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The starting point of any general relativistic numerical simulation is a solution of the Hamiltonian and

momentum constraints that (ideally) represents an astrophysically realistic scenario. We present a new

method to produce initial data sets for binary neutron stars with arbitrary spins and orbital eccentricities.

The method only provides approximate solutions to the constraints. However, we show that the

corresponding constraint violations subside after a few orbits, becoming comparable to those found in

evolutions of standard conformally flat, helically symmetric binary initial data. We evolve in time data sets

corresponding to binaries with spins aligned, zero, and antialigned with the orbital angular momentum.

These simulations show the orbital ‘‘hang-up’’ effect previously seen in binary black holes. Additionally,

they show orbital eccentricities that can be up to 1 order of magnitude smaller than those found in helically

symmetric initial sets evolutions.
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I. INTRODUCTION

Binary neutron stars (BNS) are currently some of the
most studied objects in astrophysics due to their potential
as engines for short gamma-ray bursts [1,2] and as gener-
ators of detectable gravitational waves (GW) [3]. Recent
detection rate estimations for the advanced interferometric
detectors are in the range of 0.4–400 BNS events per year
[4], making the observation of GW from BNS very likely
in the next few years. However, given the complex nature
of neutron stars (NS), a numerical modeling of the last few
orbits and the merger of such binaries is essential for the
interpretation of the corresponding GW signatures.

Every numerical simulation has a starting point that is,
essentially, a snapshot of all the fields (gravitational,
hydrodynamical, electromagnetic, etc.) at a given time.
Depending on the characteristics of the modeling formal-
ism, these fields can either be freely specified or con-
strained by a set of conditions. Numerical simulations in
general relativity that are based on ‘‘3þ 1’’-type formal-
isms are of the latter kind: the fields have to be solutions of
the Hamiltonian and momentum constraints to be consis-
tent with the full set of the Einstein field equations [5]. The
Hamiltonian and momentum constraints are four coupled
second-order elliptic PDEs that are solved numerically
through some iterative procedure that starts with an initial
guess and loops around the equations, correcting the fields
until some predetermined convergence criteria are reached.
Since these four equations are not enough to determine the
ten independent components of the spacetime metric, the
modeler has the freedom to choose additional constraints/
conditions. When it comes to finding initial states for BNS
in circular orbits, the most popular approach is the Wilson–
Mathews conformal ‘‘thin-sandwich’’ scheme [6,7], which
consists of restricting the solutions with three extra con-
ditions: that the spatial 3-metric �ij be conformally flat,

that the slicing be maximal [trðKijÞ ¼ 0, where Kij is

extrinsic curvature], and that the spacetime be helically
symmetric (simply put, that the fields be time independent
in the frame that corotates with the binary). The first two
conditions reduce the number of unknowns from ten to
five (the conformal factor, the lapse function, and the
three components of the shift vector). The third, however,
is related to another concern of the initial data (ID):
the need for it to represent ‘‘astrophysically realistic’’
scenarios.
A great deal could be discussed about what constitutes

an astrophysically realistic BNS, particularly since we are
largely ignorant of the state of matter inside a neutron star.
However, there are two aspects of these systems that most
researchers agree on. One is related to the circularity of the
orbits of a BNS system that has evolved in isolation. In
cases like these, it is expected that any initial eccentricity
the binary may have acquired at birth will be minimized by
emission of gravitational radiation [8] (for instance, the
BNS known as PSR 1913þ 16 is supposed to end its life
with eccentricities of about 10�6 [9]). Recent estimates of
Advanced LIGO event rates indicate that the fraction of
BNS formed by stellar evolution of binary systems with
eccentricities larger than 0.01 is, for the most optimistic
scenario, below 2% [10]. BNS formed by dynamical cap-
ture are expected to have higher eccentricities by the time
they merge. However, their detection event rate is uncer-
tain and likely to be much smaller than the one correspond-
ing to the binary evolution channel (see Ref. [11] and
references therein). While the helical symmetry condition
demands exact circular orbits, it actually produces non-
negligible eccentricities that, as it is shown below, surpass
0.01 by a factor of several (see also Ref. [12]).
The other aspect of astrophysically realistic ID sets

is that they should, in principle, be able to describe spin-
ning stars. Finding ways to construct ID for binaries with
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spinning NS has been a problem more difficult to address.
Neutron stars obey hydrodynamical equations such as the
general relativistic versions of the continuity and Euler
equations, and any description of fluids in rotation should
be consistent with them. The original work of Wilson and
collaborators handled the hydrodynamics through a
lengthy evolution process that, while not practical for
the production of ID sets, permitted the imposition of
arbitrary NS spins by the way of angular momentum
drivers that forced the stars to adopt the desired rotations.
The impractical nature of this method gave rise to a search
for simpler techniques. One of the first to be considered
was the special case in which the two stars are tidally
locked or ‘‘corotating’’ [13,14]. Under corotation, the fluid
is static in the frame that rotates with the BNS, and the
continuity equation is trivially satisfied. These cases are
unlikely to exist in nature since they would require fluid
viscosities unrealistically high [15,16], but they are still
useful to test new algorithms and numerical codes.
Corotating solutions were followed by solutions with null
fluid vorticity (‘‘irrotational’’). This formalism was devel-
oped to find solutions for BNS with (nearly) zero spin by
the way of specifying the fluid velocity as the gradient of a
potential [17–20]. This potential is obtained from an addi-
tional elliptic equation derived from imposing zero vortic-
ity. Since its introduction, this formalism has become the
preferred method for BNS ID production, and several
groups have developed codes and techniques for its
implementation [17,21–29]. All simulations of BNS in
circular orbits performed to date are either based on coro-
tating or irrotational ID sets [30]. In recent times, several
groups have experimented with nonconformally flat tech-
niques [31–33]. Among these, the works by Anderson et al.
[34], Gold et al. [11], East et al. [35], and Kastaun et al.
[36] are of relevance to this paper, and more about them is
said in Sec. II.

