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We show that in a background of a sufficiently strong magnetic field the electroweak sector of the

quantum vacuum exhibits superconducting and, unexpectedly, superfluid properties due to the magnetic-

field-induced condensation of, respectively, W and Z bosons. The phase transition to the ‘‘tandem’’

superconductor-superfluid phase—which is weakly sensitive to the Higgs sector of the Standard Model—

occurs at the critical magnetic field of 1020 T. The superconductor-superfluid phase of the electroweak

vacuum has anisotropic transport properties as both charged and neutral superflows may propagate only

along the magnetic field axis. The ground state possesses an unusual ‘‘kaleidoscopic’’ structure made of a

hexagonal lattice of superfluid vortices superimposed on a triangular lattice of superconductor vortices.
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I. INTRODUCTION

It is known that an extremely high magnetic field of
hadronic scale may lead to plenty of unusual effects both in
(dense) matter and in the quantum vacuum. The chiral
magnetic effect [1] provides a particularly interesting
example: charge-parity-odd matter may generate an elec-
tric current along the axis of the magnetic field [2]. The
corresponding conditions may be realized in noncentral
heavy-ion collisions [3] in which hot quark matter is
created along with a background of extremely high mag-
netic fields [4,5]. Similar conditions may have existed in
the very early moments of our Universe [6]. The strong
magnetic field also affects phases of the cold dense matter
in the cores of strongly magnetized neutron stars [7].

Because of quantum effects an empty space may also
exhibit quite unusual properties in a sufficiently strong
magnetic background. In the background of a relatively
low magnetic field of QED scale the vacuum should
become optically birefringent [8]. The hadron-scale mag-
netic field should lead to magnetic catalysis [9], which
implies, in particular, a steady enhancement of the chiral
symmetry breaking in the QCD vacuum as the external
magnetic field strengthens.

More recently it was found that the vacuum becomes an
electromagnetic superconductor in sufficiently strong
external magnetic fields [10,11]. The superconductivity
of, basically, empty space is mediated via the spontaneous
creation of a (charged) �-meson condensate if the

magnetic field exceeds the critical value of BQCD
c ’ 1:0�

1016 T. The ground state of the vacuum superconductor is
characterized by an inhomogeneous ground state of a very
particular geometric structure [12], possessing intriguing

metamaterial (‘‘perfect lens’’) properties [13]. The magnetic
fields of the required strength may be created on Earth
in heavy-ion collisions at the Large Hadron Collider at
CERN [5].
We show that as the background magnetic field strength-

ens further, the Standard Model experiences a second
superconducting, and, simultaneously, superfluid transition
associated with a condensation of the W and Z bosons at a
larger critical magnetic field,

BEW
c ¼ M2

W

e
’ 1:1� 1020 T; (1)

where MW ¼ 80:4 GeV is the mass of the W boson. The
onset of the condensation of the W bosons at the magnetic
field (1) was predicted by Ambjørn and Olesen in Ref. [14].
The key idea here is that the vacuum of charged vector
particles (i.e., of the W mesons) is unstable in the back-
ground of a sufficiently strong magnetic field provided
these particles have an anomalously large gyromagnetic
ratio gm ¼ 2. The large value of gm guarantees that the
magnetic moment of such particles is too large to withstand
a spontaneous condensation at sufficiently strong external
magnetic fields. In this article we show that the inhomoge-
neousW condensation induces an inhomogeneous conden-
sation of the Z bosons and leads to new superconducting
and superfluid effects at the electroweak scale.
The electroweak sector possesses another phase transi-

tion which lifts off the electroweak symmetry breaking at a
second critical magnetic field BEW

c2 which is stronger than
the critical magnetic field of the electroweak superconduct-
ing transition (1), BEW

c2 > BEW
c1 � BEW

c [15]. A recent study
of the second phase transition can be found in Ref. [16]. In
this paper we concentrate on the W-meson condensed
phase realized at BEW

c1 <B< BEW
c2 .

The structure of this paper is as follows. In Sec. II we
solve the classical equations at the W-condensed phase
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and we show that the W condensate, originally found in
Ref. [14], is accompanied by the condensation of the
electrically neutral Z bosons. We point out that both con-
densates possess vortex defects which are aligned with the
magnetic field axis forming a complicated regular structure
in the transversal plane. In Sec. III we demonstrate that
these condensates lead to the new transport phenomena of
the ground state, which correspond to a dissipationless
transfer of an electric current and a neutral Z-boson cur-
rent. We associate these phenomena with superconductiv-
ity and superfluidity, respectively. The last section is
devoted to our conclusions.

