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We perform a parameter study of nonspinning, equal- and unequal-mass black hole binaries on generic,

eccentric orbits in numerical relativity. The linear momentum considered ranges from that of a circular

orbit to ten times that value. We discuss the different manifestations of zoom-whirl behavior in the

hyperbolic and the elliptic regime. The hyperbolic data set applies to dynamical capture scenarios (e.g., in

globular clusters). Evolutions in the elliptic regime correspond to possible end states of supermassive

black hole binaries. We spot zoom-whirl behavior for eccentricities as low as e� 0:5, i.e., within the

expected range of eccentricities in massive black hole binaries from galaxy mergers and binaries near

galactic centers. The resulting gravitational waveforms reveal a rich structure, which will effectively break

degeneracies in parameter space, improving parameter estimation.
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I. INTRODUCTION

Zoom-whirl orbits arise as a general-relativistic phe-
nomenon of the two-body problem. Such orbits do not exist
in Newtonian gravity, where the orbits are Kepler’s conic
sections. Hence, they represent an important facet of one of
the fundamental problems in general relativity (GR). The
term zoom-whirl was first used in Refs. [1,2]. It refers to the
orbits of eccentric binaries where tight and fast revolutions
(thewhirls) are separated by phases inwhich the two objects
move out to larger distances and back in (the zooms).

The physics behind this effect is precession. For bound
orbits, one can define the rate of precession as precession
per orbit by measuring the angle between two consecutive
apocenters. In general, precession accumulates continu-
ously (with respect to some external reference frame) and
amounts to an excess angle beyond the Newtonian motion.
Precession is strongest for small separations and is there-
fore significant especially for eccentric orbits. In the
Solar System, the precession of the orbit of Mercury
due to general relativity is 43 arcseconds per century, or
ð2:9� 10�5Þ� per orbit. For binary pulsars, precession is
not necessarily much larger. For the Hulse-Taylor pulsar
the precession is 4.2� per year, but due to its short orbital
period this amounts to ð3:7� 10�3Þ� per orbit. Observed
precessions are on the order of ð2� 10�2Þ� per orbit in
some cases [3–5]. A supermassive black hole binary model
[6,7] fitted to the optical light curve of the quasar OJ-287
predicts (model-dependent) orbital parameters with a pre-
cession as large as �40� per orbit.

In theory, general-relativistic orbits with even larger
precessions can be easily constructed by choosing appro-
priate orbital parameters. This is possible for test particles
following geodesics around a black hole (BH), but also for
comparable-mass compact objects in the post-Newtonian
(PN) approximation [8]. As long as the particle or compact

object orbits well outside the innermost stable circular orbit
(ISCO), the classical picture of a slowly precessing ellipse
or hyperbola applies. If the orbital parameters are chosen
such that the object approaches distances close to or even
inside the ISCO, it may follow an unstable circular orbit for
some time. After this it either plunges or escapes to larger
distances (infinity if the motion is unbound), which is the
zoom-whirl behavior we are interested in. In the whirl
regime orbits exhibit extreme precession with precession
angles comparable to or larger than 2�, wrapping the inner
part of the orbit once or even several times around its center.
The basic features of zoom-whirl orbits were first dis-

cussed in the context of geodesics in a stationary black hole
spacetime (e.g., Refs. [9–12]), in extreme mass-ratio in-
spirals (e.g., Refs. [1,13–15]), and PN evolutions [16,17].
In these contexts zoom-whirl orbits arise when the test
particles move near or at the maximum of the effective
potential associated with its radial motion; see, e.g.,
Ref. [10]. For geodesics, it is a matter of fine-tuning the
initial parameters of the orbit to obtain a certain number of
whirls. In fact, for geodesics the number of whirls can be
made arbitrarily large since there is no gravitational radia-
tion; see Ref. [11] for an example with six orbits during a
whirl. Going beyond the test-mass limit, including radia-
tion loss is a key task (e.g., Refs. [1,18,19]).
The main question about zoom-whirl orbits in full GR is

how the classic, well-known picture of zoom-whirl geo-
desics changes for binaries with comparable masses in
configurations where radiation damping becomes signifi-
cant. Naively, we do not expect the binary to radiate away
more than its total mass, i.e., the number of orbits is finite
since it is limited by the energy and angular momentum
radiated away during each whirl. In fact, for comparable
masses one might have questioned whether it is possible to
obtain even a single (full) whirl. Since the whirls happen
at high velocity and small separation (even inside the
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innermost stable circular orbit), the PNapproximation is not
directly applicable; see, e.g., Ref. [8]. However, recently
some groups have performed numerical evolutions in full
general relativity of eccentric black hole binaries (BHBs).
Zoom-whirl orbits have indeed been found, although the
number of whirls in these experiments is less than three.

In Ref. [20], Pretorius and Khurana presented the first
example of a whirl orbit for an equal-mass binary. In
Refs. [21–25], several examples for the transition from
inspiral to plunge, radiated energy, angular momentum,
and the resulting final spin were investigated. In
Ref. [26] longer evolutions of unequal masses and non-
vanishing spin with up to three elliptic orbits which tran-
sition through the zoom-whirl regime prior to merger were
studied. The notion of marginally stable circular orbits in
background spacetimes was shown to be in close resem-
blance to whirl orbits in numerical evolutions of finite mass
ratio [10,20]. The consequences for kicks were addressed
in Ref. [27]. Implications for data analysis were studied in,
e.g., Refs. [28–33]. In particular, Refs. [30,31] pointed out
the potentially deteriorating effects in signal processing
when eccentricity is ignored in the waveform models.

Eccentric neutron-star and mixed binaries in dynamical
spacetime have been studied in Refs. [34–37], and in all
cases zoom-whirl behavior has been identified. The focus
in Refs. [38–42] was on high-energy collisions. Among the
key results so far is that the total energy radiated can
easily exceed the 4% of the total mass radiated during
the last stage of a quasicircular inspiral. For high-energy
collisions, total radiated energies up to 35� 5% have been
found [40]. In Ref. [24], we found at low momentum
multiple extrema in the radiated energy as a function of
the initial data, and that only a modest amount of fine-
tuning is required to spot these extrema. These extrema
should be compared to the variations in the mass and spin
of the merger remnant noted in Ref. [25].

Choosing different initial data and also different tuning
strategies, these investigations have been performed in
different regions in parameter space. In the present work
we focus on an area that has received relatively little
attention so far, namely intermediate momenta and com-
parable but not necessarily equal masses. We extend the
discussion of Ref. [24]; specifically, we consider mass
ratios of 1:1, 1:2, and 1:3, and linear momenta that are 1
to 6, and in one case 10 times the value of a circular orbit,
although not in all possible combinations.

Zoom-whirl is sometimes thought to occur beyond a
certain, rather large eccentricity. Our results instead show
that whirls can also be found for modest eccentricities. We
give an analysis of the gravitational waves (GWs) and how
specific features in the radiated energy are related to orbital
characteristics.

A prerequisite for zoom-whirl orbits is eccentricity.
Isolated black hole binaries formed at typical separations
perform a sufficiently large number of orbits such that the

orbits become circularized long before entering the strong-
field regime [43]. However, it cannot be expected that all
binary GW sources are sufficiently isolated and hence
other effects have to be taken into account. In fact, super-
massive black hole binaries are expected to be formed
in gas-/star-rich environments [44] with potentially large
eccentricities [45,46]. It is well understood that such
binaries can gain eccentricity as a consequence of
gravitational torques exchanged with the circumbinary
disk [44,47–50]. Likewise, gravitational interactions with
additional bodies (Kozai-oscillations, Hill-mechanism,
mass segregation, gravitational focusing, etc.) generically
induce eccentricity growth on a binary system. Numerous
studies of such effects [28–30,51–65] suggest that the
eccentricity of binaries, which emit significant gravita-
tional radiation, cannot in general be ignored. Event-rate
estimates for eccentric compact-object binaries [56,57,66]
suffer from large uncertainties and vary considerably.
Some studies predict that advanced LIGO should detect
such sources, but given the large uncertainties this should
be taken with care. For third generation detectors the
detection range will be larger. Eccentric binary mergers
will therefore become more interesting sources in the
future. For supermassive BHBs, pulsar timing arrays will
soon be able to resolve individual sources in a regime
where many binaries are still expected to be eccentric [67].
Given a population of eccentric binaries, whether

zoom-whirl orbits are of relevance to gravitational-wave
astronomy depends on several factors. Even if the signals
are stronger, if excessive fine-tuning is required, then the
population of strong sources might amount to a very small
corner of parameter space. Conversely, if little tuning is
involved, then zoom-whirl orbits can be potential GW
sources even for ground-based detectors [28–30,53].
With regard to GWs, for comparable-mass binaries with
astrophysical momenta we loose the unlimited number of
whirl orbits due to gravitational radiation, but what is
lost corresponds to a very small part of parameter space
anyway. In any case, as a matter of principle we should be
prepared to detect and recognize GWs from all corners of
parameter space including zoom-whirl orbits.
The paper is organized as follows. In Sec. II we describe

the basics of our numerical methods, our choice of
initial configurations, and give error estimates for typical
runs. We discuss orbital properties in Sec. III A, resulting
waveforms and radiated energy in III B, and phase-space
trajectories in III C. We conclude with Sec. IV.

