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We show that for open gauge theories, it is possible to build an off-shell Becchi-Rouet-Stora-Tyutin

algebra together with an invariant extension of the classical action. This is based on the introduction of

auxiliary fields, after having defined an on-shell invariant quantum action, where the gauge-fixing action is

written as in Yang–Mills type theories up to a modified Becchi-Rouet-Stora-Tyutin operator. An

application to simple supergravity is performed.
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I. INTRODUCTION

The Batalin–Vilkovisky (BV) formalism [1] currently
appears to be the most powerful method for quantizing
general gauge theories, i.e., gauge theories which are
reducible and/or with an open algebra (for a review, see
Ref. [2]). It leads to the construction of the quantum theory
in which effective BRST transformations are nilpotent on
shell. This is realized by doubling the total number of
gauge fields and ghost fields by introducing corresponding
antifields, which are then eliminated by means of a gauge
fermion functional containing the gauge-fixing conditions
associated to all the invariances of the classical action
defining the gauge theory.

On the other hand, it is well known that in supersym-
metric theories, in particular for supergravity theories,
which represent prototypes of open gauge theories, the
superspace formalism enables one to close the gauge
algebra through the introduction of auxiliary fields and
then gives the possibility to quantize such theories by
using the standard BRST formalism (for a review, see
Ref. [3]). This is also the case of topological antisymmet-
ric tensor gauge (BF) theories, which represent prototypes
of reducible gauge theories, where auxiliary fields can be
introduced in terms of a BRST superspace [4]. Let us note
that the same geometrical approach has been considered in
order to give another possibility leading to the standard
minimal set of auxiliary fields in simple supergravity [5].
In an alternative way, it was shown that an off-shell
formulation of simple supergravity in terms of a principal
superfiber bundle can also be performed [6]. Moreover,
still in the context of simple supergravity, the introduction
of auxiliary fields can be realized via the BV formalism
[7] (see also Ref. [8] for the case of reducible gauge
theories).

Furthermore, we have shown for BF theories how the
structure of auxiliary fields with nonvanishing ghost num-
bers as well as the invariant extension of the classical
action come from an on-shell BRST invariant quantum
action [9]. The latter was simply constructed by writing
the gauge-fixing action as in Yang–Mills theories by
modifying the classical BRST operator.

It would be worthwhile to extend the analysis devel-
oped in Ref. [9] in order to discuss general gauge theo-
ries, independent of the underlying classical action. In
this paper we will be interested to build an on-shell
invariant gauge-fixed action for irreducible open gauge
theories, which permits us to introduce auxiliary fields
and to determine an invariant extension of the classical
action in such theories. The obtained auxiliary fields are
of ghost number ð�1Þ and thus cannot be considered
classical fields. But even if these fields are objectively,
at least at a formal level, different from those that appear
in known open algebra theories, they have the crucial
advantage that they can be introduced via a systematic
procedure applied to any given gauge theory plagued
with a symmetry algebra that closes only on shell. It is
worth noting that a formal approach for introducing
standard auxiliary fields (of ghost number zero) was
also proposed in Ref. [10].
As an application we focus on the case of simple super-

gravity for which the introduced method to build up an off-
shell BRSToperator leads to a set of nonclassical auxiliary
bosonic spinor fields of ghost number �1.

II. ON-SHELL FORMULATION

Let us start from a gauge system described by a classical
action Scl depending on the gauge fields �i with parity �i.
The invariance of Scl under gauge transformations, ��i ¼
Ri
�"

�, leads to the Noether identities, Scl;i R
i
� ¼ 0, where X;i

denotes the variation of X with respect to �i. The gener-
ators Ri

� are operators acting on the gauge parameters "�

with parity ��. The gauge functions and their associated
gauge equations which characterize the gauge algebra
depend on the nature of the gauge theory [1,2]. In the
following we restrict ourselves to irreducible open gauge
theories, i.e., all generators Ri

