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Factorization is possible due to the universal behavior of Yang-Mills theories in soft and collinear

limits. Here, we take a small step towards a more transparent understanding of these limits by proving a

form of perturbative factorization at tree level using on-shell spinor helicity methods. We present a

concrete and self-contained expression of factorization in which matrix elements in QCD are related to

products of other matrix elements in QCD up to leading order in a power-counting parameter determined

by the momenta of certain physical on-shell states. Our approach uses only the scaling of momenta in soft

and collinear limits, avoiding any assignment of scaling behavior to unphysical (and gauge-dependent)

fields. The proof of factorization exploits many advantages of helicity spinors, such as the freedom to

choose different reference vectors for polarizations in different collinear sectors. An advantage of this

approach is that once factorization is shown to hold in QCD, the transition to soft-collinear effective

theory is effortless.
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I. INTRODUCTION

That perturbative calculations in a strongly coupled
theory like quantum chromodynamics (QCD) can ever
be related to experimental data is due to two remarkable
properties: asymptotic freedom and factorization. Of
these, asymptotic freedom is much better understood.
Indeed, the asymptotic behavior of a theory can usually
be established from the ultraviolet divergences in
one-loop amplitudes. It is a short-distance property.
Factorization, on the other hand, is a long-distance
property. In its most intuitive and most useful form,
factorization states that cross sections in QCD can be
calculated up to power corrections in some small
scale � by convolutions of universal (and often non-
perturbative) objects, such as parton-distribution func-
tions, and perturbative, but process-dependent matrix
elements.

There are both nonperturbative and perturbative aspects
to factorization. On the nonperturbative side, one would
ideally like to prove that factorization holds up to correc-
tions in � ¼ mP=Q with mP the proton (or some other
particle) mass and Q � mP some high-energy scale.
Unfortunately, to have access to mP, which is a nonpertur-
bative quantity in QCD, one needs access to nonperturba-
tive physics. Instead, most approaches to factorization
simply assume that operator matrix elements in hadronic
states, and final-state hadronization effects, do not violate
naive scaling expectations. Then they use perturbation
theory and scaling arguments to relate those matrix
elements among different processes. The most familiar
example of this approach is the universality of the parton
distribution functions (PDFs). Factorization implies
(or should imply, if it were proven generally) that the
same operator matrix elements representing the PDFs
appear in the calculation of a great variety of physical

processes. Since a preponderance of experimental
evidence confirms this universality, providing a general
proof seems almost academic.
On the other hand, there are purely perturbative aspects

to factorization with great practical importance. For ex-
ample, factorization is a first step in performing resumma-
tion which is necessary to reproduce even qualitative
features of certain distributions. Classic examples are event
shapes, particularly at eþe� colliders [1–6], and processes
with hard well-separated objects at hadron colliders (such
as photon plus jet production). In these cases, having a
precise statement of factorization, with operator definitions
of all the objects involved, allows one to compute distri-
butions to all orders in �s in certain singular regions, or to
provide approximate fixed-order calculations for inclusive
cross sections. Since exact calculations in QCD beyond
next-to-leading order can be extraordinarily challenging,
having an alternative approach to produce numerically
precise results has proven valuable. For example, the
most accurate calculations of the Higgs-boson cross sec-
tion includes contributions from logarithmically enhanced
terms derived using a factorization formula [7,8]. Other
examples are the inclusive photon [9–12] or W-boson
[13,14] transverse momentum spectrum, the t�t cross sec-
tion [15,16], and jet shapes such as jet mass [17–19] or
n-subjettiness [20,21].
Even at fixed order in perturbation theory, factorization

is useful. When computing cross sections beyond leading
order in perturbation theory, infrared divergences must
cancel between real emission and loop diagrams.
Imposing a simple infrared cutoff is not useful for numeri-
cal evaluation, since it requires the cancellation of large
positive and negative contributions. It is more efficient to
evaluate these cross sections using a subtraction scheme
based on the universal behavior in the infrared singular
limits, as described by a factorization formula. For
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example, Dokshitzer-Gribov-Lipatov-Altarelli-Parisi split-
ting functions describe analytically the behavior of cross
sections in collinear limits. Spin-dependent expressions for
tree-level collinear, soft and soft-collinear singular regions
of cross sections can be found in [22].

In addition to being phenomenologically important,
factorization formulas can elucidate profound structures
hidden in quantum field theories. Factorization is related to
the universality of the infrared structure of gauge theories.
While this universality has been explored for decades
[22–29], it is still not completely understood and an active
area of contemporary research [30–33]. With the recent
resurgence of interest in on-shell approaches to scattering
amplitudes [34,35], it is natural to ask whether an on-shell
approach can shed light new light on factorization. In this
paper, we give a preliminary affirmative answer to this
question. Although we only work at tree level, considering
on-shell final-state particles using spinor helicity methods,
we will see that the on-shell approach clarifies some as-
pects of factorization which are buried in the formalism of
other approaches.

The Collins-Soper-Sterman approach to factorization
(which is entirely perturbative) begins by identifying
regions of real or virtual phase space which can produce
singularities in Feynman diagrams [36–39]. These singu-
larities, sometimes called pinch singular surfaces, are the
solutions to the Landau equations [40]. They come from
vanishing denominators of Feynman amplitudes, depen-
dent on the topology of the graph, but largely independent
of the theory. Since these singularities are due to long-
distance physics, compartmentalizing them into sectors
which are separately finite implies that there is no long-
distance communication among sectors, the hallmark of
factorization. In this approach, jets are abstract objects
identified with a small region of size � around nonzero-
momentum solutions to the Landau equations. With facto-
rization proven, hard, jet, and soft functions, as well as
nonperturbative objects, such as parton-distribution and
fragmentation functions, can be defined precisely.
However, it appears not to be critical to connect the
operator definitions for these objects to the factorization
proof itself.

An alternative approach to factorization is provided by
soft-collinear effective theory (SCET) [41–44]. In SCET,
at least as applied to collider physics, the procedure has so
far been more practical. In SCET one assumes, often
without a completely rigorous proof, that factorization
holds and then derives formulas for cross sections in terms
of gauge-invariant matrix elements of effective-theory
fields with interactions different from those of full QCD.
The Lagrangian for SCET is derived by power counting at
the level of operators, rather than diagrams (as with the
Landau equations). Then one uses similar power counting
to derive factorization formulas, with the appropriate
operators coming out automatically.

Unfortunately, some of the steps in the derivation of
SCET are unintuitive and perhaps unnecessary. For ex-
ample, suppose we are interested in a process with a jet
going in the n� direction. Then an energetic gluon in this
jet should have a momentum p� which is collinear to n�,
so p� � En� for some E. However, Lagrangians are ex-
pressed in terms of fields, not momenta. Thus, the label-
formalism approach to SCET [41–43] begins by assigning
scaling behavior to quark and gluon fields.1 In [42], it is
argued that a gauge field A�ðxÞ associated with a collinear
direction should scale like a collinear momentum A�ðxÞ �
p�. Indeed, if the effective theory is to be gauge invariant
at some order in a power-counting parameter, both terms in
D� ¼ @� � igA� should have the same power counting,
so this is a natural choice. On the other hand, the gauge
field acts on a gluon state jp; hi with momentum p� and
helicity h as

h0jA�ðxÞjp; hi ¼ e�ip�x��h ðpÞ (1)

with ��h the polarization vector. Thus, assigning the scaling

behavior A� � p� forces the polarization vector to scale
like a collinear momentum �� � p�. This is the scaling of
an unphysical, longitudinal polarization. Moreover, the
gauge transformations A� ! A� þ @��þ � � � which are

consistent with the scaling A� � p� are the limited set for
which @��ðxÞ � p�. Thus, the derivation of SCET in [42]

takes place in a particular subset of gauges. As we will see
in Sec. IV, this set of gauges, where polarizations are nearly
longitudinal, is the only one where an intuitive, semiclas-
sical picture of gauge-boson emission does not apply. Of
course, there is nothing wrong with considering a reduced
class of gauge transformations in deriving an effective
theory. However, such a strange gauge limits our ability
to apply semiclassical intuition to see why factorization
holds.
In contrast, traditional approaches to QCD, such as [22],

tend to discuss factorization in ‘‘physical gauges,’’ where
the polarization vectors are not nearly longitudinal. In
physical gauges, semiclassical intuition does apply.
However, why factorization should hold in an unphysical
gauge, such as the ones used in SCET, is not obvious in the
traditional approach. Also, these traditional approaches
tend to describe universality at the cross-section, rather
than amplitude, level. In summing over outgoing polar-
izations, the fact that factorization holds at the amplitude
level is obscured.
The goal of this paper is to give a more transparent

derivation of factorized forms for matrix elements in per-
turbative QCD. We focus on finite real-emission graphs
with physical on-shell states (rather than on the singular-
ities of loops which are connected only indirectly to

1In the alternative multipole expansion approach [44,45],
position space rather than momentum space takes a more promi-
nent role.
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real-emission graphs through unitarity). Although gauge
invariance will play a critical role, we will not have to
choose a particular gauge, and we will not have to assign a
scaling behavior to unphysical fields.

The main result of this paper is a rigorous and self-
contained tree-level derivation of a factorization formula
in perturbative QCD in which all the objects involved as
well as the expansion parameter � have transparent defini-
tions from the beginning. What we will show is that

hX1 . . .XN;Xsj �c . . . c j0i
ffi hX1j �cW1j0i . . . hXNjWy

Nc j0ihXsjYy
1 . . .YNj0i: (2)

Here, hXjj are states involving collinear momenta, all

traveling in cones of opening angle �, and hXsj are states
involving soft momenta satisfying k� & �2Q, where Q
is the center-of-mass energy of the entire state
hX1 . . .XN;Xsj. The Wj and Yj are Wilson lines which we

define in Sec. II C. All fields are evaluated at a common
point x ¼ 0. The ffi symbol indicates that the two sides
agree at leading nonvanishing order in a series expansion in
�. Color indices are suppressed. All matrix elements are
taken in full QCD. We will prove Eq. (2), and its general-
izations, rigorously at tree level at leading nonvanishing
order in �.

A tree-level factorization of collinear and soft states
similar to Eq. (2) was discussed in [22], writing the result
instead for the squared matrix element in terms of splitting
functions and soft currents. However, a factorization for-
mula in terms of matrix elements of gauge-invariant QCD
operators in a form close to that of Eq. (2) has only
appeared in the literature rather recently [46,47]. Earlier
incarnations, where fields are not QCD fields but effective
field theory fields, sprinkle the SCET literature. Indeed,
once Eq. (2) is proven, the derivation of SCET (or rather, a
theory which is equivalent to SCET at leading power) is
almost trivial. We define the effective-theory Lagrangian as
N þ 1 copies of the QCD Lagrangian

LEFT ¼ L1 þ � � �LN þLsoft: (3)

This decoupled Lagrangian is the one proposed in the
simplified formulation of SCET in [46]. Then, assigning
quantum numbers to the states in the different sectors one
can collapse the various matrix elements back to a simple
form

hX1 . . .XN;Xsj �c 1 . . . c Nj0iLQCD

ffi hX1 . . .XN;Xsjð �c 1W1Y
y
1 Þ . . . ðYNW

y
Nc NÞj0iLEFT

: (4)

The advantage of doing this is that now one has an equiva-
lence of a matrix element in QCD and a matrix element of a
single operator in an effective theory. Thus, for example,
one can compute the anomalous dimension of this operator
to resum logarithms.