II. NUMERICAL METHODS AND SUMMARY
OF SIMULATIONS

A. Method

We perform a parameter study of the black-hole-binary
problem using three-dimensional numerical simulations
obtained with the BAM code [68–70]. Initial data for black
holes is computed by the puncture method [71] using a
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pseudospectral code [72], and evolved with the � variant of
the moving-puncture [73,74] version of the Baumgarte-
Shapiro-Shibata-Nakamura [75,76] formulation of the
3þ 1 Einstein evolution equations. We use a fourth-order
Runge-Kutta method for the time integration and sixth-
order finite differencing in space. The wave extraction and
the calculation of the radiated energy is done using a
fourth-order accurate implementation of the Newman-
Penrose formalism. We extract �4 (for details see
Ref. [68]) and thus also Erad at extraction radii of rGW ¼
60M, 80M, 100M, whereM is the total puncture mass (see
below). Our grid is a box of typically * ð640MÞ3 in size,
which is sufficient to keep the boundaries causally discon-
nected from the GWs for most of our runs. We employ
bitant or quadrant symmetry when possible. Usually, the
grid consists of nine levels of mesh refinement, starting at
the coarsest level with a resolution of h ¼ 5M and increas-
ing by factors of two, resulting in a resolution of h �
M=50 at the finest level. The inner, finer levels are evolved
according to Berger-Oliger timestepping, while the outer
levels do not follow the motion of the punctures and are
evolved at the fixed time step given by the innermost fixed
level [69,77]. The fixed boxes have twice as many grid
points (for a more accurate wave propagation). Since some
runs have exceptional settings the parameters of our simu-
lations are summarized in Table I. For our analysis we
measure the GWemission and radiated energy [normalized
to the initial Arnowitt-Deser-Misner (ADM) mass], study
the shape of the event horizons, the coordinate distance
over time, and how much time the binary spends at a
separation D. Moreover we investigate a new way of
analyzing binary evolutions, namely to look at the phase

space with the coordinate velocity and the separation
of the punctures ðv;DÞ serving as generalized coordinates.
The velocity of the puncture is computed from the shift as

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iðxpÞ�iðxpÞ

q
, where xp is the coordinate location of

the puncture. xp is—as a diagnostic—tracked by integrat-

ing @tx
i
p ¼ ��iðxjpÞ using the iterated Crank-Nicolson

method, as in Ref. [73].

B. Black hole parameters

The initial data for black hole binaries is characterized
by a choice of the following parameters. In this work we set
the spins to zero. Input for the computation of the initial
data are the parameters mi for the (bare) puncture masses,
~Pi for the momenta, and ~xi for the positions. The total
puncture massM is defined asM ¼ P

imi. Since the global
mass scale in vacuum is arbitrary, the masses can be
characterized by one number, say the symmetric mass ratio
denoted by � ¼ m1m2=ðm1 þm2Þ2.
We choose coordinates in which the punctures are ini-

tially located on the x axis; see Fig. 1. For equal masses
we set x1;2 ¼ �D=2 for a coordinate separation D. For

unequal masses we leave x1 unchanged but set x2 ¼
x1m1=m2. For the momenta we choose ~P1;2 ¼ � ~P.
This—together with the choice of x1;2—implies that ini-

tially the center of mass is at rest and that mergers happen
at the origin (except for a small merger kick due to unequal
masses). Concretely, we consider momenta in the x-y plane

given by their magnitude P and an angle � such that ~P ¼
ð�P cos�; P sin�; 0Þ. Specifying the ‘‘shooting angle’’�
is equivalent to the choice of an impact parameter. The
magnitudeP of the momenta is chosen as a multiple of Pqc,

which denotes the magnitude of the momentum for a
quasicircular inspiral at separation D.
Given the configuration in Fig. 1, numerical simulations

are parametrized by specific choices for x1, �, P, and �.
We set x1 ¼ 10M for all runs, which impliesD ¼ 20M for
equal masses. For unequal masses, we position the larger
mass at x2, i.e., m2 >m1 and jx2j< x1. Most of the simu-
lations we discuss are for equal masses (� ¼ 1=4), but we
also consider a few examples for mass ratios of 1:2
(� ¼ 2=9) and 1:3 (� ¼ 3=16). Following Ref. [79], for
equal masses at D ¼ 20M the magnitude of the momen-
tum for quasicircular inspiral is Pqc ¼ 0:061747M. We

consider P=Pqc ¼ 1; 2; . . . ; 6, and in one example as the

TABLE I. List of selected runs with corresponding initial data,
errors �Erad=Erad, amplitude A [and its error (�A)] of rGW�4

(wherein rGW is the extraction radius), order of convergence, and
merger times t�m. The errors �A and �Erad are the differences
between low- and medium-resolution models. The order of con-
vergence is obtained from convergence tests of �4 and Erad. We
note that the formal order of convergence deviates from the quoted
integer values by <10%. The 3Pqc, � ¼ 18� case reveals a

convergence order>4 indicating that for this case the resolutions
used are not entirely in the convergent regime.A third PN estimate
[21,78] of our lowest eccentric run 1Pqc, � ¼ 60� gives e �
0:5–0:6 (depending on which definition of e is used).

Model �Erad

Erad
�A=A Ord. t�m½M�

1Pqc, � ¼ 10� 0.01 0.008 4 40.5

1Pqc, � ¼ 40� 0.013 0.010 4 92.7

1Pqc, � ¼ 52� 0.015 0.012 4 766

2Pqc, � ¼ 23:9� 0.017 0.016 4 79.9

2Pqc, � ¼ 26� 0.0013 0.002 4 1
3Pqc, � ¼ 18� 0.0095 0.003 5 69.4

4Pqc, � ¼ 15:6� 0.0095 0.012 4 39.0

10Pqc, �
D
50 ¼ 5:4� 0.03 0.012 4 40.5

FIG. 1 (color online). Configuration of initial data.
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most extreme case P=Pqc ¼ 10. The direction of the mo-

menta is given by � 2 ½0; 90��. Here � ¼ 0 corresponds
to a head-on collision, while for quasicircular inspiraling
orbits � is slightly smaller than 90� because the momen-
tum has a small radial component. The case �> 90� with
initially radially outgoing motion can be ignored [80].

The ADM mass at the ith puncture and at infinity is

Mi
ADM ¼ ð1þ uð ~xiÞÞmi þm1m2

2D
; (1)

M1
ADM¼M1

ADMþM2
ADMþEbind¼m1þm2þ lim

r!1ð2ruÞ;
(2)

respectively, where u is the correction to the conformal
factor in the puncture framework andEbind is the net binding
energy. Values for M1

ADM range from 0.994 for 1Pqc to 1.2

for 6Pqc. Since the momenta are nonzero, we obtain larger

physical massesMi
ADM at the inner asymptotically flat ends

of the punctures. The difference between the massesmi and
Mi

ADM ranges from 7� 10�3M for 1Pqc to 3:5� 10�2M for

6Pqc, and is essentially independent of �.

For the main part of this work, we first choose a specific
mass ratio; in particular, we choose between equal and
unequal masses. Second, we choose one of several (low-)
momentum cases. Third, we vary the shooting angle sys-
tematically, in particular searching for maxima and minima
in the total radiated energy, examining the number of
whirls, etc. There are some obvious alternatives to set up
such parameter scans, say by fixing � [23], using some
measure of eccentricity, the angular momentum [25], or the
binding energy [21] as a parameter. Apart from having a
simple interpretation as a scattering experiment with fixed
momentum size, our setup also describes simulations at
roughly constant total energy, if in analogy to classical
point masses the total energy is defined as the sum of the
kinetic and potential energy (since P and D are constant
while varying �). Each run amounts to 500–30000 CPUh
(the latter one for 1Pqc, � ¼ 60�), which is strongly

dependent on how far and how many times the orbits
zoom out. We implement Brent’s method [81] to bracket
local extrema in the efficiency of converting energy into
outgoing gravitational radiation, for which a small number
of runs suffices. This reduces the total number of runs to
about 130 while still sampling the parameter space in an
adaptive and accurate way. In retrospect, we found that a
golden section search [81] is—for the finite accuracy we
required—a better choice despite being only first-order
convergent. The parabolic interpolation inside Brent’s
method chooses the new guesses systematically towards
the flatter part of the asymmetric maxima.

