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We derive the scaling dimension of antisymmetric tensor operators in the boundary theory of the AdS/

CFT correspondence using a functional integral representation of the boundary-to-boundary propagators

of their dual fields in the bulk. We then apply this technique to AdS/QCD in which the bulk metric is

warped, resulting in nonconstant scaling dimensions. In particular, we compute the two-point correlation

function of gluon field strength operators, for which it is prerequisite to know the flow of the anomalous

scaling dimension under rescaling. The results are in very good agreement with quenched lattice QCD

data, thus confirming the functional form of the scaling dimension.
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In this paper, we treat two closely related problems.
First we extend the formula for the scaling dimension of
boundary operators known from gauge/gravity dualities
between scale invariant theories to a specific correspon-
dence between theories without scale invariance. More
precisely, we work with the extension of AdS/CFT to
AdS/QCD, which has a warped background that breaks
conformality, and give an anomalous dimension to the field
strength operators. Then as an application we compute the
two-point function of the gluon field strength operator
which we compare with results from quenched lattice
QCD. We find that the AdS/QCD result is in very good
agreement with lattice calculation.

We begin by establishing our technique in the familiar
setting of the AdS/CFT correspondence between N ¼ 4
supersymmetric Yang-Mills theory in four dimensions and
supergravity on the background AdS5 � S5 [1–3]. This
duality has opened up a new venue for probing strongly
coupled behavior of quantum field theories. The appear-
ance of other correspondences relating gauge theories
without supersymmetry or conformal symmetry to gravity
duals has given hope that there could be a gravitational
theory dual to QCD which describes its low energy,
nonperturbative regime. Some approaches to find such a
dual QCD begin, as in the AdS/CFT correspondence itself,
with a string theory in a background configuration of
branes [4–8]. Others instead posit a gravitational back-
ground assumed to encapsulate the scaling behavior of
QCD in an approach to low energy QCD known as AdS/
QCD [9–16]. Its validity is tested by comparison with
experiments or other calculations such as lattice QCD. In
this paper, it is the framework we shall adopt. One short-
coming of this approach is that it does not address the
dynamical origin of the backgrounds considered. We over-
look this issue and take the background as given.

One of the earliest results of the AdS/CFT correspon-
dence was a computation of the scaling dimensions of

boundary operators [2,3]. This was achieved by computing
the Green functions of bulk fields dual to the operators.
We repeat the process here but use a functional integral
expression of the propagator because this technique proves
to be the most useful later on in the warped background of
AdS/QCD.We focus on R-symmetry singlet operators in the
boundary theory so we may ignore the S5 dimensions in the
bulk spacetime. Furthermore, we generalize slightly to a
d-dimensional boundary theory, so that the dual gravitational
theory has AdSdþ1 background geometry. We use coordi-
nates in which the background metric takes the form

ds2 ¼ gmndx
mdxn ¼ R2

z2
ðdz2 þ ���dx

�dx�Þ (1)

and introduce the vielbein vm
a ¼ ðR=zÞ�m

a. Note that we
have Euclideanized the metric. Throughout the paper, Greek
indices denote all directions except the radial direction z, and
lower case indices from the early alphabet label directions
in the orthonormal frame.
A (d� p)-form operator on the boundary is dual to a

p-form field ’ðpÞ in the bulk with action

S ¼ 1

2

Z
’ðpÞ

A ðxÞðhðpÞ
x þm2ÞAB’ðpÞ

B ðxÞ
ffiffiffiffiffiffiffiffiffi
gðxÞ

q
ddþ1x; (2)

whereh
ðpÞ
x denotes the Hodge Laplacian on a p-form field.

We are interested in the Green function of the differential
operator in Eq. (2) on the background of Eq. (1). That is,
we seek the solution to

ðhðpÞ
x þm2ÞABGðpÞ

BCðx;yÞ¼gðxÞ�1=2�AC�
ðdþ1Þðx;yÞ; (3)

where A, B and C are indices appropriate for a p-form

representation and �ðdþ1Þðx; yÞ is the Dirac � function on
the curved space. Weitzenböck identities relate the Hodge
Laplacian on p-forms to the componentwise application of
the standard Laplace-Beltrami operator (scalar Laplacian)
plus curvature terms [17]. Due to the maximal symmetry of
the AdS background only the Ricci scalar curvature R*jwp14@phy.duke.edu
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appears. Its coefficient reflects the dimension of the
space and the degree of the form field. More specifically,
Eq. (3) becomes