Returning to Eq. (2), we want to emphasize that this
factorization formula is a statement about amplitudes

in perturbative QCD. Although effective field theory
techniques can be used tomake formulas like this extremely
predictive and powerful, they are not critical to understand-
ing factorization or expressing it in a concise form.
To prove Eq. (2), which we do at tree level, we will not

have to make any assumptions about the spins of external
states or the scaling behavior of fields. A key tool which
makes this possible is the spinor-helicity formalism. With
spinor-helicity methods, lightlike four-momenta can be
written as an outer product of spinors, p� ¼ pi½p.
Polarization vectors, ��ðpÞ, of definite helicity are also
lightlike and can be written as an outer product of a spinor
associated with their momentum, p� or pi, and a spinor, ri
or r�, associated with any other lightlike four-vector r�

called the reference vector. The reference vector r� and the
momentum p� define a plane to which the polarization
vector is orthogonal: p � � ¼ r � � ¼ 0. Since the reference
vector can be chosen to be some momentum in the external
state of interest, we can write any matrix element in QCD
in terms of helicity spinors associated with physical on-
shell momentum. This lets us use only the scaling of
external momenta to simplify matrix elements at leading
power.
An additional advantage of spinor-helicity methods is

that one can choose reference vectors differently for differ-
ent external states. Matrix elements are invariant under
choice of reference vector r� if and only if they satisfy
theWard identity. The choice of reference vectors r� is in a
way similar to a choice of gauge. For example, different r�

can move dominant contributions from one Feynman dia-
gram to another, and only the sum is r� independent (as
only the sum of diagrams is gauge invariant). However,
gauge choices are associated with fields. For example,
trying to have nj � A ¼ 0 for fields associated with gluons

collinear to different nj directions becomes a highly non-

local2 constraint on A�. In contrast, there is nothing awk-

ward about choosing r� differently in different collinear
sectors. Indeed, this freedom of choosing r� dramatically
simplifies the calculation of even the simplest gluon scat-
tering amplitudes. It will also simplify our proof of Eq. (2).
The on-shell approach to factorization clarifies the role

played by the different ingredients, such as the soft and
collinear Wilson lines, in Eq. (2). We therefore have or-
ganized this paper by considering factorization in field
theories of increasing complexity. Section II provides an
orientation to our approach. It includes a motivation of why
soft and collinear states are relevant, from the point of view
of on-shell states, and reviews spinor-helicity methods and
power counting. We also provide a review of the Wilson
lines in this orientation. In Sec. III we explain why scalar
field theories do not factorize. The simplest theory that

2If one changes to radial coordinates, this particular gauge
choice becomes local; it is just Coulomb gauge in anti—
de Sitter space [48].
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does admit a factorization formula like Eq. (2) is scalar
QED, which is the subject of Sec. IV. Scalar QED already
contains much of the relevant physics that goes into the soft
and collinear limits, so we pause to discuss the physical
picture of soft-collinear factorization in Sec. IVD. To the
extent that factorization can be understood from the
tree-level considerations in this paper, it can be understood
in scalar QED. With the general result proven for matrix
elements of a specific operator, we show how it applies to
any hard process, including those with identical particles,
in Sec. V.

Going from scalars to spinors in Sec. VI is straightfor-
ward and elucidates some new elements of factorization,
such as spin independence of the soft limit. The general-
ization to QCD is given in Sec. VII, where gluon self-
interactions further illustrate some aspects of factorization.
We briefly compare our results to SCET in Sec. VIII, which
contains little more than a repetition of Eqs. (3) and (4). As
an application of the on-shell approach to factorization, we
give in Sec. IX a concise derivation of the Altarelli-Parisi
splitting functions in QCD. In particular, due to the facto-
rization formula, we not only derive the splittings functions
but show that they apply to any process. Section X dis-
cusses some conclusions and provides a brief outlook.

II. ORIENTATION

Our first task is to establish precisely what we mean by
factorization, and in what limit we expect it to hold. This
section establishes the importance of soft and collinear
limits and the notation of light-cone coordinates. It then
reviews some aspects of the spinor-helicity formalism and
shows how it can be used to power count expressions
involving polarization vectors.

A. Power-counting momenta

The type of factorization we discuss in this paper applies
to QCD in processes with clearly separated jets of collinear
radiation. These jets can be incoming; for example, a
proton can be thought of as an incoming collection of
collinear radiation. But for simplicity, we focus on pro-
cesses with outgoing jets only, such as eþe� ! jets.
Actually, since we will only discuss quarks and gluons,
let us write the process as eþe� ! X, with hXj a generic
partonic final state.

One can always partition any final state hXj into collec-
tions hXij, for example with a jet algorithm. For each
partition one can sum all the quark and gluon energies
into the jet energyQi and compute the jet massmi from the
sum of the parton four-momenta. Then a power-counting
parameter can be defined as �i � mi=Qi. A partition with
�i ¼ 0 is massless; thus it can consist of only a single
parton, or a set of partons which are exactly collinear to
each other. Small but nonzero �i mean that the partitions
look like collimated collections of particles which are

conventionally called jets (we will not need a precise jet
definition to show factorization).
What we want to show is that the matrix element for

producing any state hXj can be computed using a factorized
expression when all of the �i are small. To get an idea of
what this means, consider what kind of final-state partition
can produce a small but nonzero �. For � to be nonzero, a
partition must have at least two partons. Say it has exactly
two partons with momenta p� and k�; then the jet mass is

m2 ¼ ðpþ kÞ2 ¼ 2p � k ¼ 4EpEksin
2 �

2
; (5)

where � is the angle between the three-vectors ~p and ~k.
Thus, � ¼ m

EpþEk
� 1 when either one of the energies is

small or when the angle between the two is small. More
generally, if there are many particles in the jet, then � � 1
if and only if the jet contains only particles which are all
either soft or close in angle to the same direction
(collinear).3

To be concrete, let us define the jet momentum as the
sum of the momenta of the partons in the partition: p�

J ¼P
i2partitionp

�
i . Then we can define the lightlike four-vectors

n� ¼ ð1; ~pJ=j ~pJjÞ and �n� ¼ ð1;� ~pJ=j ~pJjÞ. For a jet with
a single parton of momentum p�, then Epn

� ¼ p�

exactly. We can write any four-vector V� in light-cone
coordinates as

V� ¼ 1

2
Vþ �n� þ 1

2
V�n� þ V

�
?; (6)

where Vþ ¼ n � V and V� ¼ �n � V. Writing p� ¼
ðpþ; p�; p�

?Þ and k� ¼ ðkþ; k�; k�?Þ, and setting the jet

energy Q ¼ Ep þ Ek ¼ 1
2 ðpþ þ p� þ kþ þ k�Þ ¼ 1 for

simplicity, Eq. (5) becomes

m2 ¼ ðpþ kÞ2 ¼ pþk� þ p�kþ þ 2p? � k? ¼ �2: (7)

It follows that for � � 1, at least one of the momenta must
have collinear scaling:

p� ¼ ðpþ; p�; p�
?Þ � ð�2; 1; �Þ (8)

and the other can either have collinear scaling or soft
scaling:

k� ¼ ðkþ; k�; k�?Þ � ð�2; �2; �2Þ: (9)

These � relations mean that components can be smaller
than the expressed power of �, but not larger (up to perhaps
a factor of order one). It may seem that Eq. (7) would be
consistent with both k� and q� scaling like ð�; �; �Þ;
however, such scaling would be inconsistent with our

3These soft and collinear regions are of course the same ones
which characterize solutions to the Landau equations when
external momenta are massless. On the other hand, characteriz-
ing the regions through properties of the momenta in the jets, as
we have done, avoids any discussion of Feynman diagrams
which is more consistent with the on-shell approach.
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normalization Q ¼ 1.4 We will use the following notation
throughout this paper: q k p means that q is collinear to p,
which implies q � p� �2, and we will drop the Q when
writing the scaling of momenta in terms of �.

For any number of momenta in a jet, if any two have
scaling which is not collinear to that jet direction or soft,
the jet mass will be larger than �. We therefore conclude
that if we split the momenta in a state hXj into N þ 1
partitions, all of which have �i � 1 and no two have � �
1 when combined, then N of the partitions must be hXij
which are collinear to some direction n

�
i and the remaining

one must be soft hXsj. That is,
hXj ¼ hX1X2 . . .XN;Xsj: (10)

We will refer to states of this form as N-jet states. This
decomposition does itself not imply factorization; it is just
a statement about phase space. The leading-order state has
one parton in each state: hp1p2 . . .pNj, where pi are the
momenta of the partons in the various jets and there is no
soft momentum. States also have helicities, but we sup-
press helicity indices for simplicity. The general state hXj
with �i � 1 can have additional collinear momenta, which
we denote qa1 . . .qb1 in the first jet, qa2 . . . qb2 in the second

jet, and so on. It can also have particles with soft momenta
k1 . . . k‘:

hXj ¼ hp1 . . .pN;qa1 . . . qbN ; k1 . . . k‘j: (11)

The generalization to include some incoming and some
outgoing particles only amounts to keeping track of appro-
priate signs.

What we will show is that the matrix element hXjOj0i of
a hard-scattering operatorO can be written in a factorized
form:

hXjOj0i ffi hp1; qa1 . . . qb1 jO1j0i . . .
hpN;qaN . . . qbN jONj0ihk1 . . . k‘jOsj0i (12)

at leading order in �i for some suitable collinear operators
Oi and soft operator Os. We assume for simplicity that the
hard-scattering operator O has N fields, one for each col-
linear direction, with no two fields describing identical
particles, and that O has a nonvanishing matrix element
in the leading-order state hp1p2 . . .pNj. For example,
eþe� ! dijets is mediated by a combination vector and
axial current operators OV ¼ �q��q and OA ¼ �q���5q.
Other examples can be found in [49] or [50].

It is not actually necessary for a matrix element to be
expressible in terms of a hard-scattering operator for facto-
rization to hold. As long as the process involves N different
directions, the amplitude can factorized at leading power
into a sum of expressions of the form on the right-hand side

of Eq. (12). We choose to express factorization in the form
of Eq. (12) in the bulk of this paper, withO having N fields
each with a unique flavor quantum number, mostly to have
cleaner looking equations and to avoid nettlesome combi-
natoric issues. A demonstration that the factorization we
derive applies to more general hard-scattering processes,
such as those with identical particles, is given in Sec. V. The
only strict requirement for factorization is that no two
sectors are collinear. In particular, in cases like forward
scattering or Drell-Yan, where incoming partons may be
collinear to outgoing spectators, more care is needed to
prove factorization [51]. We do not address such cases here.
Regardless of the connection between operator matrix

elements and scattering amplitudes, Eq. (12), when made
more precise, is a highly nontrivial statement about how
Yang-Mills theories simplify. Wewill therefore eschew any
additional discussion of the connection to infrared safe
observables and S-matrix elements, focusing instead on
perturbative factorization of the given matrix elements.

B. Spinor helicities and power counting

Matrix elements in theories with spin-1 particles
produce expressions involving polarization vectors. For
example, they may contain terms like p � � or �1 � �2. In
order to know which of these terms are dominant at small
�, we need to power count polarizations. These products
might vanish for some polarizations, changing which dia-
grams contribute at the leading power. There are in fact
many ways to represent the same physical photon helicity
state with polarization vectors, so that the scaling p � � is
not even well defined given particular states in the Hilbert
space. This scaling behavior of expressions involving po-
larization vectors is easiest to derive if we represent the
polarizations in terms of helicity spinors.
In the spinor-helicity formalism, massless left- and right-

handed spinors [i.e. solutions to 6puðpÞ ¼ 0] are written as

uLðpÞ� ¼ pi and uRðpÞ _� ¼ p�; (13)

where the � and _� indices are those of two separate
SUð2Þ’s. This way, SUð2Þ-invariant spinor products can
be written as

hpki ¼ ���hp�hk� ¼ hp�ki� and

½pk� ¼ �
_� _�p� _�k� _� ¼ ½p _�k� _�:

(14)

Four-vectors live in the ð12 ; 12Þ representation of the Lorentz

group, so they may be expressed with these indices as well,
via

p� _� ¼ �� _�
� p� and p� ¼ 1

2
��
�
_��p

� _�: (15)

In this representation, masslessness of a four-vector
becomes

p2 ¼ detp� _� ¼ 0; (16)

4In the literature ð�; �; �Þ is often called soft scaling, and
ð�2; �2; �2Þ is called ultrasoft. We will only be concerned with
the latter and will call it simply soft.
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which implies

p _�� ¼ p�hp and p� _� ¼ pi½p (17)

and

2p � k ¼ p _��k
� _� ¼ ½kp�hpki: (18)

Polarization vectors of a definite helicity are also mass-
less. They can be defined by their normalization: �2q ¼ 0

and �	q � �q ¼ �1, transversality: q � �q ¼ 0 and one

more condition: r � �q ¼ 0 for r� linearly independent

of q�. The four-vector r� is called the reference vector.
The above constraints are elegantly encoded with helicity
spinors as follows:

��q ðrÞ ¼
ffiffiffi
2

p qi½r
½qr� and �þq ðrÞ ¼

ffiffiffi
2

p ri½q
hrqi : (19)

Thus, for example,

p � ��q
p � q ¼ ffiffiffi

2
p ½rp�

½qr�½qp� : (20)

The freedom of choice of reference vector encodes the
arbitrariness associated with assigning a specific polariza-
tion vector to a given helicity. Consequently, matrix ele-
ments that satisfy the Ward identity will be independent of
the choice of reference vector.

