
Consistency of nonminimally coupled fðRÞ gravity
Nicola Tamanini*

Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, United Kingdom

Tomi S. Koivisto†

Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo, Norway
(Received 22 August 2013; published 25 September 2013)

Theories with a nonminimal coupling between the space-time curvature and matter fields introduce an

extra force due to the nonconservation of the matter energy momentum. In the present work the theoretical

consistency of such couplings is studied using a scalar field Lagrangian to model the matter content. The

conditions that the coupling does not introduce ghosts, classical instabilities or superluminal propagation

of perturbations are derived. These consistency conditions are then employed to rule out or severely

restrict the forms of the nonminimal coupling functions considered in the previous literature. For example,

a power-law coupling is viable only for sublinear positive power of the curvature scalar.
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I. INTRODUCTION

One of the fundamental issues in gravity is its coupling
to the matter fields. In Einstein’s general relativity (GR)
theory, the equivalence principle dictates the minimal
coupling prescription, but despite stringent constraints on
its violations at local astrophysical and especially labora-
tory experiments, there is no compelling reason to take it
for granted at all scales and at all times [1]. In fact, high
energy physics theories often predict nonminimal cou-
plings of matter to e.g. scalar fields or the gravitational
degrees of freedom.

Although the most popular type of nonminimal coupling
is the conformal one,1 for purely gravitational modifica-
tions, it is known that fðRÞ theories represent the only
local, metric-based, generally coordinate invariant and
stable modifications of gravity [6,7]. Thus, when consid-
ering the possibility of a nonminimal gravitational cou-
pling, a natural starting point could be the coupling of a
function of the curvature scalar to the matter Lagrangian.
The general action for such nonminimally coupled fðRÞ
gravity [8] can be written as2

S0 ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½f1ðRÞ þ f2ðRÞLM�; (1)

where f1ðRÞ and f2ðRÞ are two general (sufficiently
regular) functions of the curvature scalar R and LM

denotes the matter Lagrangian.
Such a theory predicts an extra force due to the non-

conservation of the stress energy tensor [8,14]. The result-
ing nongeodesic motion and some of its astrophysical

implications have been extensively analyzed in [14–23].
Theories of the form (1) have been widely applied to
cosmology: dark matter has been proposed as an effect of
the extra force on baryonic matter [14,24,25], dark energy
has been considered to arise from the nonminimal coupling
[26–28], the evolution of cosmological perturbations has
been studied [29–31], and inflation was considered in this
context, too [32]. Astrophysical and Solar System con-
straints were investigated in [33–36], and spherically sym-
metric solutions were derived in [37,38]. Connection of the
nonminimal coupling with extra dimensional theories was
attempted in [39], and wormholes [40–42], singularities
[43], and Gödel-type universes [44] have been constructed.
The theory (1) can be considered also in the Palatini
formulation [8,45,46]. Furthermore, it was shown to be
embedded into the wider framework of C theories [47]
and then applied to deduce the post-Newtonian parameters
for given models [48]. Some other aspects of the viability
of the theory and the effective violations of the energy
conditions have already been studied in [49–53]. Finally, it
has been understood that different parametrizations of
perfect fluid Lagrangians can yield nonequivalent results
in the presence of the nonminimal coupling [54–59].
In this paper we study the theoretical consistency of the

models (1). We separate out the propagating degrees of
freedom in the nonminimally coupled matter sector, which
are intricately mixed with the gravitational degrees of free-
dom due to the nonminimal coupling. The aim is to analyze
whether matter fields may become ghostlike or exhibit
unstable growth or superluminality. For this purpose we
need to specify the matter field explicitly, and for simplicity
we employ a massless scalar field. If the coupling is con-
sidered universal, there should be no pathologies for any
kind of matter, but in any case the constraints derived from
the basic example of a scalar will present the necessary
conditions for the viability of the coupling function.
Moreover, by considering the Lagrangian of a fundamental
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1However, more general forms of couplings can be well

motivated too; see e.g. [2–5].
2See [9–13] for earlier studies of some instances of theories

within this class.
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field instead of employing an effective phenomenological
description of an averaged (perfect or otherwise) fluid, our
results cannot be compromised by the aforementioned
ambiguities of such effective fluid parametrizations.

We will proceed as follows. In Sec. II we will reformu-
late the theory in terms of scalar fields and manipulate their
action into a convenient form for the consistency analysis.
The recipe to uncover the viability of the theory, given
the two functions f1 and f2, will then be given in Sec. III.
In Sec. IV we will apply this recipe for several specific
cases proposed in the previous literature. Conclusions and
discussions will finally be drawn in Sec. V. In addition, in
the Appendix we will show that the presented recipe can be
applied to theories with general nonlinear dependence
upon the matter Lagrangian as well.

Notation and conventions. In the following we will set
��� ¼ diagð�1;þ1;þ1;þ1Þ with the convention R�� �
þ@��

�
��, c ¼ 1 (speed of light) and M2

Pl ¼ 1=ð16�GÞ
(Planck mass).