C. Convergence and error estimates

We performed a convergence analysis for a representa-
tive subset of our runs and in general found fourth-order
convergence in the 22-mode of r�4 and in the radiated

energy Erad, demonstrating the overall consistency of the
code with respect to the order of the Runge-Kutta integra-
tor and the wave-extraction routine. The errors due to the
finite radius of our wave-extraction sphere are quantified
by the deviation from a 1=r falloff as measured from the
data taken at three different extraction radii.
Error estimates based on this analysis are shown in

Table I, and selected convergence plots are shown in
Figs. 2 and 3. In general, highly eccentric orbits are accu-
rately treated by the BAM code, and also the presence of
the rather high momenta considered here can be dealt
with consistently. The relative error in the 22-mode and
the radiated energy due to both the finite resolution and the
extraction radius is around 1%. For larger momenta the
error from a finite extraction radius becomes the dominat-
ing error (�2%). Increasing the initial momentum leads to
higher amounts of artificial ( junk) radiation, enhances the
ADM mass of the initial time slice, and reduces the BH
horizons. At some point these effects contaminate the
solution in the sense that its physical relevance becomes
questionable. However, we limited our data set to those
regimes where the artificial radiation is either entirely
negligible or at least small in comparison to the physical
radiation. The P ¼ 10Pqc sequence represents an excep-

tion, but we only used it in the context of the Hawking limit
and as an approximate extrapolation of our data set to the
ones obtained by other groups at larger momenta.
The error due to the junk radiation arising from the con-

formally flat initial data can be reduced to some extent by
choosing a sufficiently large initial separation. In the very
high-momentum case we needed both large separations and

FIG. 2 (color online). Convergence plot of the 22-mode of
r�4 for P ¼ 1Pqc, � ¼ 40�. The blue dashed line shows the

difference of rReð�4Þjl¼2
m¼2 as computed from the medium- and

low-resolution data, and the green (dashed dotted) line shows the
difference from high- and medium-resolution data. The solid line
rescales the latter one assuming fourth-order convergence. Both
lines lie on top of each other, demonstrating the overall consis-
tency of our results. The small noise at the beginning is due to
the spurious junk radiation of conformally flat initial data.
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also much larger resolution until the radiated energy results
converged, but once the appropriate resolution is used the
accuracy compares favorably with the other results. For yet
higher-momentum runs we refer to Refs. [38,40], who
studied momenta beyond the rest-mass-dominated regime.

Convergence for unequal masses can be shown only at
the higher resolutions. For the resolution we used the l ¼
2, m ¼ 2 mode converges at second order—a common
tendency when being at the edge of the convergent regime.
The somewhat lower accuracy for larger mass ratios is a
well-known effect of the gamma-driver condition we use
(� ¼ const). In Refs. [82–84] it was shown that a general-
ization of this condition (with � dependent on the local
mass) leads to an improvement in accuracy.

Analyzing the dependence on resolution shows that the
derived errors in the energy are not behaving according to a
Gaussian distribution. There is a skewness in the actual
(unknown) distribution of our measurements such that
higher resolutions systematically produce higher energies.
Hence, our error bars should be slightly more extended
towards larger values of Erad.

Summarizing, the simulations presented here do not
pose new challenges to the numerical scheme, although
there are specific requirements for accuracy in the presence
of whirls together with long run times. In these cases there
is a high sensitivity to the parameters and during the long
evolutions numerical errors accumulate. Nevertheless,
these evolutions have similar convergence behavior and
error estimates, and only require a higher resolution to
obtain convergence.

III. RESULTS

A. Orbital properties

To prime the discussion of the orbits, we first consider
several examples of the coordinate tracks of the punctures
for equal-mass binaries with P ¼ Pqc and P ¼ 5Pqc; see

Figs. 4–10. It is helpful to read the captions of these figures
in sequence. The puncture tracks in the x-y coordinate plane
are shown in the upper panels, and the 22-mode of the
waveforms are shown in the lower panels. The waveforms
are further discussed in Sec. III B. The figures show two
sequences of runs for two momenta that explore how the
orbits change when the shooting angle is varied from small
to large.

1. Classification of orbits

For any choice of mass ratio � and initial separation D,
we can in principle fill in a ‘‘phase diagram,’’ as shown in
Fig. 11, which labels orbits in a P-� plot. The main
classification is whether the initial parameters P and �
lead to orbits that are bound (implying capture and merger)
or unbound (escape to infinity). In Newtonian gravity, we
only have to check whether the kinetic energy exceeds the
potential energy, or equivalently whether the binding
energy is positive or negative. In general relativity, this
distinction is sometimes only possible a posteriori since
the gravitational waves and the associated loss of energy
and angular momentum are only known after the Einstein
equations have been solved. Solutions to the evolution
problem define the dividing line P ¼ Pbuð�;D;�Þ in
Fig. 11. Orbits with P> Pbu are unbound, whereas orbits
with P< Pbu are bound.

FIG. 3 (color online). Convergence plot of the radiated energy
for P ¼ 1Pqc, � ¼ 40�. The blue dashed line shows the differ-

ence �Erad as computed from the medium- and low-resolution
data, and the green (dashed dotted) line shows the difference
from high- and medium-resolution data. The solid line rescales
the latter one assuming fourth-order convergence. The solid red
line and the dashed blue one are almost on top of each other,
demonstrating a convergence order very close to four, consistent
with our numerical scheme.

FIG. 4 (color online). P ¼ Pqc, � ¼ 42�: Puncture tracks
(upper panel) and GW 22-mode (lower panel). From � ¼ 0�
to about 40�, the black holes collide within 200M of evolution
time and perform less than one orbit before merger. The waves
show a merger signal with a brief ring-up and characteristic ring-
down. In the limit of the head-on collision, � ! 0�, the 22-
mode vanishes and the 20-mode becomes the dominant mode.
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A simplified, a priori upper limit on the momentum P
that ensures boundedness is ~Pb :¼ Pbuð�;D;� ¼ 180�Þ,
which is independent of�, cf. Fig. 11. If the momentum P
does not suffice to escape in the direction � ¼ 180� (for
which radiation losses are minimized), then the orbits
are bound for all �. Here we use the assumption that the
black holes are not spinning. Approximating the minimal

radiation loss in the ‘‘head-off’’ direction as zero, we
compute a simple estimate of ~Pb based on the binding
energy in Eq. (2). Fixing � ¼ 180� and D ¼ 20M we
iteratively compute initial data with varying P to obtain
the binding energy Ebind. ~P is then defined as ~P:¼
PðEbind¼0;�¼180�Þ, resulting in ~P ¼ 0:085ð4� 3ÞM.

FIG. 8 (color online). P ¼ 5Pqc,� ¼ 14:15�: Puncture tracks
(upper panel) andGW22-mode (lower panel). This example is for
an initial momentum that is significantly larger than that of
quasicircular orbits, andwhich can easily produce unbound orbits.
Zoom-whirl orbits are found for much smaller shooting angles
than inFigs. 4–7. There is onewhirl and a short zoom followedby a
merger. Due to the additional kinetic energy, the whirl signal
increases in amplitude and exceeds the merger signal.

FIG. 5 (color online). P ¼ Pqc, � ¼ 48�: Puncture tracks
(upper panel) and GW 22-mode (lower panel). There is about
one full whirl in a range of �1� around this shooting angle
followed by the merger. The waveform clearly shows a wave
associated with the whirl. Its amplitude is smaller than that of the
ensuing merger signal. The diameter of the whirl is smaller than
the innermost stable circular orbit of a Schwarzschild BH with
the same total ADM mass.

FIG. 6 (color online). P ¼ Pqc, � ¼ 50�: Puncture tracks
(upper panel) and GW 22-mode (lower panel). For a shooting
angle two degrees larger than that leading to the strong whirl,
there is a close encounter with a precession of about half an
orbit, followed by a zoom out to about three times the radius at
pericenter, followed by a short inspiral and merger that starts
with significantly reduced eccentricity. Note the comparatively
small and short wave pulse associated with the close encounter,
again at about 200M of evolution.

FIG. 7 (color online). P ¼ Pqc, � ¼ 60�: Puncture tracks
(upper panel) and GW 22-mode (lower panel). Increasing the
shooting angle beyond 50�, one can find an increasing number of
elliptic orbits. Note that the wave pulses associated with the
close encounters are smaller than, e.g., in Fig. 6 mainly because
the binary separation at pericenter is larger; see Fig. 12. Early on
the orbit resembles the classical picture of a (strongly) precess-
ing ellipse. The plot shows a transition through plunge through a
full whirl phase at the onset of merger with a clear corresponding
wave signal.
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There is some error since we end the iteration at some
point, since radiation effects are ignored, and due to the
finite initial separation. For example, the momentum of the
quasicircular orbit leads to bound orbits for all angles since
Pqc < ~P � 1:377Pqc.

For brevity, we will refer to the set of configurations
satisfying P< ~P as the elliptic regime. On the other hand,
orbits with P> ~P form the hyperbolic class. Note that this
terminology skips over the fact that orbits in the hyperbolic
regime may still lead to a merger provided � is small
enough.

