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Unitary representations of N-conformal Galilei group
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All unitary irreducible representations of the centrally extended (N-odd) N-conformal Galilei group are
constructed. The “on-shell” action of the group is derived and shown to coincide, in a special but most
important case, with that obtained by Gomis and Kamimura [Phys. Rev. D 85, 045023 (2012)].
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I. INTRODUCTION

The N-conformal Galilean algebras/groups provide the
generalization of the celebrated Schrodinger algebra/group
(N = 1) discovered in the nineteenth century in the context
of classical mechanics [1] and the heat equation [2] and
subsequently rediscovered in the twentieth century as the
maximal symmetry group (consisting of point transforma-
tions) of free motion in quantum mechanics [3]; the mathe-
matical structure and geometrical as well as physical status
of the Schrodinger group has been studied quite exten-
sively [4].

The higher (N > 1) N-conformal Galilean groups are
also interesting, both from mathematical and physical
points of view. Their detailed description was presented
in the paper by Negro et al. [5]. They were further studied
in numerous papers [6].

The N-Galilean conformal algebras split naturally into
two classes: for N odd they admit a one-parameter central
extension [7-9] while no central extension is admitted for
N even (except the case of two-dimensional space when
the central extension exists for all N).

One can pose the question concerning the general form
of dynamics (both classical and quantum) which is invari-
ant under N-conformal Galilei transformations. For the
N-odd and nontrivial central extension, the answer was
provided in Ref. [8]. It appeared that the centrally extended
odd N-conformal algebra was the symmetry algebra of free
dynamics described by the Lagrangian containing NTH-th
order time derivatives. This conclusion has been confirmed
in Ref. [10], where the orbit method [11] was applied to the
problem of classification of all invariant Hamiltonian struc-
tures. It appears that the most general canonical system
invariant under the N-conformal Galilei group consists of
the set of “‘external” canonical variables together with spin
and pseudospin ones, corresponding to the SU(2) and
SL(2, R) subgroups, respectively; the dynamics of the
external variables is described by the Ostrogradski
Hamiltonian [12]. The authors of Ref. [8] computed also
the action of the N-conformal Galieli group on wave
functions obeying the relevant Schrodinger equation
(on-shell action) and demonstrated its invariance.
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In the present paper we complete the picture by finding
all irreducible unitary representations of the centrally ex-
tended N-conformal Galilei group. Then we show that,
when restricted ‘“‘on shell,” they yield the generalization
of transformation rules derived by Gomis and Kamimura
[8]. Our results extend (to any odd N) those obtained by
Perroud [13] for the case N = 1 (Schrodinger group).

II. THE N-CONFORMAL GALILEI
ALGEBRA AND GROUP

The N-conformal centrally extended Galilei algebra is
described by the following nontrivial commutation rules:

[D, H] = iH,
[Jar Jh] = ieahc']c)
[H, C4] = —ijcy,

[D,K]= —iK, [K, H]=2iD,
[J%, CP] = i€, C5,

(K, Cj1=ilN = DCsr (o)
o= (0
[C4 CPl = i64p0ni(—1)

k—j+l
2

k\jIM;

here a,b,c,...=1,2,3, j,k,...=0,1,...,N and N is
odd. For N even the commutation rules look the same
except the last one, where one should put M = 0.

The structure of the algebra (2.1) is quite simple. We
have three subalgebras: su(2), spanned by J’s; si(2, R),
spanned by H, D, and K; and the Abelian one, c, which,
for N odd, can be centrally extended to the solvable
algebra, ¢y. Denoting by gy the algebra defined by the
commutation rules (2.1), we have

gy = (su(2) ® s1(2, R))H(cy).

The semidirect sum is defined by demanding that ¢y ® R
span the representation D2 @ DO of su(2) @ si(2, R).

The conformal Lie algebra can be easily integrated to
yield the corresponding group G,. We present below the
form valid for any N (i.e., without central extension; it is
not difficult to write out the extended version). It reads [14]

(g’ g’ X[a) * (gl’ g/’ Xl/(,l)
= (g8, 88, Rup ()X}, + X;o(DX(@))));  (2.3)

(2.2)
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here g € SU2), g € SL(2,R), R(g) € SO(3) is the
rotation corresponding to g, and D(%)(g) is an element of
the (2N + 1)-dimensional irreducible representation of
SL(2, R). To obtain the universal covering of Gy, one
has only to replace SL(2, R) with its universal covering.