II. EQUIVALENTACTIONS AND CONFORMAL
TRANSFORMATIONS

In order to find some constraints on the functions f1ðRÞ
and f2ðRÞ we will start by studying an action which is
dynamically equivalent to (1). The dynamical equivalence
of action (1) with other gravitational theories, especially
scalar-tensor theories, has already been extensively studied
[15,33,49]. Our approach will closely follow the one
exposed in [33]. Consider the following theory:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
f1ð�Þ þ

�
@f1ð�Þ
@�

þ @f2ð�Þ
@�

�

�
ðR� �Þ

þ f2ð�ÞLM

�
; (2)

where � and � are two scalar fields and f1 and f2 are the
same functions appearing in (1). This theory is dynami-
cally equivalent to (1); i.e. the classical equations of
motion are the same. To prove this we take the variation
of (2) with respect to � and �, which yields the following
field equations:�

@2f1
@�2

þ @2f2
@�2

�

�
ðR� �Þ þ @f2

@�
ðLM � �Þ ¼ 0; (3)

@f2
@�

ðR� �Þ ¼ 0: (4)

Provided f2 � const, which represents the minimal cou-
pling, the unique solution of these equations is

� ¼ R and � ¼ LM: (5)

If we now substitute back solution (5) into action (2) we
obtain exactly action (1), implying that the two actions are
indeed dynamically equivalent. In general, the second sca-
lar field � is unnecessary and we could consider action (2)

with only one auxiliary field �. However, the forthcoming
analysis is much simplified in the two-field approach,
which moreover can be straightforwardly applied to more
general Lagrangians such as fðR;LMÞ (see the Appendix).
For these reasons, considering two independent auxiliary
fields in action (2) is more suitable for our purposes.
At this point we define two new scalar fields as

�1 ¼ @f1ð�Þ
@�

þ @f2ð�Þ
@�

� and �2 ¼ f2ð�Þ; (6)

which allows us to rewrite action (2) as

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½�1Rþ�2LM þ Vð�1; �2Þ�; (7)

with

Vð�1; �2Þ ¼ f1ð�Þ ��1�; (8)

where � has to be interpreted as a function depending
on �2 through (6). Action (7) represents a Brans-Dicke
theory with a vanishing kinetic term and a matter sector
coupled to a second scalar field which interacts with the
Brans-Dicke field through the potential V.
We now want to integrate out the scalar field �2. To do

this we consider the variation of (7) with respect to �2,
which yields

LM þ @V

@�2

¼ 0: (9)

We need a solution of this equation for �2. Our analysis
only works when Eq. (9) admits such a solution. If this is
not the case, one has to follow other ways in order to
constrain the original theory (1). In any case, as we will
see in Sec. IV, a solution to (9) can always be found for a
wide class of theories, implying that our method is quite
generally applicable. Assume then that

��
2 ¼ �ð�1;LMÞ (10)

is a solution of (9) with � a function of �1 and LM.
Plugging (10) back into action (7) gives

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½�1Rþ PðLM;�1Þ�; (11)

where

PðLM;�1Þ ¼ LM�þ Vð�1;�Þ: (12)

We can now perform a conformal transformation in
order to switch from the Jordan to the Einstein frame.
Consider the following conformally related metric,

~g�� ¼ 16�G�1g��; (13)

and redefine �1 as

�1 ¼ �0 exp

� ffiffiffiffi
G

p

16�
ffiffiffi
3

p ~�1

�
; (14)
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where�0 is a constant. With the help of this transformation
we can rewrite action (11) as

S ¼
Z

d4x
ffiffiffi
~g

p �
R

16�G
� 1

2
~g��@� ~�1@� ~�1 þ ~PðLM; ~�1Þ

�
;

(15)

where

~PðLM; ~�1Þ ¼ 1

�2
1

PðLM;�1Þ; (16)

with �1 to be interpreted as a function of ~�1 and LM

depending on ~g�� through g��. Action (15) is nothing but

Einstein gravity with a scalar field �1 which interacts with
all the matter degrees of freedom. This scalar field is
obviously regular, its kinetic term being of the canonical
type. However, the matter Lagrangian appears in the theory
in a nontrivial manner, and the stability of its fields is not
guaranteed.