Inverting Pbuð�;D;�Þ, we define �buð�;D; PÞ, the
shooting angle between bound and unbound orbits, as a
function of P. An a priori lower limit for bound orbits is
given by�geom¼�buð�;D;P¼1Þ; see Fig. 11. In practice
it is tricky to study large P due to limitations in the
construction of initial data. Conceptually, however, we
can think of this limit as a geometric constraint based on
the finite size of the black holes, i.e., the idea is that the two
black holes must merge when their event horizons touch.
Using Euclidean geometry, i.e., assuming the BHs move on
a straight line, a lower bound for �geom at any given �, D,

and P is given by sin ð�geomÞ ¼ dmerger=D, where dmerger is

the separation of the punctures at the time of the merger.
However, the size of the black holes depends on the gauge.
The Schwarzschild radius for a mass m is 2m in
Schwarzschild coordinates, m=2 for isotropic coordinates,
and depending on the moving puncture gauge somewhere
in between for the numerical evolutions. We therefore use
the numerical result for dmerger. For equal masses we find

that a common event horizon appears at a coordinate
distance of about dmerger � 1:76 to 1:95M (with a slight

drift towards smaller values with increasing momentum).
For an initial separation ofD ¼ 20M This estimate leads to
a geometric limit of �geom ¼ 10:5� using the Euclidean

formula. This limit does not appear to be very restrictive
for lowmomenta, but it is not in contradiction to the runs of
this study, either. All our simulations with �<�geom end

in a merger.
Another possible estimate to derive lower limits on �bu

uses geodesics. (The corresponding values from our
evolutions can be seen as a vertical dividing line in
Figs. 15, 17, and 18.) Since we find that �bu decreases
monotonically with increasing P, we expect this lower

FIG. 11 (color online). This plot sketches the end state of
eccentric black hole binaries in the plane spanned by our
parameter choice for the initial data. The evolutions located in
the gray shaded regions can be judged to be bound solely based
on the initial data.

FIG. 9 (color online). P ¼ 5Pqc, � ¼ 14:20�: Puncture tracks
(upper panel) and GW 22-mode (lower panel). The larger the
momentum, the more sensitive the orbit becomes to the choice
of the shooting angle. A small change in angle compared to
Fig. 8 leads to a much larger zoom out to an apocenter distance
of 12M, before it merges at the next encounter. The initial whirl,
however, is almost unchanged, highlighting the analogy to
unstable circular orbits.

FIG. 10 (color online). P ¼ 5Pqc, � ¼ 14:30�: Puncture
tracks (upper panel) and GW 22-mode (lower panel). Enlarging
the shooting angle further compared to Fig. 9 results in a full whirl
followed by a zoom to infinity (unbound orbit, no merger).
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limit to be most restrictive for large P. The idea is analo-
gous to the capture/escape cavities for a photon in
Schwarzschild spacetime in Ref. [85].

A null geodesic in the Schwarzschild spacetime on a
circular orbit is located at a radius equal to the so-called
photon orbit rphoton ¼ 3m, which leads to the limit

�
geod
bu ¼ arctan

�
rphoton
2D

�
� 16:7�:

The proper computation of a null geodesic in
Schwarzschild spacetime [85] leads to

�
geod
bu ¼ 180� � arcsin

 
3

ffiffiffi
3

p
m

D=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

D=2

s !
¼ 27:7�:

The same calculation for marginally bound circular orbits
yields 21.8�. Figure 17 indicates that neither of these
limits apply to our evolutions, because there are unbound

orbits with �<�geod
bu . Clearly, the assumption of a

Schwarzschild spacetime is not a good one.
From Refs. [23,25] we know that the merger remnant in

our settings will settle down to a Kerr solution with spin
parameters between 0:6< a< 0:823 with only a weak
dependence on the initial conditions. Despite the fact that
the Kerr metric does not describe the spacetime at merger,
it may be a better approximation than Schwarzschild.
The same estimate as above but assuming a Kerr space-

time yields �geod
bu ¼ 14:9� for a ¼ 0:6, �geod

bu ¼ 11:4 for

a ¼ 0:823, and �
geod
bu ¼ 5:7� for a ¼ 1. The � values for

0:6 � a � 0:823 correspond rather well to the shooting
angles separating bound from unbound runs in the higher-
momentum cases despite the fact that the limit from null
geodesics to (finite-size) equal-mass binaries is by no
means straightforward. We will use this analogy in inter-
preting our results on the radiated energy in Sec. III B 2
based on the tightening of the whirl orbits associated with a
larger spin of the merger remnant.

The determination of the ultimate fate of a system out-
side the above ranges requires a full numerical evolution.
Here a bound system can be defined by the (future) for-
mation of a single event horizon, which is expensive to
compute numerically. In our evolutions we use a criterion
on the lapse at the center of our grid to determine a merger
time. We justify this approach by a direct comparison with
an event-horizon finder [86,87]. The merger time tm is
approximated by t�m, the time by which the lapse at the
center of our grid has dropped below � ¼ 0:3. This is near
the analytical value of a single Schwarzschild black hole in
the same and similar gauges [88–90]. We have chosen a
moderately long evolution among the elliptic category and
get tm ¼ 484:175M and t�m ¼ 485:524. Therefore, we infer
that using t�m as an estimate for tm is accurate to within
�tm=tm ¼ 0:0028 (for this case). We should mention,
however, that the lapse criterion gives worse answers
when the punctures move too fast, because the value � ¼
0:3 is motivated by a Schwarzschild spacetime and hence is

not well adapted to a boosted black hole. We used the lapse
criterion to estimate the merger times and list them in
Table I. These values are also used in Figs. 19 and 20.
Even if one performs a numerical evolution it can be

difficult to determine whether an orbit is unbound. The
absence of a common horizon is only a necessary but not a
sufficient condition for unboundedness. If a merger does
not occur after a given finite time, the question is how long
the simulation must be continued in order to settle whether
the binary is bound or unbound, and in principle this time
can be infinite. A practical, approximate criterion can be
given in terms of the initial binding energy Ebind and the
energy radiated in GWs (see Sec. III B) during the first
encounter. Without gravitational radiation Ebind is a con-
stant of motion and the orbits are unbound for Ebind > 0
and bound if Ebind < 0. We find, unsurprisingly, that all
orbits with Ebind < 0 also merge in our evolutions. We
judge an orbit to be dynamically captured when the energy
radiated during the first encounter exceeds the initial
(positive) binding energy. This shortens the run time to
determine whether a run is unbound significantly because
we do not have to track the black holes to larger and larger
distances. Such a criterion is applicable close to the thresh-
old between bound and unbound runs, although a few
marginally bound runs may be incorrectly labeled unbound
(but runs are labeled bound correctly).
We conclude with remarks on the relation to periodic

orbits. Within the category of bound orbits there is a de-
tailed classification scheme based on periodic orbits which
is complete when neglecting radiation effects. In this clas-
sification [12,16] one indexes all closed orbits with a triplet
of integers (z,w, v), where z is the number of zooms within
an approximate 2� period of the azimuthal angle � (i.e.,
the number of ‘‘leaves’’), v is the stride over the leaves
(1 � v � z� 1), and w is the number of whirls. The total
precession angle is 2�ðwþ v

zÞ. The question is whether

this classification still works in an approximate sense for
BHBs with radiation effects. Especially near the merger of
comparable mass BHBs, the orbits shrink significantly and
may not be well represented by a single periodic orbit, but
rather by a sequence of them. Our findings imply that the
longest whirls associated with the largest precession angles
(largestw) occur for momenta with P slightly larger than ~P
and are very close to a precession of 2�. We also find that
the dependence on P is weak and beyond P * 2Pqc it is

compatible with the statement that it only depends on the
mass ratio. Radiation damping seems to limit the length of
the whirl phase for larger P, although there may be artifacts
due to the initial data. In terms of periodic tables this means
that we typically find preferred subsets of periodic orbits
that best approximate our evolutions. The number of whirl
orbits w is clearly limited by the efficiency of gravitational
radiation. For equal masses w ¼ 1 seems to be the largest
w one can obtain. For larger mass ratios w ¼ 2 should also
become possible somewhere beyond a mass ratio of 1:3.
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In the regime we are probing orbits with z ¼ 2, z ¼ 3, and
v ¼ 1 are favored. However, our data set contains too few
data points on different mass ratios to make a strong
statement.

2. Examples for orbital dynamics of BHBs

We describe the main aspects of the orbital dynamics
that we find in our data set using the categorization intro-
duced in the previous section. First we consider equal-mass
BHBs in the elliptic regime. All equal-mass runs start at
D ¼ 20M (P ¼ 10Pqc hasD ¼ 50M) in such a way thatD

shrinks. Obviously, the ensuing evolution depends on the
values of P and �.

We discuss the orbital dynamics from low to high � for
P ¼ Pqc. Puncture tracks for some values of � are shown

in Figs. 4–7, while Fig. 12 shows the coordinate distance
D. The insets of Fig. 14 show puncture tracks for some
additional values of �.