However, in general, neutron stars in binaries are
expected to be spinning. A good example of this is the
double pulsar PSR J0737-3039 [37] that could have one of
the stars spinning at a rate of about �27 ms at the time of
the merger [38]. Numerical schemes to produce ID for
spinning BNS have been presented by Marronetti and
Shapiro [39], Baumgarte and Shapiro [40], and Tichy
[38,41]. All of these are based on the Wilson–Mathews
helically symmetric, conformally flat approximation.
Like in the case of irrotational BNS, these methods
also rely on advanced computationally intensive iterative
algorithms.

We present here a method for producing ID correspond-
ing to spinning BNS that also allows for arbitrary orbital
and radial velocities. This freedom gives more control over
the orbital eccentricity than in the case of helically sym-
metric methods. Our method does not look for solutions
of the Hamiltonian and momentum constraints: their sat-
isfaction is only asymptotic with binary separation. This

has the advantage of not requiring the numerical solution
of elliptic equations, thus greatly simplifying its imple-
mentation. To find out the impact of the resulting constraint
violations, we produced nonspinning BNS ID sets, evolved
them in time, and compared the results with those of
simulations starting with irrotational ID generated with
the LORENE library [26,42]. To facilitate the simulations,
we implemented our method as a module (‘‘thorn’’) of the
Einstein Toolkit (ET) [43,44]. We evolved these BNS for
up to seven orbits before merger and show that, for the grid
resolutions and binary separations studied here, the con-
straint violations in both simulations become comparable
before the merger [45]. Additionally, we show that our ID
sets can lead to orbits that exhibit eccentricities smaller
than those resulting from evolving helically symmetric ID
sets. Finally, we present the evolution of ID sets with
spinning NS (spins aligned and counteraligned to the orbi-
tal angular momentum) that showcase the ability of our
method to handle rotating stars. These simulations present
the orbit hang-up effect [47] in BNS that is also seen
in Ref. [36].
This article is organized as follows. Sections II and III

introduce our method and present some tests, respectively.
In Sec. IV we use our approach to construct ID for non-
spinning and spinning binaries and show the results of their
evolution in full general relativistic hydrodynamics using
the Einstein Toolkit [43]. Finally, we will briefly summa-
rize our findings in Sec. V. Several of the figures presented
below contain temporal and spatial coordinates, which are
displayed both in Systeme International (SI) units and
normalized by a nominal constant M3 � 3M�.

II. CONSTRUCTION OF INITIAL DATA SETS

A. Single rotating neutron stars

Our approximation to ID for BNS starts with the solu-
tion of an isolated rotating NS in equilibrium. The study of
stationary rotating NS has been undertaken by a number of
groups in the past (see Ref. [48] and references therein).
These studies have led to the creation of publicly available
codes specially designed to find numerical solutions in the
framework of the theory of general relativity. One such
code is RNS, developed by Stergioulas and Friedman
[49,50] and based on the Komatsu–Eriguchi–Hachisu
method [51,52], which describes the geometry of
stationary and axisymmetric rotating NS with a metric of
the form

ds2 ¼ �eAþBdt2 þ e2Cðdr2 þ r2d�2Þ
þ eA�Br2sin 2�ðd��DdtÞ2; (1)

where the metric functions A, B, C, andD depend on r and
�. The equations for the gravitational and matter fields are
then solved using a combination of integral and finite-
differencing techniques [52].
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B. Our initial data

Our ID is produced following these three steps:
(i) Calculate the fields corresponding to two isolated

rotating neutron stars using RNS.
(ii) Rotate (if needed) and boost independently each

solution, and map them into a single inertial frame,
making sure that the BNS total linear momentum is
zero.

(iii) Superpose the fields as indicated below.
Step i is straightforward and generates two stationary

solutions for rotating NS. Each one is originally given in
the reference frame of the RNS code: x0�. RNS provides
solutions in polar coordinates with the NS rotating around
the z0 axis. Since we are interested in NS with spins
arbitrarily aligned, a rotation of the solutions may be
required in combination with the boost. To simplify the
notation, we will ignore here the rotation (i.e., we will
consider BNS with the spins in the direction of the orbital
angular momentum).