III. CONSISTENCY CONDITIONS FOR
NONMINIMALLY COUPLED fðRÞ GRAVITY

According to the spirit of the original nonminimally
coupled fðRÞ theory given by (1), one can in principle
consider any kind of matter Lagrangian. In other words,
the theory must be consistent for every choice of matter we
want to couple to gravity. In order to continue our analysis
we are thus free to choose any matter Lagrangian at our
convenience. In what follows we will consider LM to be
the Lagrangian of a matter scalar field �M:

LM � X ¼ � 1

2
g��@��M@��M: (17)

In principle we could have added any potential for the
scalar field �M, but the following analysis would not
have to be altered; thus we choose to work with only the
kinetic term. Note that assuming @��M to be timelike

implies that X > 0. The choice (17) is probably the sim-
plest one we can consider, and it will allow us to put some
constraints on the functions f1 and f2 when a particular
model is chosen. However, since we are restricting our
study to a specific choice of the matter Lagrangian, the
results will only be necessary conditions and more restric-
tive constraints could be found with different choices. In
any case, since the original theory (1) must work for every
matter Lagrangian, any constraint we obtain on the func-
tions f1 and f2 must be satisfied in primis by every model.
In other words, we will be able to exclude the theories
which do not satisfy such constraints, but we cannot assure
that other models are ultimately viable. A complete analy-
sis is impossible for obvious reasons (one should study all
the possible matter Lagrangians), and each theory has to be
considered separately if one wants to check its consistency
in depth. A scalar field ensures a sufficiently simple but
still fundamental matter sector. Other possibilities do not

share these properties: a point particle Lagrangian cannot
be regarded as fundamental, while Yang-Mills or spinor
Lagrangians would complicate the analysis because of
technical reasons. The study of these and other fundamen-
tal fields will be left for future works.
With the matter Lagrangian choice (17) ~P becomes, in

general, a function of X and ~�1. The kinetic term for ~�1 is
canonical and separated from ~P, meaning that all the
dependence on derivatives of fields inside ~P is contained
in X. Such types of theories are known in cosmological
contexts as k-essence models [60–63]. They usually
depend on a scalar field which enters the action in a non-
canonical way. The action for k-essence is commonly
written as

Sk ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

16�G
þ pðX�;�Þ

�
; (18)

where p is a general function of a scalar � and
X� ¼ �1=2ð@�Þ2.
Because of their applications to dark energy and infla-

tion, these theories have been well studied and several
results have already been discovered. In particular, we
are interested in the stability conditions one must impose
on the function p in order for the model to be physically
viable. These can be obtained by requiring the positivity of
both the energy density of the scalar field and the speed of
sound at which the perturbations propagate in the scalar
fluid.3 The required conditions are given by [62,63]

�ð�Þ ¼ 2X�p;X�
� p > 0; (19)

c2sð�Þ ¼ p;X�

�;X�

¼ p;X�

2X�p;X�X�
þ p;X�

� 0; (20)

where ;X�
denotes differentiation with respect to X�. Here

�ð�Þ is the energy density of the scalar field, while csð�Þ is
the speed of sound. Conditions (19) and (20) have to be
satisfied by every physically viable model. If they do not
hold, the theory cannot be employed at macroscopic scales.
If we further require that the perturbations do not propagate
faster than the speed of light, we should impose the further
condition that csð�Þ � 1.
We now transfer conditions (19) and (20) to our theory

given by action (15). In order for this theory to be consis-
tent we require that

~�ð�M;�1Þ ¼ 2 ~X ~P; ~X � ~P> 0; (21)

3Technically this is defined as the ratio of the pressure pertur-
bation and the density perturbation evaluated in the rest frame of
the field. For a canonical scalar field the speed of sound is
identically unity; in general, it can depend on time, and it differs
from the so-called adiabatic speed of sound that is the ratio of the
time derivative of the background pressure and the background
energy density.
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1 � ~c2sð�M;�1Þ ¼
~P; ~X

2 ~X ~P; ~X ~X þ ~P; ~X

� 0; (22)

where ~X denotes the kinetic term of the Einstein frame, and
it is related to X by

~X ¼ X

16�G�1

: (23)

The theory can thus be constrained by requiring that the
conditions (21) and (22) are satisfied in the Einstein frame.
However, since we know the relations between X and ~X
and between P and ~P, we can find how the conditions (21)
and (22) are written in terms of Jordan frame quantities.
Using (16) and (23) we can easily obtain

~� ¼ 1

�2
1

� and ~c2s ¼ c2s ; (24)

where

� ¼ 2XP;X � P and c2s ¼ P;X

2XP;XX þ P;X

(25)

are the energy density and speed of sound in the Jordan
frame. Thus the two consistency conditions (21) and (22)
can conveniently be translated into

� > 0 and 1 � c2s � 0; (26)

which can be computed directly from the Jordan frame,
avoiding the passage to the Einstein frame. As we will see,
once a particular fðRÞ model is chosen in action (1), the
conditions (26) will permit us to constrain the free parame-
ters of the theory.

At this point we conveniently summarize the whole
recipe one has to follow in order to find consistency con-
ditions on nonminimally coupled fðRÞ gravity:

(1) Identify the two functions f1ðRÞ and f2ðRÞ in
action (1).

(2) Compute�1,�2 and Vð�1; �2Þ from definitions (6)
and (8).

(3) Find a solution ��
2 of Eq. (9) (if possible).