� are independent, and the
commutator of two gauge transformations leads to the

definition of two gauge functions G�
�� and Gij

��, satisfying

Ri
�;jR

j
��ð�1Þ����Ri

�;jR
j
�¼Ri

�G
�
��þScl;jG

ij
��, which means

that the commutator is closed up to equations of motion.
Upon introducing the ghost c� with parity (��þ1), the
above commutator can be put in the following form:
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Gi
;jG

j þGi
;�G

� þ Scl;jG
ij ¼ 0; (1)

where Gi ¼ Ri
�c

�, G� ¼ 1
2 ð�1Þ��G�

��c
�c�, Gij ¼

1
2 ð�1Þ��Gij

��c
�c�, and X;� denotes the variation of X

with respect to c�.
The classical BRST transformations of the fields �i are

simply obtained as usual by replacing "� by c�; we have

Q�i ¼ Gi: (2)

In view of Eq. (1), the on-shell nilpotency of Q acting on
�i, i.e., Q2�i ¼ �Scl;jG

ij, is ensured provided that

Qc� ¼ G�: (3)

Furthermore, to express the on-shell nilpotency ofQ acting
on c�, a new gauge function G�i is also needed, in order to
write Q2c� ¼ �Scl;i G

�i, and according to Eq. (3), we

obtain the following gauge equation:

G�
;iG

i þG�
;�G

� þ Scl;i G
�i ¼ 0: (4)

It is the Jacobi identity which leads to the definition of G�i

as well as of a second new gauge function Gijk. Besides
G�, Gij ðG�i; GijkÞ, which are quadratic (cubic) in c�, it is
possible to introduce other gauge functions Gijkl; G�ij; . . . ;
which are higher-order polynomials in c�, by using higher-
order commutators of the generators Ri

� [2]. Let us note
that in the realm of the BV formalism, the gauge algebra is
also generated by the classical master equation [1,2].

We shall mention that the known open gauge theories
(e.g., supergravity theories) are described by a gauge alge-
bra in which the set of gauge functions contains only G�,
Gij, and G�i, and all the remaining gauge functions
Gijk; GijklG�ij; . . . ; vanish. Thus, for simplicity and to
present computations leading to insight in the generaliza-
tion of the analysis in Ref. [9] (see also Ref. [6]) to open
gauge theories, we consider an open gauge algebra that is
characterized by the three nonvanishing gauge functions
G�, Gij, and G�i. In addition to Eqs. (1) and (4), new
identities need to be satisfied. The latter follow from the
higher-order gauge equations [1,2], in which we take off
the vanishing gauge functions; we find the following
nontrivial identities:

Gij
;kG

k þGij
;�G� � ð�1Þ�jfGi

;kG
kj þGi

;�G
�jg

þ ð�1Þ�jð�iþ1ÞfGj
;kG

ki þGj
;�G�ig ¼ 0; (5)

Gij
;l G

lk þGij
;�G�k þ ð�1Þ�kð�iþ�jÞfGjk

;l G
li þGjk

;�G�ig
þ ð�1Þ�jð�iþ�kÞfGki

;l G
lj þGki

;�G
�jg ¼ 0: (6)

In what follows we turn to discuss how to construct the
quantum theory of an open gauge theory characterized by a
classical BRST algebra given by Eqs. (1)–(6). It is obvious
that a Q-exact form of the gauge-fixing action cannot be
suitable to build the full invariant quantum action because
of the on-shell nilpotency of the classical BRST operator

Q. To this end, we generalize the prescription discussed in
Ref. [9] by simply modifying the classical BRST operator
Q. Accordingly, the gauge-fixing action written as in
Yang-Mills type theories must also be modified so that
the complete quantum action becomes invariant on shell.
We first introduce a gauge fermion c to implement gauge
constraints, F� ¼ 0, associated to all the invariances of the
classical action Scl; we have

c ¼ �c�F
�; (7)

where �c� represent the antighosts, which allow us as usual
to define the Stueckelberg auxiliary fields b� through the
action of Q, so that