At low � (or equivalently for high eccentricities) D
monotonically shrinks, leading to a rather prompt merger
without completing a single orbit (see Fig. 4). The runs
with larger � have correspondingly higher initial orbital
angular momentum and therefore manage to resist the
strong gravitational pull for longer so that the merger
time steadily grows. For � � 46� the punctures complete
one orbit before merger. At yet larger� * 48� (see Fig. 5)
the orbits begin to exhibit a circular phase (the whirl)
which is maintained for longer as � is increased.
However, at � � 48:5� the orbit leaves the circle again
towards larger radii (the zoom) delaying the merger

significantly. In this range of � there is high sensitivity
to the initial data (concerning merger time as a function
of �). A mild increase in � leads to a much larger tm
because the BHs slow down as theymove out before falling
back (see, e.g., Fig. 6). In the limit� ! 90� the pericenter
passages become shorter while the apocenters and peri-
centers become increasingly degenerate. The pericenter
moves out with �, and hence the BHs do not cross their
mutual gravitational potential as deeply and consequently
not as much radiation occurs, enabling more and more
orbits before merger.
Concerning the amount of precession, we see that

although our evolutions start somewhere after the apocenter
(e.g., Fig. 14), the orbits exhibit a huge precession of
roughly � and close to 2� for � ¼ 48:5� (followed by a
tiny zoom). Even for the smallest eccentricity we studied,
� ¼ 60� (e� 0:5), one can see that the ellipses still have
precessions as large as 2�=3, meaning that over the course
of thewhole evolution the accumulated precession amounts
to more than two entire orbits. These values by far exceed
the amounts of precession known from mildly relativistic
systems, like the famous Hulse-Taylor pulsar [3] with a
precession of q ¼ 0:0037� per orbit or the binary pulsar
[4] with q ¼ 0:0044� per orbit.
The orbital pattern of an eccentric binary resembles a

multileaf clover. However, the precession per orbit fails in
general to be an exact integer fraction of 2�. This implies
that the multileaf pattern will change in time. Typically the
change in the rate of precession is small compared to
the precession angle (per orbit). In this case the behavior
of the multileaf clover can approximately be decomposed
into a ‘‘stationary’’ component (the multileaf clover) and a
rotation on top of it with a secular time scale.
This is discussed in studies of periodic orbits [12,16]

(or nearby aperiodic orbits).
This effect is visible in our evolutions as well. Due to the

orbital shrinkage and short evolutions this effect manifests
itself not as clearly as in Refs. [12,16]. We refer to Fig. 7: a
close inspection reveals that the orbital phase of the first
apocenter is smaller than for the fourth one. The precession
is close to 2�=3 plus a small contribution leading to the
orbital phase offset between leaf 1 and 4.
Switching to the hyperbolic class the additional

possibility arises that the BHs just fly past each other,
deflecting their trajectories and escaping to infinity. This
gives rise to the merger/fly-by threshold (see insets in
Fig. 15), which we will discuss later.
We again describe the orbital phenomenology from low

to high values of �. The qualitative features of low-�
evolutions are the same as in the elliptic category.
The actual values of � that lead to analogous features/
characteristics (one complete orbit, a whirl, maximum in
Erad, etc.) decrease for increasing P. This is in agreement
with the expectation that for larger P one has to shoot the
BHs closer to each other compared to the corresponding

FIG. 12 (color online). Coordinate distance in the P ¼ 1Pqc

sequence as a function of time. For larger � more eccentric
orbits in the inspiral become possible before merger. We simu-
lated up to 6ðþ1Þ orbits for � ¼ 60�. Note the brief plateaus
(marked by the ellipses) due to whirls before merger in the 48�,
51�, 60� cases in contrast to the short plunges in the other cases.
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lower-P evolutions in order to obtain a qualitatively similar
behavior. Again, as in the elliptic category for larger values
of� the whirl phase is followed by a zoom. Depending on
P there now is a finite range in � where the BHs do not
escape to infinity, but reach an outer turning point (like for
elliptic orbits) and fall back, ending in a delayed merger.
Beyond a certain (momentum-dependent) value of�bu the
BHs are simply deflected or fly by each other.

Inside the hyperbolic category, most surviving first
encounters in our simulations are in the whirl regime. We
only find orbits exhibiting whirls during the first encounter
and never thereafter. This behavior is consistent with the
interpretation that too much angular momentum is radiated
during the first whirl to have another whirl episode.
Another way of explaining this is to realize that the first
pericenter distance during which dynamical capture occurs
is already within any (quasi)stable orbit. On the next
encounter the binary will have lost additional angular
momentum and will have a yet smaller pericenter separa-
tion. The system therefore is likely to merge on the next
encounter. It is unclear whether for high momenta there
can also be cases where after a first whirl the orbital
parameters fall into the narrow window for a second whirl.

In geodesic motion there exist solutions that escape to
infinity after a full 2� whirl.

We also find such orbits in the comparable-mass case for
sufficiently large P; see Fig. 10. For P ¼ 2Pqc we can rule

out such orbits because the deflection angles in the runs
where the BHs escape to infinity are significantly smaller
than 2� and are thus not in the whirl regime. This is
most probably due to excessive loss of energy and
angular momentum during the whirl. For larger P we
find that such orbits are possible for fine-tuned initial
data (as in the geodesic case).

We now give a possible explanation as towhy such orbits
might appear only for sufficiently large P. This behavior
could be associated with the finding in Refs. [21,23,25] that
the final spin first increases (and hence the innermost radius
of circular orbits decreases) and then saturates for suffi-
ciently large P. In the latter regime the whirl radius then
does not decrease much further and hence the gravitational
radiation during the whirl saturates as well. However, the
initial kinetic energy continues to grow. Thus, for large
enough P, there can be enough kinetic energy available
after the whirl for the BHs to escape to infinity.

While we only find examples for P 	 5Pqc we cannot

rule out their existence for 2Pqc<P<5Pqc. It is an

open question how this trend continues for yet larger
momentum P.

We proceed by analyzing precession effects and discuss
resemblances to periodic orbits. For a given P the preces-
sion angle shrinks with increasing�when approaching the
threshold as expected. The maximal amount of precession
we find (see Fig. 10) is slightly larger than in the elliptic
category. We clearly recognize patterns known from

periodic orbits. For the P ¼ 2Pqc sequence we find z ¼
2, z ¼ 3, z ¼ 4 orbits. The main difference from periodic
orbits is that the orbits end in a merger after the first leaf
has been traversed because of the severe radiation losses.
For instance the first orbits of P ¼ 1Pqc, � ¼ 60� (see

Fig. 7) are approximated by z ¼ 3, v ¼ 1, w ¼ 0, while
P ¼ 2Pqc, � ¼ 25:1� (not shown) resembles the z ¼ 3,

v ¼ 1, w ¼ 0 orbit with q ¼ 2�=3. When decreasing �
by small amounts, the resulting orbits typically show the
same amount of precession (only Dper shrinks with �). At

some point there is a transition to another multileaf clover
and the precession amounts to a value of q ¼ � and is now
similar to the periodic orbit labeled z ¼ 2, w ¼ 0, v ¼ 1.

3. Unequal-mass BHBs and the geodesic limit

Next we extend the discussion to unequal-mass BHBs.
By doing so we move towards a region in parameter space
which can be increasingly well described by geodesics. In
fact, zoom-whirl behavior was first studied in the latter
regime [1]. This raises the following question: given a
binary at a finite mass ratio, how far away is it from the
geodesic limit?
The fact that zoom-whirls can be found not only for

geodesics but also for equal masses suggests that zoom-
whirls also occur for intermediate mass ratios and adds to
their expected astrophysical relevance. Indeed, we can
confirm (see also Refs. [26,37]) the presence of zoom-
whirl behavior for mass ratios of 1:2 (� � 0:2222) and
1:3 (� ¼ 0:1875) (see Fig. 24).
As the mass ratio departs from unity, gravitational

radiation decreases (see, e.g., Ref. [91]), which is consis-
tent with the trend to the geodesic limit. In the eccentric
case we find that qualitatively a similar statement still
holds. We point out, though, that there is a nontrivial
dependence on � (or inverse eccentricity). In particular,
the maximum in Erad=MADM (see Sec. III B 2 and Fig. 18)
is close to the equal-mass values for the mass ratios we
have probed.
For lower symmetric mass ratio � we do not find

significantly longer whirl phases in our data sets. It is to
be expected of course that for some mass ratio beyond 1:3
the whirl phases eventually will be longer and asymptote to
the geodesic limit. Highly eccentric binaries with mass
ratios up to 1:3 are in this sense still far away from the
geodesic limit.
We find evidence for the analogy of zoom-whirl dynam-

ics and unstable circular orbits by investigating the orbital
radius during the whirl phase for various configurations.
Consistently, the whirl radius decreases with increasing P,
which we will refer to as the tightening of the whirl. This is
consistent with earlier studies [21,23,25], in which it was
found that the spin of the merger remnant increases with
the initial angular momentum parameter until it saturates,
which implies a smaller radius for the unstable circular
orbits.
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B. Radiation properties

1. Waveforms

The methods used to compute quantities characterizing
the GW content of the spacetime are described in, e.g.,
Ref. [68]. Here we demonstrate how the orbital dynamics
as described in Sec. III A are reflected in the GW signals.