To see how spinors and spinor products scale with �, first
recall that there is not a unique way to write a massless
four-vector in terms of spinors: any little group transfor-
mation p� ! p�z and hp ! 1

z hp for any complex number z

leaves p�hp unchanged. For real momenta, jzj ¼ 1. Since
k� � �2 for a soft momentum, the associated spinors must
scale like k� � hk� �. Moreover, soft momenta do not
have a specific direction, so, without loss of generality,
we can choose the reference vectors for soft-photon polar-
izations to satisfy ½kr�, hrki � 1. The scaling of the soft
polarization vectors is then fixed to be ��k � 1.

For collinear momenta, the components of the helicity
spinors do not have uniform scaling; nor, therefore, do the
polarization vectors. However, since for two collinear four-
vectors 2p � q ¼ hqpi½pq� � �2 and since hqpi ¼ ½pq�	,
we conclude that hqpi � ½pq� � �. Thus we will be able
to power count Lorentz-contracted products involving
collinear momenta and polarizations.

C. Wilson lines

Wilson lines play an important role in factorization. They
describe the radiation produced by a charged particle mov-
ing along a given path in the semiclassical limit. The semi-
classical limit applies when the backreaction of the radiation
on the particle can be neglected. In particular, this limit
holds when the particle is much more energetic than any
of the photons in the radiation, that is, when the photons are
all soft. Thus Wilson lines naturally appear in the soft limit
of Yang-Mills theory. That they also play a role in collinear
limits is less obvious and will be explained in Sec. IV.

An outgoingWilson line in the n� direction is defined by

Yy
n ðxÞ ¼ P

�
exp

�
ig

Z 1

0
dsn � Aðx	 þ sn	Þe�"s

��
; (21)

where P denotes path ordering and A ¼ AaTa is the gauge
field in the fundamental representation (Wilson lines in other
representations are a straightforward generalization). This
Wilson line is outgoing because the position where the gauge
field A�ðxÞ is evaluated goes from x to 1 along the n�

direction.Wewrite Yy
n forWilson lines for outgoing particles

and Yn for outgoing antiparticles (as �c creates outgoing
quarks and c creates outgoing antiquarks). Explicitly,

YnðxÞ ¼ �P

�
exp

�
�ig

Z 1

0
dsn � Aðx	 þ sn	Þe�"s

��
; (22)

where �P denotes antipath ordering. We write incoming
Wilson lines as

�YnðxÞ ¼ P

�
exp

�
ig

Z 0

�1
dsn � Aðx	 þ sn	Þe"s

��
; (23)

�Yy
n ðxÞ ¼ �P

�
exp

�
�ig

Z 0

�1
dsn � Aðx	 þ sn	Þe"s

��
; (24)

where now the path goes from�1 to x and the i" prescrip-
tion is switched.
One can have Wilson lines in any representation. For

example, an adjoint Wilson line can be written as

Yy
n ðxÞ ¼ P

�
exp

�
ig

Z 1

0
dsn � Aa

�ðxþ snÞTa
adje

��s

��
; (25)

where ðTa
adjÞbc ¼ ifbac are the adjoint-representation group

generators. A useful relation is that, because

ðTc
adjÞabTb ¼ ½Ta; Tc�; (26)

one can write

Yy
n A

�
b T

bYn ¼ A�
aYab

n Tb: (27)

In this way, all the relevant Wilson lines in QCD can be
expressed in terms of fundamental Wilson lines or their
adjoints (which are antifundamental Wilson lines).
Although Wilson lines are nonlocal, their matrix ele-

ments in given external states can be evaluated order by
order in perturbation theory. For a state with a single gluon
of momentum k� and polarization ��, we find

h�ðkÞjYy
n ð0Þj0i ¼ igTa

Z 1

0
dsh�ðkÞjn � Aaðsn�Þj0ie�"s

(28)

¼ igTan � �	k
Z 1

0
dseisðn�kþi"Þ (29)

¼ �gTa n � �	k
n � kþ i"

: (30)
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This is the form of an eikonal vertex, coming from the soft limit of a QCD interaction

(31)

with the correct i� prescription (and we have dropped the factor of the amplitude with no emission). For the incoming
Wilson line, a similar calculation gives

(32)

which also has the correct sign and i" prescription.
The e
"s factors in these Wilson lines are required when

the Wilson lines are used in time-ordered products to
calculate S-matrix elements. This is most clearly seen in
perturbation theory, where, as we have shown, these e
"s

factors generate the pole displacements for Feynman
propagators. The e
"s factors affect the gauge transforma-
tion properties, but only at order ":

YnðxÞ ! ei�ðxÞYnðxÞe�i�ð1Þ þOð"Þ: (33)

Thus, for gauge transformations that vanish at infinity,5

YnðxÞ transforms like a fundamental in the " ! 0 limit.
It is perhaps worth noting that similar Oð"Þ corrections

are present even in a local quantum field theory. For
example, in scalar QCD, the matrix element of the operator

	
 in a state h�ðqÞp1p2j containing an outgoing gluon,
scalar particle and scalar antiparticle with momenta q, p1

and p2, respectively, is

h�ðqÞp1p2j
	ð0Þ
ð0Þj0i
¼ �gTa

�
p1 � �

p1 � qþ i"
� p2 � �

p2 � qþ i"

�
: (34)

This in fact does not satisfy the Ward identity exactly,
but only up to corrections of order ". Indeed, substituting
� ! q, we find

hqðqÞp1p2j
	ð0Þ
ð0Þj0i ¼�!q
i"gTa

�
1

p1 � q� 1

p2 � q
�

þOð"2Þ; (35)

which does not vanish exactly. Thus, the danger in violat-
ing gauge invariance at order " is no worse when using
Wilson lines than in a theory with only local operators. In
any case, since this paper is entirely about tree-level matrix

elements, the i" prescription is irrelevant. Thus, we set
" ¼ 0 from now on.

III. SCALAR FIELD THEORY

We begin our exploration of factorization with a simple
scalar field theory with Lagrangian

L ¼ 1

2
@�
@�
þ g

3!

3: (36)

Since we only work at tree level, the dimensionality of the
coupling g causes no complications. Moreover, all matrix
elements are finite so no discussion of regulating divergen-
ces is needed.
We consider the matrix elements hXjOð0Þj0i of the

hard-scattering operator

OðxÞ ¼ 1

N!

ðxÞN (37)

in an N-jet state hXj ¼ hX1 . . .XN;Xsj. The normalization
of the operator is chosen so that its leading-order matrix
element is hp1 . . .pNjOð0Þj0i ¼ 1. One can add derivatives
to the operator with little effect on the following arguments.
Indeed, adding derivatives toOðxÞ simply produces an over-
all function of the PXi

� PXj
�Q2, where PXi

is the momen-

tum of the hXij state, that will end up sitting out front of the
factorized expressions. Because the complications of adding
derivatives to O are almost entirely notational, we will
always ignore derivative insertions in this paper and de-
scribe how to treat scattering much more generally in Sec. V.
We start by considering only collinear emissions. The

diagram with the jth line emitting a single scalar on top of
the leading-order matrix element is

(38)

where the � indicates an insertion of the operator O ¼
1
N!


N. When q is not collinear to pj, then q � pj � 1,

whereas when q is collinear to pj, then q � pj � �2 � 1.

Therefore, the diagram where the emission comes off the

5Requiring �ð1Þ ¼ 0 is not a strong restriction on the class of
gauge transformations allowed, since one can always supple-
ment a gauge transformation with a global transformation (with
� constant), to set �ð1Þ ¼ 0. In any case, the factorization
formulas we derive are an exact equivalence of matrix elements,
at leading power. Their validity does not depend on the concept
of gauge invariance.
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leg to which it is collinear (a self-collinear emission) is
enhanced by ��2 compared to any of the other diagrams.
We can write this as

(39)

Thus, at leading power, only the diagram with a self-
collinear emission is relevant.
Since self-collinear emissions do not change the

collinearity of the line from which they are emitted, the
above argument can be used inductively to show that
for any number of collinear particles, diagrams with all
self-collinear emissions are enhanced compared to other
diagrams. Diagrammatically, we can write

(40)

where the sum on the left means the sum of all diagrams
consistent with the external state in the matrix element
and the sum on the right means only those diagrams with
emissions off of a line to which they are themselves
collinear. The ffi means that the two sides agree at
leading power in �. The vertex in these diagrams denotes
the hard-scattering operator of which we are taking the
matrix element and for clarity, only four distinct
collinear directions are shown even though we are
considering N.

Thus, the matrix element in the scalar case simplifies
when all the particles are collinear to one of the N direc-
tions. It is given by the product of factors for each sector
separately—it factorizes. In terms of matrix elements,
Eq. (40) can be written as

hp1 . . .pN;qa1 . . . qbN j
1

N!

Nj0i

ffi hp1;qa1 . . . qb1 j
j0i . . . hpN;qaN . . . qbN j
j0i; (41)

where qaj . . . qbj k pj for each collinear sector j. Or, more

succinctly

hX1 . . .XNjOj0i ffi hX1j
j0i . . . hXNj
j0i: (42)

This simplification is in fact exactly what one expects from
a semiclassical picture: after the hard scattering occurs,
collinear particles in each jet can be thought to emit addi-
tional scalars, as in a parton shower. There is no interfer-
ence between emissions from particles moving in different
directions.

Next, consider states with soft particles. In Eq. (38), if
we take q� � �2, the soft emission is also enhanced by ��2

irrespective of the direction of the soft radiation. Therefore,
unlike the collinear case, no diagrams may be dropped.

Furthermore, the Feynman rules do not particularly sim-
plify in the soft limit, so the soft limit of the scalar theory
shows no simplifications for the matrix elements under
consideration.
In summary, in a scalar field theory, collinear emissions

factorize and have a simple semiclassical interpretation.
However, since soft emissions do not simplify, the matrix
element under consideration does not factorize in scalar
field theory at leading power. Except in exceptional cases
where soft emission is not relevant (such as scalar
3 deep-
inelastic scattering [38]), states with soft and collinear
momenta are equally relevant to infrared-safe observables
at leading power. Thus, since all Feynman diagrams must
be evaluated to reproduce the soft limit, collinear factori-
zation by itself is not particularly useful.

IV. SCALAR QED

In scalar field theory, we saw that while self-collinear
emissions dominate over collinear emissions from distant
legs, leading to an intuitive form of collinear factorization,
soft emissions do not simplify in any useful way. As we
will see, in gauge theories like scalar QED, there is still
collinear factorization, although which diagrams dominate
depends on the gauge. There is also factorization in the soft
limit. And, most remarkably, the soft and collinear sectors
factorize simultaneously.
We will be considering matrix elements of the gauge-

invariant operators O in the N-jet states discussed in
Sec. II, hXj ¼ hX1 . . .XN;Xsj. The simplest hard-scattering
operator in scalar QED, on which we focus, is

OðxÞ ¼ 1

ðN=2Þ! ½
ðxÞ	
ðxÞ�N=2 (43)
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with N even. Insertions of covariant derivatives in O
correspond to collinear sectors initiated by a photon;
we will postpone the discussion of covariant derivatives
until Sec. VII where we discuss QCD and the situation is
more interesting. For notational consistency with later
results in QCD, we will take the QED coupling constant
to be g ¼ �e.

As in the previous section, we will start our discussion
using states with no soft momenta, hXj ¼ hX1 . . .XNj.
This will allow for a clean discussion of the essential
ingredients that go into collinear factorization.
Subsequently, we discuss states with one particle per
collinear sector and many soft particles, hXj ¼
hp1 . . .pN;Xsj and finally, the simultaneous soft and col-
linear case, hXj ¼ hX1 . . .XN;Xsj.

A. Collinear factorization

Our approach to analyzing the matrix element
hX1 . . .XNjOj0i will be to start with the matrix element
hp1 . . .pNjOj0i and to add collinear emissions until the full
matrix element is constructed. We start by adding collinear
photons only and then discuss adding additional collinear
scalars. So let us take the final state of the jth sector to be
hXjj ¼ hpj; qaj . . .qbj j, where pj is a scalar momentum and

all the q’s are photon momenta.
In scalar QED, the matrix element for a state with one

photon is related to the matrix element for the state with no
photons as

(44)

where the � indicates an insertion of the operator
O ¼ 1

ðN=2Þ! j
jN which gives a factor of 1. The four-point

vertex in scalar QED only contributes starting with two
emissions:

(45)

For collinear emissions, these expressions appear to be
enhanced only when the q’s are collinear to pj just like

in the scalar theory. However, due to the p � � and �i � �j
factors in their numerators, the story is not so simple. We
need to know how p � � and �i � �j scale with �. For

example, for any physical photon helicity, we can choose
its associated polarization vector so that pj � �q ¼ 0 in

which case the first graph would vanish (as would the
second for certain helicity choices).
As discussed in Sec. II B, expressions involving polar-

izations are easiest to power count using helicity spinors.
For example, in terms of helicity spinors Eq. (44) becomes

(46)

where r is the reference vector associated with the polarization vector, ��q (the expression with �þq is the complex
conjugate). In Sec. II B we showed that the contraction of two spinors corresponding to momenta with collinear scaling
scales like the square root of the scaling of the contraction of the associated momenta; in equations that is pj � q� �2

implies that ½qpj�, hpjqi � �. Thus, the scaling of a product involving reference-vector spinors r� and ½r can be determined
once we know in which direction r points.