Step ii is inspired by standard binary black hole (BBH)
superposition methods [53,54] and starts with the Lorentz
boost of the RNS coordinates into the Cartesian inertial
frame coordinates x�,

x� ¼ a�
�
�x

0�; (2)

where the Lorentz transformation a�
�
� is a function of the

corresponding boost velocity va, with the index a labeling
each star (a ¼ 1, 2). We now map the metric functions to
the new coordinate system using Eq. (2):

aA
0ðx0�Þ ! aA

0ðx�Þ aB
0ðx0�Þ ! aB

0ðx�Þ
aC

0ðx0�Þ ! aC
0ðx�Þ aD

0ðx0�Þ ! aD
0ðx�Þ:

This allows us to write the spacetime metric g0a�� as a
function of the new coordinates x� and Lorentz transform
it to the inertial frame

ag��ðx�Þ ¼ a�
�
�a�

	
�ag

0
�	ðx�Þ; (3)

where there is no summation over a. Since we are inter-
ested in solutions in terms of a 3þ 1 decomposition of the
metric, we extract from ag��ðx�Þ the corresponding lapse
function a
, shift vector a�

i, and spatial metric a�ij.

Similarly, a mapping/transformation is applied to the rest
mass and fluid velocity a�

0 and av
0i to obtain the fields a�

and av
i. The latter is defined as vi ¼ ðui=u0 þ �iÞ=
,

where u� is the 4-velocity of the fluid.
Step iii constructs a single global set of gravitational

fields by a superposition of these two solutions:


 ¼ 1
þ 2
� 1 �i ¼ 1�
i þ 2�

i

�ij ¼ 1�ij þ 2�ij � �ij:
(4)

Since there is no overlap between the stars, the superposi-
tion of the hydrodynamics fields is simply

� ¼ 1�þ 2� vi ¼ 1v
i þ 2v

i: (5)

In addition to the stellar matter, a pervasive atmosphere
is added outside the stars with a relatively low density
�atm ¼ 10�7�max ðt ¼ 0Þ and zero velocity. The remaining
hydrodynamical fields (pressure and internal energy) are
set by the equation of state (EOS). Finally, the extrinsic
curvature is calculated using

Kij ¼ � 1

2

ð@t�ij �L��ijÞ; (6)

where L� is the Lie derivative along the direction of the

shift vector.
Superpositions such as this have been used for BNS

simulations in the past. We will refer to them as ‘‘simple
superposition.’’ In particular, Anderson et al. [34],
Gold et al. [11], and, more recently, East et al. [35] and
Kastaun et al. [36] have generated and evolved BNS ID sets
using either a superposition similar to the one described
above or even adding the extra step of actually solving the
Hamiltonian and momentum constraints [55]. However, ID
sets constructed in this way present two undesirable fea-
tures which are evident during their time evolution: rela-
tively large oscillations of the stellar shape and orbital
eccentricities. Below, we describe two modifications to
simple superposition that reduce spurious effects. Both of
them play a role in controlling shape oscillations and
eccentricities, even when each modification plays a
dominant role in controlling a particular problem.
The oscillations of the stellar shape can be observed by

monitoring the central rest mass density, as shown in Fig. 1.
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FIG. 1 (color online). Maximum rest mass density for simula-
tions of nonspinning binaries starting at a coordinate separation
of 60 km. The evolution of a reference ID set (LORENE60 in
Table I) is compared with four ID sets constructed using super-
position (BNS60-xxx-yyy). The latter cover cases with (oc) and
without (noc) ‘‘overcontraction’’ [Eq. (7) with n equal to 4 or 1,
respectively] and with (rs) and without (nrs) rescaling [Eq. (9)].
The value M3 used for normalization in the upper x axis is
defined as 3M�.
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The solid line corresponds to the evolution of a reference
ID with initial separation of 60 km generated by the
LORENE library (LORENE60 in Table I, also known as
G2_I12VS12_D5R33_60KM). Details of the time evolution are

given in Sec. III. The curve labeled BNS60-noc-nrs corre-
sponds to a comparable ID set generated using the steps
mentioned above. This curve presents large oscillations
that contrast with the flatness of the evolution of
LORENE60. While the amplitude of the oscillations is
partially due to the grid sparseness, the difference between
both runs indicates that there are additional causes at play.
One of them is the fact that simple superposition does not
make any attempt at coupling the hydrodynamical fields
(obtained from single NS solutions) with the metric fields
calculated in Eq. (4). These oscillations will diminish with
increasing binary separation (see Table I in Ref. [35]) and
could, to some extent, be controlled by introducing fluid
viscosity terms in the Euler equations. However, we ex-
plored alternative ways of minimizing this effect that could
be easily implemented in the ID generation code. Visual
inspection of the stellar cross section on the orbital plane
showed that the stars corresponding to the LORENE ID set
are approximately oval in shape, with the diameter along
the direction between stellar centers larger than the one in
the direction of the orbital velocity. While our ID also

presents this feature (a result of the Lorenz contraction in
the boost direction), it does so at a lesser degree. As an
experiment, we tried increasing the deformation of the
stars in our ID by replacing the coordinate transformation
(2) with

x� ¼ ða��
�Þnx0�; (7)

where the exponent indicates that the transformation ma-
trix was applied n times. The result of this experiment
corresponding to n ¼ 4 is shown as the evolution of the ID
set BNS60-oc-nrs in Fig. 1. One problem of this method is
that the free parameter n is confined to integer values,
limiting the method’s fine-tuning capabilities. To compen-
sate for this, we devised an alternative that achieves this
overcontraction by using a single Lorentz transformation,

x� ¼ fa�
�
�x

0�; (8)

where fa�
�
� is now a function of a velocity vfa ¼ f� va

with f a real positive number. A comparison of the results
obtained with these two techniques is given in Fig. 18,
which is discussed in Sec. IVA 2. Note that the overcon-
traction is applied only in the coordinate transformation (7)
or the one in Eq. (8) and not in the transformation of the
components of the metric (3) or the hydrodynamical fields.