III. IRREDUCIBLE UNITARY REPRESENTATIONS
OF CENTRALLY EXTENDED N-CONFORMAL
GALILEAN SYMMETRY

We are going to construct unitary irreducible represen-
tations of the N-conformal Galilean group with N odd
under the assumption that the central charge is nontrivial,

M = ml, m # 0. 3.1
Let us introduce new operators §¢, pg, a=1, 2, 3,
k=0,...,%, by the formulas

Ce = (—DF"Tkips, €Y, =m(N— k)¢ (3.2)

The new operators obey the canonical commutation rules,

[qz’ p;’] = iaahakb (33)

and generate the Weyl group. The latter possess unique
irreducible unitary representation. Once it is written
out, one easily constructs the unitary representation of a
solvable subgroup of the (centrally extended) N-conformal
Galilei group, generated by C{ and M.

The remaining nontrivial commutation relations of
N-conformal algebra, written in terms of ¢’s and p’s, read

[]a’ qi] = ieabc‘]i’ [Ja’ pz] = ieabcplcgr

_ N
[D, ¢¢]= l(k - E)qz,

N N—1
[apﬂ=(——ky; k—o. N1

2 2
N-1
[K, ¢¢] = ik(N — k + 1)q{_,, k=0, ——,
. N-3
[K, p{]= —i(N — k)(k + 1)p¢,,, k= O,...,i2 ,
_ (N +1\2
(K.t = im( ) ot
. N-3
[H, qz] = _lqz+1, k:O, ,T,
—i
[H, q5_.] = —pi_.,
2 m 2
. N-1
[H, pil=ip{-, k=0...— (3.4)

The important point is that one can construct the operators
belonging to the universal enveloping algebra of
Heisenberg algebra, which [8,10]
(i) obey the commutation rules of su(2) ® si(2, R);
(i) obey the same commutation rules with ¢’s and p’s
as j, H, D, and K.
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They are defined as follows:

N-3
2 1

A=m Z Pidis T E(P%)z,
k=0

N-3

2 m? (N + 1\2
B=—m 3 (k+ DV = 0pt, gt + 5 () (@
k=0 :
m < N
C=3 Z(; - k>(qm’ + piq),
k=0
-
L= €. ). q0D§ (3.5)
=0
It is easy to check that
[B, C] = imB, [C,A] = imA, 3.6)
[A, B]= —2miC,  [L% L] = i€y L",

and that the commutation rules (3.4) are obeyed with J¢, D,
K, H replaced by L7, % C, %B, and %A, respectively.
Therefore the operators

s”=Ja—La, dzD_lC’

| ”; (3.7)
h=H——A, k=K—-—B

m m
obey the su(2) ® si(2, R) algebra commutation rules
and commute with ¢’s and p’s. Consequently, Eqs. (3.7)
define the decomposition of su(2) ® si(2, R) generators
into “‘external” and “internal” parts, in full analogy with
the well-known decomposition of total angular momentum
into the orbital one and spin. This allows us to conclude
that the space carrying a unitary representation of the
N-conformal Galilei group is the tensor product of
12 (R3(N2+1>
group generated by g§ and p{, k= 0,1.. .,%, a=1,2,
3 and the carrier space of the representation of the
SU(2) X SL(2, R) group generated by §, d, h and k.

The irreducible representations under consideration are
classified by the eigenvalues m of the central charge M and
the choice of the irreducible representations of SU(2) and
SL(2, R) groups mentioned above. The representations of
SU(2) are uniquely determined by the values of the
Casimir operator

), which carries the representation of the Weyl

c, =3 (3.8)

while in the SL(2, R) case apart from the eigenvalue of the
second Casimir operator
Cy = hk+kh—2d, (3.9)

we need some additional information concerning the
spectrum of one generator [15].
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Let us start with the case C; =

representation space is L2(R*>"
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02 = 0. Then the representation of internal SU(2) X SL(2, R) group is trivial and the total

) consisting of functions # g, ...,

ﬁNT-l ) square integrable with respect to the standard

Lebesgue measure. Due to the identification (3.2) the action of a centrally extended Abelian subgroup generated by the Cy
subalgebra is easily expressible in terms of standard action of the Weyl group. It reads

(¢! 2o Ce ) (G, ..

i) = e

< p(do + (-5,

The action of the SU(2) subgroup is standard

(U)o Gxz) = YR (@ - B &),
(3.11)

where g € SU(2) and R(g) € SO(3) is the corresponding
rotation.

