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Compact bosonic field configurations, or boson stars, are promising dark matter candidates which

have been invoked as an alternative description for the supermassive compact objects in active

galactic nuclei. Boson stars can be comparable in size and mass to supermassive objects, and they

might be hard to distinguish by electromagnetic observations. However, boson stars do not possess

an event horizon, and their global spacetime structure is different from that of a black hole. This leaves

a characteristic imprint in the gravitational-wave emission, which can be used as a discriminant

between black holes and other horizonless compact objects. Here we perform a detailed study of boson

stars and their gravitational-wave signatures in a fully relativistic setting, a study which was lacking in

the existing literature in many respects. We construct several fully relativistic boson star configura-

tions, and we analyze their geodesic structure and free oscillation spectra, or quasinormal modes.

We explore the gravitational and scalar response of boson star spacetimes to an inspiraling stellar-mass

object and compare it to its black hole counterpart. We find that a generic signature of compact boson

stars is the resonant-mode excitation by a small compact object on stable quasicircular geodesic

motion.
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I. INTRODUCTION

We recently investigated gravitational-wave signatures
of stellar-size objects orbiting around supermassive,
dark matter configurations [1]. These extreme mass-ratio
inspirals (EMRIs) were studied both inside and outside
the supermassive object. The gravitational radiation output
during the inner inspiral was treated by a Newtonian
approach, which included accretion and gravitational
drag, whereas the outer inspiral was described at the fully
relativistic level. To model the motion of the particle
outside the object, specific relativistic models have to be
used and, in Ref. [1], we considered boson star (BS)
configurations, which are viable and promising dark matter
candidates. Here we extend our study and discuss in detail
some of the results briefly presented in Ref. [1].

BSs are compact configurations satisfying the Einstein-
Klein-Gordon equations, prevented from total collapse
through the Heinsenberg uncertainty principle (for reviews
on the subject see [2–4]). They have been claimed in the
literature as promising horizonless black hole (BH) mim-
ickers, being possible star candidates for supermassive
objects. BSs can be classified [3] according to the scalar
potential, namely Vð�Þ (see Sec. II), in the Klein-Gordon

Lagrangian. In this paper, we shall discuss some of the
most popular BS models:
(i) Mini boson stars, for which the scalar potential is

given by Vð�Þ ¼ �2j�j2, where� is the scalar field

mass. The maximummass for this BS model is given

by the so-called Kaup limit Mmax � 0:633m2
P=�,

with mP being the Planck mass [5,6]. For typical

values of �, this mass limit is much smaller than

the Chandrasekhar limit for a fermion star, approxi-

mately m3
P=�

2. Nevertheless, despite their name,

mini BSs may have a total mass compatible with

that observed in active galactic nuclei [3]. This hap-

pens for ultralight boson masses �, such as those

motivated by string axiverse scenarios [7].
(ii) Massive boson stars, for which the scalar potential

has an additional quartic scalar field term, Vð�Þ ¼
�2j�j2 þ �j�j4=2 [8]. Depending on the value of
�, the maximum mass can be comparable to the
Chandrasekhar limit. For � � �2=m2

P one can

estimate Mmax � 0:062�1=2m3
P=�

2.
(iii) Solitonic boson stars, for which Vð�Þ ¼

�2j�j2ð1� 2j�j2=�2
0Þ2, where �0 is a constant

[9]. This potential supports confined nondis-
persive solutions with finite mass, even in the ab-
sence of gravity. The total mass of the star depends
on �0 and Mmax � 0:0198m4

P=ð��2
0Þ. This model

(also known in the literature as nontopological
solitonic stars) allows for supermassive objects
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with M� 106M� even in the presence of heavy
bosons with �� �0 � 500 GeV.

Other types of BSs can be obtained using different scalar
self-potentials; see Ref. [3] for a more detailed list.

The emission spectra from a simple accretion disk
model around BSs was studied in Refs. [10,11]. It was
shown that, depending on the BS model and on the
compactness, spherically symmetric massive BSs can be
indistinguishable from Schwarzschild BHs. In this sense,
BS can supplant BHs as supermassive objects. Ways to
discriminate BSs from BHs have been studied in the
literature, such as the K� iron line profile from accretion
disks [12] (see also [13] for other compact objects) and
gravitational lensing [14] (see also Ref. [3]).

Despite the vast existing literature on their dynamical
features (cf. the recent review [4]), a detailed study on the
astrophysical signatures of BSs in a fully relativistic setting
is missing. The scope of the present paper is to fill this
gap. We study dynamical BSs in order to identify pos-
sible smoking guns of horizonless compact objects and of
compact dark matter configurations, extending previous
studies in several directions.

After giving the necessary formalism in Sec. II, we
explore the three different types of BSs discussed above
in Sec. III. The spacetimes are obtained using the full
Einstein equation, without any approximation scheme.
Our results agree very well with the ones presented in the
literature [6,8,9].