(4) Evaluate PðLM;�1Þ from (12) with LM ¼ X.
(5) Constrain the free parameters of the theory using

conditions (26).
In the remaining part of the paper we will apply these
instructions to some nonminimally coupled fðRÞ models.
This will also explain how this procedure works in practice
and how it can be employed to constrain the free parame-
ters of the theory.

IV. CONSISTENCY OF SPECIFIC MODELS

In this section we will consider some particular models
where the functions f1ðRÞ and f2ðRÞ of action (1) are
assumed to be of some specific kind. Some of these theo-
ries will be considered for their simplicity, others because

of their relevance for cosmological and astrophysical
applications.

A. f1ðRÞ / R and f2ðRÞ / R�

The first model we study is motivated by its relative
simplicity and will be utilized as a working example. We
will consider a theory specified by the functions

f1ðRÞ ¼ R

16�G
and f2ðRÞ ¼ AR	; (27)

where A and 	 are two free real parameters. The first
function represents nothing but the standard Einstein-
Hilbert Lagrangian for GR. Similar to several models
already studied in the literature, this specific choice has
the scope of only modifying the minimal coupling with
matter and leaving the pure gravity sector unchanged. The
theory reduces to GR in the limit 	 ! 0 and A ! 1, and if
we want to study only physically motivated modifications
of gravity, we cannot consider negative values for A where
the gravitational force would be repulsive on all matter
fields. In what follows we will thus set A > 0. Even though
the function f2ðRÞ is usually taken to be f2ðRÞ ¼ 1þ AR	

for physical applications of the theory (e.g. [16,24,26,29]),
we first study the model (27), both because of its simplicity
and because it has already been analyzed in other
works (e.g. [53]). The case f2ðRÞ ¼ 1þ AR	 will be
studied Sec. IVB.
Having identified the two shape functions of the theory,

the next step we have to take is to compute the fields �1,
�2 and the potential Vð�1; �2Þ. These are given by

�1 ¼ M2
Pl þ 	A�	�1�; �2 ¼ A�	;

V ¼ ðM2
Pl ��1Þ

�
�2

A

�
1=	

;
(28)

where M2
Pl ¼ 1=ð16�GÞ is the Planck mass. At this point

we must find a solution to Eq. (9), which in this case reads

LM þ ðM2
Pl ��1Þ 1	

1

A1=	
�ð1�	Þ=	

2 ¼ 0: (29)

Provided 	 � 1, which will be analyzed later, we can
easily find the solution as

��
2 ¼ �ðLM;�1Þ ¼

�
	A1=	LM

�1 �M2
Pl

�
	=ð1�	Þ

: (30)

Next we compute PðLM;�1Þ using (12). This is given by

PðLM;�1Þ ¼ ð1� 	ÞA1=ð1�	Þ
�

	

�1 �M2
Pl

�
	=ð1�	Þ

L1=ð1�	Þ
M :

(31)

Finally, after settingLM ¼ X, we are ready to compute the
consistency conditions (26) which will constrain the range
of possible values of 	. We first calculate the sound speed,
which turns out as
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c2s ¼ 1� 	

1þ 	
: (32)

For absence of instabilities we thus require that

c2s � 0 , �1 � 	 � 1: (33)

This tells us that values of 	 for which j	j � 1 are forbid-
den in such a theory. This is expected since small devia-
tions from GR, for which 	 ¼ 0, are usually more viable
under a phenomenological point of view. If we further wish
to avoid superluminal signals, we obtain the constraint

0 � c2s � 1 , 0 � 	 � 1: (34)

The constraint coming from the positivity of the energy
density gives us

� ¼ 1þ 	

1� 	
P > 0; (35)

which combined with (32) leaves us with

P> 0: (36)

Since A > 0, LM ¼ X > 0 and j	j< 1, the only object
which remains to be checked in (31) is 	=ð�1 �M2

PlÞ.
From the definition of �1 (28) we have

	

�1 �M2
Pl

¼ 1

A�	�1�
; (37)

whose left-hand side is determined by the right-hand side
(RHS) which, in the GR limit 	 ! 0, A ! 1 and
�1 ! M2

Pl, becomes

	

�1 �M2
Pl

��������GR
! �

�
� R

LM

; (38)

where in the last equality the solution (5) of the equations
of motion has been used. We can then realize that the
fraction 	 ! 0 over �1 �M2

Pl ! 0 controls the relative

sign between R andLM. Since in GR this is nothing but the
Planck mass MPl, it is natural to assume that this also
remains positive for a physically viable theory. In this
manner there are no inconsistencies in the definition of P
(31), and the positive energy condition is automatically
satisfied.

This model is thus always unphysical whenever j	j> 1
and presents superluminal propagation unless 0<	< 1.
Employing our recipe we managed to impose a constraint
on the range of the possible values of the free parameter 	.