It remains to find the action of the SL(2, R) subgroup. To
this end we use the Iwasawa decomposition [13,16] of
SL(2, R)

. [« B
g_<7 5)

cos(f) sin(@)\fu O 1 v
:<—sin(0) cos(9)><0 u‘1)<0 1)’ u=0

(3.12)

By noting that the s/(2, R) generators in defining represen-
tation can be written as

D = 50'3, K:_i0'+, H=i0'_, (313)
we rewrite Eq. (3.12) in the form
= 6.iﬁ(HJrI()ei/\DeivK’ U= eé. (3.14)

It is, therefore, sufficient to determine the action of one-
parameter subgroups generated by D, K, and H =H+K.
The relevant generators in the representation under con-
sideration are %C s B, and 1 (A + B), respectively.

Let us start with the dllatatlon generator. Taking into
account the explicit form of the operator C, we find
[U(A) = eP]

U)o, -- - Gu)
= e%(NH)zlﬁ( N;%

The action of U(v) = ™K is slightly more complicated.
Detailed computations are given in Appendix A; we quote
here only the final result

(U(U)lﬁ)(é)(), RS E])N;]) = eiF(U) ’7[’(50(”)’ RS E])N

LeTTNG, %(3%). (3.15)

2—1(1})),
(3.16)

where

. N-1 e N=1 N-1
22 (DT RN R Iy pim Y 2 (N—K) Ry

G+ (1R, LG

. L (i\(N—=j+p) .
p=0 (3.17)

F(v _E(N“) j g (w)

Finally, consider the action of a compact subgroup gener-
ated by H{ = H+ K = L(A + B). In this case the gen-
erator is a second order differential operator; therefore, the
action of the compact subgroup is nonlocal. Denoting by
H (G;G'; 6) the kernel of exp (i), one can write

(€ 4)(Go, - - -, Gazs)
[d3 QN 15'-[(51)0,...,6_])—1;3]6,...,6_)]@;0)

X PG i) (3.18)

The algorithm of constructing the kernel HH (g;q’; 0) is
presented in Appendix B. Due to the fact that F{ is defined
by a quadratic form in canonical variables, the problem is
obviously exactly solvable; the final form is, however,
quite involved.

Let us now consider the general case C; # 0 and/or
C, # 0. Due to our decomposition of generators into ex-
ternal and internal parts, we conclude that the carrier space
consists of square integrable functions taking their values
in the representation space of the representation of
SU(2) X SL(2, R) [or, more generally, the universal cover-
ing of SL(2, R) generated by §, d, k, and k; note that due to
noncompactness of SL(2, R) the relevant unitary represen-
tation is infinite dimensional (except the case C, = 0)].
The complete classification of unitary irreducible repre-
sentation of SL(2, R) and its universal covering is well
known [15,17]. For convenience we use the matrix notation
both for representations of SU(2) and SL(2, R) (in the
latter case, the matrices are infinite dimensional so in
practice it is better to work with functional realizations).
Let D and A denote the relevant matrix representations of
SU(2) and SL(2, R), respectively. In order to write out the
action of the group, we first note that our relations (3.10)
remain unchanged. The SU(2) subgroup acts as follows:

(U(g)l//)ozp(q(]’ R é%)

= Dpr(g)l//ar(Ril(g)qo’ .. R

“ggr).  (3.19)
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As far as SL(2, R) is concerned we obtain

(U(ei)‘D)'vl’)ap(qo’ te EI)NT’I)
= VA 5(eMP) g, (e3Gp, .., €2Gu),  (3.20)
(U@)P)ap(Go, - -, Guz1)
= A5 (e ) g, (Go(v), ..., ua(v)),  (3.21)
and
(eiH(H+K)¢)ap(é’0’ e ) = /d3 dqu ]
5‘[(6_])0, cevy L_])N—l;éé), ceey %;,,0)
X A g (e KN gy o (Gl ... Ghr)s (3.22)
2

for dilations, conformal, and compact transformations,
respectively.

