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We present firstly the master equation of an electromagnetic perturbation with Weyl correction in the

four-dimensional black hole spacetime, which depends not only on the Weyl correction parameter, but

also on the parity of the electromagnetic field. It is quite different from that of the usual electromagnetic

perturbation without Weyl correction in the four-dimensional spacetime. And then we have investigated

numerically the dynamical evolution of the electromagnetic perturbation with Weyl correction in the

background of a four-dimensional Schwarzschild black hole spacetime. Our results show that the Weyl

correction parameter � and the parities imprint in the wave dynamics of the electromagnetic perturbation.

For the odd parity electromagnetic perturbation, we find it grows with exponential rate if the value of � is

below the negative critical value �c. However, for the electromagnetic perturbation with even parity, we

find that there does not exist such a critical threshold value and the electromagnetic field always decays in

the allowed range of �.
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I. INTRODUCTION

For the last few decades, one of most interesting topics
has been to study the dynamical evolution of an external
perturbation around a black hole. It is widely believed that
the quasinormal modes in the dynamical evolution carry
the characteristic information about the black hole and
could help us to identify whether black holes exist in our
Universe or not [1–3]. Further investigations imply that the
quasinormal spectrum of black holes could open a window
for us to understand more about quantum gravity [4–6]
and the AdS/CFT correspondence [7–9]. Moreover, the
dynamical behaviors of the perturbations could be used
to test the stability of a black hole in various theories of
gravity [10–13]. The dynamical evolution of various per-
turbations have been studied extensively in the various
black holes’ spacetime [14–20].

All of the above investigations mentioned for the
electromagnetic perturbation are in the frame of Einstein-
Maxwell electromagnetic theory in which the Maxwell
Lagrangian is only quadratic in the Maxwell tensor and
does not contain any coupling between the Maxwell part
and the curvature part. Recently, a lot of attention have been
focused on studying the generalized Einstein-Maxwell the-
ory. The main motivation is that the generalized Einstein-
Maxwell theory contains higher derivative interactions and
carries more information about the electromagnetic field.
The study of the generalized Einstein-Maxwell theory
could help us to explore the full properties and effects of
the electromagnetic fields. One of the interesting general-
ized Einstein-Maxwell theories is Born-Infeld theory,

which was introduced in the 1930s [21] in order to remove
the divergence of the electron’s self-energy in the classical
electrodynamics. Moreover, Born-Infeld theory displays
good physical properties concerning wave propagation,
such as the absence of shock waves and birefringence
phenomena [22]. Born-Infeld theory has also received spe-
cial attention because it could arise in the low-energy
regime of string and D-Brane physics [23]. Another gen-
eralization of the Einstein-Maxwell theory with three
parameters has been considered in which there are the
nonminimal couplings between the gravitational and elec-
tromagnetic fields in the Lagrangian [24–27]. The presence
of such nonminimal couplings in the Lagrangian modifies
the coefficients involving the second-order derivatives both
in the Maxwell and Einstein equations, which could affect
the propagation of gravitational and electromagnetic waves
in the spacetime and may yield time delays in the arrival of
those waves [24]. Moreover, these couplings could modify
the electromagnetic and gravitational structure of a charged
black hole [27]. In the evolution of the early Universe, these
coupled terms may yield electromagnetic quantum fluctua-
tions and lead to inflation [28–32]. Due to the inflation at
that time, the scale of the fluctuations can be stretched
towards the outside of the Hubble horizon and then they
result in classical fluctuations, which means that the non-
minimal couplings could be used to explain the large scale
magnetic fields observed in clusters of galaxies [33–35].
In this paper, we consider a simple generalized electro-

magnetic theory which involves a coupling between the
Maxwell field and the Weyl tensor [36,37]. In this theory,
the Lagrangian density of the electromagnetic field is
modified as

LEM ¼ � 1

4
ðF��F

�� � 4�C����F��F��Þ; (1)*csb3752@163.com
†jljing@hunnu.edu.cn
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where C���� is the Weyl tensor and � is a coupling

constant with dimensions of length squared. F�� is the

electromagnetic tensor, which is related to the electromag-
netic vector potential A� by F�� ¼ A�;� � A�;�. Actually,

the coupling in the Lagrangian density (1) is a special kind
of coupling between the gravitational and electromagnetic
fields since the Weyl tensor C���� is related to the