Let us first choose reference vectors which are not collinear to any of the momenta. We call this generic-r. In generic-r,
½rpj� � ½qr� � 1 and

(47)

Thus, generic-r is similar to 
3 theory [cf. Eq. (39)]. However, note that the diagrams are less singular: one power of �
cancels due to the scaling of the polarization vectors. In scalar QED there is also a diagram involving the four-point vertex.
In generic-r, we find
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(48)

This is the same order as two emissions using the three-point vertex (for soft emissions, as we will see, diagrams involving
the four-point vertex are power suppressed).

By induction, in generic-r, only the diagrams in which all the emissions are self-collinear are relevant at leading power.
That is, in generic-r,

(49)

where the sums have the same meaning as in the scalar case: the sum on the left means the sum over all diagrams consistent
with the collinear external states, namely all diagrams in hXjOj0i. The sum on the right means only sum over those
diagrams for which the emissions in the j direction are from a j-collinear scalar, namely, diagrams for which all emissions
are self-collinear.

In terms of matrix elements, Eq. (49) can be written as

hp1 . . .pN;qa1 . . . qbN jOj0i ffi hp1;qa1 . . . qb1 j
	j0i . . . hpN; qaN . . . qbN j
j0i; (50)

where the collinear photons are labeled such that
qaj ; . . . ; qbj k pj for each collinear sector j and the choice
of
 versus
	 depends on whether pi is an outgoing scalar
or antiscalar. This equation is a precise statement of col-
linear factorization. It is however not gauge invariant.
Indeed, we only showed that it holds for generic-r choices
of reference vector. In fact, the sum of diagrams on the
right of Eq. (49) does not satisfy the Ward identity and the
right-hand side of Eq. (50) involves matrix elements of
gauge-dependent fields 
ðxÞ.

As a step toward deriving a gauge-invariant form of
factorization, consider next a different choice of reference
vectors. We previously used generic-r where no reference
vectors could be collinear to pi for all i; to contrast this, we
take all of the reference vectors of the j-collinear photons
to be equal to pj, namely,

collinear-r: raj ; . . . ; rbj ¼ pj: (51)

Then the previously most-enhanced diagrams will be
proportional to

pj � ��q
pj � q ¼ ffiffiffi

2
p ½rpj�

½qr�½qpj�
��������r¼pj

¼ 0: (52)

To see where the leading-power contributions to the matrix
element in Eq. (50) went, note that the reference vectors for
the jth sector are now themselves enhanced:

��q ðr ¼ pjÞ ¼
ffiffiffi
2

p qi½r
½qr�

��������r¼pj

¼ ffiffiffi
2

p qi½pj

½qpj� �
qi½pj

�
: (53)

Thus, in collinear-r, the leading-power contributions, those
scaling like 1

� , all come from the non-self-collinear graphs.

In diagrams, in collinear-r

(54)

The sum must be the same as the self-collinear graphs
which dominate in generic-r, since the sum of all graphs
is r independent. Interpreting this in terms of the dominant
diagrams in generic-r or collinear-r, we have found
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(55)

It is informative to check that the sum of graphs in scalar QED is exactly r independent. The sum of graphs is

(56)

¼ X
i

ð�QigÞ
pi � ��q
pi � q (57)

¼ �g
ffiffiffi
2

p X
i

Qi

½rpi�
½qr�½qpi� ; (58)

where Qi ¼ 1 for a particle or Qi ¼ �1 for an antiparticle
(incoming particles would get a relative minus sign). Next,
define new massless four-vector t�j . We can use the
Schouten identity to write

½rpi�½qtj� ¼ ½qpi�½rtj� þ ½tjpi�½qr�: (59)

This holds for any i, so in particular,

X
i

Qi

½rpi�
½qr�½qpi� ¼

X
i

Qi

½rtj�
½qr�½qtj� þ

X
i

Qi

½tjpi�
½qtj�½qpi� :

(60)

The first sum has no pi dependence in the spinor products
and vanishes by charge conservation,

P
iQi ¼ 0. Thus we

have

hp1 . . .pN;qjOj0i ¼ �g
ffiffiffi
2

p X
i

Qi

½tjpi�
½qtj�½qpi� ; (61)

which is explicitly r independent.
Now let us take tj to point in a direction not collinear to

pj. Then all the spinor products which appear in Eq. (61)

are Oð�0Þ except for ½qpj� � �. Thus, at leading power,

using Qj ¼ 1, we find

hp1 . . .pN;qjOj0i ffi �g
ffiffiffi
2

p ½tjpj�
½qtj�½qpj� : (62)

Note that tj can be thought of as an example of a generic-r

reference vector. In particular, taking r ¼ tj in Eq. (47)

gives exactly Eq. (62). In collinear-r, where r ¼ pj, the

self-collinear emission from the pj line is exactly zero and

Eq. (62) is produced from the sum of all other diagrams. In
fact, in collinear-r, Eq. (62) can be written as

�g
ffiffiffi
2

p ½tjpj�
½qtj�½qpj� ¼pj¼r�g

ffiffiffi
2

p ½tjr�
½qtj�½qr� ¼ g

tj � ��q
tj � q ;

(63)

which is exactly the amplitude coming from a Wilson line
in the tj direction, as in Eq. (30), but with opposite sign

because Eq. (30) involves the conjugated Wilson line.
The above analysis motivates improving Eq. (50) by

adding Wilson lines in the tj directions:

hp1 . . .pN;qa1 . . . qbN jOj0i ffi hp1;qa1 . . .qb1 j
	W1j0i . . . hpN; qaN . . .qbN jWy
N
Nj0i; (64)

where the outgoing Abelian Wilson line is

WjðxÞ ¼ exp

�
�ig

Z 1

0
dstj � Aðx� þ st

�
j Þe�"s

�
: (65)

To check Eq. (64), we evaluate one of the terms on the
right-hand side with one emission. This emission can come
out of 
 or out of Wj, giving

hpj;qj
	Wjj0i ¼ �g
ffiffiffi
2

p ½rpj�
½qr�½qpj� � g

ffiffiffi
2

p ½tjr�
½qtj�½qr� :

(66)

Using the Schouten identity this simplifies to
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hpj; qj
	Wjj0i ¼ �g
ffiffiffi
2

p ½tjpj�
½qtj�½qpj� : (67)

Thus the factorized expression is r independent and agrees
with Eq. (62), which is the full matrix element at leading
power.

More generally, the factorized expression will be r
independent for any number of emissions since the
operators 
	Wj in the matrix elements are gauge invari-

ant. Moreover, since the Wilson line contributions to the

matrix element are of the form
½tjr�

½qtj�½qr� which scale like �0

in generic-r, they can be set to 1 in generic-r. Thus
Eq. (64) reduces to Eq. (50) which we have already
shown agrees with full scalar QED at leading power in
generic-r. Since Eq. (64) is reference-vector independent
and agrees with full scalar QED for a specific reference-
vector choice, it must agree for all reference vectors.
Hence, we have proven the factorization formula in
Eq. (64).

In summary, we have shown that matrix elements of the
gauge-invariant operator, O ¼ 1

ðN=2Þ! j
jN , in states with N

collinear sectors, each composed of a collinear scalar
and many collinear photons, factorize into N separately

gauge-invariant matrix elements as in Eq. (64). We can
write collinear factorization succinctly as

hX1 . . .XNjOj0i ffi hX1j
	W1j0i . . . hXNjWy
N
j0i: (68)

This expression holds for any choice of polarization vec-
tors. In fact, it holds for any hard-scattering operator O
even with additional derivatives in it or for scattering
mediated by operators with different numbers of fields.
The effect of considering more general scattering is to
simply multiply Eq. (68) by an overall function,
HðP1; . . . ; PNÞ, where Pi is the total momentum of the
ith sector, as discussed in Sec. V.
In proving the above factorization of collinear sectors,

we used states of one charged scalar and an arbitrary
number of photons collinear to each direction. This was
done for simplicity; the factorization holds for more gen-
eral states, jXji, of an arbitrary number of j-collinear

scalars and photons that carry the quantum numbers of
a single scalar. The splitting of a photon into a part-
icle-antiparticle pair is reference-vector independent and
therefore only enhanced for self-collinear emissions and
splittings. Thus, the diagrammatic factorization of Eq. (49)
becomes (in generic-r)

(69)

and the rest follows exactly as above.

B. Soft factorization

In this subsection we will ignore any collinear dynamics
by considering states with only one collinear momentum in
each sector. We discuss the simultaneous factorization of
the soft and collinear sectors in Sec. IVC. In terms of
matrix elements, we will consider the simplified problem
of factorizing the soft emissions in

hp1 . . .pN;XsjOj0i (70)

from the hard-scattering matrix element hp1 . . .pNjOj0i ¼
1. As a further initial simplification, we will consider hXsj

to consist of soft photons only. Any soft scalars in hXsj
must couple to collinear lines through a virtual-soft photon,
so we can deal with soft scalars once we have understood
how soft photons decouple.
A convenient feature of the soft limit is that we do not

need to worry about polarization-vector subtleties since
soft emissions are not associated with a specific direction.
Indeed, as observed in Sec. II B, we can just use k� �2 and
�� 1. Alternatively, we can choose generic-r for all of the
soft polarizations; we will see that our final result is gauge
invariant and hence independent of this choice.
Now, consider the addition of soft emissions to the hard-

scattering matrix element. For one emission, the graph is

(71)
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where the soft photons have long wavelengths. In scalar QED there are also diagrams with a four-point vertex:

(72)

We see that when considering soft emissions, diagrams involving the four-point vertex (which scale like ��2) are
subleading compared to diagrams involving two emissions from three-point vertices (which scale like ��4).

Next, consider the sum of the most-enhanced soft emissions off of a single collinear line. For ‘ soft emissions off of a
scalar with momentum p

�
j ¼ Ejn

�
j , we can use pj þ ki ffi pj to write the matrix element as

(73)

where the sum on ‘‘perms’’ means to sum over all permutations of the soft photons. Note that each term is independent of
the energy of the scalar, Ej, and only depends on its direction n

�
j . After some algebra (known as the eikonal identity), this

reduces to

(74)

This form of the amplitude indicates that, in the soft limit, the separate soft emissions are totally uncorrelated in scalar
QED. Moreover, each factor can immediately be seen to be reproducible as the matrix element of a Wilson line, as in
Eq. (30). In the Abelian case, the Wilson line is

Yy
j ðxÞ ¼ exp

�
ig

Z 1

0
dsnj � Aðx� þ sn

�
j Þe�"s

�
; (75)

and the result is

(76)

Although the delightfully simple form in Eq. (74) is par-

ticular to Abelian gauge theories (it is indicative of Abelian

exponentiation [52]), that multiple soft emissions can be

written in terms of matrix elements of Wilson lines, as in

Eq. (76), is also true in the non-Abelian case, as we

discussion in Sec. VII.
The generalization of Eq. (76) to soft emissions off of

multiple lines simply requires the inclusion of multiple

Wilson lines on the right-hand side. In terms of operator

matrix elements, the general result is

hp1 . . .pN; k1 . . . k‘jOj0i
ffi hp1 . . .pNjOj0ihk1 . . . k‘jYy

1 . . .YNj0i: (77)

We will now prove this using only Eq. (76) and a straight-
forward enumeration of the diagrams associated with the
contractions on the two sides. Because our proof only uses
Eq. (76) we will be able to recycle it for soft-collinear
factorization, spinor QED and QCD below.
First, note that both sides of Eq. (77), in the soft limit,

consist of a sum of terms with different numbers of ni��k
ni�k
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factors for each i. On the left-hand side, each factor comes
from the contraction of a photonwith the ith scalar and on the
right-hand side, from a contraction of a photon with the ith
Wilson line. Thus, let us define the set of integers f‘ig
corresponding to a particular partitioning of the number of
photons connecting to each direction. That is, ‘1 photons
connect to the first scalar,‘2 to the second, and so on. It is then
clear that Eq. (77) should hold for each set f‘ig separately.