TABLE I. Parameters of the ID sets used in the binary simulations. The coordinate separation is given by d, while M0, MADM, and
JADM are the total rest mass, ADM mass, and ADM angular momentum, respectively. M� is the ADM mass of the corresponding
LORENE set. a is the dimensionless spin parameter for each NS, and v� and vr are the tangential and radial components of the boost
velocity. n=f is the overcontraction parameter: integers correspond to values of n in Eq. (7), while real numbers correspond to values of
the f in Eq. (8). Set refers to the parameters 
d, �d, and diss used in the evolution, and Resolution is the maximum spatial resolution.
The numerals in the labels indicate the initial coordinate separation in kilometers. The suffixes of the top part of the table indicate
whether overcorrection was applied or not and whether rescaling was applied or not. The suffixes of the bottom part of the table
indicate if the stellar spins are up (u), down (d), or null (n) and if the simulation was performed in low (lr), medium (mr), or high
resolution (hr).

d=M� M0½M�� MADM½M�� JADM½M2�� a v�=c vr=c n=f rl Set Resolution

BNS60_noc_nrs 13.45 3.566 3.311 9.377 0 0.1450 0 1 5 (0.0,1.0,0.01) 0:50M�
BNS60_oc_nrs 13.45 3.454 3.207 9.081 0 0.1450 0 4 5 (0.0,1.0,0.01) 0:50M�
BNS60_noc_rs 13.45 3.385 3.138 9.849 0 0.1450 0 1 5 (0.0,1.0,0.01) 0:50M�
BNS60_oc_rs 13.45 3.279 3.039 9.537 0 0.1450 0 4 5 (0.0,1.0,0.01) 0:50M�
LORENE60 13.45 3.250 3.005 9.716 0 0.1238 0.0 � � � 5 (0.0,1.0,0.01) 0:50M�
LORENE80 18.02 3.250 3.011 10.825 0 0.1098 0.0 � � � 5 (0.0,1.0,0.01) 0:50M�
BNS50n 11.30 3.250 3.006 8.985 0 0.1615 �0:0010 4 5 (0.0,1.0,0.01) 0:50M�
BNS60n 13.45 3.250 3.020 9.718 0 0.1450 �0:0040 4 5 (0.0,1.0,0.01) 0:50M�
BNS70n 15.82 3.250 3.018 10.060 0 0.1360 �0:0045 4 5 (0.0,1.0,0.01) 0:50M�
BNS80n 18.02 3.250 3.020 10.497 0 0.1265 �0:0050 4 5 (0.0,1.0,0.01) 0:50M�
LORENE60_lr 13.45 3.250 3.004 9.716 0 0.1238 0.0 � � � 5 (1.0,0.5,0.10) 0:50M�
LORENE60_mr 13.45 3.250 3.005 9.716 0 0.1238 0.0 � � � 6 (1.0,0.5,0.10) 0:25M�
LORENE60_hr 13.45 3.250 3.005 9.716 0 0.1238 0.0 � � � 6 (1.0,0.5,0.10) 0:1875M�
BNS60n_lr 13.45 3.252 3.018 9.718 0 0.1490 �0:0020 2.1 5 (1.0,0.5,0.10) 0:50M�
BNS60n_mr 13.45 3.252 3.018 9.718 0 0.1490 �0:0010 2.1 6 (1.0,0.5,0.10) 0:25M�
BNS60n_hr 13.45 3.252 3.018 9.718 0 0.1490 �0:0010 2.1 6 (1.0,0.5,0.10) 0:1875M�
BNS80u 18.02 3.250 3.034 12.142 0.327 0.1250 �0:0050 4 5 (0.0,1.0,0.01) 0:50M�
BNS80d 18.02 3.250 3.032 8.984 �0:327 0.1265 �0:0050 4 5 (0.0,1.0,0.01) 0:50M�
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The second problem of the ID recipe as given at the
beginning of the section is related to the orbital eccentric-
ity: using the superposition outlined in Eqs. (4) and (5)
leads to binaries that exhibit noncircular orbits. As
expected, this problem also diminishes with increasing
binary separation. We believe this is primarily due to the
fact that the hydrodynamical fields are not ‘‘adjusted’’ to
reflect the change in the gravitational fields caused by
superposition. For instance, the gravitational field resulting
from superposition is stronger than that of a single star,
leading to a more compact stellar structure. Again we
experimented with alternatives to the simple recipe given
in Eqs. (5). One way to compensate for the increase in
stellar density is to modify the RNS profiles a� and av

i

with factors dependent on some of the gravitational fields.
A simple choice, albeit not the only one, is to use ð
=a
Þnr
for � and ða
=
Þnv for vi, where the integer exponents nr
and nv are free parameters:

� ¼
�



1


�
nr

1�þ
�



2


�
nr

2�

vi ¼
�
1





�
nv

1v
i þ

�
2





�
nv

2v
i:

(9)

This rescaling could be interpreted as a weighted average
of the hydrodynamics fields by a measure of the spacetime
curvature. We tested this formula for different values of the
exponents ranging from 0 to 3, and the results are presented
in Fig. 2 [56]. The simulation that exhibits the smaller
orbital eccentricity corresponds to the case nr ¼ 1 and
nv ¼ 2, and, based on these tests, we decided to adopt
those values of all the runs in this article that employ
rescaling.