The waveforms of quasicircular binaries are rather well
understood. To a certain extent merger waveforms as they
arise from evolving quasicircular binaries can be very
similar to the ones seen in low-eccentricity evolutions
provided the binary circularizes before merger. For large
eccentricities it is, however, natural to expect deviations
from a quasicircular BHB. We observe differences in the
waveforms throughout the evolution, including inspiral,
onset of merger, coalescence, and ring-down. Any imprints
left from the eccentric inspiral have to be radiated away
during this process, because the final spacetime can be
described by the Kerr metric. In Ref. [24] (Fig. 2) we
have compared a waveform of a quasicircular binary
to the one that maximizes Erad. The largest differences
occur at the onset of merger. However, the merger remnant
also gives rise to a (relatively small) departure from the
quasicircular case during ring-down [24]. In particular,
quite generically high eccentricity is correlated with an
amplified ring-down signal.

The inspiral features show some level of agreement with
Ref. [92] and PN models for such waveforms are known
analytically to second PN order [93] (see the first compari-
son between numerical waveforms and post-Newtonian
ones in the eccentric regime [94]). However, features
associated with zoom-whirl behavior (see Fig. 7 prior to
merger) are exclusive to the strong field. Moreover, in the
comparable-mass regime radiation losses and nonlinear
effects become important. Thus this situation has to be
dealt with using the tools of numerical relativity. These
inspiral signals will be observable by future GW interfer-
ometers, such as LISA [95,96], eLISA/NGO [97],
DECIGO [98], or the ET telescope [99,100].

We discuss typical waveforms of a representative
subset of our evolutions. It is illustrative to go through
Figs. 4–10 and 14 and their captions. Our main focus is on
the richness in information stored in eccentric BHB wave-
forms in contrast to quasicircular ones because of the
promising implications for data analysis; see Ref. [33].

Already the 22-mode shows obvious differences which
become larger in other modes. For example, the l ¼ 2,
m ¼ 0 mode of a quasicircular orbit looks just like a
smaller-amplitude version of the l ¼ 2 m ¼ 2 mode. In
the eccentric case they contain completely different features.
We plot the higher-lmodes summed overm in Fig. 13 for the
equal-mass case, for which (without BH spin) only even-l
modes contribute by symmetry. We have computed the
l � 8 modes and find that the l ¼ 2 is still the largest
contribution, but l¼4 has a significant contribution through-
out the merger and l ¼ 6 and l ¼ 8 close to the maximum.

As an example of how different waveforms of binaries
with eccentricities and mass ratios away from unity
can be, we show in Fig. 24 the waveform and orbital
trajectories for the mass ratio 1:3. Clearly the features
induced by an eccentric unequal-mass BHB give rise to
waveforms which effectively break degeneracies in
parameter space [33,101].
In this work we do not construct waveform templates.

Longer runs will be needed in order to achieve a match to a
PN waveform because of the small separations at peri-
center. Performing wave extraction at larger radii is also
clearly desirable in this context. With current codes this
could be done at an acceptable computational cost.

2. Radiated energy

We compute the energy Erad radiated away in GWs and
analyze these results together with the orbital dynamics.
For the elliptic orbits we add an estimate of the radiated

energy of the past evolution Epast
rad � �Ebindðt ¼ 0Þ to Erad.

Using this estimate we implicitly assume that the binary
was isolated in its entire past. The actual value Ebindðt ¼ 0Þ
for the P ¼ Pqc sequence turns out to be Epast

rad �
�Ebindðt ¼ 0Þ � 0:0057� 0:0001. We normalize Erad by
the ADM mass of the initial time slice, MADMðt ¼ 0Þ. The
resulting quantity is what we call the ‘‘efficiency’’ of
gravitational radiation.
The results of all our evolutions are presented in

Figs. 14–17 and 24. The different lines (colors, symbols)
in these plots correspond to different initial momenta and
each line shows the efficiency of gravitational radiation as
a function of �.

FIG. 13 (color online). Higher modes of rReð�4Þ summed
overm for the P ¼ 1Pqc,� ¼ 47�, equal-mass case. Clearly one

can see that l ¼ 2 modes are—just as in the quasicircular case—
the dominant contribution. The plot also reveals that the GW
emission has a much more significant contribution from higher-l
modes compared to a quasicircular binary. All odd-l modes
vanish within numerical error as expected from the quadrant
symmetry of equal-mass, nonspinning BHBs.
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The first global feature to notice is that gravitational
radiation becomes much more efficient for higher
momenta. We give the maximal efficiency for seven initial
momenta P. So far the largest value, 35� 5%, was

reported in Refs. [21,38,40,102] (in which the punctures
have coordinate velocities of v ¼ 0:94). In our data set we
come rather close to this limit (see Fig. 16). The challenge
in these studies arises from the growing significance of
unphysical radiation content that is associated with the
construction of initial data. Here we did not intend to
push this limit further, but this shows that we have probed
part of the parameter space close to the limits of former
investigations. As we shall demonstrate (see Fig. 17), the
sampling is quite exhaustive and allows us to probe zoom-
whirl behavior in a large class of orbits. In particular, one of
our important findings is the model P ¼ 1Pqc, � ¼ 60�

(elliptic class) with several close encounters before merger;
see Fig. 7. The initial eccentricity is as low as e� 0:5. This
is a value within typical estimates of supermassive BHBs in
galaxy-merger scenarios following star- or disk-driven
hardening [50], and it is also a value found for inspiraling
binaries near galactic cores [65] which are driven to very
similar eccentricities via the Kozai mechanism.
For low momenta and the mass ratios under considera-

tion the shooting angles for the largest number of orbits in
general neither coincide with the maxima in Erad nor do
they coincide with the unstable, circular (whirl-like) orbits
merging immediately thereafter. Generally, the maximum
in Erad inside the hyperbolic regime lies close to the
merger/fly-by threshold. However, in the limit P ! 1
there appears to be a growing amount of degeneracy: the
unstable circular orbits actually seem to coincide with the

FIG. 14 (color online). Radiated energy as a function of the
shooting angle � for the P ¼ 1Pqc runs. The small insets

illustrate the corresponding orbital dynamics. One can see that
the global maximum does not correspond to a zoom-whirl orbit.
Rather, the strongest zoom-whirl behavior is associated with the
local minimum in Erad near � ¼ 48:5�. (Compare this to the
cases that show plateaus in Fig. 12.) Note that the case 48.5� is
fairly similar to the 48� case shown in Fig. 5, consistent with our
conclusion from Ref. [24] that the degree of fine-tuning to see
zoom-whirls is on the order of 1%.

FIG. 15 (color online). Radiated energy for P ¼ 2Pqc. While in
the P ¼ 1Pqc case there are multiple extrema we find only two

maxima here. Note the fine sampling around the extrema. The rather
large gap around �U=B 
 �bu reflects the problem visible in the

upper right inset and in Fig. 22, namely that theBHs zoomout to very
large distances, which implies large tm and consequently high com-
putational costs (also due to the requirement of higher resolution).

FIG. 16 (color online). Radiated energy for P ¼ 10Pqc (i.e.,
P � 0:6M). The values for � are not comparable with those
from the other P sequences as the initial separation was chosen
to be Dðt ¼ 0Þ ¼ 50M due to the large junk radiation. Only at
P ¼ 10Pqc are we able to exceed the Hawking limit [106] on the

energy release of two Schwarzschild BHs far apart without
orbital angular momentum. With P ¼ 10Pqc the spacetime is

very different from Schwarzschild. Note that the results are
below the current maximum reported value of 35� 5%. The
contribution from junk radiation is about 0.05 and is included in
the data shown. (In the case � ¼ 12� it is slightly lower.)
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most efficient radiators. In the next section we will give an
interpretation for this behavior.

For low � we find, in agreement with previous studies
[21], that the radiated energy quickly drops to the small
amounts known from head-on collisions [40]. This drop
can clearly be seen for every initial momentum considered
in Fig. 17.

In addition, the shape of the transition from large to
small � is by no means trivial. One of the key features in
the radiated energy is that, especially in the P ¼ 1Pqc

sequence but also for P ¼ 2Pqc, there appear additional

local extrema which match the number of encounters. The
observed structure in Erad shows a remarkably clean peri-
odicity as a function of � and should be compared with
corresponding features in the final spin and mass in
Ref. [25]. We find that these features in Erad are determined
entirely by the dynamics during the last encounter. Zoom-
whirl effects in the P ¼ 1Pqc sequence minimize radiated

energy. We find that the radiated energy is less than that of
a quasicircular binary, in direct contrast to Ref. [92]. We
will interpret these observations in the next section.