In Sec. IV we characterize tcircular geodesics in BS
spacetimes. In particular, even though a BS does not
possess a well-defined surface and stable circular geodesics
may exist even inside the star, we find some upper bound
on the angular frequency as measured by (static) asymp-
totic observers. In Sec. V we compute the fundamental
quasinormal modes (QNMs) of various BS models and
show that there exists a class of low-frequency modes.
In Sec. VI we show that these modes can be excited by
point particles in quasicircular geodesic motion. This is a
striking difference from the BH case, where the QNMs can
only be excited by particles plunging into the BH and not
during the inspiral.

The results of Sec. V are complementary to those of
Refs. [15,16], where the QNMs of mini BS configurations
were computed using a Wentzel-Kramers-Brillouin
(WKB) approximation (see also Ref. [17] where the scalar
QNMs of BS models in the probe limit were computed).
We extend those results by considering several BS models
and by computing the proper modes with more sophisti-
cated methods that do not rely on any approximation
scheme. More specifically, we focus on the quasibound
state modes of the scalar field, and we argue that these are
generic features of any BS configuration supported by a
massive scalar field.

The results of Sec. VI are complementary to—and in fact
extend—the work by Kesden et al. [18], who calculated the
approximated waveforms for gravitational waves emitted

by particle inspirals from the Schwarzschild exterior to the
interior of a nontopological soliton star. As in Ref. [18],
here we have the broad goal of studying gravitational-wave
emission by EMRIs around generic horizonless objects.
EMRIs are unique probes of the strong-curvature regime
of general relativity (GR) and are also perfect test beds to
put constraints on modified theories of gravity (see, e.g.,
Refs. [19,20]). In addition to computing the gravitational
and scalar energy fluxes in a consistent and fully relativistic
approach for several BSmodels, we find that the absence of
the ‘‘one-way membrane’’ (event horizon) opens up the
possibility that the free oscillation modes of a BS are
measurably different from those of a BH, and they can
even be resonantly excited by orbiting point particles.
Indeed, we find that orbiting stellar-mass objects around
BSs generically excite a multitude of resonant frequencies,
and give rise to a signal which in its last stages bears no
resemblance to chirp or ringdown signals typical of inspi-
rals into BHs. We have discussed the detectability of these
resonances in Ref. [1].
Our results might be interesting at various levels but,

from a phenomenological standpoint, the main message is
that gravitational waves do allow a discrimination between
compact objects, in particular between BHs and BSs. We
use the signature ð�;þ;þ;þÞ for the metric and natural
units ℏ ¼ c ¼ G ¼ 1.

II. EINSTEIN’S EQUATION FOR A PARTICLE
ORBITING A BOSON STAR

BSs are equilibrium self-gravitating solutions of the
Einstein-Klein-Gordon theory:

S¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2�
� gab@a�

�@b��Vðj�j2Þ
�
þ Smatter;

where � ¼ 8� and Smatter denotes the action of any other
matter field. From the action above, Einstein’s equations
read

Rab � 1

2
gabR ¼ �ðT�

ab þ Tmatter
ab Þ; (1)

where

T�
ab ¼ @a�

�@b�þ @b�
�@a�

� gabð@c��@c�þ Vðj�j2ÞÞ (2)

is the energy-momentum of the scalar field. The
Klein-Gordon equation reads

1ffiffiffiffiffiffiffi�g
p @að ffiffiffiffiffiffiffi�g

p
gab@b�Þ ¼ dV

dj�j2 �; (3)

together with its complex conjugate.

A. Background solutions

We will focus exclusively on spherically symmetric BSs
and consider the background line element
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ds20 ¼ �evðrÞdt2 þ euðrÞdr2 þ r2ðd�2 þ sin 2�d’2Þ: (4)

The ansatz for the background scalar field reads [4]

�0ðt; rÞ � �0ðrÞe�i!t; (5)

where �0ðrÞ is a real function. Although the scalar field is
time dependent, the Einstein-Klein-Gordon system admits
static and spherically symmetric metrics [3,5,6,8,21,22].
With the ansatz above, the background field equations,
obtained from (1)–(3), read

1

r2
ðre�uÞ0 � 1

r2
¼ ��	; (6)

e�u

�
v0

r
þ 1

r2

�
� 1

r2
¼ �prad; (7)

�00
0 þ

�
2

r
þ v0 � u0

2

�
�0

0 ¼ euðU0 �!2e�vÞ�0; (8)

where a prime denotes the derivative with respect to r,
U0 ¼ Uð�0Þ and Uð�Þ ¼ dV=dj�j2. In the equations
above, the density 	, the radial pressure prad, and the
tangential pressure ptan are given in terms of the stress-
energy tensor of the scalar field, T�

ab. More specifically,

	 � �T�
t
t ¼ !2e�v�2

0 þ e�uð�0
0Þ2 þ V0; (9)

prad � T�
r
r ¼ !2e�v�2

0 þ e�uð�0
0Þ2 � V0; (10)

ptan � T�
�
� ¼ !2e�v�2

0 � e�uð�0
0Þ2 � V0; (11)

where V0 ¼ Vð�0Þ. Unlike the case of perfect fluid stars,
the complex scalar field behaves like an anisotropic fluid,
prad � ptan . Equations (6)–(8) can be solved numerically
with suitable boundary conditions (see Sec. III) to obtain
the background metric and scalar field configuration.

