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In Einstein-Maxwell theory, according to classic uniqueness theorems, the most general stationary

black-hole solution is the axisymmetric Kerr-Newman metric, which is defined by three parameters: mass,

spin and electric charge. The radial and angular dependence of gravitational and electromagnetic

perturbations in the Kerr-Newman geometry do not seem to be separable. In this paper we circumvent

this problem by studying scalar, electromagnetic and gravitational perturbations of Kerr-Newman black

holes in the slow-rotation limit. We extend (and provide details of) the analysis presented in a recent

Letter [P. Pani, E. Berti, and L. Gualtieri, Phys. Rev. Lett. 110, 241103 (2013)]. Working at linear order in

the spin, we present the first detailed derivation of the axial and polar perturbation equations in the gravito-

electromagnetic case, and we compute the corresponding quasinormal modes for any value of the electric

charge. Our study is the first self-consistent stability analysis of the Kerr-Newmanmetric, and in principle it

can be extended to any order in the small rotation parameter. We find numerical evidence that the axial and

polar sectors are isospectral at first order in the spin and speculate on the possible implications of this result.
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I. INTRODUCTION

A. Motivation and background

Classic uniqueness theorems (reviewed in, e.g., [1])
guarantee that the Kerr-Newman (KN) metric [2] describes
the most general stationary electrovacuum solution in
Einstein-Maxwell theory. The KN line element

ds2 ¼ �dt2 þ �

�
dr2

�
þ d#2

�
þ ðr2 þ a2Þsin 2#d’2

þ 2Mr�Q2

�
ðdt� asin 2#d’Þ2 (1)

(where � ¼ r2 þ a2cos 2#, � ¼ r2 þ a2 � 2MrþQ2) is
characterized by three parameters: mass M, angular mo-
mentum J ¼ Ma and electromagnetic charge Q. In the
neutral case (Q ¼ 0) the KN solution reduces to the Kerr
metric, whereas in the nonspinning limit (J ¼ 0) it reduces
to the Reissner-Nordström (RN) metric. When bothQ � 0
and J � 0 the spacetime is endowed with a magnetic
dipole moment, and it has the same gyromagnetic ratio
g ¼ 2 as the electron [3]. This has led to some speculation
that the KN metric could be used as a classical model for
elementary particles [4].

Most work in black hole (BH) physics has focused on
the Kerr metric, because astrophysical BHs are likely to
be electrically neutral. The reason is that a BH of mass M
and charge Q will not gravitationally accrete particles of
mass m and charge e as long as eQ >Mm (in the natural
units G ¼ c ¼ 1 used in this paper). Since m=e� 10�21

for electrons, large BHs will hardly acquire any charge
(see, e.g., [5]). Furthermore, in astrophysical environments
the electric charge is expected to be shorted out by the
surrounding plasma [6].
Notwithstanding the fact that charge is unlikely to play a

significant role in astrophysics, the KN metric is a precious
theoretical laboratory to investigate the dynamics of
Einstein-Maxwell theory in curved spacetime, and the
linearized dynamics of test fields on a KN background
have been intensively studied in the past.
The KN metric is the only nontrivial, asymptotically flat

solution of the Einstein-Maxwell system for which the
geodesic and Klein-Gordon equations can be solved by
separation of variables [7]. The neutrino [8], massive
spin-1=2 [9,10] and Rarita-Schwinger [11] equations in
the KN metric are also known to be separable. The sepa-
rability of fermionic fields is related to the existence of a
generalized total angular momentum operator for the Dirac
equation in curved spacetime, that satisfies appropriate
conservation laws [12,13]. Scalar and Dirac perturbations
of a KN BH can therefore be treated using the same general
methods that apply to Kerr BHs. In particular, it is straight-
forward to compute the quasinormal modes (QNMs) of KN
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BHs for these classes of perturbations (see [14–18] for
reviews on QNMs). For the KN metric, scalar QNMs
were computed in [19] (see also Ref. [20] for a recent
generalization to massive and charged scalar QNMs) and
Dirac QNMs were computed in [21]. The superradiant
instability of massive scalar fields was studied in [22].
Hartman, Song, and Strominger studied the scattering
of charged scalars and fermions in near-extremal KN
spacetimes [23], complementing earlier work on the
so-called Kerr-Newman/conformal field theory (KN/CFT)
conjecture [24]. Because the equations are separable,
(the absence of) superradiant effects [25] and graybody
factors for charged and massive Dirac particles in KN have
also been studied extensively [4,26–35]: see [36] for a
good overview of work in this field and [37] for a study
of Dirac perturbations of KN BHs in anti–de Sitter space.

Much less is known about the gravitational-
electromagnetic sector of KN perturbations. The reason
is that most methods to compute QNMs, graybody factors
and scattering amplitudes (including the continued
fraction method [38] and the asymptotic iteration method
[39]) rely on the separability of the perturbation
equations. Despite several attempts [40–42], no one has
succeeded at separating the angular and radial depen-
dence of the gravitational-electromagnetic eigenfunctions.
Chandrasekhar’s monograph [43] gives a comprehensive
overview of this long-standing unsolved problem.

A relatively small number of papers tried to address the
problem of the oscillations and stability of the KN metric
under the combined effect of electromagnetic and gravita-
tional perturbations. Mashhoon [44] used the analogy be-
tween geodesic stability and QNMs first proposed by
Goebel [45] (see also [46]) to estimate the QNMs in the
eikonal approximation and to argue that the KN metric
should be stable. Dudley and Finley ([40,41], henceforth
DF) made a remarkable study of the separability of linear
perturbations of the solutions of the Einstein-Maxwell
equations found by Plebánski and Demiánski [47], which
include all vacuum type D solutions in the Petrov classifi-
cation. Because of nonseparability of the perturbation
equations, they could not treat gravito-electromagnetic
perturbations in a fully consistent approach. In their
work, DF ‘‘either keep the geometry fixed and perturb
the electric field or, of more interest, keep the electric field
fixed and perturb the geometry.’’ This approach should be
appropriate for values of the charge Q at most as large as
the perturbations of the spacetime metric. Kokkotas first
used the DF equation to compute the fundamental gravi-
tational QNM using Wentzel-Kramers-Brillouin (WKB)
methods [48]. Later on, Berti and Kokkotas [19] confirmed
that the WKB approximation is reasonably accurate for all
values of the dimensionless spin parameter (~a � J=M2)
and of the charge Q by comparing WKB results to a
continued-fraction solution. The main problem of the DF
approach is not computational, but physical. The DF

equation does not treat the gravito-electromagnetic
coupling in a self-consistent way (for example, it does
not reduce to the well-known RN perturbation equations
as J ! 0). Therefore it is unclear whether it provides a
correct description of gravitational and electromagnetic
perturbations of KN BHs.
In a recent Letter [49], we have presented the first self-

consistent study of the gravito-electromagnetic perturba-
tions of KN BHs. This paper complements and extends the
results of [49], providing details of the derivation of the
perturbation equations and a more comprehensive set of
numerical results.
Our approach relies on a clear physical approximation,

i.e., a slow-rotation expansion of the perturbations of spin-
ning BHs [50,51]. The formalism to address this problem
was originally proposed in the context of slowly rotating
compact stars [52–55], and it can be extended (at least in
principle) to any perturbative order in the small rotation
parameter. Within the slow-rotation expansion (which is
valid for any value of the BH charge Q) it is possible to
estimate truncation errors, e.g., by extending the computa-
tion to the next order in rotation or by comparison with
cases where a nonperturbative solution is available (such as
the case of scalar perturbations considered below).