IV. THE ON-SHELL REALIZATION

In this section we consider the action of N-conformal
Galilei transformations on the solutions of the Schrodinger
equation. For simplicity we assume C; = C, = 0 (the re-
sults are easily extendible to the general case), so our
Hamiltonian takes the Ostrogradski form [8,10,12].

The action of Galilean conformal transformations is
defined as follows. Given wave function at the time ¢, we

|

(X, 1)) Gy . G

(4 o0 Vi)

Finally,
(O(eiTH, t)l,b)(éo, ...,é)N ,t_ 7-).
4.5)

The results obtained may be compared with those con-
tained in Ref. [8]. We find that they are in full agreement.

2—1) - lﬂ(éo, ceey éNz—l

V. CONCLUDING REMARKS

We constructed all unitary representations of centrally
extended N-conformal Galilei groups. They provide the
framework for constructing the “elementary” quantum
mechanical systems with the N-conformal Galilei group
as a symmetry group.
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translate it back to ¢ = 0, then act with an element of our
group, and finally translate the result again to time ¢ in

formulas
U(g, 1) = e "™MU(g)e'™, 4.1)

Note the identities

¢ itH MGl — Qi) yu(g) = ﬁ:( ) — 1) ke,
=k

(4.2a)

e MMy(g)e™ = U(g), g € SU2), (4.2b)

¢~ itH giAD gitH — GiAD gi(1—eNiH. (4.2¢)

¢ itH givK itH — (=2iln (140D piv(1+v0K it~ (4.2d)

o~ itH yitH yitH — jitH (4.2¢)

According to the first formula (4.2a) the on-shell action of
the subgroup generated by Cy is given by Eq. (3.10), with
x{ replaced by x{(z). The action of the SU(2) subgroup
remains unchanged. On the other hand, Eq. (4.2¢c) yields

(U™, D)o, - - - Guz31)

A 2 No A
— el()(N+l) ¢(€7QO,. e

raze.  (43)

The action of conformal transformation is slightly more
complicated. By virtue of Egs. (3.15), (3.16), (3.17), and
(4.2d), one obtains

1) = (1 + vt) §WVH1 iF ()

4.4)

1 vt 1 vt '
[

This work is supported in part by MNiSzW Grant
No. N202331139.

APPENDIX A

We find here the action of conformal transformations.
To this end, let us write it in the form

(™ ) (Go, - .-, Guz1)
— (eKGge K, .., quN e vKYevK L1 (AT)
Denoting
g ,(v) = e G, (A2)
we find

UL = ieK[K, G ) = =N = j+ D1 ()
v

(A3)
Together with the initial conditions ¢;(0) = g;, Eqs. (A3)

yield
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N L(ji\WN—=j+p)
q/'(U)z Z(;))W( v)? qj p-

p=0

(A4)

To compute ¢ - 1, we decompose K = L B as follows:

(e wemig ) (05

=X+7Y, (AS)
and put
eiv(X+Y) — Z(‘U)eivX. (A6)
Then Z(v) obeys
dZ(v) _ i VXY y o= WXHY) 7()
dv
m(N + 1\2
25 awze, @
2 2 7
which yields [Z(0) = 1]
im (N + 1\2 (v
z0) =exp (5 (*5 ) [(duiiw) s
2 2 0 7
By virtue of (A6) and (A8) one obtains
eVK .1 =exp(iF(v)),
p (iF(v)) (A9)

Flv) = %(N 2+ 1)2 fo " dugi(w).

APPENDIX B

Our aim is to describe the dynamics (both classical and
quantum) generated by the “Hamiltonian™ resulting from
Iwasawa decomposition (3.14). To this end, we define the
following Hamiltonian:

n—1 1
_ 2
= (Z P+ T 2_pn)
k=0 m

n—1
(- T ven 1 - Opea
k=0

2
N m(n + 1) 3l) B1)

2
where for simplicity we define N = 2n + 1 and skip vector
indices.