B. Perturbations

We are interested in the free oscillation spectrum of a BS
as well as in the scalar field and metric perturbations
induced by test particles on geodesic motion in the spheri-
cally symmetric spacetime described above. At first order
in the perturbations, the metric reads

gab ¼ gð0Þab þ hab; (12)

where gð0Þab is given in Eq. (4). In the Regge-Wheeler gauge

[23], using a Fourier expansion, the first-order perturbation
hab separates into the axial sector

haxialab ¼ X
l�jmj

Z
d�

0 0 � 1
sin � h0ðrÞ@’ sin �h0ðrÞ@�

? 0 � 1
sin � h1ðrÞ@’ sin �h1ðrÞ@�

? ? 0 0

? ? ? 0

0
BBBBB@

1
CCCCCAYlme�i�t (13)

and polar sector

hpolarab ¼ X
l�jmj

Z
d�

evH0ðrÞ i�H1ðrÞ 0 0

? euH2ðrÞ 0 0

? ? r2KðrÞ 0

? ? ? r2sin 2�KðrÞ

0
BBBBB@

1
CCCCCAYlme�i�t; (14)

where Ylm � Ylmð�; ’Þ are the usual scalar spherical
harmonics. Each metric and scalar field perturbation, e.g.
h0ðrÞ, explicitly depends on the frequency � and on
the wave numbers l and m. The ? symbol indicates the
symmetric components, such that hab ¼ hba.

At first order, the scalar field reads � ¼ �0 þ 
�,
where �0 is the background scalar field defined above and


� ¼ X
l�jmj

Z
d�

�þðrÞ
r

Ylme�ið�þ!Þt; (15)


�� ¼ X
l�jmj

Z
d�

��ðrÞ
r

Ylme�ið��!Þt: (16)

Note that the ansatz above differs from that used in
Refs. [15,16]. The scalar field potential can be written as

V ¼ V0 þ
X
l�jmj

Z
d�
VðrÞYlme�i�t: (17)

Likewise, for the first derivative

dV

dj�j2 ¼ U0ðrÞ þ
X
l�jmj

Z
d�
UðrÞYlme�i�t: (18)

In the presence of matter fields other than the complex
scalar, Tmatter

ab also has to be expanded in tensorial harmon-

ics [24,25]. In the time domain, the matter stress-energy
tensor of a particle in the � ¼ �=2 plane reads

Tmatter
ab ¼ �p

_xaðtÞ _xbðtÞ
rpðtÞ2 _xtðtÞ

e�1
2ðvþuÞ
ðr� rpðtÞÞ


	 ðcos�Þ
ð’� ’pðtÞÞ;
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where _xa � ð _tp; _rp; 0; _�pÞ and �p are the particle’s

four-velocity and mass, respectively.

1. Axial sector

As discussed in Ref. [15], perturbations of the scalar
field have even parity, so they couple only with
polar gravitational perturbations. Thus, gravitational axial
perturbations decouple and they are described by the
linearized Einstein equations (1), namely,

e�uh01 þ i�e�vh0 þ 1

2
�ðprad � 	Þh1 þ 2

r2
mðrÞh1 ¼ P�lm;

(19)

�i�h00 þ
2i�

r
h0 �

�
�2 � ev

r2
ðlðlþ 1Þ � 2Þ

�
h1 ¼ Pr

�lm;

(20)

i�h01 þ h000 �
1

2
�reuð	þ pradÞðh00 þ i�h1Þ þ 2i�

r
h1

þ h0e
u

�
�ðprad þ 	Þ � lðlþ 1Þ

r2
þ 4mðrÞ

r3

�
¼ Pt

�lm;

(21)

where we have defined

e�uðrÞ � 1� 2mðrÞ=r; (22)

and mðrÞ is the mass function which denotes the total mass
within a sphere of radius r. From Eq. (6), we get

mðrÞ ¼ �

2

Z r

0
	ðxÞx2dx; (23)

and the total mass of the star is given by M � mðr ! 1Þ.
In the equations above, the P�lm’s are source terms which

depend on the particle’s stress-energy tensor, and they are
explicitly given, e.g., in Ref. [20]. We can also define h1ðrÞ
in terms of the Regge-Wheeler function,

h1ðrÞ ¼ �e
1
2ðu�vÞr�RWðrÞ: (24)

Substituting the relation above into Eq. (19), the function
h0ðrÞ can be written in terms of �RW as

h0ðrÞ ¼ � i

�
e
1
2ðv�uÞ d

dr
½r�RWðrÞ
 � i

�
evP�lmðrÞ: (25)

Equations (19)–(21) are not all independent, due to the
Bianchi identities. Indeed, they are equivalent to a single
Regge-Wheeler equation for �RW, namely,�

d2

dr2�
þ �2 � VRWðrÞ

�
�RWðrÞ ¼ SRWðrÞ; (26)

where r� is the Regge-Wheeler coordinate, defined through

dr� ¼ eðu�vÞ=2dr, VRWðrÞ is the Regge-Wheeler potential

VRWðrÞ ¼ ev
�
lðlþ 1Þ

r2
� 6mðrÞ

r3
� �

2
ðprad � 	Þ

�
; (27)

and SRWðrÞ is the source term

SRW ¼ e
1
2ðv�uÞ

r

�
2ev

r
ð1� rv0

2
ÞP�lm � evP0

�lm þ Pr
�lm

�
:

Note that the homogeneous Regge-Wheeler equation (26)
with the potential (27) is equivalent to that of an isotropic,
perfect-fluid star with pressure equal to prad [26–28].