B. Executive summary

In the remainder of this introduction we provide a short
executive summary of our main results, that is also meant
as a guide to the structure of the paper.
In Sec. II we review our approach to separate the scalar

and the gravito-electromagnetic perturbations of a KN BH
in the slow-rotation limit [50,51,53]. We derive the equa-
tions describing gravito-electromagnetic oscillations in the
slow-rotation approximation by linearizing the Einstein-
Maxwell equations with respect to both the amplitude
of the oscillation and the BH spin parameter ~a � J=M2.
By expanding the perturbations of the spacetime metric
and of the electromagnetic field in tensor spherical
harmonics, we obtain a coupled system of differential
equations. Our main analytical result is the derivation of
two sets of coupled, second-order equations (one for the
axial and one for the polar sector, respectively) which fully
describe gravito-electromagnetic perturbations of a KN
BH to first order in the spin:

D̂Z�
i � Vði;�Þ

0 Z�
i þm~a½Vði;�Þ

1 Z�
i þ Vði;�Þ

2 Z�0
i �

þm~aQ2½Wði;�Þ
1 Z�

j þWði;�Þ
2 Z�0

j �: (2)

Here i, j ¼ 1, 2, i � j and there is no sum over the indices
i, j. A prime denotes a derivative with respect to r, and we
have introduced the differential operator

D̂ ¼ d2

dr2�
þ!2 � F

‘ð‘þ 1Þ
r2

; (3)
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where r� is the standard tortoise coordinate defined as

dr=dr� ¼ ðr� r�Þðr� rþÞ=r2, and r�¼M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2�Q2

p
are the outer (rþ) and Cauchy (r�) horizons of a RN BH.
The functions Z�

i and Zþ
i are linear combinations of axial

and polar variables, respectively, and they are also combi-
nations of gravitational and electromagnetic perturbations.
A step-by-step derivation of these equations is presented in
Appendix A and in a publicly available MATHEMATICA

notebook [56]. The axial potentials Vði;�Þ and Wði;�Þ are
listed in Appendix A 1, while the polar potentials Vði;þÞ and
Wði;þÞ are so lengthy that we decided to make them avail-
able only through the MATHEMATICA notebook [56] in
order to save space.

We have integrated the coupled system (2) and
computed the corresponding eigenfrequencies using two
independent methods, which are described in Sec. III
(see also Ref. [57] for a review). For any value of Q, our
analysis allows us to extract the first-order corrections to
the complex QNM frequencies ! ¼ !R þ i!I:

!R ¼ !ð0Þ
R þ ~am!ð1Þ

R þOð~a2Þ; (4)

!I ¼ !ð0Þ
I þ ~am!ð1Þ

I þOð~a2Þ; (5)

where!ðiÞ
R and!ðiÞ

I are functions ofQ and of the multipolar
index ‘, and the m dependence has been factored out.

Section IV presents our numerical results. We begin by
studying scalar perturbations of KN BHs, for which the
perturbation equations are separable and QNM frequencies
can be computed ‘‘exactly’’ in the Teukolsky formalism

[19]. By comparing QNM frequencies in the slow-rotation
approximation to the Teukolsky-based results, we find that
the relative error of the slow-rotation approximation is
less than 1% as long as J=Jmax & 0:3, where Jmax is the
maximum allowed KN spin for any fixed value of the
electric charge.
Figure 1 shows our main numerical results for the

fundamental gravito-electromagnetic perturbations with
‘ ¼ 2, 3, which are the most relevant for gravitational-
wave emission (see, e.g., [58]). In each panel we show
four curves, corresponding to the axial and polar
‘‘gravitational’’ and ‘‘electromagnetic’’ modes (as defined
in the decoupled Q ¼ 0 limit: see Sec. IV for details). The
zeroth-order terms shown in the small left panels are
simply RN QNMs; they agree with continued-fraction
solutions of the equations first derived by Zerilli [59], as
computed by Leaver [60].
Gravito-electromagnetic perturbations of nonspinning

BHs in general relativity have a noteworthy property that
was proved by Chandrasekhar [43]: the polar and axial
potentials can be written in terms of a superpotential,
which implies that the polar and axial QNMs are isospec-
tral [17]. A priori, there is no reason why such a remark-
able property should hold true also for KN BHs.
In addition to computing the QNMs of a KN BH in a full

consistent setting for the first time, perhaps the most im-
portant result of our numerical study is strong evidence that
the axial and polar sectors of KN gravito-electromagnetic
perturbations are indeed isospectral to first order in the
BH spin. In the inset of Fig. 1 we show the relative
difference between the coefficients of axial and polar
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FIG. 1 (color online). Left (reproduced from Ref. [49]): Zeroth-order (small left panels) and first-order (small right panels) terms of
the slow-rotation expansion of the KN QNM frequencies [cf. Eqs. (4) and (5)]. All quantities are plotted as a function of Q=M, and
they refer to the fundamental mode (n ¼ 0) with ‘ ¼ 2. The lower part of each panel shows the percentage difference between axial
and polar quantities: our results are consistent with isospectrality to Oð0:1%Þ for the real part and to Oð1%Þ for the imaginary part of
these modes. Right: The same, but for fundamental modes with ‘ ¼ 3.

SCALAR, ELECTROMAGNETIC, AND GRAVITATIONAL . . . PHYSICAL REVIEW D 88, 064048 (2013)

064048-3



modes as functions of Q: our results are consistent with
isospectrality within the numerical errors implicit in our
method. This is further discussed in Sec. IV, where
we provide additional evidence that higher multipoles
(with ‘ > 2) and higher overtones (for a given ‘) are also
isospectral to first order in rotation.

These numerical results lead us to the tantalizing
conjecture that the modes of a KN BH may be isospectral
to any order in ~a. We conclude our paper in Sec. V with a
brief discussion of this conjecture and of possible ways to
put it to the test (see also [49]).

II. FORMALISM

Let us consider Einstein-Maxwell theory:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ðR� F��F
��Þ; (6)

where R is the Ricci scalar and F�� ¼ @�A� � @�A� is the

Maxwell field strength. The KN metric (1) is the most
general stationary electrovacuum solution of this theory.
Here and in the following we linearize in the spin parame-
ter ~a � J=M2, neglecting terms of order Oð~a2Þ. To this
order, the KN metric reads

ds20 ¼ gð0Þ��dx�dx�

¼ �FðrÞdt2 þ FðrÞ�1dr2 þ r2d2�

� 2$ðrÞsin 2#d’dt; (7)

where

FðrÞ ¼ 1� 2M

r
þQ2

r2
; (8)

$ðrÞ ¼ 2~aM2

r
� ~aQ2M

r2
; (9)

and the background electromagnetic potential is given by

A� ¼
�
Q

r
; 0; 0;� ~aQM

r
sin 2#

�
: (10)

The magnetic field is given by the curl of the three-
potential above. Thus, the presence of both rotation and
charge (~aQ � 0) induces a magnetic field in the ð#;’Þ
directions.

A. Harmonic decomposition

We linearize the metric as

g�� ¼ gð0Þ�� þ h��; (11)

and we decompose the metric perturbations h�� in the

Regge–Wheeler gauge:

h�� ¼

H‘
0Y

‘ H‘
1Y

‘ h‘0S
‘
# h‘0S

‘
’

H‘
1Y

‘ H‘
2Y

‘ h‘1S
‘
# h‘1S

‘
’

h‘0S
‘
# h‘1S

‘
# r2K‘Y‘ 0

h‘0S
‘
’ h‘1S

‘
’ 0 r2K‘sin 2#Y‘

0
BBBBBBBB@

1
CCCCCCCCA
; (12)

where Y‘ ¼ Y‘ð#;’Þ are the ordinary scalar spherical
harmonics, ðS‘#; S‘’Þ � ð�Y‘

;’= sin#; sin#Y
‘
;#Þ are the ax-

ial vector harmonics, and H‘
0;1;2, h

‘
0;1, K

‘ are functions of

ðt; rÞ. Here and in the following, a sum over the harmonic
indices ‘ and m (with jmj< ‘) is implicit. We will append
the relevant multipolar index ‘ to any perturbation variable
but omit the index m, because in an axisymmetric back-
ground the perturbation equations with different values of
m are decoupled from each other.
We expand the electromagnetic potential as follows

[61]:

�A�ðt; r; #; ’Þ ¼
0

0

u‘ð4ÞS
‘
b=�

2
664

3
775þ

u‘ð1ÞY
‘=r

u‘ð2ÞY
‘=ðrFÞ

u‘ð3ÞY
‘
b=�

2
6664

3
7775; (13)

where � ¼ ‘ð‘þ 1Þ, b ¼ ð#;’Þ, Y‘
b ¼ ðY‘

;#; Y
‘
;’Þ are the

polar vector harmonics, and u‘ð1;2;3;4Þ are functions of ðt; rÞ.
Inserting the harmonic expansion of the metric perturba-
tions (12) and of the Maxwell field (13) into the linearized
Einstein equations we find the equations for the perturba-
tion functions to linear order in ~a. The latter naturally
separate into three groups [50,51,53,57]. By denoting the
linearized Einstein equations as �E�� ¼ 0, the first group

is formed by the equations �EðIÞ ¼ 0, where I ¼ 0, 1, 2, 3
is shorthand notation for (tt), (tr), (rr) and (þ),
respectively, and we have defined �EðþÞ � �E## þ
�E’’=sin

2#. The equations can be cast in the form

�EðIÞ � ðAðIÞ
‘ þ ~AðIÞ

‘ cos#ÞY‘þBðIÞ
‘ sin#Y‘

;#þCðIÞ
‘ Y‘

;’¼0;