Riemann tensor R����, the Ricci tensor R��, and the

Ricci scalar R by

C���� ¼ R���� � 2

n� 2
ðg�½�R��� � g�½�R���Þ

þ 2

ðn� 1Þðn� 2ÞRg�½�g���; (2)

where n and g�� are the dimension and metric of the

spacetime, respectively, and brackets around indices refer
to the antisymmetric part. It was found that similar cou-
plings between the curvature tensor and Maxwell tensor
could be obtained from a calculation in QED of the photon
effective action from one-loop vacuum polarization on a
curved background [37]. Although Weyl correction can be
viewed as an effective description of quantum effects, such
kinds of couplings may also occur near classical compact
astrophysical objects with high mass density and a strong
gravitational field such as the supermassive black holes at
the center of galaxies [38]. The effects originating from
such kinds of couplings could also be used to distinguish
between general relativity and other theories of gravity in
future astrophysical observations [39]. Therefore, we can
treat the Weyl correction to electromagnetic field as a kind
of general classical coupling between the gravitational and
electromagnetic fields and study the effects of such cor-
rection on the dynamical evolution of electromagnetic field
in the general background spacetime. The coupling term
with Weyl tensor is a tensorial structure correcting the
Maxwell term at leading order in derivatives, which modi-
fies the Einstein-Maxwell equation and affects the dynami-
cal evolution of electromagnetic field in the background
spacetime. An advantage of this generalized electromag-
netic theory with Weyl correction is that the modified
Einstein-Maxwell equation is not complicated and the
equations of motion for electromagnetic perturbation can
be decoupled to a second order differential equation, which
is very important for us to investigate further the dynamical
properties of electromagnetic perturbation in the black
hole spacetime. In Ref. [36], the authors studied the holo-
graphic conductivity and charge diffusion with Weyl cor-
rection in the anti–de Sitter (AdS) spacetime and found that
the correction breaks the universal relation with the Uð1Þ
central charge observed at leading order. Recently, the
holographic superconductors with Weyl corrections are
also explored in [40–43]. Wu et al. [40] studied the effects
of Weyl corrections on the s-wave holographic supercon-
ductor and found that with Weyl corrections the critical
temperature becomes smaller and the scalar hair is formed

harder when the coupling constant � is negative, but the
result is just the opposite when the constant� is positive. In
the Stückelberg mechanism, it is found that the Weyl
coupling parameter � also changes the order of the phase
transition of the holographic superconductor [41]. The
p-wave holographic superconductor model with Weyl cor-
rections has been studied and it is shown that the effect of
Weyl corrections on the condensation is similar to that of
the s-wave model [42]. Moreover, the effects of Weyl
corrections on the phase transition between the holo-
graphic insulator and superconductor has been investigated
in [44] and it is found that in this case the effects of Weyl
corrections depend on the model of holographic dual. For
the p-wave model, the higher Weyl corrections will make
it harder for the holographic insulator/superconductor
phase transition to be triggered. However, for the s-wave
model, the Weyl couplings do not affect the properties of
the holographic insulator/superconductor phase transition
since the critical chemical potentials are independent of the
Weyl correction terms in this case. These results may
excite more efforts to be focused on the study of the
electrodynamics with Weyl corrections in the more general
cases. The main purpose of this paper is to investigate the
dynamical evolution of the electromagnetic perturbation
coupling to the Weyl tensor in the Schwarzschild black
hole spacetime and see the effect of the Weyl corrections
on the stability of the black hole.
The plan of our paper is organized as follows: in the

following section we will derive the master equation of
electromagnetic perturbation with Weyl correction in the
four-dimensional static and spherical symmetric space-
time. In Sec. III, we will study numerically the effects of
the Weyl corrections on the quasinormal modes of the
electromagnetic perturbation in the Schwarzschild black
hole and then examine the stability of the black hole.
Finally, in the last section we will include our conclusions.