Each one of the modifications to superposition intro-
duced here (overcontraction and rescaling) affect
both shape oscillations and orbital eccentricity. Figures 1
and 3 show this by comparing runs with sets with (oc) and
without (noc) overcontraction and with (rs) and without
(nrs) rescaling. It is clear that optimal results are obtained
when both modifications are applied (curves labeled
BNS60-oc-rs).
To summarize, our recipe for BNS ID consists of follow-

ing steps i–iii, employing either the coordinate transforma-
tion given in Eq. (7) or the one in Eq. (8) and the
calculation of the fields given in Eqs. (4), (6), and (9).
We conclude this section with some thoughts about the

motivation behind the overcontraction and rescaling tech-
niques. We do not offer here any rigorous justification for
them beyond their empirical success. While we believe that
proper mathematical studies could provide strong reasons
for the choices we made and suggest improvements, the
process by which we constructed these methods was a
combination of intuition and trial and error. As we already
mentioned, we believe that the uncoupling of the matter
and gravitational fields caused by simple superposition is
the root of the problem, and overcontraction and rescaling
constitute a rather simple attempt at adjusting the matter
fields to the new gravitational background. It has been
suggested to us that other alternatives could be used to
attain similar goals. One, for instance, is the use of differ-
ent coordinate systems including variations of the lapse
and shift that, if properly chosen, would have the additional
advantage of not exacerbating the constraints’ violations.
We have not tried this here since coordinate transforma-
tions would not affect the relation between gravitational
and hydrodynamical fields, and, in our opinion, they do not
address directly the problem. However, we do believe that
our methods can be improved, and we will dedicate future
studies to that effect.
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III. NUMERICAL TESTS

The algorithms described in the previous section have
been implemented in a numerical module (thorn) for the
ET framework [43,44]. This thorn will be made publicly
available in the near future. The code accepts the selection
of one or two NS with arbitrary boost velocities, spin
directions, and initial positions. The characteristics of
the NS (mass, spin, and EOS) are selected through free
parameters in RNS which provides the stellar profiles to
be mapped into the ET grid. To test our code, we
generated ID for single and binary NS and evolved
them using ET. Almost all the simulations have the
same grid domain: 5 levels of mesh refinement, provided
by CARPET thorn [57], with box sizes 320M� (outer
boundary), 120M�, 60M�, 30M�, and 15M�, resulting
in a resolution of approximately 36 points across the
stellar diameter. Since it is not our intention to produce
high quality BNS models but to test the viability of our
ID, we opted for a computationally affordable and
expedient numerical setup. The only exceptions are the
medium- and high-resolution cases presented in the third
block of Table I that have extra levels of mesh refine-
ment, increasing the number of grid points across the
star to 72 and 96, respectively.

The BNS simulations for this article make use of
xy-plane reflection and �-rotation symmetries since they
pertain to systems with identical NS with nonprecessing
orbits. We employ a polytropic EOS (p ¼ K��) with K ¼
123:6 and � ¼ 2:0 for both the ID sets and the evolution.
Spacetime evolution is obtained through the Baumgarte-
Shapiro-Shibata-Nakamura-Oohara-Kojima formalism
(BSSNOK) [58–60], provided by the MCLACHLAN/

ML_BSSN thorn [61]. The general relativistic hydrodynamic

equations are evolved by the GRHYDRO thorn [62]. We use a
Marquina Riemann solver with piecewise parabolic
method (PPM) reconstruction of the primitive variables.
Kreiss–Oliger dissipation is added to the right-hand sides
of the BSSNOK evolution equations, modulated by the
dissipation strength parameter diss. Finally, the lapse func-
tion and shift vector are evolved in time using

@t
� �j@j
 ¼ �2
ðtrðKijÞ þ 
dð
� 1ÞÞ;
@t�

i � �j@j�
i ¼ 0:75ð~�i � �d�

iÞ:
(10)

The parameters 
d (‘‘alpha driver’’), �d (‘‘beta driver’’),
and diss adopted the values detailed in Table I.

The runs presented here were performed on the Cray
XT5 system ‘‘Kraken’’ of The National Institute for
Computational Sciences. The computational resources
needed for a given simulation are a function of the sepa-
ration distance and the grid structure, as well as the physi-
cal characteristics of the BNS (masses, spins, etc.). The
low resolution (�x ¼ 0:50M�) runs for nonspinning BNS
starting at a separation of 60 (80) km required close
to 2 (3.5) KSUs (thousands of Service Units). However,

we need to add to this amount the computer time spent
determining the optimal boost velocity. This typically
involved ten iterations of about three orbits each,
increasing the number of KSUs from 2 (3.5) to 11 (20)
for 60 (80) km separation runs. BNS with nonzero spins
such as those described in the last block of Table I will
have inspirals of different lengths, requiring computer
times that in our cases ranged from 19 (BNS80d) to
23 (BNS80u) KSUs. The nonspinning BNS simulations
with medium and high resolutions described in the third
block of Table I take as much as 105 and 570 KSUs,
respectively (these figures include the determination of
the boost velocity). The total amount of computer time
spent on the runs presented in this article was close to
1,000 KSUs. The low-resolution runs were executed using
either 12 or 24 cores. For the medium- and high-resolution
runs, we found that the optimal number of cores was 64 and
240, correspondingly.