For each Feynman diagram, it is easy to read off what
f‘ig is. LetDf‘ig be some diagram with ‘i photons attached

to the ith leg. For example, we might take

(78)

If we choose a fiducial diagram Df‘ig for each possible set

of integers f‘ig satisfying 0 � ‘i � ‘ and
P

i‘i ¼ ‘, then
we can write the matrix element as

hp1 . . .pN; k1 . . . k‘jOj0i ¼ X
f‘ig

X
perms of fkg,!f‘ig

X
perms on p1

. . .
X

perms on pN

P ½Df‘ig�: (79)

The first sum is over the partitionings f‘ig. The second sum,
denoted ‘‘perms of fkg ,! f‘ig,’’ is over the permutations
of which ‘i photons, k

i
1 . . . k

i
‘i
, connect to which leg, for

each i. The ‘‘perms on pj’’ changes the ordering by
which the photons connect to the jth line, keeping f‘ig
and fkg ,! f‘ig fixed. Finally, P ½Df‘ig� means apply the
product of all these permutations to the fiducial diagram for
the given f‘ig.

Now, let us evaluate these sums. For the perms of pN

sum, we are to hold the emissions off of legs 1 through
N � 1 fixed and sum only over permutations of the photons
attached to the N leg. The rest of the diagram provides an
overall multiplicative factor to Eq. (76) which has no effect

on the correspondence between the soft photons attached
to leg N and the Wilson line, YN . Thus we have

X
perms of pN

P ½D‘1;...;‘N�1;‘N � ¼ hkN1 . . . kN‘N jYNj0iD‘1;...;‘N�1;0:

(80)

Similarly, we can now proceed to the evaluation of the perms
of pN�1 sum to produce a matrix element of the N � 1
Wilson line. We can continue in this way until there are no
lines left and we have onlyD0;...;0 ¼ hp1 . . .pNjOj0i. Thus
Eq. (79) becomes

hp1 . . .pN; k1 . . . k‘jOj0i ffi hp1 . . .pNjOj0iX
f‘ig

X
perms of fkg,!f‘ig

YN
i¼1

hki1 . . . ki‘i jYy
i or Yij0i; (81)

where ‘‘Yy
i or Yi’’ means Yy

i if pi is a particle or Yi if pi is
an antiparticle.

The last step is simply to note that
P

f‘ig
P

fkg,!f‘ig exactly
coincides with the sum of contractions of the composite

operator Yy
1 . . .YN with the photons in the external state

hk1 . . . k‘j. This should not come as a surprise since these

sums came from the contractions of the Lagrangian inser-

tions with the same external state on the left-hand side of

Eq. (79). Hence, Eq. (81) reduces to Eq. (77) which was

our desired result.

Now that we have understood how soft photons de-

couple from collinear lines, we can immediately generalize

Eq. (77) to include soft scalar-antiscalar pairs in the state

hXsj which leads to

hp1 . . .pN;XsjOj0i ffi hp1 . . .pNjOj0ihXsjYy
1 . . .YNj0i:

(82)

This generalization is immediate because soft scalars must

couple through a soft photon which is approximately on

shell and we have shown that the latter couples to collinear

lines via the soft Wilson lines Yj. Therefore, if we simply

let hXsjYy
1 . . .YNj0i evolve under the full scalar QED

Lagrangian, we can describe soft scalar production by an

emission from a soft Wilson line, followed by a splitting

from the Lagrangian. A similar story holds for pair creation

from a collinear photon and was discussed at the end of

Sec. IVA.
The bright side of the heavy notation that we introduced

in this section is that every equation after Eq. (76) only
relied on how fields are contracted with states in quantum
field theory. Therefore, as long as Eq. (76) continues to
hold, the above proof will work for path-ordered Wilson
lines in QCD as well as with any modification to D0;...;0.

The former will be used in Sec. VII to show soft factoriza-
tion in QCD and the latter will be used in the next section to
show soft-collinear factorization in scalar QED.
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C. Simultaneous soft-collinear factorization

We now tackle the full problem of factorizing matrix elements of the form

hX1 . . .XN;XsjOj0i; (83)

where hXjj is a state of many collinear particles, hXsj is a state of many soft particles, and O ¼ 1
ðN=2Þ! j
jN is the hard-

scattering operator. As above, since soft scalars must come from pair creation initiated by a soft photon, when discussing
how the soft sector decouples from the collinear sectors, we only need to worry about soft photons. We therefore assume
hXsj just contains soft photons.

1. Soft coherence

One way to understand why soft-collinear factorization holds is to think of it in terms of coherence [22,53]. In a
classical theory, the electromagnetic field far away from a set of charged particles is only sensitive to the net charge at
leading order in the multipole expansion. In the same way, soft radiation is only sensitive to the net charge of a set of
particles all collinear to the same direction. For example, if there are two particles with charges Q1 and Q2 and momenta
p1 and p2 with p1 k p2 k n, then the two diagrams for emitting a soft photon of momentum k and polarization � add as
follows:

(84)

This amplitude is the same as one where the soft photon was emitted from a single line in the n direction with charge
Q1 þQ2. That is the general idea, at least.

Unfortunately, Eq. (84) does not hold generally. The problem is that M could depend on k differently in the
two diagrams, in which case we would not be able to simply take k ! 0 because k � p1 and k � p2 are the same size as
p1 � p2, namelyOð�2Þ. In other words, we must worry about diagrams that ‘‘tangle’’ the soft and collinear emissions. For
example, with one soft and one collinear photon, there are three diagrams in scalar QED which connect these photons to
the same leg:

(85)

Here, the soft photons are drawn with broader wiggles than the collinear photons. The naive soft coherence argument of
Eq. (84) would imply that only the second diagram should contribute, but clearly the first diagram is the same order in the
power counting.

Of course, coherence does actually hold, and it is not too hard to simplify these amplitudes to see it directly. With spinor-
helicity methods, we can prove some useful and nonobvious identities, such as
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�þq � �þk ¼ p � �þq q � �þk
p � q þ k � �þq p � �þk

p � k � p � �þq p � �þk q � k
p � qp � k ; (86)

�þq � ��k ¼ p � �þq q � ��k
p � q þ k � �þq p � ��k

p � k � p � �þq p � ��k q � k
p � qp � k � hqpi½kp�

½pq�hpki|fflfflfflffl{zfflfflfflffl}
¼1

; (87)

where both of these equations hold for any reference vector choices and any four-momentum p, and the last term is 1 if
the momenta are real. The other possible helicity choices can be found be conjugating the above equations. Now we can
simplify the tangled diagrams of Eq. (85) as follows:

(88)

¼ ð�gÞ2
p � qþ ðpþ qÞ � k

�
ðpþ qÞ � �k

p � �q
p � q þ ðpþ kÞ � �q p � �k

p � k � �k � �q
�

(89)

¼
8><
>:
ð�gÞ p��
qp�q ð�gÞ p��
kp�k for 

polarizations

ð�gÞ p��
qp�q ð�gÞ p��kp�k þ ð�gÞ2
p�qþðpþqÞ�k for 
polarizations;

(90)

where this equality is completely general; it holds for any
reference vector choice for either photon as well as any on-
shell four-momenta, p, q, k.

Equation (90) says that the sum of the three tangled
diagrams reduces to an eikonal form plus a term that is
polarization vector independent. Since the leading power
diagrams for one soft and one collinear emission scale
like g2=�3, the extra term in Eq. (90) is a power correc-
tion. Thus, at leading power the sum of the tangled
graphs reduces to the eikonal form, which is simply
the product of the separate amplitudes for soft and col-
linear emissions. In particular, the soft photon factorizes
off as expected and is only sensitive to the net charge of
the scalar, independent of whether there are collinear
photons nearby.

Although it is surely possible, it would certainly be
cumbersome to evaluate matrix elements explicitly for an
arbitrary number of soft and collinear emissions in scalar
QED. Moreover, analyzing the diagrams directly in scalar
QED would also not easily generalize to an analysis
for QCD. Fortunately, soft-collinear factorization can
be derived much more simply by exploiting reference-
vector independence, which generalizes easily to more-
complicated gauge theories.

2. General soft-collinear factorization

We begin with a lemma:

Lemma.—Two expressions that are independent of the
choice of reference vectors, ri, and that agree at leading power
for particular ri, must agree at leading power for any ri.
This lemma is the trivial statement that two constant

functions that agree somewhere agree everywhere. It is
nevertheless extremely powerful. Since the matrix ele-
ments in full gauge theories and factorized expressions in
terms of Wilson lines are both ri independent, this lemma
reduces the problem of proving factorization to working
with particular choices of ri.
Consider first states hp1 . . .Xj . . .pn;Xsj with an arbitrary

number of soft photons, but where all of the collinear photons
are collinear to the same direction n�j . Let rs denote the

reference vector for the soft photons and rc denote the refer-
ence vector for the collinear photons. First choose generic-r
for the collinear photons so that the relevant diagrams at
leading power have only self-collinear emissions. Now, since
the softmomenta fkg are not collinear topj, choosing rs ¼ pj

does not make their polarization vectors, �k, enhanced.
6 With

these choices, the diagramswhich contribute at leading power
have the collinear photons coming off only the jth scalar and
the soft photons coming off of all but the jth scalar:

6The region of phase space for which k is both collinear
to p and soft is not interesting at tree level. At tree level,
one is free to choose whether to call this photon soft or
collinear; it will factorize either way. At loop level,
the soft-collinear region is more subtle [54].
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(91)

Since no diagram in this set has soft and collinear photons connected to the same line, we can use the separate arguments
for soft and collinear factorization to show that these diagrams factorize. That is, writing the sum over soft emissions as in
Eq. (79), using Eq. (80) and then recombining the leftover sums, we have

hp1 . . .Xj . . .pN;XsjOj0i ffi
rs¼pj
gen�rchp1 . . .Xj . . .pNjOj0i � hXsjYy

1 . . .Yj�1Yjþ1 . . .YNj0i: (92)

Now, since we are assuming rs ¼ pj, any matrix element of Yj with soft photons is power suppressed: hXsjYjj0i � 0.
Therefore, we can add Yj to the right-hand side of Eq. (92) without changing it at leading power. Thus, we have

hp1 . . .Xj . . .pN;XsjOj0i ffi hp1 . . .Xj . . .pNjOj0ihXsjYy
1 . . .YNj0i: (93)

Although we have only shown that this holds when rc is generic and rs ¼ pj, by the lemma, since both sides are reference-
vector independent, it must hold for any reference vectors.

There is not a diagram-by-diagram correspondence in Eq. (93). However, it is possible to identify sets of diagrams
whose sums agree at leading power. Wewill continue to work in generic-r for the collinear photons, so that all the diagrams
which contribute at leading power to Eq. (93) have the collinear photons connected to leg j. Then, the particular sets of
diagrams we need in order to prove soft-collinear factorization are the equivalent of Eq. (76), namely, diagrams where all
the soft momenta connect to the j line:

(94)

Here, the sum is over permutations where the soft photons connect, holding the topology of the collinear photons fixed but
arbitrary. This diagrammatic relation is the key to soft-collinear factorization: it says that soft photons can be simply
stripped off of Feynman diagrams, like leaves off a sprig of thyme.

We will prove Eq. (94) by induction on the number of soft photons. For zero soft photons, the equation is trivially
satisfied. So let us assume Eq. (94) holds for any number of soft photons less than n. Now, consider the diagrams which
contribute to the left-hand side of Eq. (93) with n photons and let Df‘ig be a fiducial diagram in that sum with ‘i soft

photons on the ith collinear line and
P

i‘i ¼ n. Note that hereDf‘ig has a fixed topology of self-collinear emissions in the

jth sector as well as all of the soft photons. Now, as in Eq. (79), write the sum of diagrams in Eq. (93) as

hp1 . . .Xj . . .pN;XsjOj0i ¼ X
perms of coll

X
f‘ig

X
perms of fkg,!f‘ig

X
perms on pj

. . .
X

perms on pN

P ½Df‘ig�: (95)

For simplicity, we sum over the permutations of attachments to the jth line last. The sums with i � j can be performed
using Eq. (80), which holds even with collinear emissions on the j leg. The last sum to do is over the perms on pj of
D0;...;‘j;...;0. If ‘j < n, we can perform this sum using the induction hypothesis:X

perms of pj

P ½D0;...;‘j;...;0� ffi D0;...;0hkj1 . . . kj‘j jYy
j j0i for ‘j < n: (96)

The only sum we cannot perform is the one when all n photons attach to leg j. So let us add and subtractP
perms of collD0;...;0hk1 . . . knjYy

j j0i to Eq. (96). When we add it, we have a sum of terms with matrix elements of soft
Wilson lines just like Eq. (81). These Wilson lines can then combine into a single composite operator. We thus have

hp1 . . .Xj . . .pN;XsjOj0i ffi hp1 . . .Xj . . .pNjOj0ihXsjYy
1 . . .YNj0i

þ X
perms of coll

� X
perms on pj

D0;...;n;...;0 �D0;...;0hk1 . . . knjYy
j j0i

�
: (97)
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Since the first line holds on its own, by Eq. (93), the second line must vanish. Moreover, since nothing we have said
depended on summing over the collinear permutations, the term in square brackets vanishes on its own. This proves
Eq. (94).