2. Polar sector

The equations for the polar sector are more involved.
Following Zerilli [24], the linearized Einstein equations
read

K0 þ K

2r
ð3� euð1þ r2�pradÞÞ þ H1

2r2
ðlðlþ 1Þ � 2r2�ðptan þ 	ÞÞ �H0

r

þ �

r2�
½rðð�þ!Þ�þ þ ð��!Þ��Þ�0

0 þ!�0ð�þ ��� � r�0þ þ r�0�Þ
 ¼ 1

�
Að1Þð�; rÞ � 2rFð�; rÞ; (28)

H0
0 þ

K

2r
ð3� euð1þ r2�pradÞÞ �H0

r
ð2� euð1þ r2�pradÞÞ þ 1

2
H1

�
lðlþ 1Þ

r2
� 2e�v�2 � 2�ðptan þ 	Þ

�

þ �

r2�
½rðð!� �Þ�þ � ð!þ �Þ��Þ�0

0 þ!�0ð�þ ��� � r�0þ þ r�0�Þ


¼ 1

�
Að1Þð�; rÞ þ Bð�; rÞ � rFð�; rÞð1� euð1þ r2�pradÞÞ; (29)

H0
1 þ ðH0 þ KÞeu þ H1

rðr� 2mÞ ð2m� r3�V0Þ � 2�

r�
eu!�0ð�þ ���Þ ¼ eu

�
Bð0Þð�; rÞ þ 2r2euFð�; rÞ; (30)

where the source terms Að1Þ, F, B and Bð0Þ read
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Að1Þð�; rÞ ¼ �

2
ffiffiffi
2

p
�

Z
dtAð1Þ

lmðr; tÞei�t; (31)

Fð�; rÞ ¼ �

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ðl� 2Þ!
ðlþ 2Þ!

s Z
dtFlmðr; tÞei�t; (32)

Bð�; rÞ ¼ �rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp

�

Z
dtBlmðr; tÞei�t; (33)

Bð0Þð�; rÞ ¼ �rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðlþ 1Þp

�

Z
dtBð0Þ

lm ðr; tÞei�t; (34)

and the functions Að1Þ
lmðr; tÞ, Flmðr; tÞ, Blmðr; tÞ and Bð0Þ

lmðr; tÞ
for the Schwarzschild background are explicitly given in
Ref. [25]. In the background (4), these functions can be
computed in a similar fashion and they reduce to those in
Ref. [25] in the vacuum case. We have also used that

H2 ¼ H0 � 2r2Fð�; rÞ; (35)

which is obtained from the Einstein equations. The
scalar field perturbations are governed by the following
inhomogeneous equations:�

d2

dr2�
þ ð��!Þ2 � ~V

�
��ðrÞ ¼ �~S� (36)

where

~V¼ev
�
lðlþ1Þ
r2

þ2m

r3
þU0��V0

�
;

~S�¼e�u�

2
½2rð��2!Þ�0

0�!ð4�eur2�ðpradþ	ÞÞ�0
H1

�r!�0½ð��2!ÞH0þ�Kþe�u�H0
1


þevr½e�uðK0�H0
0Þ�0

0�ðU0H0þ
UÞ�0


þr3F

�
�0ð2evU0�!ð2!��ÞÞþev�u�0

0

�
2

r
þF0

F

��
:

Therefore, the polar sector is described by three first-order
Einstein equations coupled to two second-order scalar
equations. There exists an algebraic relation between K,
H0 and H1 that can be used to eliminate one of the
gravitational perturbations. Finally, the system can be re-
duced to three coupled second-order differential equations.
This is in contrast to the case of perfect-fluid stars, where
the polar sector is described by a system of two second-
order equations [26,29,30]. Here, rather than working with
three second-order equations, we shall use the system of
equations given by Eqs. (28)–(30) and (36).

III. SOLVING THE BACKGROUND EQUATIONS

In this section we construct spherically symmetric BS
models by solving numerically the background equations
(6)–(8). After imposing suitable boundary conditions, the
background equations form an eigenvalue problem for the
frequency !, which we solve using a standard shooting

method [31]. We integrate Eqs. (6)–(8) from the origin,
where we require regularity,

uðr� 0Þ ¼ 0; (37)

vðr� 0Þ ¼ vc; (38)

�0ðr� 0Þ ¼ �c; (39)

�0
0ðr� 0Þ ¼ 0: (40)

The value vc is arbitrary because it can be adjusted by a
time reparametrization in order to impose asymptotic
flatness, i.e. vðr ! 1Þ ¼ 0. In practice, to increase the
accuracy of the numerical integration, we have considered
a higher-order expansion near the origin which, at first
order, reduces to the equations above. At infinity, we
impose the metric to be Minkowski and the scalar field to
be vanishing:

�0ðr ! 1Þ ¼ 0: (41)

For each value of �c, the boundary condition above is
satisfied by a discrete set of eigenfrequencies !. We focus
here on BS background solutions in the ground state,
which correspond to the scalar profile having no nodes
and to the lowest eigenfrequency !. The overtones cor-
respond to excited states that would decay to the ground
state through emission of scalar and gravitational radia-
tion [32]. Note that, depending on the specific BS model,
the shooting procedure can be challenging, due to singu-
larities that appear in the integration if the trial frequency
! is not sufficiently close to the eigenfrequency. In many
cases, a precise and tedious fine-tuning is necessary.
Furthermore, due to the presence of a mass term in the
scalar potential, the scalar field has a Yukawa-like behav-

ior, ðe�
ffiffiffiffiffiffiffiffiffiffiffiffi
�2�!2

p
r� Þ=r at large distances r�� � 1 [3]. This

makes the integration particularly challenging at large
distances.
By adopting the procedure above, we can obtain a one-

parameter family of solutions, the parameter being the
central value of the scalar field �c. For each configuration,
the total mass of the BS isM ¼ mðr ! 1Þ. Contrary to the
case of perfect-fluid stars, BSs do not possess a well-
defined surface, as the scalar field spreads all over the
radial direction. However, due to the exponential suppres-
sion, the configuration is highly localized in a radius
�1=�. It is thus useful to define an effective radius for
the compact configuration. We shall define the effective
radius R such that mðRÞ corresponds to 99% of the total
mass M. Other inequivalent definitions have been consid-
ered in the literature; see e.g. Ref. [3] for a discussion.
In the following, we describe each of the BS models we

have considered, namely, mini BSs, massive BSs and
solitonic BSs. A summary of the configurations used in
this work is presented in Table I (adapted from Ref. [1]).
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For each BS model, we have selected two stellar
configurations. The first configuration corresponds to
the maximum total mass of the model, which corre-
sponds to the critical point dividing stable and unstable
configurations. The second configuration corresponds to
the maximum compactness, defined as M=R. Note that
the maximum compactness configuration generally
occurs for values of �c which are larger than those
corresponding to the maximum mass. Therefore, the
second configuration is usually in the unstable branch
of solutions (cf. e.g. Ref. [33]).

A. Mini-boson stars

In this model the scalar potential reads

Vðj�j2Þ ¼ �2j�j2: (42)

This is one of the simplest potentials that can support self-
gravitating configurations. The name comes from the fact
that the maximum mass achieved in this model is smaller
than the Chandrasekhar limit for the same particle mass,
although, for ultralight bosonic fields [7], it can still

reproduce supermassive astrophysical objects. In order to
compare with Refs. [15,16], we rescale the equations as

r! ~r

�
; mðrÞ! ~mð~rÞ

�
; !! ~!�; �0ðrÞ!

~�0ð~rÞffiffiffiffiffiffiffi
4�

p :

The rescaled background profiles (metric functions and
the scalar field) for the two configurations listed in
Table I are shown in the left panels of Fig. 1. The metric
functions for these configurations are also compared with
the Schwarzschild black hole ones.

B. Massive boson stars

For this model the potential has a quartic interaction:

Vðj�j2Þ ¼ �2j�j2 þ �

2
j�j4; (43)

where � is a constant. This potential was studied
in Ref. [8], where it was shown that the model may
differ considerably from the mini BS case, even when
� 
 1. Also, the maximum mass increases with �, being

TABLE I. (Adapted from Ref. [1]) BS models used in this work. For massive BS configurations we use ~� ¼ 100, whereas both
solitonic BS models have �0 ¼ 0:05. The significant digits of ~! do not represent the numerical precision, but they show the fine-tuning
needed to achieve the solutions.

~�c ~! ~M ~R M! R=M

Mini BS I 0.1916 0.853087 0.63300 7.86149 0.54000 12.4194

Mini BS II 0.4101 0.773453 0.53421 4.52825 0.41319 9.03368

Massive BS I 0.094 0.82629992558783 2.25721 15.6565 1.86513 6.9362

Massive BS II 0.155 0.79545061700675 1.92839 11.3739 1.53394 5.8981

Solitonic BS I 1.05 0.4868397896964082036868178070 1.847287 5.72982 0.89933 3.1017

Solitonic BS II 1.10 0.4931624243761699601334882568 1.698627 5.08654 0.83770 2.9945
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FIG. 1 (color online). Rescaled background profiles for different BS models and configurations (cf. Table I). In the top, middle and
lower rows we show the metric elements ev, eu and the scalar profile ~�0, respectively. Each column refers to a different BS model.
From left to right: mini BS, massive BS and solitonic BS. For each model we compare the metric profiles to those of a Schwarzschild
BH, and for the solitonic BS model we also compare to the metric elements of a uniform density star with R ¼ 3M.
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comparable with the Chandrasekhar limit. For the case
of massive BSs, in order to facilitate the comparison with
the results in Ref. [8], we have performed the following
rescaling:

r ! ~r

�
; mðrÞ ! ~mð~rÞ

�
; ! ! ~!�;

� ! 8��2 ~�; �0ðrÞ ! 1

2
ffiffiffiffiffiffiffi
2�

p ~�0ð~rÞ:
(44)

The maximum compactness for solutions of this model
increases with �, and we found results in agreement with

previous calculations [11,34]. Here, we fixed ~� ¼ 100 and
considered two configurations as summarized in Table I.
The metric and scalar field profiles for this model are
shown in the middle panels of Fig. 1.