Looking at our findings presented in Figs. 15 and 17, one
may wonder why the additional peaks, i.e., additional
encounters, are present in the lowest-momentum sequence,
but not in the higher-momentum ones. The answer lies in
the initial binding energy. For the large-P cases only those

evolutions which radiate a lot of energy during the first
encounter will be bound orbits (dynamical captures). As it
turns out, the radius of capture for these evolutions is inside
the ISCO of a single Schwarzschild black hole of the same
total mass. The capturing encounter generically is a whirl
and thus an unstable orbit. After the BHs are dynamically
captured they will have lost additional angular momentum
and energy. Thus the pericenter distance on their next
encounter will be even smaller and therefore will always
end in a merger.
Another observation is that in the P ¼ 2Pqc sequence

there is a second peak next to the global maximum, in
contrast to the higher-P sequences. The peak arises from
contributions during the second (and last) encounter. While
we also observe similar orbital dynamics for the higher-P
cases, we however do not see a corresponding peak. The
reason is obvious once one compares the GW amplitudes
during the capturing first encounter with the amplitude
during merger; see Figs. 8 and 9. For the large-P evolutions
the mergers on the second encounter only have a negligible
contribution to the radiated energy, but the whirly, captur-
ing encounter dominates the energy loss.
Results for unequal-mass runs are shown in Fig. 18.

According to our findings the scaling of radiated energy
with mass ratio is eccentricity dependent. Comparing the
maxima in Erad between equal-mass and unequal-mass
runs, we find that a mass ratio of 1:2 still gives a maximal
efficiency which is not too far away from the correspond-
ing equal-mass run with the same P=MADM. This result is
in contradiction to our expectation from quasicircular

FIG. 18 (color online). Radiated energy Erad for mass ratios
1:1, 1:2, and 1:3 and some particular values of P. Qualitatively
the results for unequal masses are similar to those for equal
masses. For example, note the drop in Erad after a global
maximum; the global maximum corresponds to an orbit that
roughly completes one orbit, and zoom-whirl behavior for low P
is associated with inefficient radiation as in the equal-mass
regime. For P ¼ 2Pqc, zoom-whirl behavior for a mass ratio

of 1:2 occurs for larger � than in the 1:1 case.

FIG. 17 (color online). Radiated energy for the 1qc–6qc runs
(i.e., 0:06M � P � 0:36M) including the values corresponding
to a quasicircular binary and the Hawking limit. The vertical
lines mark �bu for each momentum scale considered. This value
is close but not identical to the threshold of immediate merger.
As expected the shooting angle where zoom-whirls occur is
closer to the � ¼ 0 (head-on) case for higher initial momentum.
The higher the initial momentum, the greater the radiated energy.
In the 1Pqc sequence we have not included the data for� ¼ 60�,
but the efficiency of radiation agrees within plotting accuracy
with the value for a quasicircular BHB, as expected from
extrapolating the data set shown.
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binaries where Erad decreases steeply with mass ratio.
Also, our results for mass ratios of 1:3 show a similar
trend, suggesting that such mass ratios are still (in the
above sense) far away from the geodesic limit. Our results
suggest further parameter studies to analyze the scaling in
the eccentric regime along the mass-ratio axis. Clearly,
Erad is much more sensitive to P than to �.

C. New diagnostics

Many interesting questions about BHBs cannot be
tackled by just looking at gauge-invariant quantities. In
this section we suggest new diagnostics that are helpful to
interpret these spacetimes.

A first example is the observation in Ref. [24] that
maxima in Erad coincide with a particular orbital configu-
ration at the time of merger. Whenever the tangent vector

of the puncture orbits and the separation vector ~D at the
time of merger are closest to being orthogonal, the radiated
energy is maximized. Here, we also see the same behavior
for P ¼ 2Pqc orbits. Figure 19 shows two representative

cases: a generic case and the one which maximizes Erad.
This demonstrates the robustness of our gauge-dependent
conclusions in Ref. [24].

We interpret this empirical finding in the following way.
We empirically find that it is a good assumption that

within each P sequence the velocity and separation at
merger are universal; see Figs. 21–23.

Making ~D and ~P orthogonal thus translates into

maximizing ~L ¼ ~D� ~P, the Newtonian expression for
the angular momentum of two point masses.

We therefore conjecture based on our data set that the
strongest ring-down signals are caused by those evolutions
which maximize the angular momentum at the moment of
merger.
Another useful diagnostic is the histogram of DðtÞ

(see Fig. 20 and Ref. [24]). It measures the time the binary

FIG. 19 (color online). The inner region of puncture tracks
from two different runs. The P ¼ 2Pqc, � ¼ 24:1� run (green

dashed line) corresponds to the global maximum in Erad. The
yellow straight lines through the origin represent the separation
vectors ~D at the time when a common horizon forms. The result
from Ref. [24] that most efficient mergers occur when the
tangent vectors of the orbits are closest to being orthogonal to
~DðtmÞ carries over to larger P.

FIG. 20 (color online). Histogram of the coordinate separation
D for three different evolutions with P ¼ 2, 4, 6Pqc. This plot

shows how much time a binary has spent at a given separationD.
All runs shown here correspond to the longest whirl phase found
at each fixed momentum. Clearly visible is the tightening of the
whirl radius for larger P (compare with Ref. [24]). The overlap
of the shaded region in P ¼ 6Pqc with the histogram happens

because during the whirl the separation is indeed shorter than at
the onset of merger.

FIG. 21 (color online). Phase space for P ¼ 1Pqc sequence.
The � ¼ 48:2� evolution takes a detour in phase space, thereby
avoiding the region where radiation is most efficient. The
� ¼ 47� evolution radiates more efficiently because it reaches
further towards the upper left and at the same time spends
considerable time at low D (see Fig. 6 in Ref. [24]). Merger
occurs at DðtmergerÞ � 2M.
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spends within an interval D��D of coordinate separa-
tion. We focus on two important conclusions drawn from
this plot. First, as already reported in Ref. [24] the whirls
show up as a sharp and well-defined peak, allowing us to
measure the radii of unstable circular orbits in these highly
nonlinear spacetimes. Second, the whirl radii become

systematically tighter as P increases (see Fig. 20), which
is related to a higher Kerr parameter of the merger remnant
[21,26]. We checked the coordinate separation as a func-
tion of time separately to exclude a possible issue with our
merger-time estimate, which is not well suited for large P.
For low momenta, Refs. [23,25] showed that the final

spin parameter lies within 0:6< a< 0:832 with the
tendency that the spin parameter grows with the initial
momentum. Thus for larger P the resulting background
spacetime will have a tighter ISCO. As the binary spends
considerably more time at the whirl radius than at a
Newtonian pericenter at the same distance (see Fig. 20)
the binary radiates much more efficiently if this whirl
occurs at a smaller radius. Thus the geodesic analog
together with our gauge-dependent diagnostics give a
natural explanation for our earlier observations: in the
high-momentum case zoom-whirl orbits do coincide with
the most efficient radiators where the whirls are tight, while
this is not the case in the low-momentum regime, where the
whirl radii are significantly larger.
As a final diagnostic we present trajectories of the

binaries through phase space; see Figs. 21–24. We choose
DðtÞ and the coordinate velocity vðtÞ of the punctures as
generalized coordinates. This construction is explicitly
coordinate dependent, and switching to another gauge
will lead to different trajectories. However, previous inves-
tigations led to the conclusion that the moving puncture

FIG. 22 (color online). Phase space for P ¼ 2Pqc sequence.
All runs except � ¼ 25:5� are bound. Near the threshold of
immediate merger the zooms (24:3� & � & 24:9�) may extend
farther out. The inset shows a close-up of the inner region where
(i) trajectories from binaries that survive the first encounter
depart from those that do not and (ii) whirls occur (the point
density is enlarged there). Merger occurs at DðtmergerÞ � 2M.

FIG. 23 (color online). Phase space for different initial mo-
menta P with angles chosen for near maximal Erad. Interestingly,
if � is chosen for maximum radiative efficiency, then close to
the merger all binaries reach the same coordinate velocity
independent of the large differences in initial conditions. This
effect appears as a blurred ‘‘focal’’ point in phase space. Hence
the whirl itself becomes more important for Erad than the actual
merger. The deceleration in the 6Pqc whirl phase is larger than

during the merger. Merger occurs at DðtmergerÞ & 2M.