1. Remarks on the linear coupling and viable
(and otherwise) generalizations of the theory

It is interesting to stop to consider briefly the special
case of the linear coupling 	 ¼ 1 because of its particular
simplicity (phenomenological studies have also claimed
the linear coupling may be observationally viable in
some regimes [34]) and because it has been excluded
from the analysis above. In this particular case, it is

possible to easily make contact with the Horndeski theories
and thus propose viable generalizations of the theory.
Here the ghost condition (35) appears to become ill

defined at the limit of linear coupling. However, by com-
paring with the Horndeski theories we know that a term
�Rð@�Þ2 in the action entails a ghost.4 Thus 	 ¼ 1 is ruled
out. If one instead considers the full Horndeski term
�Rð@�Þ2 � 2½ðh�Þ2 ��;���

;���, the higher derivatives
in the equations of motion are canceled and the energy
associated with the fluctuations of the field can remain
bounded from below despite the appearance of the higher
derivatives in the action. Thus, modifying the coupling in
this way would cure the negative-energy pathology.
Written in terms of the perfect fluid parametrization,

where one identifies the properly normalized four-velocity

as u� ¼ �;�=
ffiffiffiffiffiffi
2X

p
, the coupling would look rather clumsy,

RLMþ1

2
LM½ðu 	r logLMÞ2þðrlogLMÞ2�

þ2LM½ðr	uÞðu 	 logLMÞþðr	uÞ2�ðruÞ2�: (39)

A lesson here is at least that when writing down non-
minimally coupled theories, especially with extra deriva-
tives (either the r’s acting directly on the matter
Lagrangian or the derivatives implicit in the curvature
scalar), one has to consider very well-specified classes of
theories in order to avoid the introduction of unphysical
pathologies. This is extremely useful since it permits one to
efficiently constrain the otherwise infinite theory space and
to immediately exclude models such as e.g. those consid-
ered in5 [68–71].

B. f1ðRÞ / R and f2ðRÞ¼ 1þ ðR=R0Þ�
In this section we study a model similar to the one

already analyzed in Sec. IVA. The nonminimal coupling
is again characterized by a power-law function, but now the
matter Lagrangian also appears with its canonical terms:

f1ðRÞ ¼ R

16�G
and f2ðRÞ ¼ 1þ

�
R

R0

�
	
; (40)

where R0 and 	 are the parameters of the model. The GR
limit is given by R=R0 
 1 but the limit 	 ! 0 also
reduces the theory to standard GR after a redefinition of

4Such couplings were already studied by Amendola in [9]. The
more recent nonminimally coupled three-form model [64] might
also have a ghost; as in the scalar field dual description the three-
form field invariant is the kinetic term of the scalar.

5Some of these and many other studies start with an action
involving the stress energy tensor (contracted with the metric or
some other tensor). It is difficult to see how this could make
sense conceptually, as the stress energy tensor is fundamentally
derived from the action. However, it is possible to consider
theories constructed through recursive definitions for the cou-
plings of the stress energy tensor [65,66], thus entailing a similar
loopy structure that emerges in C theories [47] and nonlocal
gravity [67].
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the gravitational constant. Though this model is mathe-
matically almost the same as the one in Sec. IVA, physi-
cally it presents more interesting features because the
deviations from standard GR can be better parametrized.
For this reason it has been studied more intensively
throughout the literature [16,24,26,29].

The scalar fields (6) and the potential (8) are now

�1 ¼ M2
Pl þ

	

R	
0

�	�1�; �2 ¼ 1þ
�
�

R0

�
	
;

V ¼ R0ðM2
Pl ��1Þð�2 � 1Þ1=	;

(41)

and solving Eq. (9) eventually yields

PðX;�1Þ ¼ X þ ð1� 	ÞX1=ð1�	Þ
�

	

R0ð�1 �M2
PlÞ
�
	=ð1�	Þ

:

(42)

As expected, this is, apart from a different definition of the
parameters, the same as (31) but with a canonical term
added.

Before evaluating conditions (26) we give an argument
for the positiveness of

F	ð�1Þ ¼
�

	

R0ð�1 �M2
PlÞ
�
	=ð1�	Þ

: (43)

If we require R0 > 0 for consistency, then from the defini-
tion of �1 (41) we obtain

�1 �M2
Pl

	
¼ �

R0

�
�

R0

�
	�1 � LM

R0

�
R

R0

�
	�1

; (44)

where in the last equality the solution (5) of the equations
of motion has been used. In this case the GR limit
R=R0 
 1 is not very insightful since it just forces �1 �
M2

Pl as it has to be. However, as we noticed above, the limit

	 ! 0 also reduces the theory to GR. In this limit the left-
hand side of (44) is indeterminate, while the right-hand
side yields again LM=R. This implies that in the GR limit
the left-hand side is nothing but the relative sign between R
andLM or, in other words, the gravitational constant. Since
in GR this constant is positive it is again natural to assume
that physically motivated deviations from GR also leave
this constant positive. In what follows we can thus assume
that F	ð�1Þ> 0.