With Eq. (94) proven, we find ourselves in exactly the position we were in in Sec. IVB with Eq. (94) taking the place of
Eq. (76) and D0;...;0 a specific diagram in hX1 . . .XNjOj0i instead of being hp1 . . .pNjOj0i. Since the arguments of

Sec. IVB did not depend on D0;...;0, we can prove that hXsjYy
1 . . .YNj0i factors off of each possible collinear diagram in

hX1 . . .XNjOj0i exactly as it was done for hp1 . . .pNjOj0i. Hence,

hX1 . . .XN;XsjOj0i ffigen�rchX1 . . .XNjOj0ihXsjY1 . . .Y
y
Nj0i: (98)

Now, since both sides of this equation are r independent, we can drop the restriction that the collinear photons are in
generic-r, by the lemma.

Finally, since the soft emissions are factorized off, we can now factorize the collinear sectors as in Eq. (68) and use the
same argument as before to allow for soft scalars in hXsj, giving the final form for factorization in scalar QED:

(99)

Let us review the ingredients that went into this
derivation. First, we used separate soft and collinear facto-
rization. We also used various facts about which classes
of diagrams could contribute with certain reference-vector
choices, and of course reference-vector independence. We
did not use any results specific to scalar QED or even to
Abelian gauge theories; the identical arguments may be
used in any gauge theory to prove soft-collinear
factorization.

D. The position-space picture

Before moving on to theories more complicated than
scalar QED, it is worth revisiting the physical picture
behind factorization since it is identical in spinor QED
or QCD. Although matrix elements are rarely computed
in position space, position space is where our physical
intuition lies. Since collinear fields have transverse mo-
menta that scale like p? � �Q, the associated radiation
field has a characteristic transverse size of x? � ð�QÞ�1.
In contrast, since soft momenta scale like k� �2Q in all
components, the soft radiation field varies over scales
x� ð�QÞ�2. In particular, since soft photons have wave-
lengths which are a factor of ��1 larger than the width of
the collinear sector (the jet), they cannot resolve the jet’s
substructure, only its net charge. This is shown pictorially
in Fig. 1.

Outside of the jets, the soft particles interact and split
into scalars on time scales �t� ð�QÞ�2. None of these
additional soft particles can probe the jet’s substructure
either. That is why the soft Lagrangian is totally de-
coupled from the collinear Lagrangian—soft photons
only see the jet as a classical source of radiation in the
direction n�, which is what the Wilson line encodes. In
fact, if one changes to radial coordinates, so the jets
become parallel lines extending from � ¼ 
1 [48], one

can literally think of the jets as parallel wires whose
moving charges only leave a collective imprint on the
exterior magnetic field.
The position-space picture of collinear factorization is

similar to the soft case just described. Because of the
scaling of the momenta of collinear particles, collinear
radiation is confined into a set of cones. The radiation in
the jth cone (call it the j cone) cannot resolve any of the
dynamics outside of that cone; it can only see radiation that
is emitted into it. In particular, an individual collinear
sector is insensitive to the direction of travel of the charges
outside of its cone, just as the soft photons could not
resolve the substructure in a collinear sector. Therefore,
all the charges outside of the cone can be deformed into the
same direction, say t

�
j , in which case the charges add

exactly as in Eq. (84). This is why an individual collinear
sector sees the Wilson line Wj, a classical source of radia-

tion traveling in the tj direction with opposite charge to that

in the cone.

FIG. 1 (color online). The physical picture of soft photons
emitted by a classical source, Yy

j . The blue oval represents

magnification that shows the substructure of the collinear sector
which is invisible to the soft photons.

ILYA FEIGE AND MATTHEW D. SCHWARTZ PHYSICAL REVIEW D 88, 065021 (2013)

065021-18



We can make this story even closer to that of the soft
by boosting in the jth direction with a gamma factor of
��1. Then the j cone becomes the whole space except a
cone in the opposite direction which contains all of the

radiation that was originally outside of the j cone. Call
this new cone the �j cone. Now, all of the charges that
were originally outside of the j cone are in the �j cone and
act as a single classical source for radiation into the j
sector (which now fills almost the whole space, just as the
soft sector did). The freedom of choice of the direction of
the Wilson line, tj, comes from the fact that any direction

outside of the j cone gets boosted into the �j cone. This
picture is shown in Fig. 2.

V. FACTORIZATION FOR GENERAL
S-MATRIX ELEMENTS

So far we have considered factorization for processes
which can be written at leading order as matrix elements of
local hard-scattering operatorsOðxÞ composed of N fields.
Factorization in the form on the right-hand side of Eq. (99)
actually holds more generally, for any process involving N
distinct directions, whether or not we represent the hard
scattering as the matrix element of a local operator with N
fields. The generalization is perhaps easiest to see through
an example.
Consider the scattering �� ! 

? in scalar QED. At

tree level, there are three-diagrams giving

(100)

¼ 2ie2
�
ð�1 � �2Þ � ðp4 � �1Þðp3 � �2Þ

p4 � p1

� ðp3 � �1Þðp4 � �2Þ
p3 � p1

�
: (101)

There is not an easy way to write this amplitude as the matrix element of a gauge-invariant local operatorOwith two scalar

and two photon fields. The difficulty is that because the photons are identical, operators like 1
p1�p3

p
�
3 p

	
4D�
D	


? give

contractions with both photons. Factorization nevertheless holds for this process. In fact, as we will see, factorization holds
for each diagram separately, as if it represents an independent hard process.

To begin, consider the most enhanced graphs when soft photons or photons collinear to p3 or p4 are added to the
t-channel diagram. In generic-r, the only way to get a collinear enhancement is to have self-collinear emissions. Then, the
only way to get a soft enhancement is by emission off of the 3 or 4 line because they are almost on shell. Thus, at leading
power the t-channel part of the matrix element is given by a sum of graphs of the form

FIG. 2 (color online). The physical picture of collinear photons emitted by classical sourceWj. The picture on the left is in the frame
of the hard scattering and that on the right is in the frame where each component of the j-collinear momenta are the same size �.
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(102)

Using the key soft-collinear factorization equation, Eq. (94), we can strip the soft photons off of these graphs giving a
factor of hXsjYy

3 Y4j0i multiplying the same graphs with no soft photons. Then, we use reference-vector independence and
collinear factorization, as in Eq. (68), to write the collinear sectors as matrix elements of Wilson lines hX3j
?W3j0i and
hX4jWy

4
j0i. The u-channel and four-point diagram factorize in the same way. We thus have

hX3X4;Xsj�1ðp1Þ�2ðp2Þi

ffi �2i

�
g�	 � P�

4 P
	
3

P4 � P1

� P�
3 P

	
4

P3 � P1

�
h0j �Wy

1D�
�W1j�1ðp1Þih0j �Wy

2D	
�W2j�2ðp2ÞihX3j
?W3j0ihX4jWy

4
j0ihXsjYy
3 Y4j0i;

(103)

where P3 and P4 are the total momenta of the states hX3j
and hX4j. In QED, we could have written ieA� instead of
�WyD�

�W but we write the matrix element this way so that
the matching coefficient only has dependence on momenta,
independent of the spins. In QCD, similar factorized forms
will arise with �WyD�

�W reproducing matrix elements with
multiple collinear partons in a gluon jet.

The result is that the S-matrix elements for this scatter-
ing process in scalar QED factorize. The factorization
worked simply because soft and collinear emissions cannot
couple to off-shell particles in Feynman diagrams at lead-
ing power (in generic-r). The same arguments apply to
other scattering processes and to more complicated gauge
theories like QCD. Thus, factorization holds for any
hard-scattering process with independent collinear sectors,
irrespective of whether or not that process is written as the
matrix element of a local operator.

VI. SPINOR QED

In the previous section, soft-collinear factorization was
proven (at tree level) in scalar QED. We now discuss how
things change with spinors instead of scalars, and in the
next section, go from QED to QCD.

Consider the following gauge-invariant hard-scattering
operator in QED with N flavors:

O ¼ �c 1 . . . c N: (104)

We introduce the flavor indices on the fields only to
simplify the contractions of the fields with states—one
can easily drop the subscripts. We are interested in facto-
rizing matrix elements of this operator in states comprising
collinear and soft momenta, namely

hX1 . . .XN;XsjOj0i: (105)

Here we assume the flavor of the ith jet matches the ith
field, for simplicity. We continue to ignore collinear sectors
initiated by a photon, which means that we do not consider
covariant derivatives in the hard-scattering operator and
the states hXjj have the flavor quantum numbers of a single

fermion. Operators with derivatives or � matrices in the
operator can easily be added, with the following proof
hardly changing. Collinear sectors initiated by a gauge
boson will be treated in the QCD section where they are
more interesting.
In this section wewill show that the addition of spin does

not affect the results found in scalar QED. It does, however,
require a little more notation. At leading order, when hXj ¼
hp1 . . .pNj, the matrix element is not 1 but rather

hp1 . . .pNjOj0i ¼ �u1ðp1Þ . . .vNðpNÞ; (106)

where uiðpiÞ or viðpiÞ are the particle or antiparticle spinor
states contracted according to the fields in O. A useful
shorthand will be to pool everything that each spinor is
contracted with into one object we denote Hj. Thus,

hp1 . . .pNjOj0i ¼ �u1H
1 ¼ . . . ¼ HNvN: (107)

That is, Hj is just the hard-scattering matrix element with
the jth spinor stripped off. In spinor-helicity notation

hp1 . . .pNjOj0i ¼ ½p1H
1� ¼ hp2H

2i . . . ¼ ½HNpN�
(108)

with the bracket type depending on the helicity of the
spinors, not whether it is particle or antiparticle. Here we
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have used the freedom of little group scaling to choose the
spinor helicity for the momentum pj to be exactly the

spinor in the state hpjj.
A. Collinear factorization

We start by considering only collinear photons; extra
collinear spinors will come from insertions of the

Lagrangian as in scalar QED and soft photons will be
treated below. The derivation of collinear factorization is
essentially the same as for scalar QED because in
generic-r exactly the same diagrams are enhanced. To
see this, note that for a single collinear emission off of
a massless spinor in QED, the leading-order matrix
element becomes

(109)

where the Dirac equation �uj 6pj ¼ 0 has been used. The first
term is very similar to the scalar QED result and follows
the same story as before: in generic-r it only contributes at
leading power when q is collinear to pj, whereas for the
collinear-r choice (r ¼ pj for all photons collinear to pj)
the polarization vector itself is enhanced as in Eq. (53) and
all but the self-collinear emissions contribute.

The final term in Eq. (109) is new. Since all the other
(old) terms satisfy the Ward identity, this term must satisfy
the Ward identity by itself, which is easy to check:

g �uðpjÞ6�q 6q
2pj � q Hj ¼�q!q g �uðpjÞ6q6q

2pj � q Hj ¼ g �uðpjÞq2
2pj � q Hj ¼ 0:

(110)

Thus this term, by itself, is reference-vector independent,
which is also easy to check with helicity spinors:

g �uðpjÞ6�q 6q
2pj � q Hj ¼ ffiffiffi

2
p

g
½pjq�hrqi½qHj�
hqri½pjq�hqpji ¼

ffiffiffi
2

p
g
½qHj�
hpjqi :

(111)

So, independently of the reference-vector choice, the new
term will only contribute at leading power when q k pj,

that is, for self-collinear emissions. Such emissions will
come from a field emitting a photon through a Lagrangian
interaction (as opposed to from a Wilson line), just as they
do in the unfactorized expression.
Thus, we have exactly the same diagrammatic factoriza-

tion as in Eq. (49) and by the same gauge-symmetry argu-
ments, we get the same result as Eq. (68), namely

hX1 . . .Xmj �c 1 . . . c mj0i ffi hX1j �c 1W1j0i . . . hXmjWy
mc mj0i:
(112)

The right-hand side of this equation reproduces Eq. (109)

for one emission. More generally, terms like
6�q 6q
pj�q will

always come from Lagrangian emissions, while the

the eikonal terms
pj��q
pj�q either come from the Lagrangian

(in generic-r) or the Wilson lines (in collinear-r).