A. Isolated stars

We start our tests with four single NS cases: with and
without spin and stationary and boosted. While these seem
rather trivial since they only involve mapped solutions of
the RNS code into the ET grid, they fulfill two purposes: to
test the mapping/boost algorithms and to provide an apt
reference in terms of the constraint violations that will be
useful when analyzing the simulations of Sec. IV. The
NS rest masses are M0 ¼ 1:625M� (compaction ratio ¼
0:14). The dimensionless spin parameter a (J=M2) is either
zero or 0.33, and the boost velocity v is either zero or 0:2c.
Figure 4 shows the evolution of the maximum rest mass
density. We observe a stable evolution for all four cases,
with central density oscillations consistent with our grid
resolution. Figure 5 shows the Hamiltonian and momen-
tum constraint violations for the four cases under
consideration.
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B. Binaries

Figure 6 presents a comparison of several metric fields
between a LORENE-generated irrotational ID (LORENE80
in Table I, also known as G2_I12VS12_D5R33_80KM) and a
nonspinning binary ID set with coordinate separation of
80 km produced with our method (BNS80n in Table I).
These plots show that even the simple superposition of
Eq. (4) gives good agreement. We experimented with
higher-order alternatives that, while reducing the separation
between curves, did not improve noticeably the results of
the time evolution. The agreement in the fluid velocity can
be further improved by adding small positive spins to the
NS. We decided to neglect this higher-order correction in
this paper. Figure 7 shows a point-by-point convergence of
the BNS80n ID set along the line connecting the stars that is
consistent with the fourth order of the finite-difference
stencils used for spatial derivatives. For this convergence
plot, we set the initial data on an extended unigrid for
the resolutions �x ¼ ð0:50M�; 0:25M�; 0:125M�Þ, which
correspond to (0.738, 0.369, 0.184) in kilometers. Almost
all our simulations have a central resolution equal to the
lowest of the ones shown in Fig. 7 (�x ¼ 0:50M�). The
exceptions are the medium- and high-resolution runs
presented in the third block of Table I.

IV. BINARY EVOLUTIONS

A. Comparison with known initial data

One of the most important tests of any ID set is pro-
vided by its evolution. Qualitatively good agreement
between the fields such as the one presented in Fig. 6
could lead to large behavior differences after several
orbits. In this section we study the evolution of nonspin-
ning ID sets produced by our method and compare them
with those produced with the LORENE library. As pre-
viously mentioned, the goal of these simulations is not to
provide highly accurate models of the mergers but simply

to test the ID sets; the simulations track the BNS evolu-
tion until the code crashes due to the formation of singu-
larities, and no attempt is made to study in detail the
formation/evolution of the newly created compact object
and/or detect horizons.

1. Varying binary separation

We start our tests by evolving sets with coordinate
separations of 60 km (BNS60n) and 80 km (BNS80n)
and comparing them with their LORENE counterparts.
These simulations’ parameters are given in the second
block of Table I.
While some of the design parameters of the BNS sets

were chosen to produce a meaningful comparison with the
corresponding LORENE sets (coordinate separation, total
rest mass, and zero spins), the boost velocities were fine-
tuned to minimize eccentricity. The purpose was to find ID
sets less eccentric than those based on helical symmetry.
This idea was inspired by the work of Miller [12],
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who showed that zeroing the radial velocity could lead to
non-negligible orbital eccentricities. More recent work
done on BBH [63–67] and BNS [29] ID sets show that
this eccentricity can be controlled to some extent by a
careful choice of tangential and transverse velocities.
The determination of these velocity components was
done by a corrective iteration that started with a null radial
velocity vr and a post-Newtonian estimation [68] for the
tangential velocity v� [69]. The iteration alternates adjust-
ments for both components using a bisectionlike algorithm
that, in average, bracketed the velocity components after
ten iterations. The boost velocity determination could be
sped up by adopting more efficient techniques such as the
methods developed for BBH ID sets [65,70], and this
will be explored in future work. The optimal boost velocity
for each BNS set evolved for this article is given
in Table I.

Figure 8 shows three snapshots of the rest mass density
for the BNS80n and the LORENE80 simulations, while
Fig. 9 plots the trajectory of one of the NS for each
simulation. Figure 10 compares the evolution of half of
the coordinate separation between NS centers for the
BNS60n and BNS80n runs and the respective LORENE
counterparts. We see that the orbital eccentricities of the
BNS runs are smaller than those of the LORENE runs, a
difference that can be quantitatively appreciated in the
eccentricity plot of Fig. 11 (the eccentricity was calculated
using the formula (1) from Ref. [70]). By the time of the
last orbits, the BNS runs’ eccentricities are close to 1 order
of magnitude smaller than those of the LORENE simula-
tions. Note that the method of adjusting the orbital velocity
to reduce eccentricity can also be applied to LORENE-like
ID sets, as it has been shown by Kiuchi et al. [29]. Note that
in these cases, the Hamiltonian and momentum constraint

equations have to be solved again after the modification
is applied.
The coordinate systems used in the LORENE and

BNS ID sets are essentially different since they depend
on the choice of lapse and shift; while 
 and �i are freely

FIG. 7 (color online). Hamiltonian constraint convergence of
nonspinning BNS ID sets with a separation of 80 km. The plot
shows the difference between medium (0:25M�) and low
(0:5M�) resolution (solid line) and the difference (scaled for
fourth-order convergence) between the high (0:125M�) and
medium resolution (dashed line).