The relevant canonical (or Heisenberg) equations of
motion read

gr = qi+1 — 2 + 1) — bkq,
pr="_(+1)2n+1—=kprs1 — Pr-1»
1 (B2)
Qn = —DPn— (n + 2)nQn—lr
m

Pn = —m(n + I)an — Pn-1-

PHYSICAL REVIEW D 88, 065011 (2013)
Equations (B2) can be solved as follows. Define
qr = k&, pe=(D"*Q2n+ 1= k)'méyii4
(B3)

for k =0, ..., n. In terms of new variables, Eqs. (B3) read

(cf. Ref. [18])
E=(k+ )& 2n+ 1.

(B4)

— Q2+ 1) =ké,, k=0,...,

The boundary conditions g_; = 0, p_;=0yield é_; =0
&rir1) = 0, which, together with (B4), implies &, = 0 for
k= —1ork=2(n+1).Let x* be a real variable and

2n+1
)= Y Elxt (B5)
k=0
Equations (B4) can be summarized as follows:
06 1) _ () 4 )af(" D Neéen. (B6)

at

By virtue of the boundary conditions for £, we are looking
for the solutions of Eq. (B6) which are polynomials of
degree 2n + 1 in x. They read

2n+1 )
)= se"Py(x), (B7)
e
Py(x) = (1 + ix)* 27 (1 — ix)™3". (BS)

Let us note the following properties of the polynomials
Py(x):

Py(x) = P_(x), (BY)
and
dx
[ anP R 0= b0, du) =
(B10)

The polynomials P;(x) form an orthonormal basis in the
space of polynomials of degree 2n + 1.
Note that &(x, ) is real, so Eq. (B9) implies

El = S_ (Bll)

By comparing Egs. (B5) and (B7), one finds

2n+1 )
&= 3 i*Buels, (B12)
I=—(2n+1)
where the coefficients 3;; are defined through

2l 2nt1-1 2nt1-1

> Buxt = (1 +x)*57(1 — x5~ (B13)

k=0

Note the following properties of By;:
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k 2n+2171 2n+zl+l
— —1)m ,
s 3o (U0 ) )
Bi—1 = (=DfBu, Bon+1-r1 = (— 15 By

We will see later that the coefficient 3;; has a nice inter-
pretation in the language of finite-dimensional representa-
tions of SL(2, R) [see Eq. (B41)].

Equations (B12) define new dynamical variables

(B14)

s,(t) = ells,,

I=—2n+1),-2n-1),..

(B15)
L(@2n—=1),2n+1;

in order to compute their Poisson brackets, we use (B3) and
(B5) to write

Qk(f) 4 2§1 (=) 1 K py g —g(0)x*
mk! '

Elx, 1) =
k=

0 k=n+1
(B16)

Equation (3.13), together with the canonical Poisson

brackets, yields

(_ 1)n+1

- _ 2n+1
m(2n+1)!(x Y

{E0 0, £ 1)} =

On the other hand,

(B17)

2n+1

S s s} PP (y). (BIS)

LI'=—Q2n+1)
1,I'=0dd

{&x 1), €m0} =

The left-hand side does not depend on ¢. Therefore,
|

PHYSICAL REVIEW D 88, 065011 (2013)

{s, sy} = F(n, D&y, (B19)
and
2n+1
{0, éGy = > F(n, DP(x)P_(y).  (B20)
1’1’=_—(§§3+1)

Putting y = 0 and using (B17), one arrives at the following
relation:

(_1)n+1 2n+1 _ 2n+1
m = Z F(n, )P;(x).

I=—Q2n+1)
l_(\dd

(B21)

One can find F(n, [) using orthogonality relation (B10).
Alternatively, putting x = tan ¢ one gets

(= sin2"+1(g) = zgl F(n, e,  (B22)
mQ2n + 1)! I==@n+1) ' ’
I=odd
leading to
_i(_1)2n+21+l
F(n, ) = —5—s . (B23)
m22 +1(2 +21+I)!(2 +21 l)|
or, by virtue of (B19),
_l.(_l)ZnJrzPrl
{Sl, SZ/} = 51,*1/‘ (B24)

m22n+ 1 (2n+21+l) !(2n+21*l)!