II. STRUCTURE OF THE GROUND STATE

A. Equations of motion

The bosonic part of the electroweak sector of the
Standard Model is described by the Lagrangian

L ¼ � 1

4
Wa

��W
a;�� � 1

4
X��X

�� þ ðD��ÞyðD��Þ
� �ðj�j2 � v2=2Þ2; (2)

where� is the complex Higgs doublet which interacts with
SUð2ÞL and Uð1ÞX gauge fields (Wa

� and X�, respectively)

via the covariant derivative

D� ¼ @� � ig�aWa
�=2� ig0X�=2;

and �a are the Pauli matrices. The corresponding field
strengths are Wa

�� ¼ @�W
a
� � @�W

a
� þ g�abcWb

�W
c
� and

X�� ¼ @�X� � @�X�.

The Mexican-hat potential in Eq. (2) breaks the electro-
weak symmetry down to the electromagnetic subgroup,
SUð2ÞL � Uð1ÞX ! Uð1Þem because the Higgs field �
acquires a quantum expectation value, h�i � 0. In the
unitary gauge, h�i ¼ ð0; vÞT , the third component of the
non-Abelian gauge fieldW3

� mixes with the Abelian gauge

field X� providing us with the massive Z� boson and the

massless electromagnetic field A�,

W3
� ¼ sin�A� þ cos �Z�; (3)

X� ¼ cos �A� � sin�Z�; (4)

where � is the electroweak mixing (Weinberg) angle with
e ¼ g sin � ¼ g0 cos� being the electric charge.

The classical equations of motion are as follows:

0¼ @�Wa
��þg�abcWb�Wc

��� ig½ðD��Þy�a��H:c:�=2;
0¼ @�X��� ig0ðD��Þy��H:c:Þ=2;
0¼�D�D

��þ2��ðj�j2�v2=2Þ: (5)

The instability of the vacuum in the presence of the
sufficiently strong magnetic field was first demonstrated
by Ambjørn and Olesen in Ref. [14], and we briefly repeat
their arguments here. We restrict ourselves to the classical

dynamics of the electroweak fields and ignore quantum
corrections following the original approach of Ref. [14],
which is justified in a sufficiently strong classical
background.
Consider a uniform time-independent magnetic field

directed along the third axis, Bext;i ¼ Bext�i3 (for the sake

of convenience, we always take eBext > 0). Then the qua-
dratic part of the transverse (with respect to the magnetic
field axis) components of the W� � W�

� field in Eq. (2)

reads

�Lð2Þ
W? ¼ ðWy

1 ; W
y
2 Þ

M2
W �ieBext

ieBext M2
W

 !
W1

W2

 !
; (6)

(with MW ¼ gv=2), while the mass terms of the longitu-
dinal components W3 and W0 and of other vector particles
are not affected at the classical level. The mass eigenvalues
of Eq. (6) are �2� ¼ M2

W � eB. One of the masses, ��,
vanishes at the critical value Bc of the magnetic field (1).
This mass becomes purely imaginary at B> Bc, thus
signaling a tachyonic instability towards condensation of
the transverse components of the W� field. The unstable

eigenvector is ðW1;W2Þ ¼ ðW;�iWÞ=2, where W is a
scalar field.
Since we consider the solutions in the transverse ðx1; x2Þ

plane for the transverse components of the fields, it is
natural to use complex notation for the coordinates, z ¼
x1 þ ix2, and for the vectors O� ¼ @�, A�, Z�, W� (O ¼
O1 þ iO2,

�O ¼ O1 � iO2) and their field strengths,

O12 ¼ � i
2 ð �@O� @ �OÞ. Notice that Wy � �W.

We use a symmetric gauge for the external magnetic
field, Aext;1 ¼ �Bx2=2 and Aext;2 ¼ Bx1=2, so that the

corresponding covariant derivative is

Dext � @� ieAext ¼ @þ ezBext=2:

The �W component of the W� corresponds to the �þ
eigenvalue of the operator in Eq. (6), so that it is not
condensed. Thus, we put �W ¼ 0 as it does not lower
the energy, and continue to work in the unitary gauge
� ¼ ð0; 	ÞT , where 	 is a real-valued field.
In complex notation the energy density is