�
hx þm2 þ pðdþ 1� pÞ

dðdþ 1Þ RðxÞ
�
GðpÞ

ABðx; yÞ
¼ gðxÞ�1=2�AB�

ðdþ1Þðx; yÞ; (4)

where hx is now the scalar Laplacian acting on the compo-
nents of theGreen function [18–20].Absent backgroundfields

which designate special directions to reference, the Green
function has a tensor decomposition which must respect the
isometries of the Euclidean AdS background. The general
result is given in Refs. [19,20], but in the limit that both x
and y sit near the conformal boundary it reduces to

GðpÞ
ABðx; yÞ ¼ �ABG

ðpÞðx; yÞ þ ðboundary termÞ; (5)

where the function GðpÞðx; yÞ satisfies

�
hx þm2 þ pðd� pÞ

dðdþ 1Þ RðxÞ
�
GðpÞðx; yÞ ¼ gðxÞ�1=2�ðdþ1Þðx; yÞ: (6)

The boundary terms in Eq. (5) are total divergences and
serve to adjust the boundary conditions of the Green func-
tion at infinity but will not affect our analysis.

In Refs. [19,20], computation of GðpÞðx; yÞ hinged on
the ability to solve the relevant differential equations
directly, which is not possible in the deformed back-
ground we will consider later. Instead, a general tech-
nique to solve differential equations is to use functional
integrals to invert the differential operator thereby pro-
viding a formal solution. We will employ this approach
and then make the functional integral tractable using a
saddle point approximation, or equivalently the small

noise, adiabatic or WKB approximation [21–23]. This
approximation is exact in the AdSdþ1 background be-
cause it is homogenous and isotropic. The approximation
will be good but not exact in the warped, asymptotically
AdSdþ1 background considered later. Path integral solu-
tions are most often seen in physics as solutions of the
Schrödinger equation, but the technique is also applicable
in a classical setting such as the bulk field theory con-
sidered in this paper. We use a Feynman-Schwinger
representation of the Green function, which expresses
the dynamics of the one-particle sector of a field theory
in terms of the particle’s worldline [21,22,24]:

GðpÞðx; yÞ ¼
Z Zð1Þ¼x

Zð0Þ¼y
½dZð�Þdeð�Þ� exp

�
� 1

2

Z 1

0
½e�1 _Za _Zb�abðZÞ þ eðm2 � �d;pRÞ�d�

�
: (7)

Here Zð�Þ is a parametrization of the path followed by the
particle, e is an einbein field transforming under repara-
metrization of the worldline as e0dZ0 ¼ edZ, and R is the
Ricci scalar curvature of the background.

Whether it is used for a classical or quantum system, one
must pick a discretization scheme of a functional integral
to define it [25]. In a curved background different schemes
give rise to different couplings �d;p to the curvature.

However the midpoint scheme uniquely possesses covari-
ance under general coordinate transformation [26,27]. We
demand coordinate invariance and therefore choose the
midpoint scheme. We add to the (Euclideanized) path
integral action the curvature coupling it induces [28,29],

�S ¼ � 1

2

Z 1

0

ðd=2Þ2
dðdþ 1ÞRed�: (8)

The specific form of this extra term is appropriate for
the saddle point approximation and moves the metric
dependence from the path integral measure up into the
action [29,30]. Equation (8) combines with the curvature
term from Eq. (4) to determine

�d;p ¼ �pðd� pÞ
dðdþ 1Þ þ

ðd=2Þ2
dðdþ 1Þ ¼

1

dðdþ 1Þ
�
d

2
� p

�
2
:

(9)

To compute Eq. (7) we make the small fluctuation
approximation by expanding Eq. (7) around the path Z0

with minimum action Sð0Þw and treating the fluctuations only
to quadratic order [23]. To do this, first the particle’s
trajectory is decomposed as

Zað�Þ ¼ Za
0ð�Þ þ �að�Þ; (10)

imposing the orthogonality constraint �ab
_Za
0ð�Þ�bð�Þ ¼ 0

for all �. This means �ð�Þ has d fluctuating degrees of
freedom. Next we rewrite Eq. (7) in terms of the fluctuation
�að�Þ and truncate the action to quadratic order. The zeroth
order term is the minimum action