It remains to express the Hamiltonian (B1) in terms of new
variables. Using (B1), (B3), and (B12), one obtains

2n+1 2n
m i —
H = 0 Z 88 /el(m)t(z_(—l)z"“ Kk + 1120+ 1= k) (Baps1-kiBrirr — ﬁbrk,lﬁk,z/))- (B25)
/,1/[7—_((2)3;1) k=0
Using (B14) we find
2n
D (=1 ke + DI2n + 1 = 0 (Bons 1-11Brs 10 — Ban—riBrr)
k=0
2n
=D (k+ 1)!Qn+ 1=K (Bons1-r1Brs1,—r + Bon-riBr—1)
k=0
2nt+1-1 21
= (=D D (k+ DI@n+ 1 = N BriBrst—r + Bis1.1Br—r)- (B26)
k=0
To proceed further, note that P;(x) obeys
d
((1 +) = n+ l)x)P,(x) — iIP(x) (B27)
x
Inserting the expansion
2n+1
Pix) = Y i*Buxt, (B28)
k=0
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one derives the recurrence relation

(k+ 1D)Bry1; + @+ 1) = kB, — 1Bk =0,

It easy to check with the help of (B29) that

2n+1

(I=10) K@n+1—k)BBy—r
k=0

2n
=2 (k+ D)@+ 1= Bs11Bi—r + BuBisi—1).
k=0

(B30)
We will show that
2n+1
> K@n+ 1= k)!Bu By = Gn, D8y, (B31)
k=0
where
m+1+N[2n+1—1
Gn, I) = 22”‘( " . )'( " . )!. (B32)

We prove (B31) and (B32) in two ways. In the first
approach we note that the matrix i* 8, is invertible because
it relates two bases. Putting

2n+1
=3 yuPix), (B33)
I=—Q2n+1)
I=odd
one gets
2n+1 2n+1
Y i*Buyw = S > iyuBu = 8. (B34)
I=—02n+1) k=0

I=odd
Equation (B31) is equivalent to

K2n + 1 — k!B = Gn, Dyy(—i)k. (B35)

We prove (B35) by deriving the recurrence relation for yy.
To this end, note that (B33) implies

e = f: ()X P, (B36)

The operator (1 +x*)4 —(2n + 1)x is anti-Hermitian
with respect to the product defined by du(x). Therefore,
2n + 1=Ky = kyie-1 = ilyp =0,

. (B37)
2n + Dyy —ilyp = 0.

Now, Mz’g{}%_)k)'ﬁ“ obeys the same recurrence. To find
G(n, 1), we note that B, = 1 and

PHYSICAL REVIEW D 88, 065011 (2013)

k=1,...2n+1 By — 1By = 1. (B29)
13 2n+1 —il
o=, dpcos 2t 1(p)e ¢
2+ 1)1
(2n + 1) (B38)

= 22n+1(2n+21*l)!(2n+21+l)!’

which concludes the proof of (B35).

The second proof of Eqs. (B31) and (B32) makes use of
the properties of finite-dimensional irreducible representa-
tions of SL(2, R). In fact, finite-dimensional irreducible
representations of SL(2, R) are classified by natural num-
ber N and they are matrices of the form (see, e.g., [14])

min (N—m,m') N —m

max (0,m' —m)
m ! !
X ( )aNmkbkcmm tkgm 7k’ (B39)
m—k
where

A= (‘c’ Z) € SL(2, R)

andm,m' =0,...,N;inourcase N =2n + 1. Now let A
be of the form

1 /1 -1
A= ﬁ(l 1 ) € SL(2, R). (B40)
It is not difficult to show that
1
(I)(A)mm’ = \/22rl—+lﬁm’,*(2n+1)+2m' (B41)
Since ATA = AAT = Id, one finds
DA)DPAT) = P(ATA) = Id. (B42)
Moreover, let us note that in our case we have
2n +1
D), = (=1 S (@ay) B43
(A) it = YZPEEY mmr (B43)
m
and
D(AT), = (1) D(A) - (B44)

Inserting (B44) into Eq. (B42) and using Egs. (B41) and
(B43), we obtain the relations (B31) and (B32).
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Collecting all formulas, we find

m z! 2n+1-1
5’-[:E Z (—1)*5- 21
['idd
(2n+1—1) (2n+1+l
X !
2 2

2n + 1, [-odd)

)!(SZEZ + 5151); (B45)

upon defining (I =1, ...,

-even

2nt1 , _

2% Im <2n+21 1)!(2n+21+l)!sl’
n+1 , _ _

25 <2n+21 l)!(2n+21+l)!s1’