C. Solitonic boson stars

The scalar potential for this configuration is given by

Vðj�j2Þ ¼ �2j�j2ð1� 2j�j2=�2
0Þ2; (45)

where �0 is a constant, generically taken to be of the same
order as � [9,35]. This is the simplest potential that can
generate, in the absence of gravity, nontopological soli-
tonic solutions, i.e., nondispersive scalar field solutions. In
this case, it is convenient to rescale the equations in units of

��, with � ¼ �1=2�0. We use [9,18]

r ! ~r

��
; mðrÞ ! ~mð~rÞ

��
;

! ! ~!��; �0ðrÞ ! �0
~�0ð~rÞffiffiffi
2

p :

The field equations for the solitonic potential are stiff,
and the scalar field has a very steep profile across a
surface layer of thickness ���1. This stiffness makes
the numerical integration particularly challenging and, in
Refs. [9,18], spherically symmetric solutions to this model
were constructed only perturbatively, in the limit�0 
 mP

and considering a step-function profile for the scalar field.
One advantage of that approach is that the approximate
solution has a well-defined radius and that, because the
scalar profile is given, only the metric equations have to be
solved numerically in the interior of the star. The solution
is then matched with a Schwarzschild exterior.

However, besides the challenging technicalities in the
integration, there is no real need to obtain approximate
solutions, which neglect the backreaction between metric
functions and the scalar field. Here, we have constructed
solitonic BS solutions to the full nonlinear system (6)–(8),
i.e. without any approximation (cf. also Refs. [36] where
similar solutions were constructed using relaxation meth-
ods). This requires high-precision numerical schemes and
an extremely fine-tuned shooting method, as shown by the
fine-tuning needed to find a solution (cf. Table I). In the

small �0 limit, our results agree remarkably well with the
approximate solutions presented in Refs. [9,18], and they
extend those results to generic values of the parameters in
the scalar potential (45).
Unlike the other cases explored in this paper, solitonic

BSs can be very compact, with the radius of the star
comparable to or smaller than the Schwarzschild light
ring [9,18]. In the right panels of Fig. 1 we compare the
metric components to those of a Schwarzschild spacetime
and of the uniform density stars with R ¼ 3M, and we
show the steep profile of the scalar field. The scalar field
approximates a step function, in agreement with the

approximate solution of Refs. [9,18]. In that case euðrÞ is
discontinuous at the star surface. In our case there is no

actual radius, and euðrÞ is continuous, although it has a
sharp peak close to the effective radius of the star.

IV. GEODESICS AROUND BOSON STARS

Stellar-size objects gravitating around supermassive BSs
have a small backreaction on the geometry and, to first
order in the object’s mass, move along geodesics of the BS
background. Accordingly, gravitational-wave emission by
such binaries requires knowledge of the geodesic motion,
on which we now focus. We will also concentrate exclu-
sively on circular, geodesic motion. The reasoning behind
this is that it makes the calculations much simpler, while
retaining the main features of the physics. Furthermore, it
can be shown that generic eccentric orbits get circularized
by gravitational-wave emission in vacuum [37] and in the
presence of accretion and gravitational drag [1], on a time
scale that depends on the mass ratio.
We follow the analysis by Chandrasekhar [38] (see also

Ref. [39], where the formalism for a generic background is
presented, and Ref. [40] for a recent work on geodesics in
BS spacetimes). Following previous studies [10,11,18],
we assume that the point particle is not directly coupled
to the background scalar field. We start by defining the
Lagrangian of the particle motion on the � ¼ �=2 plane:

2Lp ¼ _s2 ¼ �ev _t2 þ eu _r2 þ r2 _’2: (46)

The conserved energy E and angular-momentum
parameter per unit rest mass L can be obtained via

E ¼ � @Lp

@ _t
¼ ev _t; L ¼ @Lp

@ _’
¼ r2 _’: (47)

From these equations, we get the following equation of
motion:

euþv _r2 ¼ E2 � VeffðrÞ ¼ E2 � ev
�
1þ L2

r2

�
: (48)

The energy and angular momenta of the particle in circular
orbits follow from Eq. (48) by imposing _rjr¼rp ¼ 0 and

€rjr¼rp ¼ 0, resulting in
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Ec ¼
�
ev

2ðr� 2mÞ
2r� �r3prad � 6m

�
1=2

r¼rp

; (49)