Sð0Þw ðx; yjsÞ ¼ �ðx; yÞ2
2s

þ s

2
ðm2 � �d;pRÞ; (11)

where �ðx; yÞ is the proper distance of Z0ðx; yÞ and
s ¼ R

1
0 eð�Þd�. The term linear in �a vanishes by construc-

tion. The quadratic term captures the effects of fluctuations
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around the geodesic. This term must be kept as the
path integral is dominated by paths with finite quadratic
variation. That is

DVMðx; yjsÞ1=2

¼
Z �ð1Þ¼0

�ð0Þ¼0
½d�ð�Þ� exp

�
1

2s

Z 1

0
�að�ab@

2
� þMabÞ�bd�

�
(12)

¼ 1

ð2�sÞðdþ1Þ=2

�
Det det 0ð��ab@

2
� �MabÞ

Det det 0ð��ab@
2
�Þ

��1=2
(13)

where the Riemann curvature tensor Rabcd is used to
define

Mab ¼ Racbd
_Zc
0
_Zd
0 : (14)

Here Det is the functional determinant. There is a zero
mode of the worldline action stemming from reparametri-
zation invariance. It contributes to the prefactor in Eq. (13).
But we must regulate the functional determinants to
exclude it, which we do by defining det 0 to be the deter-
minant only over the subspace orthogonal to Za

0 . We

recognize the action for the fluctuation field �a as the
geodesic deviation equation, also called the orthogonal
Jacobi equation. Higher orders of this equation correspond
to the generalized Jacobi equation [31,32], and are
proportional to derivatives of certain components of the
curvature tensor, up to boundary terms in the action. In
the case of the unwarped AdS background the higher-order
terms vanish identically. In the warped case considered
later, the higher-order terms vanish asymptotically for large
and small separation of the end points and stay much
smaller than the quadratic terms for intermediate distances.
For consistency of notation with much of the literature, we
have written the fluctuation determinant in terms of
DVMðx; yjsÞ, the Van Vleck–Morette determinant whose
square root is the fluctuation determinant [22,23,33].

Notice that both Eq. (11) and (13) depend on eð�Þ only
via the modulus s ¼ R

1
0 ed�. After fixing to the gauge

eð�Þ ¼ s, the functional integral over the einbein reduces
to a Riemann integral over s:

GðpÞðx; yÞ ¼
Z 1

0
dsDVMðx; yjsÞ1=2 exp ð�Sð0Þw ðx; yjsÞÞ:

(15)

The AdSdþ1 metric of Eq. (1) has Riemann curvature
tensor

Rabcd ¼ � 1

R2
ð�ac�bd � �ad�bcÞ: (16)

If � is an affine parameter then the tangent vector _Za
0ð�Þ has

constant length

�ab
_Za
0ð�Þ _Zb

0ð�Þ ¼ �ðx; yÞ2: (17)

Using this fact and �ab
_Za
0ð�Þ�bð�Þ ¼ 0, we find

Mab ¼ ��ab�ðx; yÞ2=R2: (18)

We substitute Eq. (18) into Eq. (13) and use the fact that the
differential operator is proportional to �ab to write�

Det det 0ð��ab@
2
� � �ab�ðx; yÞ2=R2Þ

Det det 0ð��ab@
2
�Þ

�

¼
�
Detð�@2� � �ðx; yÞ2=R2Þ

Detð�@2�Þ
�
d
: (19)

This step is the assertion that any sensible regularization of
the functional determinant respects the degeneracy of
eigenvalues resulting from the d identical copies of the
second-order differential operator induced by the det 0 on
the left-hand side. A proof of this fact using zeta regulari-
zation is given in Ref. [34]. There are numerous ways to
compute the ratio of the functional determinants of these
second-order differential operators. We use the Gel’fand-
Yaglom theorem [35,36] because this technique is useful
later. This theorem states that the normalized determinant
of an operator�@2� � Vð�Þ acting on the space of functions
supported on the interval � 2 ½0; 1� with vanishing bound-
ary values is

Detð�@2� � Vð�ÞÞ
Detð�@2�Þ

¼ uð1Þ�1; (20)

where

ð@2� þ Vð�ÞÞuð�Þ ¼ 0 (21)

with boundary conditions uð0Þ ¼ 0 and _uð0Þ ¼ 1. For a
constant V ¼ ��ðx; yÞ2=R2 it follows immediately that

DVMðx;yjsÞ1=2¼ 1

ð2�sÞðdþ1Þ=2

�
�ðx;yÞ=R

sinhð�ðx;yÞ=RÞ
�
d=2

: (22)