(14)

where AðIÞ
‘ , ~AðIÞ

‘ , BðIÞ
‘ , CðIÞ

‘ are combinations of the

perturbation functions fH‘
0;1;2; h

‘
0;1; K

‘; u‘ð1;2;3;4Þg. The sec-

ond group is formed by the equations �EL# ¼ 0, with
L ¼ 0, 1 corresponding to the t, r components, respec-
tively. They can be cast in the form

�EðL#Þ � ð�ðLÞ
‘ þ ~�ðLÞ

‘ cos#ÞY‘
;#�ð�ðLÞ

‘ þ ~�ðLÞ
‘ cos#Þ Y‘

;’

sin#

þ�ðLÞ
‘ sin#Y‘þ�ðLÞ

‘ X‘þ�ðLÞ
‘ sin#W‘¼0;

(15)
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�EðL’Þ � ð�ðLÞ
‘ þ ~�ðLÞ

‘ cos#ÞY‘
;# þð�ðLÞ

‘ þ ~�ðLÞ
‘ cos#Þ Y‘

;’

sin#

þ 	 ðLÞ‘ sin#Y‘þ�ðLÞ
‘ X‘��ðLÞ

‘ sin#W‘ ¼ 0;

(16)

where �ðLÞ
‘ , ~�ðLÞ

‘ , �ðLÞ
‘ , ~�ðLÞ

‘ , �ðLÞ
‘ , �ðLÞ

‘ , 	 ðLÞ‘ , �ðLÞ
‘ are com-

binations of the perturbation functions. The third group is
(defining �Eð�Þ � �E## � �E’’=sin

2#)

�Eð#’Þ � f‘ sin#@#Y
‘ þ g‘Y

‘
;’ þ s‘

X‘

sin#
þ t‘W

‘ ¼ 0;

(17)

�Eð�Þ � g‘ sin#@#Y
‘ � f‘Y

‘
;’ � t‘

X‘

sin#
þ s‘W

‘ ¼ 0;

(18)

where we have defined

X‘ � 2ðY‘
;#’ � cot#Y‘

;’Þ; (19)

W‘ � Y‘
;## � cot#Y‘

;# � Y‘
;’’

sin 2#
: (20)

The linearized Maxwell equations can be also recast in a
similar form. The t and r components belong to the first
group and can be arranged in the form of Eq. (14) with
I ¼ 4, 5, respectively. The # and ’ components belong to
the second group and can bewritten as in Eqs. (15) and (16)
with L ¼ 2. The coefficients can be split into two sets:

Polar: AðIÞ
‘ ; CðIÞ

‘ ; �ðLÞ
‘ ; ~�ðLÞ

‘ ; 	 ðLÞ‘ ; �ðLÞ
‘ ; s‘; f‘;

Axial: ~AðIÞ
‘ ; BðIÞ

‘ ; �ðLÞ
‘ ; ~�ðLÞ

‘ ; �ðLÞ
‘ ; �ðLÞ

‘ ; t‘; g‘;

where henceforth the indices I ¼ 0; . . . ; 5 and L ¼ 0, 1, 2
account for both the Einstein and Maxwell equations. The
explicit form of the coefficients is not particularly illumi-
nating, and it is given in a publicly available MATHEMATICA

notebook [56]. The crucial point is to recognize that the
coefficients above are only functions of t and r, so that the
entire angular dependence enters the field equations only in
specific combinations related to spherical harmonics of
various type.

B. Separation of the angular dependence

The separation of the angular dependence of Einstein’s
equations for a slowly rotating star was performed in
Ref. [53]. The procedure has been extended to general
slowly rotating BH solutions in Refs. [50,51] (see also
[57]); we refer the reader to those papers for details.
Using the orthogonality properties of scalar spherical
harmonics, from Eq. (14) we get

AðIÞ
‘ þ imCðIÞ

‘ þQ‘½ ~AðIÞ
‘�1 þ ð‘� 1ÞBðIÞ

‘�1�
þQ‘þ1½ ~AðIÞ

‘þ1 � ð‘þ 2ÞBðIÞ
‘þ1� ¼ 0; (21)

where we have defined Q2
‘ ¼ ð‘2 �m2Þ=ð4‘2 � 1Þ. From

the orthogonality of vector spherical harmonics and using
Eqs. (15) and (16) we get

��ðLÞ
‘ þ im½ð‘�1Þð‘þ2Þ�ðLÞ

‘ � ~�ðLÞ
‘ �	 ðLÞ‘ �

þQ‘ð‘þ1Þ½ð‘�2Þð‘�1Þ�ðLÞ
‘�1þð‘�1Þ~�ðLÞ

‘�1��ðLÞ
‘�1�

�Q‘þ1‘½ð‘þ2Þð‘þ3Þ�ðLÞ
‘þ1�ð‘þ2Þ~�ðLÞ

‘þ1��ðLÞ
‘þ1�¼0;

(22)

��ðLÞ
‘ þ im½ð‘�1Þð‘þ2Þ�ðLÞ

‘ þ ~�ðLÞ
‘ þ�ðLÞ

‘ �
�Q‘ð‘þ1Þ½ð‘�2Þð‘�1Þ�ðLÞ

‘�1�ð‘�1Þ ~�ðLÞ
‘�1þ	 ðLÞ‘�1�

þQ‘þ1‘½ð‘þ2Þð‘þ3Þ�ðLÞ
‘þ1þð‘þ2Þ ~�ðLÞ

‘þ1þ	 ðLÞ‘þ1�¼0:

(23)

Finally, the orthogonality of tensor spherical harmonics
applied to Eqs. (17) and (18) yields

0 ¼ �s‘ � imf‘ �Q‘ð‘þ 1Þg‘�1 þQ‘þ1‘g‘þ1; (24)

0 ¼ �t‘ þ img‘ �Q‘ð‘þ 1Þf‘�1 þQ‘þ1‘f‘þ1: (25)

Summarizing, once we fix the value of m, truncating the
expansion in ‘ to a value ‘max , the index ‘ can have
n‘ ¼ ‘max � jmj þ 1 possible values; our separation
procedure in the slow-rotation limit yields a system of
14n‘ coupled, ordinary differential equations (ten for the
gravitational sector and four for the Maxwell sector for
each ‘), given in Eqs. (21)–(25). Their explicit form is
available online [56].

C. First-order corrections to the eigenvalue equations

In the case of slow rotation (~a � 1), a Laporte-like
selection rule couples perturbations with harmonic index
‘ with those having opposite parity and harmonic index
‘� 1 [50–53]. This is a consequence of using a basis of
spherical harmonics in a nonspherical background.
However, as discussed in detail in [51,54,62], the couplings
to the ‘� 1 terms do not contribute to the QNM spectrum
to first order in ~a. For this reason, we shall neglect these
terms in the following. In this way we get a system of 14
coupled differential equations for any chosen value of ‘.
Once the couplings among different ‘’s are neglected,

we can simply fix a value of ‘ (and in order to simplify the
notation we will drop the index ‘ from all perturbation
functions). We perform a Fourier decomposition by assum-
ing that all perturbations have a time dependence �e�i!t.
As we explicitly show in Appendix A, axial and polar

perturbations decouple, and Eqs. (21)–(25) can be reduced
to two coupled, second-order differential equations
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(one pair for each parity), that we have already written
down in the introduction [Eq. (2)]. These equations display
the same symmetries as the master equations for a RN BH
[43], and indeed they exactly reduce to those equations in
the nonrotating case. We remark in passing that the DF
equations previously used to investigate gravito-
electromagnetic perturbations of the KN metric do not
satisfy this requirement. Equation (2) is the main result
of this paper. It contains two first-order corrections in the
rotational parameter ~a. The first term couples the functions
Z�
i with the same Z�

i . It is responsible for a Zeeman-like
splitting of the eigenfrequencies, which breaks the degen-
eracy in the azimuthal index m. The second line in Eq. (2)
is more interesting. First, it is proportional to the combi-
nation ~aQ2, so it is vanishing when the BH is nonspinning
or uncharged. Furthermore, this term couples the function
Zþ
1 with the function Zþ

2 , and the function Z�
1 with the

function Z�
2 .

We remark that this coupling disappears when ~a ¼ 0,
but this does not mean that gravitational and electromag-
netic perturbations decouple in that limit: whenever
Q � 0, the functions Z�

j are combinations of electromag-

netic and gravitational perturbations, which are then
coupled. Electromagnetic and gravitational perturbations
only decouple when Q ¼ 0 (e.g., for Schwarzschild
or Kerr BHs) because the functions Z�

1 describe pure
gravitational perturbations, the functions Z�

2 describe
pure electromagnetic perturbations, and the coupling
term in (2) vanishes (see, e.g., Ref. [43]).