Lc ¼
�
r2

ð�r3prad þ 2mÞ
2r� �r3prad � 6m

�
1=2

r¼rp

; (50)

where the background Einstein equations were used to
eliminate metric derivatives. Circular null geodesics
correspond to 2r� �r3prad � 6m ¼ 0. Finally, the orbital
frequency of circular geodesics reads

� ¼
�
evð�r3prad þ 2mÞ

2r2ðr� 2mÞ
�
1=2

r¼rp

: (51)

The angular velocities of circular geodesics in BS space-
times are shown in Fig. 2. Up to the innermost stable
circular orbit of a Schwarzschild spacetime, r ¼ 6M, the
angular velocities are very close to their Schwarzschild
counterpart with the same total mass, as might be expected
since these are very compact configurations. For geodesics
at r < 6M the structure can be very different. A striking
difference is that stable circular timelike geodesics exist for
BSs even very deep into the star [1,10,11].

Solitonic BSs can become truly relativistic gravitating
objects. For these objects, an outer last stable circular orbit
exists at r � 6M andM�isco � 0:068. This is expected, as
the spacetime is very close to Schwarzschild spacetime
outside the solitonic BS effective radius. We also find a first
(unstable) light ring at roughly rlþ � 3M. The unexpected

feature is the presence of a second stable light ring at
rl� < rlþ , together with a family of stable timelike circular

geodesics all the way to the center of the star. These light
rings are genuine relativistic features, which was not re-
ported in previous studies, as far as we are aware. Uniform
density stars, depending on their compactness, also present
two light-ring and stable circular timelike orbits in their
interior. In the right panel of Fig. 2 the case of a uniform
density star with radius R ¼ 3M is also shown. In that case,
the two light rings degenerate in the star surface. What
makes solitonic BSs stand out is the possibility that
inspiraling matter couples weakly to the solitonic BS scalar
field and therefore has access to these geodesics, although

as we showed in Ref. [1], inspiraling BHs in principle do
not follow these geodesics. Furthermore, we found no
circular orbits between the outer and the inner light
ring, whereas all circular orbits are stable inside the inner
light ring.
Finally, deep inside the BSs, the circular geodesics are

nonrelativistic. In fact, the velocity, as measured by static
observers at infinity and by static observers at fixed r,
decreases to zero as the radius approaches zero. In this
regime, other dissipative effects such as gravitational drag
and accretion onto the small compact object have to be
considered [1].

V. QUASINORMAL MODES OF BOSON STARS

In this section we discuss the quasinormal modes
(QNMs) of the BS models presented in the previous sec-
tions. QNMs are complex eigenfrequencies � ¼ �R þ i�I

of the linearized homogeneous perturbation equations sup-
plied with physically motivated boundary conditions (see
e.g. [26,41]). Since the perturbations of a spherically sym-
metric spacetime naturally divide into an axial and a polar
sector, there exist two different classes of modes, which we
shall refer to as axial and polar modes, respectively.
Unlike the case of a Schwarzschild BH [38], the axial

and the polar BS modes are not isospectral. As we shall
discuss, the BS QNMs can be understood in analogy to the
modes of ordinary stars, with the background scalar field
playing the role of an anisotropic fluid. The main differ-
ence with the case of ordinary stars is that a BS does not
have a proper surface and that scalar perturbations, unlike
their fluid counterpart, can propagate to infinity. In the
following, we shall treat axial and polar modes separately.

A. Axial QNMs

As discussed in Sec. II B 1, the source-free (SRW ¼ 0)
axial perturbations can be reduced to the homogeneous
Regge-Wheeler equation

�
d2

dr2�
þ �2 � VRWðrÞ

�
�RWðrÞ ¼ 0; (52)
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FIG. 2 (color online). (Adapted from Ref. [1]) Angular velocity for timelike circular geodesic motion for the different BS models
and configurations specified in Table I. Each plot refers to a different BS model. From left to right: mini BS, massive BS and solitonic
BS. For mini and massive BSs we compare the angular velocity to those of a Schwarzschild BH, and for the solitonic BS model we
compare to the case of a uniform density star with R ¼ 3M. In the solitonic case, the marker indicates the innermost stable circular
orbit for the Schwarzschild BH, which is given by r ¼ 6M and M�isco � 0:068.
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where VRW is defined in Eq. (27) and it is shown in Fig. 3
for some BS model and for the case of a Schwarzschild
BH. Note that Eq. (52) does not involve scalar field
perturbations, in analogy to the fluid perturbations of an
ordinary star, which are only coupled to the polar sector.
This decoupling led Yoshida et al. [16] to assume that the
axial sector of BSs is ‘‘not coupled to gravitational waves’’
and therefore not interesting. However, we show here that
BS models generically admit axial QNMs, in analogy to
the w modes of ordinary stars which are in fact curvature
modes similar to those of a BH (see Ref. [26] for a review).
Moreover, for ultracompact stars (R< 3M), a potential
well appears in the Regge-Wheeler potential, generating
the possibility of having trapped QNMs, which are long-
living modes [42,43]. In Sec. VI we shall also show that
axial perturbations with odd values of lþm are sourced
by point particles orbiting the BS, and therefore they
contribute to the gravitational-wave signal emitted during
the inspiral.