II. THE WAVE EQUATION FOR THE
ELECTROMAGNETIC PERTURBATIONS

WITH WEYL CORRECTIONS

In order to study the effects of Weyl corrections on the
dynamical evolution of the electromagnetic perturbations
in a black hole spacetime, we must first obtain its
wave equation in the background. The action of Maxwell
field with Weyl corrections in the curved spacetime has a
form [36]

S¼
Z
d4x

ffiffiffiffiffiffiffi�g
p �

R

16�G
�1

4
ðF��F

���4�C����F��F��Þ
�
:

(3)

Varying the action (3) with respect to A�, one can obtain

the generalized Maxwell equation

r�ðF�� � 4�C����F��Þ ¼ 0: (4)
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Obviously, the Weyl corrections affect the dynamical
evolution of the electromagnetic perturbation.

For a four-dimensional static and spherical symmetric
black hole spacetime, the metric has a form

ds2 ¼ fdt2 � 1

f
dr2 � r2d�2 � r2sin 2�d�2; (5)

where the metric coefficient f is a function of polar coor-
dinate r. In this background, one can expand A� in vector

spherical harmonics [45]

A�¼
X
l;m

0

0
almðt;rÞ
sin� @�Ylm

�almðt;rÞsin�@�Ylm

2
666664

3
777775þ

jlmðt;rÞYlm

hlmðt;rÞYlm

klmðt;rÞ@�Ylm

klmðt;rÞ@�Ylm

2
666664

3
777775

0
BBBBB@

1
CCCCCA;

(6)

where the first term on the right side has parity ð�1Þlþ1 and
the second term has parity ð�1Þl, l is the angular quantum
number, and m is the azimuthal number.

Adopting the form

almðt; rÞ ¼ almðrÞe�i!t; hlmðt; rÞ ¼ hlmðrÞe�i!t;

jlmðt; rÞ ¼ jlmðrÞe�i!t; klmðt; rÞ ¼ klmðrÞe�i!t;
(7)

and then inserting the above expansion (6) into the gener-
alized Maxwell equation (4), we can obtain three indepen-
dent coupled differential equations. Eliminating klmðrÞ,
we can get a second order differential equation for the
perturbation

d2�ðrÞ
dr2�

þ ½!2 � VðrÞ��ðrÞ ¼ 0; (8)

where the tortoise coordinate r� is defined as dr� ¼ dr
f . The

wave function�ðrÞ is a linear combination of the functions
jlm, hlm, and alm, which appeared in the expansion (6). The
form of �ðrÞ depends on the parity of the perturbation,
which can be expressed as

�ðrÞ ¼ alm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

3r2
ðr2f00 � 2rf0 þ 2f� 2Þ

s
; (9)

for the odd parity ð�1Þlþ1, and

�ðrÞ ¼ r2

lðlþ 1Þ
�
�i!hlm � djlm

dr

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

3r2
ðr2f00 � 2rf0 þ 2f� 2Þ

q
1� 4�

3r2
ðr2f00 � 2rf0 þ 2f� 2Þ ; (10)

for the even parity ð�1Þl, respectively. The effective
potential VðrÞ in Eq. (8) depends also on the parity of
the perturbation. For the odd parity, the potential VðrÞ is
given by

VðrÞ ¼ f

�
lðlþ 1Þ

r2
1� 4�

3r2
ðr2f00 � 2rf0 þ 2f� 2Þ

1þ 2�
3r2

ðr2f00 � 2rf0 þ 2f� 2Þ

þ �ðh0 þ h1�Þ
r2½3r2 þ 2�ðr2f00 � 2rf0 þ 2f� 2Þ�2

�
; (11)

whereas for the even parity it is given by

VðrÞ ¼ f

�
lðlþ 1Þ

r2
1þ 2�

3r2
ðr2f00 � 2rf0 þ 2f� 2Þ

1� 4�
3r2

ðr2f00 � 2rf0 þ 2f� 2Þ

� �ðh0 þ h2�Þ
r2½3r2 þ 2�ðr2f00 � 2rf0 þ 2f� 2Þ�2

�
; (12)