Despite the complicated form of Eq. (2), the asymptotic
behavior is simple. The asymptotic solutions at the horizon
and at infinity are plane waves, namely,

Z�
j ðrÞ �

�
ei!r� ; r ! 1;

e�ið!�m�HÞr� ; r ! rþ:
(26)

As shown by the behavior above, near the BH horizon we
obtain the typical frame-dragging effect: a static observer
at infinity would see a wave whose wave number is

kH ¼ !�m�H �!� ~am

Mð1þ ~amax Þ2
þOð~a3Þ; (27)

where we have assumed !M � ~a, and

~amax � Jmax =M
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðQ=MÞ2

q
(28)

is the maximum spin parameter of a KN BH and
�H ¼ �lim r!rþgt’=g’’ is the angular velocity at the

horizon of locally nonrotating observers to first order in
~a. In the small-charge limit, kH �!� ~am=ð4MÞ �
~amQ2=ð8M3Þ þO½ðQ=MÞ4�.
According to Eq. (26), if !<m�H, an observer at

infinity would see waves coming out of the horizon. This
corresponds to extraction of energy from a spinning BH,
resulting in superradiant amplification of the wave [25].
Therefore it is not necessary to solve the linearized field

equations in order to show that superradiance in a KN
spacetime occurs also for gravito-electromagnetic pertur-
bations, similarly to the scalar case. A note of caution is
necessary in this regard: as discussed in Ref. [51], we must
include second-order terms in the expansion for a consis-
tent treatment of superradiance in the slow-rotation
approximation. The reason is that the superradiance con-
dition implies !<�H �Oð~aÞ; therefore, the !2 term in
the wave equation becomes of the same order as Oð~a2Þ
terms. However the results of Ref. [51] show that (at least
in some specific cases) first- and second-order results are in
qualitative (and sometimes in remarkably good quantita-
tive) agreement even in the superradiant regime.

III. QUASINORMAL MODE CALCULATION
FOR COUPLED SYSTEMS

After imposing physically motivated boundary
conditions at the horizon and at infinity, Eq. (2) forms an
eigenvalue problem for the frequency!. Robust numerical
methods to solve this class of coupled eigenvalue problems
have recently been extended to BH spacetimes (cf. [57] for
a review).
We have solved the field equations (2) by two indepen-

dent techniques: a matrix-valued continued-fraction
method and direct integration [51,61].

A. Matrix-valued continued fractions

In order to reduce Eq. (2) to a matrix-valued recurrence
relation, we use the ansatz

Z�
j ðrÞ ¼

rþðrþ � r�Þ�4iM!�1

r
e�2i!rþðr� r�Þ1þ2iM!

� ei!rz
�ikHr2þ
rþ�r�

X
n

a�;j
n zn; (29)

where z ¼ ðr� rþÞ=ðr� r�Þ and the � superscripts (not
to be confused with the subscripts of the inner and outer
horizon, r�) refer to the polar case [‘‘plus’’ superscript in
Eq. (2)] and to the axial case [‘‘minus’’ superscript in
Eq. (2)], respectively. In the axial case we obtain a ten-
termmatrix-valued recurrence relation, whereas in the polar
case we obtain a 12-term matrix-valued recurrence relation.
They can be reduced to three-term recurrence relations
using a matrix analog of Gaussian elimination [57].
Finally, the problem of finding the QNMs of the system is
reduced to finding the complex roots of a determinant
obtained from a nested series of inverted matrices [57].

B. Direct integration

In alternative, a direct integration technique can be
shown to work very well, as long as the modes’ real part
is sufficiently larger than the imaginary part. This condi-
tion is typically satisfied by the fundamental mode and
(to a lesser extent) by the first overtone. In this direct
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integration approach, the system (2) is integrated numeri-
cally from the horizon out to infinity. At the horizon we set
the solution equal to some high-order series expansion of
the form

Z�
j � e�ikHr�

X
n

b�;j
n ðr� rþÞn; r ! rþ; (30)

where the coefficients b�;j
n (n > 0, j ¼ 1, 2) can be com-

puted in terms of b�;i
0 by solving the near-horizon equa-

tions order by order. Two independent solutions are

obtained by choosing the orthonormal bases ðb�;1
0 ; b�;2

0 Þ ¼
ð1; 0Þ and ðb�;1

0 ; b�;2
0 Þ ¼ ð0; 1Þ. At infinity the generic

behavior of the solutions reads

Z�
j � B�

j e
i!r�

X
n

c�;j
n

rn
þ C�

j e
�i!r�

X
n

d�;j
n

rn
; r ! 1: (31)

The QNM boundary conditions correspond to imposing
C�
j ¼ 0, i.e., purely outgoing waves at infinity. The

eigenfrequencies are computed as the complex roots of
(see, e.g., [55])

det ðS�Þ � det
C�;1
1 C�;2

1

C�;1
2 C�;2

2

 !
; (32)

where the superscripts denote a particular vector of the

basis; i.e., C�;1
j are related to ðb�;1

0 ; b�;2
0 Þ ¼ ð1; 0Þ and C�;2

j

are related to ða�;1
0 ; a�;2

0 Þ ¼ ð0; 1Þ. For any given frequency
we integrate the system (2) twice and construct the matrix
S�. The QNMs are then obtained by imposing det ðS�Þ ¼
0, which can be achieved via a shooting method [57].

IV. NUMERICAL RESULTS

A. Scalar quasinormal modes in the slow-rotation limit

As a test of the slow-rotation approximation, we have
computed the scalar QNMs of a KN BH to first order in ~a.
Since these modes can be computed exactly in the
Teukolsky formalism (e.g., via continued fractions [19]),
we can use these ‘‘exact’’ results to estimate the errors
introduced by the slow-rotation approximation. For any
stationary and axisymmetric spacetime, the scalar modes
at first order in the angular momentum are governed by a
master equation [51]. In the special case of a background
given by Eq. (7), the master equation reduces to

d2c

dr2�
þ
�
!2 � 2m!$ðrÞ

r2
� F

�
‘ð‘þ 1Þ

r2
þ F0

r

��
c ¼ 0:

(33)

The corresponding eigenvalue problem can be solved with
standard continued-fraction techniques [19,60,63]. Using
the ansatz (29) for c yields a five-term recurrence relation,
whose coefficients are listed in Appendix B. The five-term
recurrence relation can be reduced to a three-term relation
via standard Gaussian elimination.

In Ref. [49] we computed the relative error of the
slow-rotation approximation with respect to the exact re-
sult. We found a near-universal behavior of the percentage
errors as functions of J=Jmax ¼ ~a=~amax , where ~amax is the
maximum allowed value of the spin parameter [corre-
sponding to an extremal KN BH with the given charge
Q; cf. Eq. (28)] for all values of Q. This near universality
suggests that the parameter ~amax [which appears explicitly
in the QNM boundary conditions (27)] plays a fundamental
role in our perturbative scheme (see also the discussion in
Sec. IVB). In other words, the slow-rotation approxima-
tion is accurate only far from extremality, i.e., when

~a � ~amax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
Q

M

�
2

s
< 1: (34)

This condition is obviously stronger than the condition one
may expect to apply a priori, i.e., ~a � 1, and it implies
that the slow-rotation approximation will break down even
for small values of the spin as Q ! M. A posteriori, this
result is not too surprising, and it is consistent with the
requirement that the perturbation parameter ~a must be
smaller than any dimensionless quantity characterizing
the background spacetime.
According to Ref. [49], the slow-rotation approximation

is accurate within 1% as long as J=Jmax & 0:3, and it is
still accurate within 3% for J=Jmax & 0:5.

B. Gravito-electromagnetic quasinormal
modes at first order in rotation

We have computed the fundamental mode and the first
overtone of the gravito-electromagnetic QNMs of a KN
BH in the axial and polar sectors for ‘ ¼ 2 and ‘ ¼ 3. The
numerical solution of both the axial and polar perturbation
equations (2) is extremely challenging, because their
explicit form is lengthy and complicated.
We have computed the axial modes using both the

matrix continued-fraction method and direct integration.
The results agree extremely well, so that the two methods
validate each other. In the polar case the equations are too
complicated to be cast in a tractable continued-fraction
form, even using algebraic manipulation software like
MATHEMATICA. In this case the only viable technique

turned out to be direct integration. Even the task of
numerical integration is challenging due to the complexity
of the field equations, but reasonably accurate results can
be obtained by using high-order series expansions at the
horizon and at infinity and by requiring better numerical
precision in the integration. The difficulties we met
in integrating the first-order equations suggest that a
second-order analysis, while possible in principle, may
be very challenging from the algebraic and computational
standpoints.
For any value of Q, our analysis allows us to extract the

first-order corrections to the QNM spectrum, as defined in
Eqs. (4) and (5). At first order the m dependence can be

SCALAR, ELECTROMAGNETIC, AND GRAVITATIONAL . . . PHYSICAL REVIEW D 88, 064048 (2013)

064048-7



factored out, so the calculation is complete once we know

the functions !ð1Þ
R and !ð1Þ

I . Furthermore, we remark that
first-order corrections vanish identically when m ¼ 0.