E ¼ 1

2
jð �Dþ ig cos � �ZÞWj2 þ 1

2
Z2
12 þ

1

2
B2 þ g2

8
jWj4

þ 1

2

�
�eB� g cos �Z12 þ g2

2
	2

�
jWj2

þ g2

4cos 2�
jZj2	2 þ �@	@	þ �ð	� v2=2Þ2; (7)

and the equations of motion then become as follows:

D �DW ¼
�
g2

2
jWj2 � g cos �Z12 � eF12 þ g2

2
	2

�
W; (8)

�D2W ¼ 0; (9)
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�@F12 ¼ e

2
�@jWj2 þ e

2
Wy �DW; (10)

0 ¼ cos � �@F12 � sin� �@Z12 þ ig2
sin �

2cos 2�
�Z	2 (11)

@ �@	¼ g2

4cos2�
jZj2	þg2

4
jWj2	þ2�	

�
	2�v2

2

�
; (12)

0 ¼ 	 �DW þ 2W

�
�@þ i

g

2 cos �
�Z

�
	; (13)

where D ¼ Dþ ig cos �Z is a covariant derivative.

In Ref. [14] the equations of motion were treated in the

Bogomolny limit, MZ ¼ MH, where MH ¼ ffiffiffiffiffiffi
2�

p
v and

MZ ¼ gv=ð2 cos �Þ are the masses of the Higgs and Z
bosons, respectively. Here we solve—partially following
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FIG. 1 (color online). (a) The cell-averaged W condensate
hjWj2i1=2; (b) the condensation energy density (7), �E ¼ hEiW �
hEiW¼0; (c) the cell-averaged Higgs expectation value h�y�i1=2,
Eq. (20), vs the strength of the magnetic field B (in units of the
critical magnetic field B � BEW

c ). The plots are given for various
Higgs massesMH including the physical value of the Higgs mass
(the latter are shown by the solid lines).

FIG. 2 (color online). (a) The superconducting W condensate
(16); (b) the superfluidZ condensate (19); (c) theHiggs expectation
value (20) as a functionof the transverse plane coordinates x1 and x2
at the physical HiggsmassMH ¼ 125 GeV [21] in the background
magneticfieldB ¼ 1:01BEW

c directed along thex3 axis.The red line
in plot (c) corresponds to the standard (coordinate-independent)
Higgs expectation value,	 ¼ v=

ffiffiffi
2

p
, at zeromagnetic fieldB ¼ 0.
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Ref. [17]—the equations of motion (8)–(13) for an arbi-
trary mass of the Higgs in the region B � Bc near the phase
transition point, jB� Bcj � Bc. The latter condition
implies that the quantity

� ¼ jWj
MW

� 1 (14)

can serve as a small expansion parameter.

B. Vector-meson condensates and vortices

The combination of the two equations of motion,
Eqs. (8) and (9), with the requirement of the minimization
of the energy density (7), lead us to a simple Abrikosov
equation,

�DW � �DW ¼ 0; (15)

which is valid up to corrections of the order of Oð�2Þ. This
equation has nontrivial periodic solutions known as
Abrikosov lattices. Following Abrikosov [18], we choose
a general solution of Eq. (15) as a sum over lowest Landau
levels:

WðzÞ ¼ X
n2Z

Cne
�


2ðjzj2þ�z2Þ�
�2n2þ2
�n�z; (16)

where LB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
=ðeBÞp

is the magnetic length and � is an
arbitrary real-valued parameter. In order to ensure a regular
structure of the lattice, the complex coefficients Cn are
usually chosen in a periodic manner, CnþN ¼ Cn, where
N ¼ 1; 2; . . . is an integer number which has to be chosen
using energy-minimization arguments.

The solution with N ¼ 1 and � ¼ 1 defines the square
lattice of the original Abrikosov’s solution [18]. However,
the global energy minimum is reached for the equilateral
triangular lattice at N ¼ 2 with C1 ¼ �iC0 and

� ¼ ffiffiffi
34

p
=

ffiffiffi
2

p � 0:9306 in agreement with earlier studies
devoted to theW condensation [14,17]. The energy density
(7) is then minimized numerically with respect to the value
of C0 for fixed values of the magnetic field B and the Higgs
mass MH. This procedure allows us to determine the W
condensate (16) and other interesting quantities.
AtB > BEW

c the condensation of theW bosons [Fig. 1(a)]
makes the energy density smaller compared to its value in
the trivial ground state [Fig. 1(b)]. Thus, the W-boson
condensation is an energetically favorable state. Notice
that the heavier the Higgs boson the weaker the effect of
the magnetic field on the W condensate.
Equations (10) and (15) imply that the magnetic field