2n+1+1
2

a; =

2n+21+l -odd,

(B46)
one arrives finally at the following result:
| A
H = 7 Y () U, + aay),
i (B47)
{dl, dll}: —i511/, l, l/ = 1, 3,...,2” + 1.
Quantization yields
1 2n+1 _— 1
5"[——2( ™ <a1a1+2)
I'odd (B48)
[a,,a;,r]=5,,/, l, l/= 1,3,...,27["’ 1.
Define further, for k =0,1,...,n,l=1,3,...,2n + 1,
&
22";]\/-"7 l(zlf,!ﬁk—l/),(znﬂﬂ).’ 2"+21+1-even
2 N 2 :
Pr = it (B49)
D)k By 2n+1+l_0dd
2n+l — ) 2 el
272 \/;E (2n+2] I)!(2n+21+1)!
and then
2n+1 2n+1
a =Y. puar+ D pPua/, k=0,...n (B50)
I'T)dd I‘jdd
The coordinate operators commute, which implies
pp’ =pp’, (B51)

so pp! is real symmetric [Eq. (B51) can be checked
directly using (B31)] and hence diagonalizable by real
orthogonal transformation. Assume detp = 0; then
det (pp”) = 0 and there exists real nonzero vector u such
that u” p = 0. Taking the complex conjugate, one finds
u’p = 0. Therefore, by virtue of Eq. (B50),

n
Z urqr = 0,
k=0

which contradicts the canonical commutation rules. So we
conclude that p is invertible.

(B52)
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Finally, define for k =0,...,n,[=1,3,...,2n + 1

(D" 2+ 1=k mP" R By g 2n+1+1
P /(2n+|—z).(zn+1+1), ’ 2
=n" k(2"+1 RN i) K By ki 2”+21+l-0dd.

S /(2n+1 jyEmE

-even

Tkl =

(B53)
Then, fork=0,...,n

2n+1 2n+1

_ = o+
Pk = Z Tia; + Z Tra; -
=1 =

Note that py; = py; for k even while 7, = 7, for k odd.
Let us introduce new canonical variables

(B54)

1 l
Ql = \/—2_1((11 + a;’), Pl = l.‘/;(_al + d?—) (BSS)

Then the Hamiltonian takes the form

2n+1 22
wei-i( Py 170
H = 1)~ ’(’ —’) B56
2 (-1 > (BS6)
[—Odd
Moreover,
2n+1
Gk = Z V2l p Q) k-even;
‘Lot
2n+1
-2 pklPl, k-odd
l‘odd (B57)

2n+1
Py = Z i 77'klPlr k-even;
I=odd
2n+1
Pk = Z \/iiTle[, k-odd.
I=odd
The above formulas allow us to give a simple prescription
for computing the kernel H (4,4';0) of exp (i0H).
Namely, the canonical variables (Q;, P;) diagonalize
the Hamiltonian. Therefore, in terms of them, the pro-
pagator kernel is simply the product of single propagators
for harmonic oscillators; to account for the sign on the
right-hand side of Eq. (B56) in every second term in the
product, the replacement § — — @ should be made. Next,
note that (B57) can be viewed as the composition of the
point transformation

2"+1V 2lpuQ;  k-even
—odd

Qk - 2n+1 21 (B58)
Zlijjd Tlel’ k-Odd,

2t
g \/—Tkzpz,
[=odd

e infouPy  k-odd

k-even
(B59)

=t
~
|
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with a simple canonical transformation

qr = G k-even,

dr = _i)k’ k-Odd,
Pr = Pr  k-even, (B60)
Pr = qk! k-odd.

(B58) and (B59) result in expressing the initial kernel in
terms of new variables §; and multiplying it by an appro-
priate constant factor according to the formula

afk ) “Ioa
det| — o(g — .
at(525)| o - ro)

Glo) = (B61)

PHYSICAL REVIEW D 88, 065011 (2013)

The final step is to perform the canonical transformation
(B60). The corresponding kernel for it reads

- - | B
<Q|Q> = Hk-evena(Qk - Qk)Hk-odd \/Z—Welqqu; (B62)

i.e., we perform the Fourier transform with respect to odd
variables.

Finally, let us remind the reader that up to now we
have skipped the vector indices. However, the dynamics
is diagonal with respect to them so one has only to
multiply kernels for the propagation for all separate
components.
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