We find four families of modes, two of which are
associated to axial perturbations, while the other two are
associated to polar perturbations. In the Q ¼ 0 limit the
two families with a given parity reduce to the gravitational
and electromagnetic modes of a Kerr BH. Therefore, with a
slight abuse of notation, we will dub the two families
‘‘gravitational’’ and ‘‘electromagnetic’’ also in the general
case. It should be stressed that, when Q � 0, oscillations
involving any of these modes excite both electromagnetic
and gravitational perturbations.

We also mention that we have carried out a further check
of our results. We have extracted Oð~aÞ corrections of the
QNMs from a fit of the ‘‘full’’ numerical solution of the
Teukolsky equations in the Kerr background, and we have
verified that this procedure matches our results for Q ¼ 0

within a relative error & 0:1% for !ð1Þ
R ðQ ¼ 0Þ. The error

is only a few times larger for !ð1Þ
I ðQ ¼ 0Þ.

1. Isospectrality

For generic values of ‘, gravito-electromagnetic pertur-
bations of nonspinning BHs in general relativity are iso-
spectral [17,43]. The left panels of Fig. 1 are fully
consistent with isospectrality within our numerical accu-
racy, and this is a nontrivial consistency check of our
method.1

A priori, there is no reason to expect that such a remark-
able property should hold true also for KN BHs.
Isospectrality is easily broken: for example it is well
known that polar and axial modes are not isospectral
(even for nonrotating BHs) if the cosmological constant
is nonzero [64–66], if the underlying theory is not general
relativity [67,68], or in higher dimensions [17].

Our numerics provide strong evidence that the gravito-
electromagnetic modes of KN BHs are isospectral to first
order in the angular momentum. This was shown in Fig. 1
for the fundamental mode with ‘ ¼ 2 and ‘ ¼ 3. In the
insets of Fig. 1 we show the relative difference between the
coefficients of axial and polar modes as functions of Q:
our results are consistent with isospectrality within the
numerical accuracy of the direct integration method.

We believe that deviations from isospectrality are of a
purely numerical nature, being almost entirely due to the
intrinsic errors of the direct integration to compute QNMs.
This issue was discussed in detail in Ref. [49]. Here we
simply add the observation that, as shown in Fig. 1, the
fundamental mode with ‘ ¼ 3 (for which the direct
integration is more accurate) is numerically closer to

isospectrality than the fundamental mode with ‘ ¼ 2. We
have checked that deviations from isospectrality decrease
as ‘ grows.

2. Fitting formulas at first order in rotation

Polar and axial modes are the same to first order within
our numerical accuracy, but the equations for axial modes,
which are listed explicitly in Eq. (2) and Appendix A 1 of
this paper, are much simpler. We carried out a more
extensive QNM calculation working in the axial case,
where our results can be verified using two independent
methods. Because of isospectrality, these results cover the
whole QNM spectrum of slowly rotating KN BHs.
We found that the zeroth- and first-order terms in

Eqs. (4) and (5) shown in Fig. 1 are well fitted by functions
of the form

M!ð0;1Þ
R;I ¼ f0 þ f1yþ f2y

2 þ f3y
3 þ f4y

4; (35)

where we have defined a parameter y ¼ 1� ~amax ¼ 1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Q2=M2

p
which is in one-to-one correspondence with

Q (such that y 2 ½0; 1� as Q 2 ½0;M�) but is better suited
for fitting. As discussed in Sec. IVA, ~amax seems to be the
most appropriate dimensionless quantity to normalize our
perturbative parameter; in some sense, the parameter y
measures the ‘‘distance from extremality’’ of the KN met-
ric. The ‘- and n-dependent fitting coefficients fi of the

functions !ð0;1Þ
R and !ð0;1Þ

I for a selected subset of gravita-
tional and electromagnetic modes are listed in Table I,
which extends a similar table in [49].
Our QNM calculations in the slow-rotation approxima-

tion can be seen as an empirical confirmation of the stabil-
ity of the KNmetric. We have looked for unstable modes in
the region 0<Q<M, J � Jmax and for ‘ ¼ 2, 3, 4 and
we found none. This confirms early arguments by
Mashhoon, who used calculations in the eikonal limit to
make a case for the stability of the KN metric [44]. Notice
however that Mashhoon’s results apply only to perturba-
tion modes with ‘ 	 1 and they rely on a geodesic anal-
ogy, rather than on a self-consistent treatment of the
perturbation equations. In this sense, our findings provide
the first self-consistent stability analysis of the KN metric.

C. Comparison with the quasinormal modes of the
Dudley-Finley equation

Finally, we can compare our results against the DF
equation [40,41] to quantify the regime of validity of
both approximation schemes. The results of this compari-
son for the fundamental gravitational mode with ‘ ¼ m ¼
2 are shown in Fig. 2.
The DF equation reduces to the Teukolsky equation for

Kerr BHs in the limit Q ! 0. However, it does not reduce
to the RN Regge-Wheeler/Zerilli equations when ~a ! 0
[19]. On the other hand, our slow-rotation approximation is
valid for any Q, but we must impose the condition

1To the best of our knowledge, in the published literature there
are no studies checking isospectrality for RN BHs by an explicit
calculation of polar QNMs. This is an interesting by-product of
our analysis.
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J � Jmax . In the region J � Jmax , the slow-rotation ap-
proximation can be used to quantify the errors introduced
by the DF equation for any value of Q.

Figure 2 shows that the deviations between the DF and
slow-rotation calculations vanish when Q � M and J �
Jmax , i.e., in the region where the assumptions underlying

both approximations are consistent. As we increase Q we

observe an increasing deviation of the DF modes with

respect to the slow-rotation calculation. The offset in-

creases with Q, and it is nearly constant for any Q in

the region J � Jmax : the errors introduced by the DF

approximation in the nonrotating case do not increase

much when (a small amount of) rotation is included.

The deviations do increase for larger values of J, but in
that regime the slow-rotation approximation is not reliable

anymore.

TABLE I. Coefficients of the fit (35) for the real and imaginary parts of a selected subset of gravito-electromagnetic modes. The
values ð‘; nÞ correspond to the multipolar index and the overtone number, respectively. Fundamental modes correspond to n ¼ 0. We
denote by s ¼ 1 and s ¼ 2 the modes that in the decoupled Q ! 0 limit are electromagnetic and gravitational in the Kerr background,

respectively. The fits (35) reproduce the data to within 1% for !ð1Þ
I and to within 0.1% for the other quantities for any Q & 0:95M.