Using Eqs. (11) and (13) in Eq. (15) shows that the
saddle point approximation to the Green function takes
the form

GðpÞðx;yÞ¼N Kðd�1Þ=2
�
�ðx;yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2��d;pR

q �

�
�

�ðx;yÞ=R
sinhð�ðx;yÞ=RÞ

�
d=2

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2��d;pR

q
�ðx;yÞ

1
CA

ðd�1Þ=2

:

(23)

N is a normalization factor and Kðd�1Þ=2 is a modified

Bessel function. Since we are computing the boundary-to-
boundary propagator, put x ¼ ðx�; "Þ and y ¼ ðy�; "Þ, for
" positive but infinitesimal. The geodesic distance is

�ðx; yÞ ¼ R ln
jx� � y�j2

"2
þOð"Þ: (24)

As " tends to 0, �ðx; yÞ diverges and the sinh function and
the Bessel function in Eq. (23) approach their asymptotic
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forms: sinh x � ex=2 and Kðd�1Þ=2ðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffi
�=2x

p
e�x for

any d. The asymptotic limits of the factors combine to
eliminate dependence on �ðx; yÞ everywhere except in the
exponent. We regularize �ðx; yÞ at both end points with
some mass scale � by setting �ðx; yÞ ¼ �regðx; yÞ �
2R ln ð�"Þ and absorbing the divergent term into the nor-

malization, N ! ~N ð�Þ. The resulting Green function is

GðpÞ
regðx; yÞ ¼ ~N exp ð���regðx; yÞ=RÞ ¼

~N

jx� � y�j2� ;

(25)

with exponent

� ¼ d

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmRÞ2 � �d;pR

2R
q

: (26)

The first term on the right comes from the fluctuation
determinant and the second term comes from the minimum
action. After substituting R ¼ �dðdþ 1Þ=R2 and

�d;p ¼ 1

dðdþ 1Þ
�
d

2
� p

�
2

(27)

into Eq. (26), we recover the familiar scaling dimension
formula of AdS/CFT [2,3].

In Ref. [37] the Green function of a bulk field is also
computed. The author notes that the particle worldline
representation of the propagator in AdS behaves as though
�=R appears in place of the mass m in the original field
action. Here, we have shown that a path integral computa-
tion of the two-point function can generate the needed
terms to convert m in the field Lagrangian into the correct
expression for �=R in the worldline representation. The
path integral technique frees us from the need to solve the
Green function’s differential equation by inspection and
allows us to work in more complicated backgrounds.

References [38] provide a treatment of general
two-point functions in modified, asymptotically AdS back-
grounds using a generalized Hamiltonian approach.
A prescription for generating renormalized bulk actions
is presented. Much of the analysis involves effects from a
dynamical background geometry. In this paper, the geome-
try is taken to be static, thereby greatly simplifying the
situation. Further simplifications in the present paper arise
from restricting focus to the single particle sector of the
bulk theory.

We now apply the path integral approach to compute the
field strength two-point function in AdS/QCD. The tech-
nique is largely the same but we must introduce two
changes to compare our results with the lattice. First we
note that Yang-Mills field strength operators are not gauge
invariant. In order to have a gauge invariant operator, we
introduce aWilson loop with a gauge transformation which
cancels that of the field strength operators. Thus the first
change we make is to add extended rather than only point-
like operator insertions in the boundary gauge theory. The
loop current on a closed contour C ¼ fcð	Þ: 	 2 ½0; 1�g is

j
�
C ðxÞ ¼

Z 1

0
_c�ð	Þ�ðdÞðx� cð	ÞÞd	: (28)

The current enters the functional integral via the factor
exp ð�Sint½A; j�Þ ¼ exp ð�R

A � jdxÞ, the standard mini-
mal coupling of a conserved current to a vector gauge field.
In non-Abelian theories, the exponential is understood
to be path ordered. We use a shorthand notation for
the expectation value of a Wilson loop on C dressed by
inserting operator O:

hhOiiC ¼ N�1
c

Z
½dA�e�SYM trP

�
O exp

�
�
I
C
AðxÞ � dx

��
:

(29)

The trace is over gauge indices and P denotes path order-
ing. We note that

Z½jC� ¼ hh1iiC; (30)

that is, the Wilson loop with no additional operator inser-
tions is precisely the generating functional Z½jC�. Rewrite
hh1iiC using the non-Abelian Stokes’ theorem:

hh1iiC ¼
Z
½dA�e�SYMP exp

�
�
I
C
A � dx

�

¼
Z
½dA�e�SYMP exp

�
�
I
S
F � d2a

�
: (31)