Q �c� ¼ b�; Qb� ¼ 0: (8)

Let us note that the gauge-fixing functions F� may depend
only on the gauge fields�i, since the gauge symmetries are
considered to be irreducible.
So, at the quantum level, we define a modified BRST

operator �,

� ¼ Qþ ~Q; (9)

satisfying�2 ¼ 0, up to equations of motion, and�Sq ¼ 0,
where Sq is the quantum action. As discussed above, the
gauge-fixing action Sgf in Sq cannot be cast in the form
Sgf ¼ Qc . To rectify this we modify Sgf so that Q is

replaced by ðQþ x ~QÞ; i.e., we have
Sq ¼ Scl þ ðQþ x ~QÞc : (10)

We remark that ~Q has vanishing action on the pairs
ð �c�; b�Þ. This simply follows from Eq. (8), which says
that the nilpotency on those fields is already guaranteed.

To derive the action of ~Q on the fields�i and c�, we use the
structure of the open gauge algebra together with the
invariance of the quantum action Sq, as written in
Eq. (10), under the on-shell nilpotent quantum BRST
operator, as defined in Eq. (9).
In view of the on-shell nilpotency of the classical BRST

operatorQ, the variation of Sq under the quantum BRST �
can be written as

�Sq ¼ Scl;i ð ~Q�i � ð�1Þ�ið�jþ1Þc ;jG
jiÞ

þ ð ~QQþ xQ ~Qþ x ~Q2Þc : (11)

To guarantee the invariance of Sq under �, we note that by
choosing

~Q�i ¼ �ð�1Þ�ic ;jG
ij; (12)

the first term on the right-hand side of Eq. (11) vanishes.
Substituting Eq. (12) into Eq. (11) and using the identity
given by Eq. (5), we get
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�Sq ¼ c ;jR
j
�f ~Qc� � ð�1Þð��þ1Þð�iþ1Þc ;iG

�ig
þ ð�1Þ�jxc ;jc ;ifð�1Þ�kþ1Gji

;kc ;lG
lk

þGji
;�
~Qc�g þ ð�1Þ�ið1� 2xÞfð�1Þ��b�F�

;jc ;iG
ji

þ ð�1Þ�kc ;ic ;jc ;kG
jkGig

þ ð�1Þ�j
�
x� 1

2

�
c ;jc ;ifGji

;kG
k þGji

;�G�g: (13)

Further, we learn from Eq. (13) that by taking

~Qc� ¼ ð�1Þð��þ1Þð�iþ1Þc ;iG
�i; (14)

x ¼ 1

2
; (15)

the �-invariance of Sq is completely ensured. We remark
that the vanishing of the second term on the right-hand side
of Eq. (13) follows from the use of the identity given by
Eq. (6).

Thus, we have obtained the full quantum action Sq,

Sq ¼ Scl þ 1

2
ð�1Þ�ic ;ic ;jG

ij þ�c ; (16)

invariant under the BRST operator � determined by
Eqs. (9), (12), and (14) together with Eqs. (2), (3), and
(8), which is nilpotent on shell. In fact, after a similar
straightforward computation, we get

�2�i ¼ �Sq;jG
ij � Sq;�G�i; (17)

�2c� ¼ �Sq;iG
�i: (18)

It is remarkable that the used prescription, which simply
consists in the modification of the classical BRST operator
and of the gauge-fixing action written as in Yang–Mills
theories, provides an on-shell quantization, where in par-
ticular the quantum action contains four-ghost couplings.
The latter are characteristic for open gauge theories like
supergravity theories [3].