ð‘; n; sÞ f0 f1 f2 f3 f4

!ð0Þ
R (2,0,1) 0.4576 0.2659 0.0118 0.1228 �0:1382

!ð1Þ
R (2,0,1) 0.0712 0.0769 0.0596 0.0727 �0:0216

!ð0Þ
I (2,0,1) �0:0950 �0:0184 0.0137 0.0132 0.0107

!ð1Þ
I (2,0,1) 0.0007 0.0043 0.0060 �0:0089 0.0366

!ð0Þ
R (2,0,2) 0.3737 0.0525 0.0607 �0:0463 �0:0070

!ð1Þ
R (2,0,2) 0.0628 0.0676 0.0209 0.0823 �0:0810

!ð0Þ
I (2,0,2) �0:0890 �0:0055 0.0024 0.0214 �0:0084

!ð1Þ
I (2,0,2) 0.0010 0.0014 0.0091 0.0174 0.0145

!ð0Þ
R (2,1,1) 0.4365 0.2793 0.0125 0.1399 �0:1637

!ð1Þ
R (2,1,1) 0.0780 0.0785 0.0588 0.0776 �0:0277

!ð0Þ
I (2,1,1) �0:2907 �0:0515 0.0438 0.0364 0.0363

!ð1Þ
I (2,1,1) 0.0043 0.0138 0.0164 �0:0230 0.1062

!ð0Þ
R (2,1,2) 0.3467 0.0546 0.0709 �0:0292 �0:0433

!ð1Þ
R (2,1,2) 0.0717 0.0764 0.0020 0.1959 �0:2213

!ð0Þ
I (2,1,2) �0:2739 �0:0157 0.0099 0.0668 �0:0239

!ð1Þ
I (2,1,2) 0.0065 0.0070 0.0360 0.0254 0.0905

!ð0Þ
R (3,0,1) 0.6569 0.3684 �0:0820 0.2851 �0:2574

!ð1Þ
R (3,0,1) 0.0726 0.0768 0.0595 0.0617 �0:0259

!ð0Þ
I (3,0,1) �0:0956 �0:0177 0.0178 0.0074 0.0106

!ð1Þ
I (3,0,1) 0.0002 0.0032 0.0027 �0:0002 0.0216

!ð0Þ
R (3,0,2) 0.5994 0.0790 0.1734 �0:2019 0.0700

!ð1Þ
R (3,0,2) 0.0673 0.0693 0.0211 0.0791 �0:0677

!ð0Þ
I (3,0,2) �0:0927 �0:0043 �0:0013 0.0292 �0:0130

!ð1Þ
I (3,0,2) 0.0006 0.0014 0.0084 0.0058 0.0122

!ð0Þ
R (3,1,1) 0.6418 0.3782 �0:0863 0.3104 �0:2875

!ð1Þ
R (3,1,1) 0.0760 0.0786 0.0511 0.0924 �0:0576

!ð0Þ
I (3,1,1) �0:2897 �0:0509 0.0508 0.0333 0.0222

!ð1Þ
I (3,1,1) 0.0015 0.0098 0.0096 �0:0050 0.0693

!ð0Þ
R (3,1,2) 0.5826 0.0819 0.1752 �0:1753 0.0304

!ð1Þ
R (3,1,2) 0.0713 0.0736 0.0108 0.1287 �0:1282

!ð0Þ
I (3,1,2) �0:2813 �0:0123 �0:0050 0.0972 �0:0472

!ð1Þ
I (3,1,2) 0.0029 0.0059 0.0194 0.0374 0.0231
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V. CONCLUSIONS

In this paper and the accompanying Letter [49] we have
presented the first fully consistent analysis of the gravito-
electromagnetic QNMs of the KN metric. Working in a
slow-rotation approximation, the long-standing problem of
nonseparability of the perturbation equations can be
evaded. We have computed the gravito-electromagnetic
QNMs to first order in the BH spin and provided fitting
formulas for the fundamental mode and first overtone with
‘ ¼ 2, 3.

Furthermore, our numerical study of gravito-
electromagnetic perturbations shows strong numerical
evidence for the isospectrality of polar and axial gravito-
electromagnetic perturbations of KN black holes at linear
order in rotation. It would be interesting to understand
whether isospectrality holds exactly, at all orders in rota-
tion. An important extension of our work in this direction is
to include second-order effects. The causal structure of a
spinning metric starts differing from the nonspinning case
at second order in the angular momentum (e.g., changes in
the horizon location and in the ergoregion are of second
order); thus, if isospectrality holds true also at second
order, there is no fundamental reason to believe that it is
broken at higher order.

If isospectrality is an exact property of KN BHs, exten-
sions of the polar and axial field equations (2) to any order
in the spin should be related to each other by some trans-
formation that leaves the QNM spectrum invariant. Even at
linear order in rotation isospectrality is a highly nontrivial
property, in view of the mixing of gravitational and elec-
tromagnetic perturbations. Hopefully our work will stimu-
late further study to prove (or disprove) the conjecture that

isospectrality is an exact property of the KN spacetime.
This conjecture may be verified using a brute-force exten-
sion of our work to higher orders in rotation, numerical
time evolutions along the lines of [69–71], or (ideally) an
analytical proof, perhaps similar to Chandrasekhar’s proof
in the nonrotating case (see also Ref. [72]).
In Ref. [49] we have presented some possible extensions

of our work. If isospectrality turns out to be valid for any
value of the angular momentum, an interesting avenue of
research is to understand whether such property has im-
plications in the context of the KN/CFT conjecture [23,24],
which predicts that the QNMs of the near-horizon KN
geometry correspond to the poles of the retarded Green’s
function of the dual chiral CFT [73].
Some further interesting applications concern nona-

symptotically flat spacetimes. Even for nonrotating RN
(anti–)de Sitter BHs isospectrality is known to be partially
broken, depending on the relative size of the BH and
(anti–)de Sitter horizon radii [64–66,74]. The slow-rotation
approximation may be used to understand whether similar
considerations also apply to Kerr-Newman (anti–)de Sitter.
Indeed, our approach can be easily extended to include a
nonvanishing cosmological constant. In the context of the
AdS/CFT correspondence [75], the QNMs of a KN BH are
dual to thermal states of a CFT living in a rotating Einstein
universe [76,77].
Finally, certain KN-AdS BHs embedded in N ¼ 2 four-

dimensional supergravity preserve half of the supersymme-
try [78,79]. This is analogous to the case of asymptotically
flat, extremal RN BHs, for which supersymmetry implies a
remarkable property of the QNMs: electromagnetic per-
turbations with multipolar index ‘ are isospectral with
gravitational perturbations with index ‘þ 1 [80]. Using
this property, it is possible to prove that the one-loop
corrections to the BH entropy cancel [81]. It would be
interesting to understand whether such supersymmetry im-
plies a similar property for the supersymmetric KN-AdS
BH solutions found in Refs. [78,79]. We note that such
solutions can be slowly rotating, so our framework can be
directly applied to this interesting problem.
We hope that our paper will stimulate further work in

these, and possibly other, directions.
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FIG. 2 (color online). Percentage deviation of QNM frequen-
cies in the slow-rotation approximation with respect to the DF
equation, for the ‘ ¼ m ¼ 2 fundamental gravitational mode. As
expected, the two approximations agree with each other when
Q ! 0, but they deviate from each other when ~a ! 0. The
discrepancy between the two approximations is nearly constant
as long as J � Jmax , confirming that the DF equation is not very
accurate in that regime when Q � 0 (cf. [19]).

PAOLO PANI, EMANUELE BERTI, AND LEONARDO GUALTIERI PHYSICAL REVIEW D 88, 064048 (2013)

064048-10



‘‘Black hole dynamics in metric theories of gravity,’’ on
Altamira in Cantabria through BSC Grant No. AECT-
2012-3-0012, on Caesaraugusta in Zaragoza through
BSC Grants No. AECT-2012-2-0014 and No. AECT-
2012-3-0011, XSEDE clusters SDSC Trestles and NICS
Kraken through NSF Grant No. PHY-090003, Finis Terrae
through Grant No. CESGA-ICTS-234.

APPENDIX A: DERIVATION OF THE
PERTURBATION EQUATIONS

In this Appendix we derive the first-order equations (2)
for the axial and polar gravito-electromagnetic perturba-
tions of a KN BH. Various intermediate steps are presented
in a supplementary MATHEMATICA notebook [56].

1. Axial sector

As discussed in the main text and in Ref. [51], the
coupling between perturbations with different parity and
different harmonic index ‘ does not contribute to the QNM
to first order in ~a. Neglecting the couplings to ‘� 1 terms,
the axial sector is fully described by four equations:

0¼��ðLÞ
‘ þ im½ð‘� 1Þð‘þ 2Þ�ðLÞ

‘ þ ~�ðLÞ
‘ þ�ðLÞ

‘ �; (A1)

0 ¼ �t‘ þ img‘; (A2)

where L ¼ 0, 1, 2. The choice L ¼ 2 refers to one of the

Maxwell equations, and f�ðLÞ
‘ ; �ðLÞ

‘ ; ~�ðLÞ
‘ ; �ðLÞ

‘ ; t‘; g‘g are

combinations of the perturbation functions fh‘0;1; u‘ð4Þg,
whose explicit form can be found online [56]. Actually,
Einstein’s equations imply Maxwell’s equations, and only
three out of the four equations above are independent. This
can be easily verified as a consistency check of our ap-
proach. The three independent equations can be solved for
the functions h‘0, h

‘
1 and u

‘
ð4Þ. We define the Regge-Wheeler

function �‘ as

�‘ ¼ Fh‘1
r

: (A3)

Then, from Eq. (A1) with L ¼ 1, we get

h‘00 ¼2Fð�r!h‘0�2Q!u‘ð4ÞÞþ i�rðFð��2Þ�r2!2Þ�‘

F�r2!