where

h0 ¼ 3r2½12f2 þ rf0ðr3fð3Þ � 2r2f00 þ 4rf0 þ 4Þ
þ fðr4fð4Þ � 2r3fð3Þ þ 6r2f00 � 16rf0 � 12Þ�; (13)

h1 ¼ 32f3 þ 2rf0ðr2f00 � 2rf0 � 2Þðr3fð3Þ � 2r2f00

þ 4rf0 þ 4Þ þ 4f2ðr4fð4Þ þ 8r2f00 � 20rf0 � 16Þ
� f½4r4fð4Þ þ ðr3fð3ÞÞ2 � 8r4f002 � 64r2f02

� 32þ 4rf0ðr4fð4Þ � r3fð3Þ þ 12r4f00 � 24Þ
þ 2r2f00ð16� r4fð4ÞÞ�; (14)

h2 ¼ �16r3f03 � 4r2f02ðr3fð3Þ � 4r2f00 � 8rf0 þ 8Þ
þ r2f½2ð4fð3Þ þ rfð4ÞÞðr2f00 þ 2f� 2Þ � 3r3ðfð3ÞÞ2�
� 2f0½8f2 � ðr2f00 � 2Þðr3fð3Þ � 2r2f00 þ 4Þ
þ 2fðr4fð4Þ þ 3r3fð3Þ þ 4r2f00 � 8Þ�: (15)

It is clear that the coupling constant � emerges in the
effective potential, which means that Weyl corrections
will change the dynamical evolution of the electromagnetic
perturbation in the background spacetime. From Eqs. (11)
and (12), we also find that the modification of the effective
potential by Weyl corrections is different for the electro-
magnetic perturbations with different parities, which
implies that the effects of Weyl corrections on the wave
dynamics for the electromagnetic perturbation with the
odd parity are different from those of the perturbation
with the even parity. This is quite different from that in
the case of the usual electromagnetic perturbation without
Weyl corrections in four-dimensional spacetime, in which
the electromagnetic perturbation with odd parity has the
same effective potential as the perturbation with even
parity. When the coupling constant � ¼ 0, the effective
potentials (11) and (12) recover to the usual form without
Weyl corrections.
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III. EFFECTS OF WEYL CORRECTIONS ON THE
WAVE DYNAMICS OF THE ELECTROMAGNETIC

PERTURBATION IN THE SCHWARZSCHILD
BLACK HOLE SPACETIME

In this section, we will study numerically the dynamical
evolution of the electromagnetic perturbation with Weyl
corrections in the background of a Schwarzschild black
hole spacetime and probe the effects of Weyl corrections
on the wave dynamics of the electromagnetic perturbation.

For the Schwarzschild black hole spacetime, the metric
function is f ¼ 1� 2M

r and then the effective potentials

(11) and (12) can be expressed as

VðrÞodd ¼
�
1� 2M

r

��
lðlþ 1Þ

r2

�
r3 þ 16�M

r3 � 8�M

�

� 24�Mð2r4 � 5Mr3 � 10�Mrþ 28�M2Þ
r3ðr3 � 8�MÞ2

�
(16)

for the odd parity and

VðrÞeven ¼
�
1� 2M

r

��
lðlþ 1Þ

r2

�
r3 � 8�M

r3 þ 16�M

�

þ 24�Mð2r4 � 5Mr3 þ 2�Mrþ 4�M2Þ
r3ðr3 � 8�MÞ2

�
(17)

for the even parity, respectively. Defining the quantity

W ¼ 12�Mðr� 2MÞ
r2ðr3 � 8�MÞ þ 3lðlþ 1Þ

4r

þ
ffiffiffi
3

p
lðlþ 1Þ

16�3M3

�
4 arctan

�
rþ ð�MÞ13ffiffiffi
3

p ð�MÞ13
�

� 2
2
3 arctan

�
2
1
3r� 2ð�MÞ13
2

ffiffiffi
3

p ð�MÞ13
��

þ lðlþ 1Þ
32�3M3

�
4 log

� ðr� 2ð�MÞ13Þ2
r2 þ 2ð�MÞ13rþ 4ð�MÞ23

�

þ 2
2
3 log

� ð22
3rþ 4ð�MÞ13Þ2

2
1
3r2 � 2

5
3ð�MÞ13rþ 8ð�MÞ23

��
; (18)

we can obtain

VðrÞodd ¼ W2 þ dW

dr�
þ 	; VðrÞeven ¼ W2 � dW

dr�
þ 	;