III. AUXILIARY FIELDS

Let us now discuss how we can introduce auxiliary
fields, as a generalization of the approach developed in
Ref. [9], so that we end up with an off-shell structure for
open gauge theories. For this purpose, we start with the
following BRST transformations:

��i ¼ Gi � ð�1Þ�i�jGij�j; (19)

�c� ¼ G� þG�i�i; (20)

��c� ¼ b�; �b� ¼ 0: (21)

These follow from those which are nilpotent on shell by
replacing c ;j by �j. Making the same replacement in

Eq. (16), we put the quantum action Sq in the form

Sq ¼ Scl þ 1

2
ð�1Þ�jGij�i�j þ�c : (22)

At this point, by assuming that the �i are now true fields of
parity (�i þ 1) and ghost number ð�1Þ, it is worth noting
that the quantum action Sq allows us to see that they are
auxiliary, nondynamical fields as their equations of motion
are constraints,

ð�1Þ�jð�iþ1ÞGijðc ;j � �jÞ ¼ 0: (23)

Indeed, the only terms of the quantum action contributing
to the equations of motion of the fields �i are

ð12 ð�1Þ�jð�iþ1ÞGij�i�jÞ and ð�ð�1Þ�jð�iþ1ÞGijc ;i�jÞ. The
last term follows from the gauge-fixing action�c by using
the transformations of Eq. (19). However, substituting
Eq. (23) into Eqs. (19)–(22), which is equivalent to replace
�i by c ;i, again we obtain the quantum action and its

on-shell BRST symmetry.
Further, we shall determine the action of the BRST

operator on these auxiliary fields, so that the BRSTalgebra
closes off shell. This is simply realized by imposing the
off-shell nilpotency condition �2 ¼ 0. So, we obtain

��i ¼ �ð�1Þ�jð�iþ1ÞGj
;i�j � ð�1Þ�iScl;i : (24)

It is easy to check the off-shell nilpotency of Eqs. (19) and
(20) by an explicit calculation. We note, in particular, that
in deriving Eq. (24), we have used the identities given by
Eqs. (5) and (6), which can be cast in the following form:

ð�1Þ�jð�iþ1Þ�j�i

�
1

2
Gij

;kG
k þ 1

2
Gij

;�G� � ð�1Þ�jGi
;kG

kj

� ð�1Þ�jGi
;�G

�j

�
¼ 0; (25)

ð�1Þ�jð�iþ1Þ�k�j�i

�
1

2
Gij

;l G
lk þ 1

2
Gij

;�G�k

�
¼ 0: (26)

Moreover, after a similar straightforward calculation, we
find that

Sinv ¼ Scl þ 1

2
ð�1Þ�jGij�i�j (27)

represents the �-invariant extension of the classical
action Scl.

IV. CASE OF D ¼ 4, N ¼ 1 SUPERGRAVITY

The physical fields content of simple supergravity [3] is
given by the vierbein ea�, and the gravitino c A

� with a ¼
1; . . . ; 4 label the flat Minkowski space, � ¼ 1; . . . ; 4
labels the curved Riemannian space, and A ¼ 1; . . . ; 4 is
related to the N ¼ 1 supersymmetry. The classical action
of the model is given by

Scl ¼ 1

2
ee

�
a e	bR

ab
�	 � 1

4
"�	
� �c ��5�	S
�; (28)
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where e¼detðea�Þ, Rab
�	¼@�!

ab
	 þ1

2ð!ad
� !b

	d�!bd
� !a

	dÞ�
ð�$	Þ is the Lorentz curvature, �5 ¼ i�0�1�2�3, S
� ¼
@
c � þ 1

2!
ab

 �abc � � ð
 $ �Þ with �ab ¼ 1

4 ½�a; �b� is
the Fermi curvature, �c 	 ¼ c T

	C, C is the charge conjuga-
tion matrix, �	 ¼ ea	�a, �a, are the Dirac matrices. One
recalls that the theory admits a vanishing torsion leading to
a nonpropagating spin connection !ab

� , which therefore

can be expressed in terms of ea� and c A
�, i.e., !

ab
� ¼

1
2 e

	b½f@	ea� � 1
4
�c 	�

ac � � ð� $ 	Þg þ ed�e

af@	e
a �

1
4
�c 	�dc 
 � ð	 $ 
Þg�; e�a is the inverse of the vierbein

defined by e�a ea	 ¼ ��
	 and e�a eb� ¼ �b

a.