Here S is a surface with boundary C and differential area
2-form d2a��. In lattice QCD, the last expression of
Eq. (31) is discretized and computed numerically. The
functional integral over different configurations of the
gauge field corresponds to a sum over states with different
plaquettes contributing to the action. The contributing
plaquettes combine to form the surface S. In the strong
coupling limit, the minimal area surface dominates the
integral [39]. This picture will be connected with the
dual theory.
The normalized two-point function of field strength

operators connected by the Wilson loop along C is

GðFFÞ
��
�ðx; yjCÞ ¼ hhF��ðxÞF
�ðyÞiiC=hh1iiC: (32)

Gauge invariance requires that the points x and y must lie
on C. To compute hhFFiiC in Eq. (32) we note that the
insertion of F�� at a point along C can be achieved by

taking the area derivative of the contour at this point
[40,41]. We modify the contour C by adding an infinitesi-
mal loop �c��ðxÞ at point x which spans the directions �
and �. Doing so induces a change in the loop current
operator to jC þ �jCðxÞ and a corresponding shift in the
partition function:

hh1iiCþ�C¼Z½jCþ�jCðxÞ��hh1��c��ðxÞF��ðxÞiiC: (33)

We extract the second term on the right using a loop or area
derivative,
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hhF��ðxÞiiC ¼ �Z½jC�
�c��ðxÞ : (34)

Two area derivatives insert two field strength operators:

hhF��ðxÞF
�ðyÞiiC ¼ �2Z½jC�
�c��ðxÞ�c
�ðyÞ : (35)

On the lattice, an area derivative amounts to adding an
extra plaquette to the contour C.

We now compute hh1iiC and hhFFiiC using the standard
treatment of Wilson loops in the AdS/CFT and then the
AdS/QCD correspondence. In the dual in the bulk theory of
a Wilson loop on the boundary is a classical Nambu-Goto
string ending on C [42]:

hh1iiC ¼ min
XC

exp ð�SNG½XC�Þ; (36)

where the Nambu-Goto action is given by

SNG½X� ¼ 1

2��0
Z

d2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det
�;


gmnðXÞ@�Xm@
X
n

r
(37)

and the minimum is over all world sheets XC with boundary
fixed to be C.

We return briefly to the gauge theory on the boundary.
The second area derivative of Z½jC� is the two-point func-
tion of the field strength in the gauge field background with
source supported along the contour C. The correlation of
adjoint operators along the Wilson loop is realized in a
lattice discretization of the gauge theory as coincident
fundamental and antifundamental parallel transporters
[43,44]. The antifundamental parallel transporter com-
pletes one half of the line current jC and the fundamental
parallel transporter completes the other half, as shown in
Fig. 1. The propagator of the field strength operator should
be thought of as a feature of the surface of the Wilson loop.
This picture describes the gauge invariant propagation of a
gauge noninvariant quantity such as the field strength. The
corresponding picture in the bulk theory is that the propa-
gator of the dual of the field strength operators may not
propagate just anywhere in the bulk but must have a world-
line lying within the world sheet of the Nambu-Goto string
dual to the Wilson loop. That is, we look at the second-
order response of the Nambu-Goto action to two wrinkles
along its boundary inserted at the location of the field
strength operators. This is described as the propagation

of the gauge noninvariant field within the Nambu-Goto
world sheet [45].
As an example of computing a boundary field strength

correlator using AdS/CFT, Ref. [46] computes the second
area derivative of a straight, infinite Wilson line, with the
result

hhF��ðxÞF
�ðyÞiiC / 1=jx� yj4; (38)

as expected. Similarly, Ref. [47] treats the insertion along a
circular Wilson loop of composite operators constructed
from the scalar superpartner of the gauge field. Both
Refs. [46,47] present the picture of a defect propagating
along the world sheet appropriate to their respective
geometries. Owing to the symmetry of the background
and geometries used in those references, their results
follow readily using the techniques laid out here.
In Eq. (32), the Nambu-Goto action cancels out of the

normalized two-point function, because

hhF��ðxÞF
�ðyÞiiC ¼ exp ð�SNG½XðCÞ� � Sð0Þw ðx; yÞÞ (39)

and

hh1iiC ¼ exp ð�SNG½XðCÞ�Þ: (40)