(19)

with

	 ¼ ðr� 2MÞ
r3ðr3 � 8�MÞ

�
r6 þ 8�Mþ 160�2M2

ðr3 þ 16�MÞ
þ 144�2M2ðr� 2MÞ

rðr3 � 8�MÞ
�
�W2: (20)

This means that these two effective potentials for odd and
even parities can be written in the form of superpartner
potentials. The similar behavior of effective potentials for
gravitational perturbations have been discovered in
[46,47]. Considering that the effective potential should be
continuous in the region outside the event horizon of a
black hole, the coupling constant � must satisfy r3H �
8�M > 0 (i.e., �<M2) for the electromagnetic perturba-
tion with odd parity, and satisfy r3H � 8�M > 0 and r3H þ
16�M > 0 (i.e.,�M2

2 <�<M2) for the perturbation with

even parity. In Figs. 1 and 2, we show the changes of the
effective potentials VðrÞodd and VðrÞeven with the coupling
constant � for fixed l, respectively. For fixed l, the peak
height of the potential barrier increases with the coupling
constant � for VðrÞodd and decreases for VðrÞeven.
Moreover, we also find that there exists a negative gap in
the effective potential VðrÞodd only for certain negative
values of � and in the potential VðrÞeven only for the certain
positive values of �. This means that the properties of the
wave dynamics of the electromagnetic perturbation with
the odd parity could be different from those of that with
even parity. In the following section, we will check those
values of � for which the negative gap is present and study
the stability of the black hole under the electromagnetic
perturbation with Weyl corrections.
Let us now study the effects of the Weyl corrections on

the quasinormal modes of electromagnetic perturbation in
the Schwarzschild black hole spacetime. In Figs. 3 and 4,
we present the fundamental quasinormal modes (n ¼ 0)
evaluated by the third-order WKB approximation method
[48,49]. It is shown that with the increase of the coupling
parameter �, the real parts of the quasinormal frequencies
increase for the electromagnetic perturbation with the odd
parity, but decrease for that with the even parity. The
changes of the imaginary parts with � are more compli-
cated. For the odd parity electromagnetic perturbation, we
find that as �< 0 the imaginary part of quasinormal
frequency increases with �. When �> 0, the imaginary
part for l ¼ 1 first decreases to the minimum, then rises to
the maximum, and subsequently decreases to another mini-
mum, and finally it increases again with�, while for other l
it first decreases and then increases. For the even parity
electromagnetic perturbation, we find that with the in-
crease of � the imaginary part first decreases and then
increases as �> 0. When �< 0, with the increase of� the
imaginary part for l ¼ 1 first decreases to the minimum,
then rises to the maximum, and subsequently decreases to
another minimum, and finally it increases again to another
maximum, while for other l it first decreases and then
increases. These results imply thatWeyl correctionsmodify
the standard results of the quasinormal modes for the
electromagnetic perturbations in the background of a
Schwarzschild black hole.
Now we are in a position to study the dynamical

evolution of the electromagnetic perturbation with Weyl
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corrections in time domain [50] and examine the stability
of the Schwarzschild black hole in these cases. Making
use of the light-cone variables u ¼ t� r� and v ¼ tþ r�,
one can find that the wave equation

� @2c

@t2
þ @2c

@r2�
¼ VðrÞc (21)

can be rewritten as

4
@2c

@u@v
þ VðrÞc ¼ 0: (22)