FIG. 24 (color online). Mass ratio 1:3, � ¼ 20�, P ¼ Pqc:
Phase-space trajectory (upper left), orbital tracks (upper right),
22-mode of r�4 (lower left), and coordinate separation as a
function of time (lower right). The whirl phase is slightly but not
significantly longer than that for the equal-mass configuration.
Compare the decrease in velocity (deceleration) during the final
plunge shown in the phase-space trajectory with the equal-mass
cases shown in Figs. 21–23. These differences can be understood
by comparing the radiation efficiencies of these systems. A
comparison of the 22-mode to the equal-mass runs suggests a
strong sensitivity to the mass ratio. Note that the merger is not
the strongest signal in �4.
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gauge leads to puncture tracks that correspond rather well
to what an observer sees from infinity (see, e.g.,
Refs. [73,88,103]). In particular, for orbiting motion one
can argue based on the shift condition that this should be
the case [88], although for linear motion the situation is
different. Hence, one has to keep the gauge issue in mind,
but the moving puncture gauge leads to rather robust
features in the phase-space trajectories, as we will discuss
next.

To familiarize oneself with the trajectories in phase
space, consider a circular motion with constant velocity.
This motion corresponds to a single point in a D-v phase-
space diagram. A Kepler ellipse corresponds to a line,
which is curved according to Kepler’s third law.

In Fig. 21 we show runs for P ¼ 1Pqc for four different

�, while Fig. 22 gives a global impression of many
different angles for P ¼ 2Pqc (each for equal masses).

These simulations start at the lower right corner at D ¼
20M, v ¼ 0 and quickly rise due to the initial gauge
adjustment, so that the coordinate velocity of each BH
approaches the value expected from the initial data. Then
the trajectory moves towards the upper left as the orbits
shrink and the punctures move faster. When the black
holes merge the trajectory ends at the origin at D ¼ 0,
v ¼ 0. Whirls or parts of tight circular orbits are indi-
cated by approximately constant D but decreasing v, with
D � 2M–5M. Zooms follow roughly the shape of elliptic
orbits, with D varying between 5M–10M at pericenter out
to an apocenter at 15M–27M in Fig. 21 or up to 40M in
Fig. 22. Also shows one orbit for P ¼ 2Pqc which escapes

to infinity. The inset demonstrates that the coordinate
velocity at mergers varies by �vm ��0:02 for evolutions
near the capture threshold. For head-on collisions the
value can be significantly larger.

A head-on collision in phase space looks very much like
an eccentric binary starting on the v ¼ 0 line at the value
ofD that corresponds to the same total energy. We note that
a head-on collision always constitutes an upper envelope in
the phase space, i.e., by fixing P and comparing � ¼ 0
runs with � � 0 evolutions we always find vðt;� ¼ 0Þ>
vðt;� � 0Þ [at least for DðtÞ � Dðt ¼ 0Þ].

We note that for orbits which maximize the radiative
efficiency the motion of the punctures at the onset of
merger is still rather mildly relativistic. This finding turns
out to be surprisingly insensitive to the initial momentum.
Figure 23 shows runs for different Pwith angles chosen for
maximum radiation efficiency. Increasing the initial mo-
mentum of the punctures leads to a motion which is rather
relativistic when entering the whirl phase, up to v� 0:5
and a Lorentz factorW � 1:155 forP ¼ 6Pqc (see Fig. 23),

but in the whirl they decelerate by large amounts (for P ¼
6Pqc the decrease in velocity is as large as during the

merger). At merger, however, all equal-mass evolutions
which maximize radiative efficiency approach v ¼ 0:22�
0:02 or W ¼ 1:025� 0:005.

For a detailed look at the transition zone between bound
and unbound evolutions, see Fig. 22 for the P ¼ 2Pqc

sequence with varying �. First, we recognize the two
extreme cases of merger and unbound motion. In between
we find a very complex transition which is governed by
several additional (nonclosed) loops corresponding to
orbits that zoom out after a first whirl phase, thereby
slowing down (i.e., moving to the lower right) before
returning towards the upper left. Note that during the
next approach the binary must follow a path further to
the lower left because the system is dissipative. The set
of apocenters from all runs in this sequence forms a lower
envelope (similar to the upper envelope mentioned before)
that is never crossed by any of our evolutions at the same
initial D. Note how far the zooms may extend when the
binary approaches the merger/fly-by threshold, resulting in
an ever larger runtime in agreement with the geodesic case.
We face difficulties evolving orbits near � ! �merger

fly-by
because these orbits need very long evolutions (decrease
of accuracy) and the black holes may reach distances close
to or even beyond the wave extraction sphere, thereby
producing artificial features in Erad.
An investigation of the phase-space trajectories of

unequal-mass BHBs reveals that the general shape of the
trajectories is quite robust with respect to the mass ratio.
An example is given in Fig. 24. With regard to gravitational
radiation, unequal-mass binaries do not tap as deeply into
the gravitational potential as equal-mass binaries, and thus
they cannot extract as much energy from the spacetime.
There are two basic differences. (i) Unequal-mass orbits
move systematically slower compared to a corresponding
equal-mass binary with comparable initial momentum.
(ii) Unequal-mass mergers start their final plunge from
an increasingly larger coordinate separation and at lower
coordinate velocity than equal-mass mergers. For higher
mass ratios, the difference in coordinate velocity between
plunge and just after merger (deceleration) is milder
and the GW signals are weaker; see Fig. 24. This is
qualitatively consistent with earlier head-on studies [40].
This behavior bears resemblance to the radiation of an
accelerated charge in electromagnetism.

IV. CONCLUSIONS

Numerical relativity has confirmed the existence of
zoom-whirl orbits beyond the geodesic, extreme-mass-
ratio, and PN regimes [20–24,26,27], thereby emphasizing
their universality by including the regime of comparable
masses where radiation losses become significant. Previous
studies explored the rich extension to the phenomenology
of the GR two-body problem offered by zoom-whirl
dynamics in various ways. In this work we performed
numerical relativity simulations to investigate the parame-
ter space of comparable-mass, nonspinning, eccentric
BHBs for low and intermediate momenta more compre-
hensively than before. We explored zoom-whirl behavior
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in both the hyperbolic and elliptic regimes, carrying out
more than 100 numerical evolutions in order to obtain a
decent sampling of the underlying parameter space. We
discussed various features of the orbits and characterized
the corresponding GW emission, and we developed new
diagnostics to analyze binary spacetimes by using phase-
space trajectories and a histogram of the coordinate
separation.

For elliptic orbits, we discovered zoom-whirls with
imprints in the GWs that are comparable in amplitude to
the merger waveform for eccentricities as low as e� 0:5.
This is an important finding for the astrophysical relevance
of zoom-whirl orbits. In particular, such values are within
expected eccentricities of supermassive BHBs that have
resulted from galaxy mergers and subsequent star- or gas-
driven hardening [50]. For low momenta, there occur
several minima and maxima in the radiated energy when
varying the shooting angle from head-on to quasicircular
orbits. We demonstrated that zoom-whirl dynamics may
actually minimize the radiated energy, in sharp contrast
to Ref. [43].

In the elliptic regime whirls are found only during
their last encounter. They emerge in disjoint intervals of
the initial angular momentum (i.e., shooting angle).
Apparently, as long as the binaries are not circularized just
prior to plunge, zoom-whirls can always be found during the
last encounter by a very modest amount of fine-tuning. In
the hyperbolic regimewe find that all evolutions that lead to
dynamical capture reveal whirl features during the captur-
ing encounter and then simply plunge during the following
encounter, potentially from a large separation.

High-momentum zoom-whirls maximize the radiated
energy. The Kerr spacetime that the merger remnant will
settle down to exhibits a larger spin parameter than is

observed for lower momenta. This translates into a tighter
unstable circular orbit (i.e., the whirl radius), resulting in
more pronounced dynamics of the mass quadrupole.
In particular, the first, capturing close-encounter burst in
high-momentum evolutions can easily overwhelm the
merger signal.
In the unequal-mass case eccentric BHBs are found to be

more efficient radiators than expected from quasicircular
studies of unequal-mass BHBs. As a consequence the
whirls for larger mass ratios are not significantly longer
than in the equal-mass case for the mass ratios under
consideration. We note that numerical relativity is seeing
improvements in dealing with large mass ratios [104,105].
More detailed studies for unequal masses and also the
inclusion of spin are promising directions for eccentric
BHB simulations in the future.
The present work as well as other studies strongly

suggest including eccentricity in the waveform templates
used in the data analysis of GW detectors, since eccentric-
ity effectively breaks degeneracies in parameter space.
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Brügmann, and M. Ansorg, Phys. Rev. D 78, 064069
(2008).

[22] I. Hinder, B. Vaishnav, F. Herrmann, D. Shoemaker, and P.
Laguna, Phys. Rev. D 77, 081502 (2008).

[23] M.C. Washik, J. Healy, F. Herrmann, I. Hinder, D.M.
Shoemaker, P. Laguna, and R.A. Matzner, Phys. Rev. Lett.
101, 061102 (2008).
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[68] B. Brügmann, J. A. González, M. Hannam, S. Husa, U.
Sperhake, and W. Tichy, Phys. Rev. D 77, 024027 (2008).
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[71] S. Brandt and B. Brügmann, Phys. Rev. Lett. 78, 3606
(1997).
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