Nevertheless the Nambu-Goto action still determines the
geometry of the minimal action configuration. The back-
reaction of the defect on the string geometry would modify
the string’s geometry too. For the calculations in this paper,
this effect is small because the geometry of the string on its
own and the geometry of the particle on its own can be
computed and seen to lie close to each other.
Our second change compared to the earlier AdS/CFT

computations is to warp the background metric in order to
impart confining behavior to the boundary gauge theory.
We use the asymptotically Euclidean AdSdþ1 ‘‘metric
wall’’ background of Ref. [12]:

ds2 ¼ gmndx
mdxn ¼ e4�

2z2 R
2

z2
ðdz2 þ ���dx

�dx�Þ; (41)

and orthonormal frame fields vm
a ¼ ðR=zÞe2�2z2�m

a. In
Ref. [48], this background is compared with alternative
metrics in its ability to compute rectangular Wilson loops,
and is shown to provide the best agreement with lattice
computations of the same. As in Refs. [12,48], we deter-
mine our parameters by reproducing lattice results for the
Cornell potential between a heavy quark-antiquark pair
modeled as a rectangular line current. Doing so yields
� � 330 MeV and the dimensionless string tension
	 ¼ R2=2��0 � 0:1836.
To decide which Wilson loop to use in our calculations,

we consider our benchmark, the lattice computations of
Ref. [49] in which the field strength correlator is actually
computed as a weighted sum over the results obtained with
different Wilson loop contours. So in fact there is no single
contour C which should exactly reproduce the lattice data.
However, the behavior of a particle propagating within a

FIG. 1. Two possible contours C. The contour on the right is
the one used in our computations.
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world sheet will be nearly identical for all choices with
geometries both much shorter than and much larger than
the confinement scale in extent. Slight differences would
be allowed in the intermediate region but will not signifi-
cantly affect the calculation. So we choose the contour for
convenience of calculation. Two possible contours are
shown in Fig. 1, and we use the one on the right. We also
take x and y to be separated only in the time direction t by a
boundary distance of jx� � y�j ¼ r. The profile is trans-
lationally invariant in some boundary direction perpen-
dicular to t. When parametrized by the time coordinate t,
the radial coordinate Zz

0ðtÞ of the minimum action path

satisfies [12]

e4�
2Zz

0
ðtÞ2

Zz
0ðtÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _Zz

0ðtÞ2
q ¼ e4�

2z2m

z2m
; (42)

where zm is the maximum value the string’s profile
assumes, and is determined implicitly by

r=2 ¼
Z zm

0
dz

�
z4m
z4

e8�
2ðz2m�z2Þ � 1

��1=2
: (43)

For r � ��1, zm � z� ¼ ð2�Þ�1. That is, over long
distances the world sheet sits at the radial coordinate

which minimizes e4�
2z2=z2, which we call z�. An increase

in r serves only to lengthen this portion of the world sheet,
giving rise to linear behavior in the boundary theory’s
heavy quark potential. Such behavior is common to all
choices of contour C, with differences lying only in minor
details of the exact profile. For r � ��1, a change in r
results in a new profile which is just a rescaled version of
the old profile, due to asymptotic conformality near the
boundary z ¼ 0. The shape of this profile is shown for
several values of r in Fig. 2. The particle’s minimum action
now has a position-dependent coupling to the curvature:

Sð0Þw ðx; yjsÞ ¼ �ðx; yÞ2
2s

þ s

2

Z 1

0
ðm2 � �d;pRðZ0ð�ÞÞÞd�:

(44)

The field strength operator is a 2-form, so for d ¼ 4 there is
a simplification because �4;2 ¼ 0. Moreover, its bulk mass

m vanishes. This can be determined in the near boundary
region, where the standard AdS/CFT scaling dimension
formula Eq. (26) holds. In this regime, � ¼ 2 and so we
find m ¼ 0. As m is not a function of position, it therefore
vanishes everywhere. But even if we set m to zero, a term
just like it will be inserted as an infrared regulator in
Eq. (15). The regulator must be kept until after we take
the large �ðx; yÞ limit of Eq. (44), after which it is absorbed
into the normalization. After taking these steps, we find

exp ð�Sð0Þw ½Z0�Þ ! ~N �ðx; yÞ�d=2: (45)