We can now compute the energy and speed of sound
from (25), obtaining

� ¼ X þ ð1þ 	ÞF	ð�1ÞX1=ð1�	Þ; (45)

c2s ¼
1þ F	ð�1ÞX	=ð1�	Þ

1þ 1þ	
1�	 F	ð�1ÞX	=ð1�	Þ : (46)

In general, it is now more complicated to understand for
which values of 	 the conditions (26) are not satisfied.
However, such conditions have to be true for every value of
the kinetic energy X. Requiring that the conditions (26) are

satisfied both when X � 1 and X 
 1 provides the fol-
lowing constraint

� 1 � 	 � 1; (47)

which must be true in order for the theory to be viable.
Furthermore, excluding superluminal propagation cuts out
the possibility of a negative exponent, and the constraint
tightens to 0 � 	 < 1. Note that this is the same result we
have obtained in (33). This does not come as a surprise
since in one of the regimes X � 1 or X 
 1 the canonical
kinetic term of the scalar field is always negligible in
comparison with the nonminimal coupling term. The
theory effectively becomes the same as the one analyzed
in Sec. IVA.
Since the inclusion of the canonical matter term inside

the gravitational action just corresponds to the redefinition
PðX;�1Þ � X þ PðX;�1Þ in our analysis, we can conjec-
ture that all conditions valid for a theory f2ðRÞ ¼ f�ðRÞ are
also true for a theory f2ðRÞ ¼ 1þ f�ðRÞ, with f�ðRÞ a
general function. This is because in the appropriate limit
of the kinetic energy of the matter scalar field, the canoni-
cal matter term will always be negligible if compared to the
nonminimal coupled term.

C. f1ðRÞ / R and f2ðRÞ / e�R

Another simple model to analyze is the exponential
nonminimal coupling described by

f1ðRÞ ¼ R

16�G
and f2ðRÞ ¼ Ae
R; (48)

where 
 and A are two free parameters. The GR limit is
now characterized by 
 ! 0 and A ! 1, which suggests
that we consider A > 0 for consistency. The two scalar
fields (6) and the potential (8) are now given by

�1 ¼ M2
Pl þ 
Ae
��; �2 ¼ Ae
�;

V ¼ M2
Pl ��1



log

�
�2

A

�
;

(49)

and Eq. (9) reads

LM þ ðM2
Pl ��1Þ 1


�2

¼ 0; (50)

with the solution

��
2 ¼

M2
Pl ��1


LM

: (51)

At this point one can easily compute PðX;�1Þ to be

PðX;�1Þ ¼ M2
Pl ��1




�
1� log

�
A
X

M2
Pl ��1

��
: (52)

Finally, it is enough to evaluate the condition on the sound
speed in order to realize that this model is immediately
ruled out. In fact, from (25) we find
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c2s ¼ �1; (53)

which is obviously never positive.
To conclude, we have found that the nonminimal

coupled fðRÞ model characterized by (48) is never physi-
cally viable. It is thus not possible to employ such a theory
in order to study consistent modifications of gravity at
large scales. Of course the case 
 ¼ 0 corresponding to
GR does not present any problem and is indeed excluded
from this analysis. Finally, we mention that the model
f2ðRÞ ¼ 1þ A exp ð
RÞ is also ruled out by our analysis.
In fact, in the appropriate limit of kinetic energy this theory
would become identical to the one we just ruled out. Since
we require that a nonminimally coupled theory is physi-
cally viable for every value of the matter Lagrangian one
considers, adding a canonical matter term to such a model
will not prevent these instabilities.

D. f1ðRÞ¼ R
16�G þARn and f2ðRÞ / Rn

Finally, an example where the function f1 is different
from the usual Einstein-Hilbert term will be provided in
this section. We will generalize the power-law model of
Sec. IVA by adding a similar self-interacting power-law
term to the gravitational sector. The two functions in (1)
will then be chosen to be

f1ðRÞ ¼ R

16�G
þ ARn and f2ðRÞ ¼ BRn; (54)

where A, B and n are free parameters. In general, in
accordance with other works [51], we have considered
different exponents for the power-law terms in the two
functions. However, setting them to coincide enormously
simplifies the analysis of this section, and since our scope
here is to present a simple example where the gravitational
Lagrangian differs from the Einstein-Hilbert term, we will
only consider the functions (54) in the following. Note that
the GR limit is achieved for A ! 0, B ! 1 and n ! 0.