FIG. 8 (color online). Rest mass density for the LORENE80
(top) and the BNS80n (bottom) simulations.
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specifiable when using superposition, they are obtained by
numerically solving coupled elliptic equations in the
LORENE ID sets. In order to confirm that the eccentricity
reduction is not a coordinate effect, we computed the
gravitational waves resulting from the binary evolution at
an extraction coordinate radius of 200M�. Figure 12 shows
the corresponding GW where, for clarity, the signals were
shifted in time to make the maxima in amplitude coincide.
The eccentricity reduction is appreciated in the amplitude
inset in the bottom panel of the figure. Additionally, our ID
sets seem to possess less ‘‘junk’’ radiation. Whether this
effect persists in the case of BNS with generic spins will be
studied in future work.

To further assess the quality of the BNS simulations, we
plotted the maximum rest mass density as a function of

time (Fig. 13). Our ID runs show oscillations with larger
amplitudes than those of LORENE during the first orbits, a
behavior already discussed in Fig. 1. However, the ampli-
tude diminishes with time, and, after a couple of orbits, all
the runs show comparable oscillations. The most important
question for the assessment of the quality of our ID sets is,
however, how large the violations of the constraints are.
Figure 14 presents a qualitative view of the Hamiltonian
constraint violation through snapshots that compare
LORENE80 vs BNS80n. A quantitative comparison is
given by the L2 norm of the Hamiltonian and the y com-
ponent of the momentum constraint violations as a func-
tion of time (Fig. 15). As expected, at t ¼ 0 the constraint
violations in the BNS runs are larger than those of the
LORENE counterparts. However, after a couple of orbits,
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the difference diminishes, and the scale of the violations
for all the runs become comparable. Other quantitative
indicators such as the L1 and L1 norms show similar
behavior. This damping is attributable to the well-known
constraint violation propagation properties of the
BSSNOK formulation and seems to indicate that this vio-
lation reduction could possibly be hastened with the use of
formulations with superior constraint damping character-
istics such as CCZ4 [71,72] and Z4c [73] (Kastaun et al.
[36] and Alic et al. [46] show CCZ4 simulations where the
constraint violations fall well below BSSNOK levels after
only 1 ms).
Finally, we added to this section a series of evolutions

of BNS ID sets corresponding to nonspinning NS starting
at separation distances between 50 and 80 km. Figures 16
and 17 show the coordinate separation and eccentricity as a
function of time. Details of these runs are provided in the
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second block of Table I. The evolution of the run starting at
a coordinate separation of 50 km is too short to provide a
meaningful measure of the eccentricity. Note that, against
expectations, the absolute value of the boost velocity radial
component seems to increase with the separation. We
attribute this to the dominance of grid structure effects,
in particular resolution, for the setups employed here.

2. Varying grid resolution

A complete study of how these quality control markers
depend on the grid resolution is important and, due to the
corresponding large computational cost, outside the scope
of this work. However, to gain insights on the behavior of
simulations based on our data at resolutions similar to
those of the current state-of-the-art simulations, we have
performed a set of runs corresponding to equal mass non-
spinning binaries that start at a separation of 60 km. These
runs are listed in the third block of Table I, where the ‘‘lr,’’
‘‘mr,’’ and ‘‘hr’’ suffixes indicate low (�x ¼ 0:50M�),
medium (�x ¼ 0:25M�), and high (�x ¼ 0:1875M�)
maximum spatial resolution. The grid structure is similar
in these cases with the addition of an extra level of refine-
ment at the center of the medium- and high-resolution runs.

There is an additional difference between the runs in this
section and the previous ones: these ID sets are based on
the alternative scheme of Eq. (8) instead of that of Eq. (7).
The advantage of using Eq. (8) over Eq. (7) can be better
appreciated in the medium-resolution runs displayed in
Fig. 18. There we see that the oscillations of the central
density observed when using n ¼ 4 (n ¼ 5) in Eq. (7) are
similar to those obtained when using f ¼ 2:0 (f ¼ 2:2)
in Eq. (8). A value of f ¼ 2:1 provides intermediate
amplitude variations of the order of 1% and is the value

selected for the BNS60n_lr, BNS60n_mr, and BNS60n_hr
runs.
Figures 19 and 20 show the evolution of the coordinate