The symmetries of the model are diffeomorphism
(general coordinates transformations), Lorentz rotations,
and supersymmetry. So the action (28) is invariant under
the transformation [3] (expressed à la BRST)

Qea� ¼ c	@	e
a
� þ @�c

	ea	 � cabe�b þ 1

2
�c�ac �;

Qc � ¼ c	@	c � þ @�c
	c 	 � 1

2
cab�abc � þ @�c

þ 1

2
!ab

� �abc; (29)

where c	, cab, and c are, respectively, the ghost fields
associated to local diffeomorphism, Lorentz rotations,
and supersymmetry parameters. These ghost fields are all
of ghost number þ1; c	and cab are fermionic while c is
bosonic. One can complete the action of the BRSToperator
(29) on the ghosts fields by

Qc� ¼ c	@	c
� � 1

4
�c��c;

Qcab ¼ c	@	c
ab � cadcbd þ

1

4
�c��c!ab

� ;

Qc ¼ c	@	c� 1

2
cab�abcþ 1

4
�c��cc �;

(30)

leading to the following on-shell property of the BRST
operator Q:

Q2c � ¼ �G�	

�S0
� �c 	

; (31)

Q2cab ¼ �Gab
�

�S0
� �c �

; (32)

Q2X ¼ 0 for all others fields; (33)

where the equation of motion of the gravitino reads

�S0
� �c �

¼ � 1

2e
"�	
��5�	S
�: (34)

This on-shell structure follows easily from the open
structure of the superalgebra of simple supergravity.
The nonclosure gauge functions G�	 and Gab

� can be

straightforwardly computed from Eqs. (29) and (30) and
are given by [6]

G�	 ¼ � 1

8
ð �c�acÞ

�
1

4
eb�e	b�

a � 1

2
ee
a"�	
�5�



�

� 1

8
ð �c�abcÞ

�
ea�e

b
	 þ 1

2
ec�e	c�

ab

� 1

2
e"�	
e


aeb�5

�
; (35)

Gab
� ¼ � 1

8
ð �c���

ab�5cÞ �c�5: (36)

This situation fits with the general framework presented
in Sec. II. In this context one has to point out that these
nonclosure gauge functions are related upon identities of
type (5) and (6) (see Ref. [6]). Note that in the case of
simple supergravity, the gauge functions G�	 and Gab

� can

be related linearly by the relation

Gab
� ¼ 1

2
e
ae	b �c�
G	�; (37)

which simply follows from the identity G�	�
c ¼
1
8 e"�	
ð �c�cÞ�5c. Thus, all the nonclosure gauge func-

tions and related equations can be written in terms of G�	;

for example, Eq. (5) can be recast as

QG�	 ¼ c
@
G�	 þ @�c

G
	 þ @	c


G�


� 1

2
cab½�ab; G�	� þ 1

2
�c�
c 
G�	

þ 1

2
�c�
c �G
	 þ 1

2
�c�
c 	G�
; (38)

which gives, by the way, the BRST transformation of the
gauge function G�	. This latter equation holds of shell

(without relying on the gravitino equation of motion) and
thus indicates that no higher-order gauge functions exist.
We are now able to apply the prescription presented in

Sec. III in order to introduce a suitable set of auxiliary
fields allowing the construction of an off-shell BRST
operator. We first observe that the only nonvanishing gauge
functions areGA

