical OAM [19], while Ji et al. [20] argue that straight
paths connecting spacetime points give dynamical OAM.
In an interesting paper Burkardt [21] reconsiders the path
choice for the gauge links and offers a physical interpre-
tation for the difference between the Jaffe-Manohar defi-
nition of OAM [14] and that of Ji [15]. The difference
between canonical and dynamical OAMs and the role of
potential angular momentum [17] have been sought to be
understood in terms of the color Lorentz force and the
color magnetic flux; however, as noted by the author no
experiment measures the implicit torque. Therefore, in our
view the work in this direction is inconclusive on the nature
of OAMs vis-à-vis GPDs and TMDs.
In contrast to this the alternative possibility suggested in

the present work, namely the nontrivial topological defects
encircled by closed paths leading to a contribution Jtop to

gluon OAM Lg, is worth exploring. In conclusion, the

controversy regarding the uniqueness of the gauge invari-
ant decomposition of the 4-vector gauge potential is
resolved invoking Hodge decomposition and the de
Rham theorem, and plausible arguments are presented to
suggest a topological angular momentum contribution to
the proton spin arising as a consequence of nonvanishing
de Rham periods.
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