It is well known that the two-dimensional wave equa-
tion (22) can be integrated numerically by using the finite
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FIG. 2. Variation of the effective potential VðrÞeven with the polar coordinate r for fixed l ¼ 1 (left), l ¼ 2 (middle), and l ¼ 3 (right).
The long-dash-dotted, dashed, solid, dotted, and short-dash-dotted lines correspond to the cases with � ¼ �0:1, �0:05, 0, 0.1, 0.2,
respectively. We set 2M ¼ 1.
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FIG. 3 (color online). Effects of Weyl corrections on the real parts of the fundamental quasinormal modes of electromagnetic
perturbation with the odd parity (the left) or the even parity (the right) in the Schwarzschild black hole spacetime. We set 2M ¼ 1.
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FIG. 1. Variation of the effective potential VðrÞodd with the polar coordinate r for fixed l ¼ 1 (left), l ¼ 2 (middle), and l ¼ 3 (right).
The long-dash-dotted, dashed, solid, dotted, and short-dash-dotted lines correspond to the cases with � ¼ �0:4, �0:2, 0, 0.1, 0.2,
respectively. We set 2M ¼ 1.
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difference method suggested in [50]. From Taylor’s
theorem, we can find that the wave equation (22) can be
discretized as

c N ¼ c E þ cW � c S � 
u
vV

�
vN þ vW � uN � uE

4

�

� cW þ c E

8
þOð�4Þ ¼ 0: (23)

Here we have used the following definitions for the
points: N ðuþ
u;vþ
vÞ, W ðuþ
u;vÞ, E ðu; vþ 
vÞ,

and S ðu; vÞ. The parameter � is an overall grid scalar
factor, so that 
u� 
v� �. As in [50], we can set
c ðu; v ¼ v0Þ ¼ 0 and use a Gaussian pulse as an initial
perturbation, centered on vc and with width� on u ¼ u0 as

c ðu ¼ u0; vÞ ¼ e
�ðv�vcÞ2

2�2 : (24)

In Figs. 5 and 6, we present the dynamical evolution of an
electromagnetic perturbation with Weyl correction in the
background of a Schwarzschild black hole. Our result
shows that the effects of Weyl correction on the dynamical
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FIG. 4 (color online). Effects of Weyl corrections on the imaginary parts of the fundamental quasinormal modes of electromagnetic
perturbation with the odd parity (the top row) or the even parity (the bottom row) in the Schwarzschild black hole spacetime. We set
2M ¼ 1.
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FIG. 5. The dynamical evolution of an electromagnetic perturbation with odd parity in the background of a Schwarzschild black hole
spacetime. The figures from left to right are corresponding to l ¼ 1, 2, and 3. The dotted, solid, dash-dotted, and dashed lines
correspond to the cases with � ¼ 0:2, 0, �0:2, �0:3, respectively. We set 2M ¼ 1. The constants in the Gauss pulse (24) are vc ¼ 10
and � ¼ 3.
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evolution of the odd parity electromagnetic perturbation are
different from those of the even parity electromagnetic one.
For the electromagnetic perturbation with odd parity, one
can see that as �> 0, the decay of the electromagnetic
perturbation with the Weyl correction is similar to that of
the electromagnetic one without Weyl correction, which
indicates that the black hole is stable. It is understandable
by the fact that the effective potential VðrÞ is positive
definite, which is shown in Fig. 1. When �< 0, we find
that the electromagnetic field grows with exponential rate if
the coupling constant� is smaller than the critical value�c.
It means that the instability occurs in this case. The main
reason is that for the odd parity electromagnetic perturba-
tion with negative coupling constant � the large absolute
value of � drops down the peak of the potential barrier and
increases the negative gap near the black hole horizon so
that the potential could be nonpositive definite. In the
instability region, we can find that for the larger j�j the
instability growth appears earlier and the growth rate be-
comes stronger. For the electromagnetic perturbation with
even parity, we find that the electromagnetic field always
decays in the allowed range of �. Although in the effective
potential VðrÞeven the negative gap appears near the black
hole horizon as �> 0 and increases with �, the negative
gap is very small in this case, which is not enough to yield
the instability to be triggered.