In the present case the two scalar fields defined in (6) can
be computed to be

�1 ¼ M2
Pl þ n�n�1ðAþ B�Þ and �2 ¼ B�n; (55)

while the potential (8) is given by

Vð�1; �2Þ ¼ ðM2
Pl ��1Þ

�
�2

B

�
1=n þ A

B
�2: (56)

At this point we can find Eq. (9) as

LM þ 1

n
B�1=nðM2

Pl ��1Þ�ð1�nÞ=n
2 þ A

B
¼ 0; (57)

with the solution

��
2 ¼ �ðLM;�1Þ ¼ B

�
nBðLM þ A=BÞ

�1 �M2
Pl

�
n=ð1�nÞ

: (58)

Equation (57) would be much more difficult to solve
analytically if the two exponents in the functions (54)
were different. One can now find PðX;�1Þ to be

PðX;�1Þ ¼ Bð1� nÞ
�

nB

�1 �MPl

�
n=ð1�nÞ�

X þ A

B

�
1=ð1�nÞ

:

(59)

The speed of sound will then be

1

c2s
¼ 1þ 2n

ð1� nÞ
X

ðX þ A=BÞ : (60)

Since this must be positive for every value of X, when
X � 1 we obtain the condition

� 1 � n � 1; (61)

which is the same as the one we obtained in Sec. IVA.
Again, the superluminality constraint also excludes nega-
tive exponents, and we are left with 0 � n � 1. On the
other hand, the positivity of the energy density becomes

� ¼ Bð1� nÞ
�

nB

�1 �MPl

�
n=ð1�nÞ�

X þ A

B

�
n=ð1�nÞ

�
�
X
1þ n

1� n
� A

B

�
> 0: (62)

To check the positivity of this expression we need to
discuss all the terms appearing in it. Due to (61) the term
(1� n) is always positive. Moreover, we can assume that
the third term is also positive because of the following
argument. From the definitions (55) we have

�1 �M2
Pl

nB
¼

�
�þ A

B

�
�n�1; (63)

which in the GR limit reduces to

�1 �M2
Pl

nB

��������GR
¼ �

�
� LM

R
; (64)

where in the last equality the solution (5) has been used.
Again, since in GR this reduces to the relative sign between
the gravitational and matter sectors, which is basically
nothing but the gravitational constant, it is natural to
assume that for physically justified modifications of
gravity this value also remains positive. Moreover, we
notice that

�1 �M2
Pl

nB

�
�þ A

B

��1 ¼ �n�1 � Rn�1: (65)

The RHS of this equation is always positive because the
theory we are dealing with is well defined only for values
R> 0. If R< 0 the two functions (54) are ill defined and a
different definition should be employed. In any case the
RHS of (65) would always remain positive, and thus we
can safely assume that the fourth term in (62) is also bigger
than zero.
The only terms that remain to check in (62) are the first

and the last one. If A and B have different signs the last
term is always positive, while if A=B > 0 it can be positive
or negative depending on the value of X. Since we require
the energy to be positive for all values of X, we are led to
consider only the case A=B < 0. However, the first term in
(62) is just B, and we must assume B> 0 if we want � > 0.
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This in turn implies A < 0. Note that the assumption B> 0
is quite natural if we require the theory to be physically
interesting since in the GR limit we must have B ¼ 1.

Finally, we comment on the fact that we could have
chosen f2ðRÞ ¼ 1þ BRn. As before, this redefinition just
complicates the whole analysis but does not change the
final results. Note that in this case the requirement B> 0
has nothing to do with the GR limit of the theory because
this is B ! 0 now. Then the B> 0 condition is indeed a
constraint arising from the result of our analysis and has
nothing to do with the physical features of the theory.

V. DISCUSSION AND CONCLUSION

The purpose of the present work is to constrain non-
minimally coupled fðRÞ gravity. In order to achieve this
goal, the dynamically equivalent representation of the
theory in terms of multiscalar-tensor theories has been
employed. By choosing the matter Lagrangian to be a
simple scalar field, it has been possible to compute the
effective energy density and the speed of sound of adia-
batic perturbations. Finally, to ensure that the nonminimal
couplings of the theory do not introduce instabilities, it was
eventually required that these quantities be positive, and to
exclude superluminal propagation of perturbations, the
sound speed was bounded below unity. The whole proce-
dure has given rise to a recipe, summarized at the end of
Sec. III, which can be adopted to constrain possible models
of nonminimally coupled fðRÞ gravity. In order to better
explain how this recipe works, some specific models have
been studied in Sec. IV. The main results of this analysis
are schematized in Table I. As it is clear from the table, the
parameters of the various models have been constrained to
lie in specific ranges.

In Secs. IVA and IVB a power-law nonminimal cou-
pling has been considered. This kind of model is particu-
larly popular in the literature [16,24,26,29], both because it
is sufficiently easy to handle and because it produces
results comparable with observations. The results of
Sec. IVB are consistent with [50], which poses doubts
on the viability of a linear Ricci coupling to matter, though
for astrophysical applications such a coupling can be
preferable [34]. We argued that the linear coupling is
excluded, and proposed a viable generalization of the
theory. In any case, for dark matter and dark energy