B ¼ BðzÞ � Bðx1; x2Þ is related to the W condensate as
follows:

@ðB� ejWj2=2Þ ¼ 0: (17)

This relation is valid up to Oð�2Þ terms. The solution of
Eq. (17) carrying a finite energy per unit cell A of the
Abrikosov lattice is

BðzÞ ¼ Bext þ e

2
jWðzÞj2 � e

2

1

AreaðAÞ
Z
A

dzd�zjWj2;
(18)

where the integration constant in the last term (given by
the integral over the unit lattice cell A) guarantees the
conservation of the magnetic flux,Z

A
dzd�zBðzÞ ¼ AreaðAÞ 	 Bext:

Thus, the magnetic field (18) becomes transversally
nonuniform due to the backreaction of the inhomogeneous
W condensate (16).

a superfluid vortex on top of a superconductor vortex superfluid vortex  and antivortexa superfluid voa superfluid vorrtteex on x on ttoop op off a superconductor voa superconductor vorrtteexx and antivoand antivorrtteexxsuperfluid vosuperfluid vorrtteex  x

cuts in the W phase cuts in the Z phase cuts in the W phaW se cuts in the Z phase 

positive superconducting 
current, J3  > 0
positive superconducting
current, J3JJ > 0

positive superfluid 
             flow, J3  > 0
positive superfluid 

floff w, J3 JJ > 0E Z

negative 
superfluid flow, J3  <0
negative
supesuperrflfluuid id ffloloffff ww,, JJ3 3JJJ <<00Z

FIG. 3 (color online). Kaleidoscopic ground state. (a) The density plots of (left panel) the phases of theW condensate (16) and (right
panel) the Z condensate (19) in the transversal ðx1; x2Þ plane at B ¼ 1:01BEW

c . The end points of the cuts in the phases (shown by the
circles) are the superconductor vortices and superfluid (anti)vortices, respectively. (b) The three-dimensional regions of space
predominantly occupied by the superconducting electric current JE3 of the W bosons and the superfluid neutral flows JZ3 of the Z
bosons generated by a weak test electric field Eext > 0 parallel to the strong magnetic field B ¼ 1:01BEW

c .
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Using the solution (18) for the magnetic field B � F12,
one can solve Eqs. (11) and (12) and obtain the following
nonlocal expressions for the Z and Higgs condensates,
respectively:

Z � Z1 þ iZ2 ¼ �i
g cos�

2

@1 þ i@2
��þM2

Z

jWj2; (19)

	 ¼ vffiffiffi
2

p
�
1� g2

4

1

��þM2
H

jWj2
�
: (20)

Here� � �@@ ¼ @21 þ @22 is the two-dimensional Laplacian
in the transverse plane. The remaining equation (13) is
satisfied automatically up to Oð�2Þ.
In the ground state at B> BEW

c , the W condensate (16),
the Z condensate (19) and the Higgs condensate (20)
are functions of the transversal coordinates x1 and x2, as
visualized in Figs. 2(a)–2(c), respectively. The expectation
value of the Higgs field falls down as the magnetic field
rises, with a slope that becomes weaker as the Higgs mass
increases [Fig. 2(c)].
It is known that the ground state of the vacuum at

B> BEW
c is an equilateral triangular lattice of the vortex

defects in the W field [14,17] (we call these vortices the
‘‘superconductor vortices’’). At the vortex positions the
field W / W�

1 þ iW�
2 vanishes [Fig. 2(a)] and its phase,

arg ðWÞ, winds around each vortex position.We find that the
ground state has a much more complicated structure in the
neutral sector: the state has an equilateral triangular lattice
of the ‘‘superfluid’’ vortices, characterized by the vanishing
field Z � Z1 þ iZ2 field [Fig. 2(b)] and by winding num-
bers in its phase.1 The combined ‘‘kaleidoscopic’’ pattern of
the vortex lattices, superimposed on the density plots of the
phases of the superconductingW and superfluidZ fields, are
shown in Fig. 3(a). Notice that certain superfluid vortices
are located at the superconductor vortices.