In Fig. 7, we plotted the change of the threshold value�c

with l for the odd parity electromagnetic perturbation with
Weyl corrections, and we found that the threshold value
can be fit best by the function

�c ’ a

ffiffiffiffiffiffiffiffiffiffiffi
l

lþ 1

s
þ b; (25)

where the coefficients a and b are numerical constants with
dimensions of length squared and their values are a ¼
0:5534 and b ¼ �0:6785. It is easy to obtain that the
threshold value �c is negative and increases with the
multipole number l. This means that for the higher l we

need the smaller Weyl corrections at which instability
happens. From Eq. (25), we can obtain that in the limit
l ! 1 the threshold value �c ! aþ b ¼ �0:1251.
It could be explained by a fact that in this limit the effective
potential (16) has the form

VðrÞjl!1 ¼ f
lðlþ 1Þ

r2

�
r3 þ 16�M

r3 � 8�M

�
; (26)

which leads to the integration [51]

Z 1

rþ

VðrÞjl!1
f

dr ¼
Z 1

rþ

�
r3 þ 16�M

r3 � 8�M

�
lðlþ 1Þ

r2
dr; (27)

which is positive definite as �<�r3þ=ð16MÞ. It implies
that the threshold value has a form �c ¼ �M2=2 as
l ! 1, which is consistent with the form of the numerical
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FIG. 6 (color online). The dynamical evolution of an electromagnetic perturbation with even parity in the background of a
Schwarzschild black hole spacetime. The figures from left to right correspond to l ¼ 1, 2, and 3. The dotted, solid, dash-dotted,
and dashed lines correspond to the cases with � ¼ �0:12, 0, 0.20, 0.24, respectively. We set 2M ¼ 1. The constants in the Gauss pulse
(24) are vc ¼ 10 and � ¼ 3.
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constant aþ b obtained in the previous numerical
calculation.

IV. SUMMARY

In this paper, we present firstly the master equation of an
electromagnetic perturbation with Weyl correction in the
four-dimensional black hole spacetime and find that the
presence of Weyl corrections makes the master equation of
the odd parity electromagnetic perturbation different from
that of the even parity one, which is quite different from that
of the usual electromagnetic perturbation without Weyl cor-
rection in the four-dimensional spacetime where the master
equation is independent of the parity of the electromagnetic
field.And thenwehave investigatednumerically the dynami-
cal evolution of an electromagnetic perturbation with
Weyl correction in the background of a four-dimensional
Schwarzschild black hole spacetime. Our results show that
theWeyl correctionmodifies the standard results of thewave
dynamics for the electromagnetic perturbation. Due to the
presence ofWeyl corrections, the dynamical properties of the
electromagnetic perturbation depend not only on the Weyl
correction parameter �, but also on the parity of the electro-
magnetic field. With the increase of �, the real part of the
fundamental quasinormal frequencies for fixed l increases
for the oddparity electromagnetic perturbation and decreases
for the even parity electromagnetic one. The changes of the
imaginary parts with� are more complicated. Moreover, we
find that the odd parity electromagnetic perturbation grows
with exponential rate if the coupling constant � is smaller
than the negative critical value �c. This means that the
instability occurs in this case. In the instability region, we
can find that for the smaller � the instability growth appears

earlier and the growth rate becomes stronger. For the elec-
tromagnetic perturbation with even parity, we find that the
electromagnetic field always decays in the allowed range of
�. Although in the effective potential VðrÞeven the negative
gap appears near the black hole horizon as �> 0, the
negative gap is very small and is not enough to yield the
occurrence of instability in this case.
Furthermore, we find that the threshold value can be fitted

best by the function �c ’ a
ffiffiffiffiffiffi
l

lþ1

q
þ b with two numerical

constants (with dimensions of length squared) a, b. These
rich dynamical properties of the electromagnetic perturba-
tion withWeyl correction, at least in principle, may provide
a possibility to detect whether or not there exists Weyl
correction to electromagnetic field in future astronomical
observations, such as the future space-based detector the
Laser Interferometer Space Antenna etc. It would be of
interest to generalize our study to other black hole space-
times, such as rotating black holes etc. Work in this direc-
tion will be reported in the future.
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