� im~aM2

F�2Mr4!2
½12iF�M!h‘0þ4iF2�Q!u‘ð4Þ

þðF�1Þ�2rðFð��2Þþr2!2Þ�‘þ8iF2Qr!u‘ð4Þ
0�:

Replacing this equation in the remaining Eq. (A1) with
L ¼ 0 and L ¼ 2 we get a system for u‘ð4Þ and �‘ only. At

first order in ~a, the system contains third derivatives of u‘ð4Þ.
Within our perturbative scheme, the latter can be elimi-
nated by using the zeroth-order perturbation equations.
The result is a system of coupled, second-order equations
for u‘ð4Þ and �‘. In order to decouple the system at zeroth

order, we define a linear combination of two new functions

Zð�Þ
i (i ¼ 1, 2), such that

u‘4 ¼ �11Z
ð�Þ
1 þ �12Z

ð�Þ
2 ; (A4)

�‘ ¼ �21Z
ð�Þ
1 þ �22Z

ð�Þ
2 ; (A5)

where �21 ¼ 4i�11!Q=ð�q1Þ, �22 ¼ 4i�12!Q=ð�q2Þ,
and we have defined

q1;2 ¼ 3M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 þ 4ð�� 2ÞQ2

q
; (A6)

such that q1q2 ¼ �4Q2ð�� 2Þ and q1 þ q2 ¼ 6M. The
constants �11 and �12 can be set equal to unity without loss
of generality.
Replacing the linear combinations above into the equa-

tions for u‘ð4Þ and �‘ and solving for Zð�Þ
1 and Zð�Þ

2 , we

obtain Eq. (2) with a ‘‘minus’’ superscript.
The potentials appearing in the axial sector of the

perturbation equations (2) read

Vði;�Þ
0 ¼ F

r3

�
�qj þ 4Q2

r

�
; (A7)

Vði;�Þ
1 ¼ � M

�ðqi � qjÞr11!
½4Q6ð10qiqj � 12Mrþ ð�18qj þ�ðqi þ 8qjÞÞrþ 
r2Þ

� 2Mqjr
3ðr� 2MÞðrðð18þ�Þqi þ 12ð�� 3ÞrÞ � 6Mð7qi þ ð�14þ 5�ÞrÞÞ

þ r7ð2Mqiqj � 4�Mðqi � qjÞr� qiqjrÞ!2 þQ4rð192M2r� 4Mð50qiqj þ ð�92qj þ�ð4qi þ 39qjÞÞr
þ 4ð6þ 
Þr2Þ þ rðð72þ�Þqiqj þ 8�qirþ 4rð2ð�16þ 7�Þqj þ 
rþ ð6þ�Þr3!2ÞÞÞ
þQ2r2ð�192M3rþ 4M2ð81qiqj þ ð�154qj þ�ð4qi þ 61qjÞÞrþ 4ð12þ 
Þr2Þ þ r2ð8ð3�� 7Þqjr
þ 2r3ð��qj þ 2ð6þ�ÞrÞ!2 þ qiðqjð32þ�� r2!2Þ þ 2�rð2þ r2!2ÞÞÞ � 4Mrðð55þ�Þqiqj
þ 4�qirþ rðð�102þ 41�Þqj þ 2rð6þ 6r2!2 þ�ð�2þ�þ r2!2ÞÞÞÞÞ�; (A8)
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Vði;�Þ
2 ¼ 2MF2

�ðqi � qjÞr6!
ðQ2ðqið5qj � 4rÞ þ 4ð6Mþ ð�� 1ÞqjÞrÞ þ qjrð3qir� 2Mð4qi þ 3�rÞÞÞ; (A9)

Wði;�Þ
1 ¼ 4ð�� 2ÞMF

�ðqi � qjÞq2jr9!
½4Q4ð10q2j þ 9ð�� 2Þqjrþ rð
r� 12MÞÞ þ qjr

2ð2Mðrð�ð18þ�Þqj � 12ð�� 3ÞrÞ

þ 6Mð7qj þ ð�14þ 5�ÞrÞÞ � qjr
4!2Þ þQ2rð96M2rþ qjrðð32þ�Þqj þ 28ð�� 2ÞrÞ

þ 4Mð�30q2j þ ð56� 25�Þqjr� 2ð6þ 
Þr2Þ þ 4ð6þ�Þr5!2Þ�; (A10)

Wði;�Þ
2 ¼ 8ð�� 2ÞMF2

�ðqi � qjÞq2jr6!
ðqjrð8Mqj þ 6�Mr� 3qjrÞ þQ2ð�5q2j � 4ð6Mþ ð�� 2ÞqjÞrÞÞ; (A11)

where qi;j (i, j ¼ 1, 2 and i � j) are defined as in Eq. (A6),
and 
 � �ð‘þ 2Þð‘� 1Þ.

2. Polar sector

The equations governing the polar sector are more
involved. They can obtained by following Zerilli’s original
derivation of the gravitational and electromagnetic pertur-
bations of a RN BH [59], extended to first order in the
BH spin.

Polar perturbations are fully described by the equations

0 ¼ AðIÞ
‘ þ imCðIÞ

‘ ; (A12)

0¼��ðLÞ
‘ þ im½ð‘� 1Þð‘þ 2Þ�ðLÞ

‘ � ~�ðLÞ
‘ � 	 ðLÞ‘ �; (A13)

0 ¼ �s‘ � imf‘; (A14)

where I ¼ 0; . . . ; 5 and L ¼ 0, 1, 2, and fAðIÞ
‘ ; CðIÞ

‘ ; �ðLÞ
‘ ;

�ðLÞ
‘ ; ~�ðLÞ

‘ ; 	 ðLÞ‘ ; s‘; f‘g are combinations of the perturba-

tion functions fH‘
0;1;2; K

‘; u‘ð1;2;3Þg, whose explicit form

can be found online [56]. Actually, only seven out of the
ten equations above are independent and they can be
solved for the seven polar functions: H‘

0 , H
‘
1 , H

‘
2 , K

‘, u‘ðiÞ
(i ¼ 1, 2, 3).

The key point of Zerilli’s calculation is to use perturba-
tions of the field strength F��, rather than the electromag-

netic potential A�, as dynamical variables. Following [59],

we define

�F�� � f�� ¼ @��A� � @��A�: (A15)

In the polar sector, we fix the gauge by requiring u‘ð3Þ ¼ 0;

the remaining components are related to f�� in the follow-

ing way:

u‘ð1Þ ¼ r~f02; (A16)

u‘ð2Þ ¼ FðrÞ~f12; (A17)

u‘ð1Þ
0 ¼ r~f01 þ ~f02 � ir!~f02; (A18)

where �~f�� denotes the angle-independent part of f��

(note that our definition differs from Zerilli’s definition by
a minus sign). The equation

~f 01 ¼ ~f002 þ i!~f12 (A19)

is automatically satisfied due to Eq. (A15).
First, we solve Eq. (A14) forH‘

2 and substitute the result
into the remaining equations. Then, Eq. (A12) with I ¼ 5

and Eq. (A13) with L ¼ 2 can be solved for ~f01 and ~f02.
The solutions can be replaced into Eq. (A19), which takes

the form of a second-order differential equation for ~f12
with source terms linear in the polar gravitational function
H‘

0 , H
‘
1 , K

‘ and in their first derivatives.

The equations for the gravitational sector can be ob-
tained by solving Eq. (A12) with I ¼ 1 and Eq. (A13) with
L ¼ 0, 1 for H‘0

0 , H
‘0
1 and K‘0. Similarly to the axial sector,

second derivatives of these perturbation functions (which
appear at first order in ~a) can be eliminated using the
zeroth-order equations. By substituting the solution into
Eq. (A12) with I ¼ 2, one can solve for the function H‘

0

and eliminate it from the remaining equations. As a result
of this procedure we obtain a system of coupled equations

Y 0 þ UY ¼ 0; (A20)

where Y ¼ ðH‘
1 ; K

‘; ~f12; ~f
0
12Þ and U is a matrix. The sys-

tem above collectively denotes two first-order equations
for the gravitational perturbations H‘

0 and K‘ and the

second-order equation for ~f12, which has been separated

into two first-order equations for ~f12 and ~f012.
As shown by Zerilli [59], at zeroth order in the BH spin

the two equations for the gravitational perturbations H‘
0

and K‘ can be reduced to a single, second-order equation.
We describe the procedure here, extending it to first order
in the BH spin. The perturbations H‘