�	B andG
ab
�A (fermionic indices A and B are

now exhibited). Thus, the off-shell BRST operator defined
by Eqs. (19) and (20) as well as the definition of the
extended invariant action (27) allow us to introduce the
set of 16 bosonic auxiliary fields ��A of ghost number�1.
In view of the prescription introduced in Sec. III, these
auxiliary fields are related to the gravitino degrees of
freedom. No auxiliary fields related to the vierbein
(or graviton) may occur in this approach. The off-shell
BRST transformations read then

�ea� ¼ Qea�; �c A
� ¼ Qc A

� þGA
�	B�

	B; (39)
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�c� ¼Qc�; �cab ¼Qcab þGab
�A�

�A; �c¼Qc;

(40)

���A ¼ c	@	�
�A þ @�c	�

	A � 1

2
cab�A

abB�
�B

� 1

2e
"�	
�ð�5�	ÞA BS

B

�; (41)

ensuring that �2 ¼ 0 on all fields. Moreover, the extended
action

Sinv ¼ 1

2
ee

�
a e	bR

ab
�	 � 1

4
"�	
� �c ��5�	S
� � e

2
���G�	�

	

(42)

is, up to a divergence term, invariant upon the action of �.
One can also see that the fields�	 are clearly nonpropagat-
ing fields since their equations of motion are purely
algebraic, i.e., �Sinv=� ��� ¼ 0 leads to G�	�

	 ¼ 0.

V. CONCLUSION

To conclude, in the present paper, we have given a
prescription leading to the construction of an off-shell
BRST invariant quantum action for irreducible open gauge
theories [1,2] described by a gauge algebra with vanishing
higher-order gauge functions. We first obtained an on-shell
BRST invariant quantum action containing four-ghost
interaction terms typical for open gauge theories as in
supergravity theories. This follows from a gauge -fixing
action written as in Yang–Mills-type theories by modifying
the classical BRST operator . We then used a trick that
permits us to introduce auxiliary fields through the varia-
tion of the gauge-fixing fermion with respect to the gauge
fields, as turned out to be possible in BF theory [9]. Thus,
we arrived at a closed BRST algebra together with an

off-shell invariant full quantum action in which, particu-
larly, the invariant extension of the classical action arose
from the quartic ghost interaction terms.
As an application we show what our proposed construc-

tion gives in the case of simple supergravity. The main
result is that an off-shell realization can be achieved upon
the introduction of 16 auxiliary bosonic spinor variables of
ghost number �1. However, it is worthwhile to mention
that the obtained set of auxiliary fields are nonclassical
fields, not only in the sense that they are of nonzero ghost
number but also because they do not balance the bosonic
and fermionic degrees of freedom of shell. Indeed, with 16
bosonic auxiliary fields ��A, one ends up at the off-shell
level with 10 extra bosonic degrees of freedom of ghost
number �1, while, as usual, the bosonic and fermionic
degrees of freedom balance on shell. This can be compared
with the already-known off-shell formulations of simple
supergravity, which are, namely, minimal, new minimal,
and non minimal (for a review, see Ref. [11]). Even if these
formulations differ in their auxiliary fields structures, the
total number of fermionic and bosonic degrees of freedom
balances at both on-shell and off-shell levels. One may
note that it is conceivable that the auxiliary fields intro-
duced in this paper may be turned into a set of ‘‘classical’’
zero ghost bosonic fields by taking advantage of a kind of
twist redefinition [12]; see also Ref. [13] and references
therein. This kind of technique is (for instance) used in the
context of superstring theory, where auxiliary bosonic
spinor variables can be treated as ghosts (or antighosts)
in the frame of the pure spinor approach by N. Berkovits;
see, e.g., Ref. [14] and references therein. If such an
approach might work, one should find some relations
between the obtained auxiliary fields in order to reduce
them to the usual auxiliary fields sets of the known off-
shell formulations of simple supergravity. Such a construc-
tion will be analyzed in details elsewhere.
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