modeling is commonly considered an exponent 	 < 0
[24,26], since one wants the effects of the nonminimal
coupling to be relevant at late times when the Ricci scalar
is small. However, such models allow superluminal propa-
gation and thus, apparently, violations of causality. The
galactic rotation curves have been explained by employing
	 ¼ �1=3 or 	 ¼ �1 [24], while for dark energy values
	 <�1 better fit the observations [26]. Since from the
analysis of Sec. IVB a constraint 	 � 0 emerges, it seems
that a power-law nonminimally coupled fðRÞ model can
never represent a suitable late time theoretical description
for dark matter or dark energy.
In Sec. IVC an exponential nonminimal coupling has

been probed. Despite its simplicity it has been shown to
always lead to a negative speed of sound for adiabatic
perturbations. The model has thus been ruled out by the
considerations presented in this work and should not be
considered for physical applications. As it is shown in
Table I, the only possible value for the parameter 
 is
zero, which corresponds to nothing but GR. Finally, in
Sec. IVD, a model where the gravitational sector is also
modified has been considered. The results for this case are
similar to the ones obtained in Sec. IVA, with the addition
that the parameters A and B have to always be negative and
positive, respectively.
To conclude, the analysis exposed in these pages aims at

presenting and explaining a simple procedure one can
utilize in order to find constraints on specific models of
nonminimally coupled fðRÞ gravity. Though for compli-
cated models this can be practically impossible to carry
out, for sufficiently simple cases, such as the ones com-
monly studied in the literature and considered in Sec. IV, it
becomes a useful tool to check the phenomenological
viability and rule out unphysical theories. Having in
mind the possibility of employing such theories in astro-
physical and cosmological applications, it is convenient to
have an instrument that is able to determine the consistency
of the model with which one chooses to work.
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APPENDIX: THE SCALAR-TENSOR
REPRESENTATION OF fðR;LMÞ GRAVITY

In this appendix we will show that an equivalent scalar-
tensor representation also exists for more general theories6

identified by the extended action

S0 ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
fðR;LMÞ; (A1)

where now f is an arbitrary function of both the Ricci
scalar R and the matter LagrangianLM. Such models have

TABLE I. Constraints on parameters of some specific models
of action (1) arising from the analysis presented in Sec. IV.

f1ðRÞ f2ðRÞ Stable if Stable & causal if

R
16�G

AR	

�1 � 	 < 1 0 � 	 < 1
1þ AR	

R
16�G

A exp ð
RÞ

 ¼ 0 
 ¼ 0

1þ A exp ð
RÞ
R

16�G þ ARn BRn �1 � n < 1 0 � n < 1
1þ BRn A<0 and B>0 A<0 and B>0

6For remarks on other generalizations, recall Sec. IVA1.
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been proposed in [72] as a maximal extension of non-
minimally coupled fðRÞ gravity and have been further
studied in [73–75]. In what follows action (A1) will be
proven to be dynamically equivalent to action (7), with
different definitions of the scalar fields �1, �2 and the
potential Vð�1; �2Þ. Once this equivalence has been
defined, the procedure following (7) can be identically
repeated, and the general conclusions we found for non-
minimally coupled fðRÞ gravity will also hold for
fðR;LMÞ gravity. The only crucial difference will be in
the definitions of the scalar fields, which in turn will
determine the physical differences between the various
models.

Consider again another action given by

S¼
Z
d4x

ffiffiffiffiffiffiffi�g
p �

fð�;�Þþ @f

@�
ðR��Þþ @f

@�
ðLM��Þ

�
;

(A2)

where � and � are two scalar fields. The variation of this
action with respect to the two scalar fields gives

@2f

@�2
ðR� �Þ þ @2f

@�@�
ðLM � �Þ ¼ 0; (A3)

@2f

@�@�
ðR� �Þ þ @2f

@�2
ðLM � �Þ ¼ 0: (A4)

Given that the determinant of this system of equations is
nonvanishing, i.e. assuming that

@2f

@�2

@2f

@�2
�

�
@2f

@�@�

�
2
; (A5)

the unique solution is

� ¼ R and � ¼ LM: (A6)

It is now easy to realize that substituting this solution back
into (A2) immediately produces action (A1), implying that
the two theories are dynamically equivalent.
At this point we define two new scalar fields and a

potential as

�1 ¼ @f

@�
; �2 ¼ @f

@�
;

Vð�1; �2Þ ¼ fð�;�Þ � ��1 � ��2;

(A7)

where one must consider � and � as functions of �1 and
�2 in the potential V. In terms of these new variables
action (A2) can be rewritten as

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½�1Rþ�2LM þ Vð�1; �2Þ�; (A8)

which coincides with (7) except for the definitions (A7),
which differ from (6) and (8).
To conclude, we have proven that the extended theory

defined by action (A1) can equally be mapped into a scalar-
tensor theory described by action (7). The only differences
arise in the definitions of the scalar fields �1, �2 and the
potential V, which generalize the corresponding definitions
in nonminimally coupled fðRÞ gravity. Because of this
result the same analysis we performed in the main body
of the paper could be identically carried out for fðR;LMÞ
gravity.
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