DVMðx; yÞ1=2 was expressed using the determinant of the
operator �ab@

2
� þMab in Eq. (13). Unlike before, the

curvature is no longer homogeneous and isotropic so that
Mab is no longer �ab times a constant as it is in Eq. (18).
However, for r � ��1 the path lies in the asymptotically
conformal region and Mab will be well approximated
by Eq. (18). Furthermore, for r � ��1 we will see that
Mzz � �2e�1�ðx; yÞ2=R2 and all other components will
be small along the majority of the path. The variation of
Mab with � in the intermediate region is slow so we expand
in ð@2�Þ�1Mab using the identity det ð1þ "Þ ¼ 1þ tr"þ
Oð"2Þ, to write

det 0ð��ab@
2
��MabÞ¼ ð�@2�Þd�ð�@2�Þd�1 trMþOðM2Þ

¼ ð�@2��d�1 trMÞdþOðM2Þ: (46)

The rest of the calculation proceeds as before. One could
solve the differential equation of the Gel’fand-Yaglom
theorem numerically but the slow variation of trM allows
us to write

DVMðx; yjsÞ1=2

� 1

ð2�sÞðdþ1Þ=2

 
sinh ðR1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�d�1 trMð�Þp
d�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�d�1 trMð0Þp

!�d=2

:

(47)

Following Eq. (17), define for the affine parametrization
path Z0 the normalized tangent t̂að�Þ ¼ _Za

0ð�Þ=�ðx; yÞ.
Then introduce for notational convenience,

cos �ð�Þ ¼ t̂xð�Þ and sin �ð�Þ ¼ t̂zð�Þ: (48)

The Riemann tensor of the metric in Eq. (41) has compo-
nents, in the orthonormal frame basis, given by

Rabcd¼� 1

R2
e�4�2z2ð1�4�2z2Þ2ð�ac�bd��ad�bcÞ;

ða;b;c;d� zÞ
Razbz¼� 1

R2
e�4�2z2ð1þ4�2z2Þ�ab; ða;b� zÞ (49)

with all others vanishing except those related by symme-
tries of the Riemann tensor to the components above.
We find

�0.5 0.0 0.5
x fm

0.25

z fm

FIG. 2. String profiles with various values of r.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d�1 trMðZ0ð�ÞÞ

q
¼�ðx;yÞ

R
e�2�2Zz

0
ð�Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�d�1Þ½cos2�ð�Þð1�4�2Zz

0ð�Þ2Þ2þsin2�ð�Þð1þ4�2Zz
0ð�Þ2Þ�þd�1ð1þ4�2Zz

0ð�Þ2Þ
q

: (50)

As x and y approach the boundary, the Green function in
Eq. (47) assumes its asymptotic form

GðFFÞ
reg ðx; yjCÞ ¼ ~N exp ð�� � �regðx; yÞ=RÞ; (51)

where � is defined by

�ðZ0ð�ÞÞ ¼ R
d

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d�1 trMðZ0ð�ÞÞ

q
(52)

and

�reg ��=R ¼ �regðx; yÞ
R

Z 1

0
�ðZ0ð�ÞÞd�: (53)

Using an affine parameter in the expressions above allowed
the factorization of the distance �ðx; yÞ out of the integral
in Eq. (53). For a generic parameter � of Z0,

�reg ��=R ¼ 1

R

Z �y�"

�xþ"
�ðZ0ð�ÞÞ k _Z0ð�Þ k d�; (54)

where k _Z0ð�Þ k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ab

_Za
0ð�Þ _Zb

0ð�Þ
q

, Z0ð�xÞ ¼ x and

Z0ð�yÞ ¼ y. We will perform calculations using the

t-coordinate parametrization of the contour shown on the
right in Fig. 1, meaning we use Z0 given in Eq. (42), for
which

�reg � �=R ¼
Z r=2�"

�r=2þ"
�ðZ0ðtÞÞ e

2�2Zz
0
ðtÞ2

Zz
0ðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _Zz

0ðtÞ2
q

dt

(55)

and

cos 2�ðtÞ ¼ 1

1þ _Zz
0ðtÞ2

¼ ðZz
0ðtÞ=zmÞ4 exp ð8�2z2m � 8�2Zz

0ðtÞ2Þ: (56)

We can now compare the accuracy of the AdS/QCD
calculations with lattice results. For a 2-form, the index
A ¼ ½��� is a pair of antisymmetrized vector indices. By
computing the term proportional to