B. Soft and soft-collinear factorization

The addition of spin has no effect on the factorization of
soft emissions because soft emissions cannot flip the spin
of nonsoft particles. For example, in the soft limit of QED

(113)

This vertex is identical to the scalar QED result in Eq. (71).
Since the soft limit is spin independent, soft factorization is
identical in QED and scalar QED.

More generally, a useful fact is that the soft limit
of the matrix element for a photon interacting with
a particle of any spin or mass has the same eikonal
form. The physical reason is simply that an arbitrarily
soft photon does not have enough energy to flip the

helicity of a particle. A proof proceeds as follows: let
�s ðpÞ be the wave function for a particle of mass m and
helicity s that interacts with a gauge boson through a
current J�. For example, for spin 1, �s ðpÞ ¼ �

�
h ðpÞ are

the polarization vectors and for spin 1
2 , 

�
s ðpÞ ¼ uisðpÞ

are the Dirac spinors. By unitarity, we can always write
the two-point function for this particle as a sum of
dyads:
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G��ðx; yÞ ¼
Z

d4peipðx�yÞ i
P

s 
�
s ðpÞ�s ðpÞy

p2 �m2 þ i"
: (114)

The key ingredient for the proof of spin independence is that the vertex for the emission of a soft gauge boson from an
on-shell  particle is of the form [55]

hp; s0jJ�ð0Þjp; si ¼ �s ðpÞy��
��

�
s0 ðpÞ ¼ 2p��ss0 : (115)

The last equality is the statement of helicity conservation. Combining Eqs. (114) and (115), we get

(116)

Thus, the eikonal form of the soft interaction holds for any mass and spin. For non-Abelian gauge bosons this expression
just gets multiplied by a generator matrix. Although this proof may seem pedantic for QED where the eikonal form can be
derived much more directly, the spin independence of the soft limit is very useful more generally. For example, it is
actually quite cumbersome to show the eikonal form for a soft gluon emitted from a collinear gluon in QCD. Thus,
Eq. (115) will be put to pragmatic use in the next section.

Since soft factorization is identical in spinor QED as in scalar QED, the derivation of soft-collinear factorization from
Sec. IVC goes through unchanged. Therefore, in QED the same soft-collinear factorization formula as in Eq. (99) holds,
with the replacement 
 ! c :

(117)

VII. QCD

We are now ready to tackle the final details relevant for
factorization in QCD.Wewish to factorize matrix elements
of a gauge-invariant hard-scattering operator of the form

O� ¼ �c 1 . . . �c m�1ðD�Þc mþ1 . . . c N (118)

withN � 1 spinors and one covariant derivative. Here, as in
the spinorQED section, the subscripts on the spinor fields are
flavor indices added only to simplify the combinatorics.
Color indices are suppressed to avoid clutter [cf. Eq. (125)
below]. Removing the flavor indices or considering more
than a single covariant derivative requires us to keep track of
tedious combinatoric factors and contractions among differ-
ent spinors which dirty the expressions in our factorization
proof but do not change the results in any substantial way.
Such cases are best dealt with in a similar fashion to that
described in Sec. V. The covariant derivative D� in the

operator is an easy way to give the operator nonzero matrix
elements in a state with a gluon in a particular direction. We
consider matrix elements of this operator between the vac-
uum and the N-jet final state hXj ¼ hX1 . . .XN;Xsj, with
each state hXjj either a quark jet, with the flavor of a single

quark species, or the gluon jet which we place in hXmj. The
matrix element of this operator in the simplest such state,
with N � 1 spinors and one gluon, is

hp1 . . .pm; a . . .pNjO�j0i
¼ �u1ðp1Þ . . . ð�igTaÞ��ðpmÞ . . .vNðpNÞ (119)

� �u1ðp1ÞH�
1 ¼ . . . ¼ ��ðpmÞHm (120)

as in Eq. (106) or Eq. (107). We are considering the simplest
possible operator, O, for clarity. Operators with nontrivial
Dirac structure and insertions of partial derivatives change
nothing but the form of the above Hi’s.
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A. Collinear factorization

For gluons emitted off of a quark line, collinear
factorization follows immediately from the generic-r
choice of reference vectors. In generic-r only self-collinear
emissions are enhanced. That is,

(121)

while

(122)

Although the momentum going into the hard vertex
depends on qþ pj, this induces no additional

enhancement.
For a gluon jet, collinear emissions follow the same

pattern. In generic-r, self-collinear emissions

(123)

dominate over emissions off of other legs

(124)

Thus, only self-collinear emissions are relevant at leading
power, for either quark or gluon jets.
Collinear factorization in generic-r is therefore identical

in QCD and QED. We can write the result as

hX1 . . .XNjO�j0i ffigenrhX1j �c l1
1 j0i . . . hXmjðD�Þlm�1lmþ1 j0i . . . hXNjc lN

N j0i: (125)

Here, we have displayed the fundamental color indices l1 . . . lN explicitly. These indices are all contracted since the
original operator O was gauge invariant. The notation ðD�Þij � �ij@

� � igTa
ijA

a� is the usual covariant derivative in the
fundamental representation.

The reference-vector-independent leading-power result is the generalization of Eq. (64):

hX1 . . .XNjO�j0i ffi hX1j �c l1
1 W

l1h1
1 j0i . . . hXmjWyhm�1lm�1

m ðD�Þlm�1lmþ1Wlmþ1hmþ1
m j0i . . . hXNjWyhNlN

N c lN
N j0i; (126)

where now the W are non-Abelian path-ordered Wilson
lines and the new hi color indices are summed over. One
might be concerned that because the product Wyhlc l car-
ries a color index h it is not gauge invariant. However, the h
index affects the transformation properties at x ¼ 1 which
are trivial.

Finally, to make contact with our expectations from the
physical intuition that a gluon jet should see a collinear
Wilson line in the adjoint representation coming from the
rest of the hard-scattering process, we can use Eq. (27):

Wy
n A

�
b T

bWn ¼ A�
aW ab

n Tb. So, it is indeed the case that

the radiation from the rest of the event into a jet initiated by

a gluon, Aa, in the collinear limit appears as if coming from
a classical source of the form of a Wilson line in the adjoint
representation, W ab.

B. Soft factorization

The factorization of soft gluons off of the hard-scattering
matrix element is only different from the scalar-QED case
in that we cannot use the eikonal identity as in Eq. (74)
because the generator matrices do not commute. However,
this changes nothing since the Wilson line is path ordered
and exactly makes up for this:
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(127)

Similarly, we can use the general soft gauge-boson vertex of Eq. (115) as was done in Eq. (116) to show that

(128)

where Yi is the usual soft Wilson but in the adjoint representation and in the last line we wrote the adjoint color indices
explicitly.

Equations (127) and (128) are the QCD equivalents of Eq. (76), which as mentioned in Sec. IVB is all we need to show,
since all of the arguments in that section were completely general. Thus, using the arguments of Sec. IVB, we arrive at the
QCD equivalent of Eq. (82), namely

hp1 . . .pN; k1 . . . k‘j �c l1
1 . . . ðD�Þlm�1lmþ1 . . . c lN

N j0i
¼ hp1 . . .pNj �c l1

1 . . . ðD�Þlm�1lmþ1 . . . c lN
N j0ihk1 . . . k‘jYyl1h1

1 . . .Yhm�1lm�1
m Yylmþ1hmþ1

m . . .YhNlN
N j0i: (129)

Note that one does not have to go through all of the arguments of Sec. IVB to figure out the contractions of indices in the
equation above. For example, Eq. (127) shows that a collinear quark field �c h should become �c lYylh. Also, one does not
need to worry about how the derivative in D� acts on the soft Wilson line because it is power suppressed.

We can now do the usual replacement hk1 . . . k‘j ! hXsj, allowing hXsj to contain soft quarks, because any soft quarks
must come soft-gluon splitting at leading power.

C. Soft-collinear factorization

The simultaneous soft and collinear factorization in QCD parallels that of scalar QED completely, the only difference
being the more complicated non-Abelian charges of QCD. For example, the soft coherence of Eq. (84) is the same. Imagine
taking k ! 0 naively as in Eq. (84) where we ignore k in any internal lines. Then takingM ¼ 1, P ¼ pþ q1 þ q2 and the

collinear-gluon three-point vertex to be �iV���
3 febc, we have
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(130)

To get the second line we used the general soft vertex of Sec. VI B and to get the last equation we used the Jacobi identity.
The last line shows that the soft gluon only sees the total charge of the collinear sector.

However, as in Eq. (84), this only works if we assume the soft gluon momentum k is much softer than all the other
momenta, which is too strong of a restriction. In fact k, can be of the same order as the p � qi �Oð�2Þ. Hence, we again
have to worry about the tangled diagrams, which means we must also consider

(131)

Indeed, summing these three diagrams with those in Eq. (130) would give the eikonal form for the soft emission, but we
want to prove soft-collinear factorization more generally.

Luckily we have already done so. Section IVC2 used nothing about scalar QED; it only used that soft factorization and
collinear factorization had been shown on their own. We have already shown both collinear and soft factorization
separately in Secs. VII A and VII B, so all we need to do is go through Sec. IVC 2 step by step to get a general proof
for QCD.

The only extra detail of QCD is the color indices which we already know how to contract from Eq. (129). Therefore, we
can simply write down Eq. (98) for QCD as

hX1 . . .XN;Xsj �c l1
1 . . . ðD�Þlm�1lmþ1 . . . c lN

N j0i
¼ hX1 . . .XNj �c l1

1 . . . ðD�Þlm�1lmþ1 . . . c lN
N j0ihXsjYyl1h1

1 . . .Yhm�1lm�1
m Yylmþ1hmþ1

m . . .YhNlN
N j0i: (132)

Now that the soft gluons are factorized, we use Sec. VII A (generic-r and reference-vector independence), in particular
Eq. (126), to get the general soft-collinear factorization in QCD:

(133)

Note that the lj index on each of the collinear matrix
elements and on each soft Wilson line transforms at infin-
ity, so each term in this equation is separately gauge
invariant.

Equation (133) is our final result and has been proven at
tree level for arbitrary collinear states hXjj either initiated
by a quark or a gluon and an arbitrary soft state hXsj. It is
the statement that, when considering the scattering of
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energetic massless particles interacting with gauge bosons,
the form of soft and collinear emissions simplifies tremen-
dously. Hard-scattered particles see only a collinearWilson
line with charge opposite their own in place of all possible
collinear gauge-boson emissions from the rest of the scat-
tering. Furthermore, they emit soft gauge bosons in the
form of a classical source moving in their direction of
travel with their charge.

VIII. SCET

To touch base with SCET, in particular the formulation
in [46], we note that each matrix element on the right-hand
side of Eq. (133) can be computed with a separate copy of
the QCD Lagrangian. We can formalize this by writing an
effective Lagrangian which is the sum of N þ 1 copies of
the QCD Lagrangian:

L eff ¼ Lsoft þ
XN
j¼1

Lj: (134)

Then we assign separate quantum numbers j or s to the
particles in Xj and Xs associated with their sector, with the

fields in the Lagrangians Lj or Lsoft being only able to

create or destroy particles with the appropriate quantum
number. Once this is done, we can simply combine all the
matrix elements together to write

hX1 . . .Xm;Xsj �c 1 . . .D
� . . . c Nj0i

¼ hX1 . . .Xm;Xsjð �c 1W1Y
y
1 Þ . . . ðYmW

y
mD�WmY

y
mÞ . . .

ðYNW
y
Nc NÞj0iLeff

: (135)

In this way both sides are matrix elements of an operator
with a Lagrangian. In this form, the agreement can be
pursued beyond tree level with corrections absorbed into
a finite Wilson coefficient on the right-hand side.

This formulation of SCET is most similar to the Luke-
Freedman formulation [46], which partly inspired the cur-
rent work, but even simpler since we do not attempt to
make the agreement palatable to the inclusion of power
corrections. More explicitly, the Luke-Freedman formula-
tion has fields in the operators evaluated at different posi-
tions, such as x �n � ðn � x; 0; ~x?Þ, as in the multipole
formulation of SCET [44,45]. The simple way to see why
soft and collinear fields interact only at x �n is that these
positions are within the jet cone, which is where the soft
and collinear radiation can overlap. However, as long as the
Lagrangian is defined to contain decoupled sectors, chang-
ing the location at which the fields are evaluated in this way
only affects subleading powers.