0 and K‘ satisfy the

schematic matrix-valued equation

y 0 ¼ Ay þ S; (A21)

where A is a matrix, y ¼ ðK‘;H‘
1=!Þ and S ¼ ðS1; S2Þ is a

source term, which depends on ~f12 and its derivatives only.
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The idea is to find a transformation y ¼ Fŷ to a new pair of

functions ŷ ¼ ð�̂1; �̂2Þ such that

d�̂1

dr̂
¼ G1�̂1 þ ð1þWÞ�̂2 þ Ŝ1; (A22)

d�̂2

dr̂
¼ �ð!2 � V � V1Þ�̂1 þG2�̂2 þ Ŝ2; (A23)

where r̂ is a new variable defined by dr=dr̂ ¼ nðrÞ. Indeed,
assuming the relations above, we can solve Eq. (A22) for

�̂2 and substitute it into Eq. (A23). We obtain a single,

second-order equation for �̂1:

d2�̂1

dr̂2
þ Û

d�̂1

dr̂
þ V̂�̂1 ¼ Ŝ; (A24)

where, to first order,

Û ¼ �G1 þG2 þ FW 0

F0F
; (A25)

V̂ ¼ ð!2 � VÞð1þWÞ � V1 � FG0
1; (A26)

Ŝ ¼ ð1þWÞŜ2 þ FŜ01 � Ŝ1ðG2 þ FW 0Þ: (A27)

Note thatGi, V1 andW are first-order quantities in rotation,
which are absent in the nonrotating case discussed in
Ref. [59].

Let us now find the explicit form of the transformation.
Using Eq. (A21), we get

dŷ

dr̂
¼ nðrÞF�1

�
AF� dF

dr

�
þ nðrÞF�1S: (A28)

Therefore, the transformation matrix F and the remaining
functions must satisfy

nðrÞF�1

�
AF� dF

dr

�
¼ G1 1þW

�!2 þ V þ V1 G2

� �
;

(A29)

and Ŝ ¼ nF�1S. The equation above can be solved pertur-
batively. At zeroth order it provides a system of four
equations that can be uniquely solved for the elements of
the matrix F, for nðrÞ and for the potential V. We get

F11 ¼ ½2r3ðrð6Mþ ð�� 2ÞrÞ � 4Q2Þ��1

� ½16Q4 � 4Q2rð11Mþ ð�� 4ÞrÞ
þ r2ð24M2 þ 6ð�� 2ÞMrþ 
r2Þ�;

F12 ¼ 1;

F21 ¼ �i

�
1þQ2 �Mr

r2F
þ 8Q2 � 6Mr

r½6Mþ ð�� 2Þr� � 4Q2

�
;

F22 ¼ � ir

F
;

and

VðrÞ ¼ F

r2
ðrð6Mþ ð�� 2ÞrÞ � 4Q2Þ�2

� ½�32Q6 þ 24Q4rð6Mþ ð�� 2ÞrÞ
þ 8Q2r2ð3ð�� 2Þr2 � 27M2 � 2ð4�� 11ÞMrÞ
þ r3ð72M3 þ 36ð�� 2ÞM2rþ 6ð�� 2Þ2Mr2

þ�ð�� 2Þ2r3Þ�; (A30)

nðrÞ ¼ FðrÞ: (A31)

Note that, by virtue of the field equations, the coordinate r̂
is the standard tortoise coordinate. The equations above
correct some typos in Ref. [59]. At first order, we can
solve the four equations (A29) for the variables G1, G2,
W and V1. The lengthy form of these solutions is presented
online [56].
With the transformation at hand, we can compute the

explicit form of Eq. (A24). The source term Ŝ explicitly

depends on the second derivatives of ~f12 and, upon sub-

stitution of the perturbation equation for ~f12, it depends on
K‘ and H‘

1 . This dependence can be eliminated using the
definitions

K‘ ¼ F11�̂1 þ F12

1þW
½F�̂0

1 �G1�̂1 � Ŝ1�;

H‘
1 ¼ !F21�̂1 þ !F22

1þW
½F�̂0

1 �G1�̂1 � Ŝ1�;

which allows us to write K‘ and H‘
1 in terms of �̂1 and its

first derivative only. When inserted into Eq. (A24), the
equations above introduce extra coefficients in front of

d�̂1=dr� and �̂1. The final result is an equation of the
same form as Eq. (A24), with coefficients given in [56].
To summarize, we have obtained two second-order

equations for the functions �̂1 and ~f12 which describe
gravitational and electromagnetic perturbations, respec-
tively. At zeroth order in rotation, these equations can be

decoupled [43,82] by introducing the functions ZðþÞ
i such

that

�̂ 1 ¼ B11Z
ð�Þ
1 þ B12Z

ðþÞ
2 ; (A32)

~f EM ¼ B21Z
ðþÞ
1 þ B22Z

ðþÞ
2 ; (A33)

where Bij are functions of r and we defined ~fEM � F~f12. It

is straightforward to verify that with the choice

B11

�
þ q2 ¼ B12

�
þ q1 ¼ 4Q2

r
; (A34)

B21

�
¼ B22

�
¼ � 8iQ

!
; (A35)

the final set of equations takes the form of Eq. (2) with a
‘‘plus’’ superscript; i.e., the equations are decoupled at
zeroth order (but coupled at first order) in ~a. In the
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equations above, � and � are constants that can be set to
unity without loss of generality. Our equations reduce to
those obtained by Chandrasekhar [43] in the nonspinning
case, as they should. Let us stress again that the derivation
sketched in this Appendix and in [56] corrects some typos
in Ref. [59].

The potentials appearing in the perturbation equations
(2) of the polar sector are very lengthy [56], and their
practical use may be limited. However, since—according
to our numerical evidence—axial and polar modes are
isospectral to linear order in ~a, the potentials describing
axial perturbations (explicitly listed in Appendix A 1) are
sufficient to compute the entire QNM spectrum of slowly
rotating KN BHs.

APPENDIX B: OF THE RECURRENCE RELATION
FOR SCALAR QNMS OFA KN BH

Using the same ansatz as in Eq. (29) and (33) reduces to
a five-term recurrence relation

�0a1þ�0a0¼0; n¼0;

�1a2þ�1a1þ�1a0¼0; n¼1;

�2a3þ�2a2þ�2a1þ�2a0¼0; n¼2;

�nanþ1þ�nanþ�nan�1þ�nan�2þ�nan�3¼0; n>2;

whose coefficients to first order in ~a, using Leaver’s
2M ¼ 1 unit convention, read

�n ¼ ð1þ nÞ�Qð1þ �QÞ2ð2ð1þ nÞ�Q � ið1þ �QÞ2!Þ þ 2im~að1þ nÞ�Qð1þ �QÞ2; (B1)

�n ¼ �Qð1þ �QÞð�2�Qð�1þ 4n2 þ 3�Q þ ‘ð1þ ‘Þð1þ �QÞ þ nð�2þ 6�QÞÞ
þ ið1þ�QÞ2ð�1þ 5�Q þ 4nð1þ �QÞÞ!þ 2ð1þ�QÞ4!2Þ
� 2m~a�Qð1þ�QÞðið4nþ 3�Q � 1Þ þ ð1þ �QÞð2þ�QÞ!Þ; (B2)

�n ¼ �Qð2�Qð6nð�Q � 1Þð3þ �QÞ � 2n2ð�2
Q � 3Þ � ð�Q � 1Þð11� 7�Q þ 2‘ð1þ ‘Þð1þ�QÞÞÞ

þ ið1þ�QÞ2ð9þ 6�Q � 15�2
Q þ 2nð�3þ�Qð�6þ 5�QÞÞÞ!þ 2ð1þ �QÞ4ð�3þ 2�QÞ!2Þ

þ 2m~a�Qð3ið�Q � 1Þð3þ �QÞ � 2inð�2
Q � 3Þ � 2ð1þ �QÞð�2

Q � 3Þ!Þ; (B3)

�n ¼ ð�Q � 1Þ�Qð2�Qð29þ 4n2 þ ‘þ ‘2 � ð21þ ‘þ ‘2Þ�Q þ nð�22þ 6�QÞÞ
þ ið1þ �QÞð11þ ð38� 17�QÞ�Q þ 4nð�1þ ð�4þ �QÞ�QÞÞ!
þ 2ð�Q � 3Þð1þ �QÞ3!2Þ þ 2m~að�Q � 1Þ�Qð�11iþ 4inþ 6!þ �Qð3i� ð�Q � 3Þ!ÞÞ; (B4)

�n ¼ ð�Q � 1Þ2�Qð�4þ n� 2i!Þð2ð�4þ nÞ�Q � ið1þ �QÞ2!Þ þ 2im~að�Q � 1Þ2�Qð�4þ n� 2i!Þ; (B5)

where �Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Q2

p
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