�½���½
�� ¼ ��
��� � �����
; (57)

we are comparing to the quantity called D?ðx; yÞ in
Ref. [49]. Our expression of this quantity comes from

0.0 0.2 0.4 0.6 0.8 1.0
r fm

Log10 GFF r

7

8

9

10

11

FIG. 3. Boundary-to-boundary field strength correlator with the correct � (solid) from Eq. (52) contrasted with the incorrect �
(dashed) of Eq. (64), and � ¼ 2 held constant (dotted). Lattice data was taken from Ref. [49] and error bars from Ref. [50].
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combining Eqs. (50)–(52) and (55) and setting d ¼ 4.
Figure 3 shows the result plotted against the lattice data
[49,50]. Owing to the existence of a background, other
tensor structures are possible and given in that Ref. [51].
The solid curves show the propagator Eq. (51). At
small r, the asymptotically conformal behavior dictates
GðrÞ / 1=r2�UV , where �UV ¼ �ðz ! 0Þ ¼ 2 for the
field strength operator. The dotted curve in Fig. 3 shows
the propagator computed with the scaling dimension
fixed everywhere at the ultraviolet value �UV. The
normalizations of the dashed and dotted curves were
set to agree with the lattice data in the small r limit,
where the universal 1=r2�UV behavior must hold. For the
solid curve, the normalization is determined by minimiz-
ing the �2 value of the fit. The end result gives
�2=d:o:f: � 3:07.

For large r, exponential behavior results from saturating
the zm � z� bound:

GðFFÞðx; yÞ / exp ð�jx� yj=�glÞ; (58)

where the gluonic correlation length is

�gl ¼ R

�
�ðz�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðz�Þ

q ��1 ¼ ð2 ffiffiffi
2

p
�Þ�1: (59)

Substituting � � 330 MeV, we find that

�gl � 0:21 fm: (60)

Our result is in good agreement with the lattice results of
Ref. [49], which indicate �gl � 0:22 fm. Reference [52]

has � � 0:11–0:13 fm, different roughly by a factor of 2.
But one of the same authors later computes the effective
mass of the field strength propagator at long distances
to be around 887 MeV [53]. This quantity is the reciprocal
of the correlation length, implying that �gl � 0:225 fm.

Reference [54] computes excited Wilson loop potentials
and indicates a similar value for the effective mass of the
lightest excitation in its data.

As a final note, we address a technical point. When using
a generalized proper time regularization of multidimen-
sional path integrals, one must keep in mind that the
regularization of functional determinants does not
commute with taking the determinant over finite indices
[55–57]. We have ordered the functional and algebraic
determinants as shown in Eq. (19). Some authors [55,58]
claim either explicitly or implicitly that it is correct to take
the functional determinant of �ab@

2
� þMab before taking

the determinant over finite indices, i.e., computing�
det 0Detð��ab@

2
� �MabÞ

det 0Detð��ab@
2
�Þ

��1=2
: (61)

To evaluate Eq. (61), one can use a multidimensional
Gel’fand-Yaglom theorem [55],

det 0Detð��ab@
2
� �MabÞ

det 0Detð��ab@
2
�Þ

¼ detAð1Þ�1 (62)

where Aa
bð�Þ solves

ð�ab@
2
� þMabÞAb

cð�Þ ¼ 0 (63)

with boundary conditions Aa
bð0Þ ¼ 0 and _Aa

bð0Þ ¼ �a
b.

We will not pursue the details, but using a WKB approxi-
mation of this differential equation results in a propagator
of the form in Eq. (51) except with

� ¼ 1

2
R tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�MðZ0Þ

q
(64)

instead of Eq. (52). Reference [57] shows that the order
used in the present paper is the correct order. Furthermore,
we see Eq. (64) does not give a propagator in good
agreement with the lattice data. Its use results in the dashed
curve of Fig. 3.
In this paper, we have addressed two closely related

problems. We set out to compute the two-point function
of the gluon field strength operator known from quenched
lattice QCD computation. To perform this calculation, we
first had to gain an understanding of the origin of the
scaling dimension formula known from AdS/CFT. From
there, we learn how to extend the scaling dimension for-
mula of AdS/CFT to warped backgrounds. By restricting
our attention to only one correlator, namely the field
strength two-point function, with end points taken not to
coincide, we avoid the need for contact terms. The results
presented here should open up a number of lines of further
inquiry, including how to treat higher-order correlation
functions or correlation functions of more complicated
operators, or relaxing the approximations contained in
this paper.
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