Both the Luke-Freedman and the multipole formulation
of SCET differ somewhat from label SCET [41–43]. In
label SCET, fields are all evaluated at the same point, but
the interactions are not those of full QCD. Instead there are
an intricate set of SCET Feynman rules, derived by inte-
grating out large components of spinors, as is done in

heavy quark effective theory, and then removing certain
interactions through field redefinitions. For soft interac-
tions, these rules are the eikonal Feynman rules. For col-
linear sectors, the rules are equivalent to QCD in light-cone
gauge [44]. It has already been observed that label SCET,
after a field redefinition which decouples the soft from the
collinear interactions in the Lagrangian, is equivalent to
having multiple copies of QCD [56].
We will not attempt to explain, justify or defend any

formulation of SCET in this paper. As far as anyone can
tell, all the formulations are equivalent at leading power.
The point of this section is merely to reiterate the obser-
vation of [46] that factorization can be phrased in terms of
QCD fields and a Lagrangian which contains multiple
independent copies of QCD. Indeed, the point of this paper
is essentially to give a transparent proof of the observations
made in [46], using on-shell methods.

IX. APPLICATION: THE QCD
SPLITTING FUNCTIONS

As an application of the factorized expressions that
we have derived, we will compute the tree-level splitt-
ing functions in QCD. Perhaps the simplest way to com-
pute unpolarized splitting functions is following Altarelli
and Parisi [57] by squaring the relevant three-point vertex
and summing over spins. For this sum, they use the
replacement

X
pols

�		q ��q !
�
�ij � qiqj

q2
i; j > 0

0 otherwise:
(136)

It is important to use this replacement, and not the simplerP
pols�

		�� ! �g�	, since the simpler replacement as-

sumes the Ward identity is satisfied, which is not the case
for a single emission off of a single leg of a matrix element.
The replacement in Eq. (136) is equivalent to a sum over
polarization vectors with reference-vector choice r� ¼
ð1; 0; 0;�1Þ. Instead, if one chooses the reference vector
to be in the direction of the quark that splits, one would find
a different answer for the splitting functions: zero.
In the on-shell language we have been advocating, the

correct cross section to evaluate is jhp; qj �cWtj0ij2. In this
case, summing over polarizations will be independent of
reference vector, even if r� p. Of course, the usual cal-
culation using physical polarizations produces the right
answer since in this case the contributions from the
Wilson line are power suppressed. It is nevertheless illus-
trative (and easy) to see the computation performed using
spinor-helicity methods. Moreover, since we have already
shown that jhp; qj �cWtj0ij2 factorizes off from any matrix
element when q becomes collinear to p this approach
automatically also proves the universality of splitting func-
tions. The connection between the splitting functions and
collinear factorization in effective field theory was also
observed in [58,59].
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A. Quark-gluon splitting function

We have shown that for a generic process with a collinear sector initiated by a quark, the matrix element factorizes into
hXjj �cWjj0i times a matrix element that has no collinear radiation in the nj direction. Here,Wj points in some direction t�

not collinear to nj. Therefore, the quark-gluon splitting amplitude is given by

(137)

times the rest of the amplitude,Mðpþ qÞ, which carries a
color and spinor index. That is,

Msplit ¼ �uðpÞ
�
t � �ðqÞ
t � q � p � �ðqÞ

p � q � 6�ðqÞ6q
2p � q

�
gTaMðPÞ;

(138)

where P ¼ pþ q. The nice thing about this expression is
that, because it satisfies the Ward identity, we can choose
any reference vector for ��ðqÞ. Moreover, since we have
proven collinear factorization for any hard-scattering op-
erator, we know that this expression is the universal
collinear-splitting amplitude.

Instead of doing the calculation in generic-r, like in
Eq. (136), we use collinear-r. Thus we take r ¼ p. Then,

��q ¼ ffiffiffi
2

p p�hq
½qp� and �þq ¼ ffiffiffi

2
p q�hp

hpqi ; (139)

both of which satisfy

p � �ðqÞ ¼ 0: (140)

Let us also take the spinor to be right handed, namely
�uðpÞ ¼ ½p. Then for �� we find

MR;�
split ¼

ffiffiffi
2

p
g

½tp�
½tq�½qp� ½pT

aM

¼ ffiffiffi
2

p g

½qp�
zffiffiffiffiffiffiffiffiffiffiffiffi

1� z
p ½PTaM (141)

and for �þ we find

MR;þ
split ¼

ffiffiffi
2

p
g

� hpti
hqtihpqi ½p� 1

hqpi ½q
�
TaM

¼ ffiffiffi
2

p g

hpqi
�

zffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p �
½PTaM; (142)

where we have used that

p� ¼ zP� and q� ¼ ð1� zÞP�; (143)

which implies that

½p ¼ ffiffiffi
z

p ½P; ½q ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p ½P; etc:; (144)

at leading power.

Using Msplit, we can write down the polarized splitting

functions:

jMR;�
splitj2 ¼

g2CF

p � q
z2

1� z
jMorigj2 and

jMR;þ
splitj2 ¼

g2CF

p � q
1

1� z
jMorigj2;

(145)

where jMorigj2 ¼ j½PMðPÞj2 is the original amplitude

without collinear splitting. By parity invariance, we must
also have

jML;�
splitj2 ¼

g2CF

p � q
1

1� z
jMorigj2 and

jML;þ
splitj2 ¼

g2CF

p � q
z2

1� z
jMorigj2:

(146)

The unpolarized splitting function is given by the sum of
the two:

jMunpol
split j2 ¼

g2CF

p � q
1þ z2

1� z
jMorigj2; (147)

which is the familiar result.

B. Gluon-gluon splitting function

Next, consider the gluon splitting function. In this case,
we want to relate the cross section for the emission of two
on-shell gluons of momenta p� and q� to the amplitude
Mc;�

origðpþ qÞ for producing a single off-shell gluon of

momentum p� þ q�. We have already shown that, for
the collinear emission of gluons off of gluons, the ampli-
tude in QCD is reproduced by the matrix element

hXjjWy
t D

�Wtj0i at leading power. Thus, if two

n-collinear gluons of color a, b, momenta p, q and polar-
izations �p and �q are omitted, the original amplitude gets

modified to
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Mab
split ¼ �igfabc

�
�	�p

t � �	q
t � q � �	�q

t � �	p
t � p

þ t � �	p
t � p

t � �	q
t � q

ðq� pÞ�
2

þ �	p � �	q ðp� qÞ�
2p � q

� p � �	q
p � q �	�p þ q � �	p

q � p �	�q
�
Mc;�

origðpþ qÞ: (148)

The first line in Eq. (148) comes from the Wilson lines and
the second from the usual self-collinear splitting diagram.

Now the original amplitude must satisfy a Ward identity,
which holds exactly even if pþ q is off shell. Thus, ðpþ
qÞ �Mc

orig ¼ 0. Using this constraint, it is easy to check

that Mab
split satisfies the Ward identity exactly for both

outgoing gluons (by replacing �
	�
p ! p� or �

	�
q ! q�).

Thus we can square the amplitude and sum over all polar-
izations with the simple replacement �	��	 ! �g�	 and
sum over colors. The most enhanced terms will scale like
jMorigj2��2 and we can drop anything subleading. Since

ðpþ qÞ �Mc
orig ¼ 0 and p and q are collinear, we also

have p �Morig & � and q �Morig & �. The only terms

that remain at leading power are therefore

X
pols;cols

jMab
splitj2 ffi � 2g2CA

p � q ðMc;�
origÞy

�Mc;	
orig

�
g�	 t � p

t � q þ g�	 t � q
t � pþ p�q	

p � q
�
:

(149)

To simplify this expression, it is helpful decompose p�

and q� into a component in the ðpþ qÞ� direction which
will vanish upon contraction with Morig by the Ward

identity and a component orthogonal to the ~pþ ~q which
we call ~p?. To keep p� and q� lightlike, their energies
must be shifted slightly. The decomposition can be written
as

p� ¼ zðpþ qÞ� þ p
�
? þ �Eð1; ~0Þ� and

q� ¼ ð1� zÞðpþ qÞ� � p
�
? � �Eð1; ~0Þ�;

(150)

where

�E ¼ ð1� 2zÞðpþ qÞ2
2Q

� �2 (151)

with Q ¼ p0 þ q0 and p2
T ¼ �p? � p? > 0 is given by

p2
T ¼ zð1� zÞðpþ qÞ2 þ �E2 � �2: (152)

At leading power, we can invert this last equation to write

p � q ¼ p2
T

2zð1�zÞ þOð�4Þ.
Now we can simplify Eq. (149). Since t is not collinear

to p or q, we have

t � p
t � q ffi z

1� z
: (153)

Next, we observe that the p�q	 term in Eq. (149) can be
written as �p

�
?p

	
? at leading power because the Ward

identity kills the ðpþ qÞ� terms. Thus,X
pols;cols

jMab
splitj2

ffi � 2g2CA

p � q ðMc;�
origÞyMc;	

orig

�
g�	

�
z

1� z
þ 1� z

z

�

� 2zð1� zÞp
�
?p

	
?

p2
T

�
; (154)

which agrees with the polarized splitting function (cf. P̂�	
gg

in [22]). For the unpolarized splitting we discard spin
correlations, by performing an average over azimuthal
angle. This amounts to replacing in Eq. (149)

p�q	 ! �p�
?p

	
? ! � 1

2
p2
T�

�	
? ! 1

2
p2
Tg

�	; (155)

where each step is valid at leading power and the first and
last arrows exploit the Ward identity on Morig.

Inserting Eqs. (152), (153), and (155) into Eq. (149) we
then findX
pols;cols

jMab
splitj2

ffi 2g2CA

p � q
�

z

1� z
þ 1� z

z
þ zð1� zÞ

� X
pols;cols

j�	�Mc;�
origj2;

(156)

where the last factor is exactly the probability without
splitting of the completely general process. The rest is
the gluon-gluon splitting function in QCD.
In summary, we have shown that the quark-gluon and

gluon-gluon splitting functions are universal and
reference-vector independent.

X. CONCLUSIONS

The main result of this paper is a proof at tree level of
factorization for matrix elements of operators in QCD. We
show that matrix elements of operators with N fields in
states whose momentum is either collinear to one of N
directions or soft can be written in a factorized form as

hX1 . . .XN;Xsj �c . . . c j0i
ffi hX1j �cW1j0i . . . hXNjWy

Nc j0ihXsjYy
1 . . .YNj0i; (157)

where ffi means the two sides are equivalent at leading
power in an expansion parameter � determined by the
scaling of the momenta in the state hX1 . . .XN;Xsj. This
equation with explicit color indices and gluon jets included
is given in Eq. (133). In this equation both sides contain
matrix elements of operators in QCD. That is, these are not
effective field theory fields, although the connection to
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soft-collinear effective theory becomes trivial once this
form is written down (see Sec. VIII).

In order to prove Eq. (157) using only the scaling of
momenta and not assigning scaling behavior to unphysical
fields, we made critical use of the spinor-helicity formal-
ism. Spinor-helicity methods let us assign scaling behavior
to polarization vectors based on their momenta and the
choice of an arbitrary reference vector. Crucially, the ref-
erence vector can be chosen differently for different glu-
ons. By showing elements of factorization for certain
reference-vector choices and then showing reference-
vector independence of the factorized result, the final
factorization formula followed.

Although choosing reference vectors sounds similar to
choosing a gauge, the two are vastly different. Gauge
choices are made for unphysical fields which can create
and destroy any gluon state. Thus one cannot assign differ-
ent gauges to different sectors without chopping up the
gauge field in some way, as in the effective field theory
approach, or by attempting to formulate an incredibly
nonlocal gauge condition. The spinor-helicity approach
gets around awkward gauge conditions by choosing a
reference-vector basis for the states directly, with the fields
remaining in Feynman gauge (or whatever gauge one
wants).

We have proven Eq. (157) and its generalizations only at
tree level. However, the equivalence probably holds to all
orders in perturbation theory. The only modification should
be that the right-hand side must be multiplied by a finite

hard function CðPiÞ depending on the jet directions and
energies but independent of �. One can easily envision an
all-orders proof which builds on the tree-level result, which
contains all the infrared-singular real-emission graphs, and
unitarity to relate the real-emission and virtual graphs.
Indeed, unitarity constraints are efficiently encoded with
on-shell methods like those we have employed here at tree
level. Pursuing this direction could conceivably lead to
rigorous proofs of factorization for a wide variety of
processes.
On a more practical side, a clean formulation of facto-

rization, as in Eq. (157), may lead to new calculations in
perturbative QCD. For example, a similar formula has
already led to one of the first studies of a jet-shape observ-
able in SCET at subleading power [47]. Although so far no
results new to perturbative QCD have been obtained this
way, it is easy to imagine that subleading power factoriza-
tion may eventually play a role in collider physics, as it has
in heavy quark physics.
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