III. NONDISSIPATIVE TRANSPORT

We point out that the ground state of the vacuum at
B> BEW

c is a ‘‘tandem’’ phase which is, simultaneously,
an electromagnetic superconductor and a neutral super-
fluid. Indeed, by introducing an infinitesimally weak test
electric field Eext one can prove—with the use of Eq. (5)—
the following transport laws for the electromagnetic and
neutral Z-boson currents,

JE� ¼ @�F�� / �L
�A� ; (21)

JZ� ¼ @�Z�� / �L
�Z� ; (22)

respectively:

@½0JE3�ðxÞ ¼ ��Eðx1; x2Þ 	 Eext
3 ; @½0JEi� ¼ 0; (23)

@½0JZ3�ðxÞ ¼ ��Zðx1; x2Þ 	 Eext
3 ; @½0JZi� ¼ 0; (24)
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FIG. 4 (color online). (a) The superconducting (25) and
(b) superfluid (26) transport coefficients as functions of the trans-
verse plane coordinates x1 and x2 at the physical HiggsmassMH ¼
125 GeV in the background magnetic field B ¼ 1:01BEW

c directed
along the x3 axis. (c) The cell-averaged superconductivity transport
coefficient (25) vs the magnetic field B at fixed values of the Higgs
masses. The cell-averaged superfluidity coefficient is always zero.

1The superconductor and superfluid vortices, which are dis-
cussed in this paper, should be distinguished from the existingW
and Z electroweak vortex solutions [19], including known solu-
tions which carry electric currents along vortex cores [20].
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where i ¼ 1, 2. The transport parameters for the electro-
magnetic �E and neutral �Z currents,

�Eðx1; x2Þ ¼ e2jWj2ðx1; x2Þ; (25)

�Zðx1; x2Þ ¼ �e2 cot �
�

��þM2
Z

jWj2ðx1; x2Þ; (26)

are functions of the transverse coordinates x1 and x2. These
transport coefficients are shown in Figs. 4(a) and 4(b),
respectively.

Equation (23) implies anisotropic superconductivity of
the ground state at B> BEW

c similarly to an analogous
phenomenon in QCD [10,11]: a weak electric field intro-
duces a resistance-free growth of electric current which
continues streaming after the field is switched off.
Equation (24) implies an anisotropic superfluidity of the
neutral Z currents, and it illustrates a very unusual physical
effect: an external electric field induces a current of neutral
particles which are flowing frictionlessly along the mag-
netic field axis.

From the point of view of the electric conductivity
properties, a ground state of the vacuum can either be a
superconductor or an insulator due to Lorentz symmetry
(indeed, a dissipative behavior, like in Ohm’s Law, is
inconsistent with the Lorentz symmetry of the vacuum).
Thus, the absence of the electric resistance (and vanishing
shear and bulk viscosities) in the B> BEW

c phase are
protected by a remnant Lorentz symmetry in the ðx0; x3Þ
plane. Similar Lorentz-protection arguments apply to the
superfluid property as well.

The superconductivity coefficient (25), averaged over
the transversal ðx1; x2Þ plane,

��E ¼ 1

AreaðAÞ
Z
A

dx1dx2�
Eðx1; x2Þ; (27)

is a linearly growing function of the magnetic field B
[Fig. 4(c)] at B> BEW

c . The superfluid coefficient (26) is
a sign-changing function [Fig. 4(b)] of the transversal

coordinates x1;2 which has a vanishing mean value if

averaged over the transversal plane ( ��Z � 0).
Thus, we conclude that a weak external electric field Eext

3

applied along the magnetic field in the condensed phase
gives rise to
(i) a growing nonzero net electric current along the

magnetic field axis, and
(ii) a neutral superfluid inhomogeneous flow in both

directions with vanishing net current.
The spatial distribution of the electric and neutral cur-

rents flowing along the magnetic field axis can be read off
from the corresponding superconducting coefficients in
Figs. 4(a) and 4(b), respectively. The distribution of the
currents in the transverse place is visualized in Fig. 3(b).
Notice that the transverse electric field Eext

1;2 induces

neither superconducting nor superfluid currents.

IV. CONCLUSION

We have shown for the first time that the electroweak
sector of the vacuum exhibits superconducting and
superfluid properties due to the magnetic-field-induced
condensation of, respectively, W and Z bosons provided
the magnetic field exceeds the critical value (1). The
superconductor-superfluid phase is characterized by the
anisotropic and inhomogeneous ground state. Both
charged and neutral currents may propagate nondissipa-
tively only along the direction of the magnetic field. In the
transverse directions the ground state has an unusual
‘‘kaleidoscopic’’ structure made of a hexagonal lattice of
superfluid vortices superimposed on an equilateral trian-
gular (hexagonal) lattice of superconductor vortices. Thus,
in a strong enough magnetic field the electroweak sector of
the quantum vacuum enters a superconductor-superfluid
phase.
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