separation and eccentricity for the runs described in the
third block of Table I. These six simulations were run using
gauge ð
d; �dÞ and dissipation (diss) parameters that
resemble more closely those employed in the most current
binary modeling performed with ET. One clear effect of
this set of parameters is the reduction of eccentricity in the
LORENE60 runs. Our choice for the boost velocity used
for the corresponding BNS60n runs manages to reduce the
orbital eccentricity even further, but this reduction is not as
large as the one presented in the previous section. It can be
seen, however, that increasing the spatial resolution dimin-
ishes the orbital eccentricity for both types of ID. In the
BNS60n ID cases, smaller eccentricities could potentially
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be achieved by further fine-tuning of the boost velocity.
Again we relied on comparisons of the evolution of the
maximum rest mass density (Fig. 21) and the constraints
violations (Fig. 22) to assess the behavior of our ID sets
under time evolutions. The results are qualitatively similar
to those of the previous section. The main difference is that
the time needed for the Hamiltonian constraint violations
of the BNS60n runs to relax to the level of the correspond-
ing LORENE60 cases increases with decreasing resolu-
tion. This is to be expected; the use of higher grid
resolution diminishes the initial constraint violation of
the LORENE60 ID sets (which are, after all, numerical
solutions of the constraints) while leaving mostly intact
that of the BNS60n cases (only an approximation). As
mentioned above, the use of formulations such as CCZ4
and Z4c has been shown to reduce this relaxation time to
the point where this difference may be moot for simula-
tions at the resolution used in the current state-of-the-art
runs [36,46]. Finally, Fig. 23 shows that the evolution of

the maximum rest mass density is consistent with a second-
order convergence in resolution; while the spatial stencils
used here are fourth order, hydrodynamics of compact
objects usually present a degree of degradation due to
stellar surface effects.

B. Spinning binaries evolution

The most salient characteristic of our method for
constructing BNS ID sets is the ability to handle spinning
stars. To show this, we produced two ID sets with NS with
spins aligned (BNS80u) and antialigned (BNS80d) with
the orbital angular momentum and evolved them from a
starting coordinate separation of 80 km through their
mergers. Both sets have identical NS with rest masses
M0 ¼ 1:625M� and dimensionless spin parameters
a ¼ J=M2 ’ 0:33, as detailed in last block of Table I.
Figure 24 shows the trajectories of one NS for

the evolution of each set; these curves complement the
nonspinning BNS (BNS80n) trajectory given in Fig. 9.
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One interesting feature is the presence of the orbital ‘‘hang-
up’’ [47]. This effect predicts that systems with spins
aligned with the orbital angular momentum orbit longer
than those with antialigned spins, allowing the shedding of
excess of the angular momentum through the emission of
gravitational radiation. While the antialigned binary
merged and immediately collapsed to a black hole, the
aligned case led to the formation of a centrifugally sup-
ported hypermassive neutron star that survived for about
20 ms before collapsing.

Figures 25 and 26 show the maximum rest mass density
and the coordinate separation vs time for the three BNS80
runs. We have made an effort to find the velocities that
would minimize the eccentricity but halted the fine-tuning
after reaching what we deemed a reasonable precision

considering the low resolution of these simulations. More
accurate evolutions with even lower eccentricities are
likely to result in merger times that are quantitatively
different than the values seen here. Figure 27 presents the
orbital eccentricities of the three BNS80 runs and com-
pares them with that of the LORENE80 simulation. The
eccentricities achieved during the last orbits of the three
BNS80 cases are lower than that of the reference
LORENE80 simulation. Finally, Fig. 28 presents the
GWs corresponding to these three runs.

V. CONCLUSIONS

We introduced a new way of constructing initial data for
binary neutron stars with arbitrary spins and orbital eccen-
tricities. The method only offers approximations to the
Einstein field equations since, by design, the data sets do
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not satisfy the Hamiltonian and momentum constraints.
However, by evolving our initial data using the BSSNOK
formulation, we showed that these constraint violations
become comparable to those seen in evolutions of standard
(i.e., irrotational, conformally flat, helically symmetric,
and constraint solving) initial data sets after relaxation
times that increase with increasing grid resolution. Our
method consists of a variant of metric superposition that
addresses two common problems: large stellar shape
oscillations and orbital eccentricities. It reduces the former
to variations of the order of 1% and offers great control
over orbital eccentricities. Additionally, we see indications
that our initial data sets possess less junk radiation than that
found in standard sets.

We tested our initial data by evolving in time initial data
for single and binary neutron star systems. We showed that
our data leads to inspirals with orbital eccentricities
smaller than those seen in standard initial data simulations.
However, since the method’s most important characteristic
is the ability to handle spinning binaries, we also evolved
binaries with spins aligned and antialigned with the orbital
angular momentum. The antialigned binary merges and
immediately collapses into a black hole, while the aligned
case leads to the formation of a centrifugally supported
hypermassive neutron star that survives for several
dynamical times before collapsing.

The work presented here will be followed by studies that
are outside of the scope of this article due to computational
demands. We plan to explore the viability of our method
for binaries with generic spins and explore possible

improvements aimed at reducing the constraint violations

and orbital eccentricity even further. We will study more

efficient ways of selecting the stars’ boost velocity since

the direct trial-and-error approach employed here is time

and resource consuming. We will conduct a more system-

atical study of the content of junk radiation in our sets, to

find out if the reduction in this unwanted quantity is a

common feature in binaries with arbitrary spins. Another

priority is the evolution of our ID sets using numerical

formulations such as CCZ4 and Z4c, since they possess

better constraint damping characteristics than BSSNOK.

Finally, more realistic simulations (different equations of

state, horizon detection and tracking, and ringdown mod-

eling) with arbitrarily spinning stars (which would require

grids without symmetries) will be pursued.
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