At the center of the star, we require regularity of the
Regge-Wheeler function,

�RWðr � 0Þ � rlþ1
XN
i¼0

aðiÞ0 ri; (53)

where the coefficients aðiÞ0 can be obtained by solving

the Regge-Wheeler equation order by order near the origin.
At infinity, the solution of Eq. (52) is a superposition of
ingoing and outgoing waves. The QNMs are defined by
requiring purely outgoing waves at infinity, i.e.

�RWðr ! 1Þ � ei�r�
XN
i¼0

aðiÞ1
ri

; (54)

where again the coefficients aðiÞ1 can be obtained perturba-
tively. In the following we discuss two different methods to
compute BS axial modes.

1. Axial QNMs via continued fractions

In Ref. [16], the polar modes of some mini BS con-
figurations were computed using a WKB approximation.
Here, we resort to a continued fraction method [44]
adapted from the studies of ordinary stars as shown in
Refs. [45,46] (see also Ref. [47] in which the same method
was applied to gravastars).

First, we write the solution of the homogeneous Regge-
Wheeler equation in a power-series expansion of the form

�RWðrÞ ¼ ðr� 2MÞ2iM�ei�r
X1
n¼0

anz
n; (55)

where z � 1� R2=r, and r ¼ R2 is some point outside the
stellar object (in our case it will be outside the effective
radius). The expansion coefficients an are found to satisfy a
four-term recurrence relation of the form

�1a2 þ �1a1 þ �1a0 ¼ 0; n ¼ 1;

�nanþ1 þ �nan þ �nan�1 þ 
nan�2 ¼ 0; n � 2;
(56)

where

�n ¼ nðnþ 1ÞðR2 � 2MÞ; n � 1;

�n ¼ 2nð�3Mnþ R2ðn� iR2�ÞÞ; n � 1;

�n ¼ 6Mððn� 1Þn� 1þÞ þ ð1þ l� nÞðlþ nÞR2;


n ¼ 2Mð3� nÞð1þ nÞ; n � 2:

(57)

Since the Regge-Wheeler equation is homogeneous, the
coefficient a0 is an arbitrary normalization constant. The
ratio a1=a0 can be determined by imposing the continuity
of �RW and �0

RW at r ¼ R2. From Eq. (55) it follows that

a1
a0

¼ R2

�RWðR2Þ
�
�0

RWðR2Þ � i�R2

R2 � 2M
�RWðR2Þ

�
: (58)

As in the case of ordinary stars, the values of�RWðR2Þ and
�0

RWðR2Þ are obtained by integrating numerically the
Regge-Wheeler equation in the interior. Leaver [48] has
shown that the four-term recurrence relation (56) can be
reduced to a three-term recurrence relation by a Gaussian
elimination step and solved by standard methods [41]
(see also Ref. [47] for a more detailed discussion). The
complex roots of the continued fraction relation are the
QNMs of the BS.

2. Axial QNMs via direct integration

In some cases, QNMs can be computed via direct inte-
gration [49,50]. This method is not particularly well suited
because radial QNM functions grow exponentially as r!1
and become very sensitive to numerical errors [41].
However, it is possible to integrate Eq. (52) up tomoderately
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FIG. 3 (color online). Regge-Wheeler potential for the mini BS, massive BS and solitonic BS models compared to that of the
Schwarzschild BH for l ¼ 2.
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large values of r and to minimize the truncation errors by
considering a large number of terms in the series expansion
(54). In our code, we typically consider N ¼ 15 in Eq. (54)
and integrate up to r� 30M. This would suppress trunca-
tion errors at the level of 30�15 � 10�22.

The method is a simple extension of the case of uniform
density stars [42,43,49]. We perform two integrations of
Eq. (52): one from the center of the star with the boundary
condition (53) up to rm, and another from r1 with the
boundary condition (54) until rm. The wave functions
constructed this way have the correct boundary conditions
both at the origin and at infinity. However, for generic
values of the frequency � the Regge-Wheeler function is
not continuous at the matching point r ¼ rm. We define the
jump at rm as [49]

�mð�Þ �
�
d�RW=dr�

�RW

�
�
�

�
d�RW=dr�

�RW

�
þ
; (59)

where the ‘‘minus’’ and ‘‘plus’’ subscripts denote evaluation
at r ¼ rm from the left and from the right, respectively. The
axial QNMs are obtained as the roots of �mð�Þ. Due to the
numerical inaccuracies discussed above, this procedure
becomes less accurate for modes with a large imaginary
part. For example, it can be used to obtain only the first few
tones of a Schwarzschild BH [49].

A similar procedure can be adopted in the case of
ordinary stars, this time by requiring that the Wronskian
of the two solutions (those constructed by integrating from
the center and from infinity) is vanishing at the star surface.
This is equivalent to requiring continuity of the wave
function and of its first derivative. To test our code, we
successfully found some of the modes presented in
Refs. [42,43] for constant density stars, whose background
metric coefficients can be determined analytically
(see Appendix A). For all modes computed by direct
integration, we have checked the stability of the results
under variation of the parameters rm and r1. We stress that,
at variance with continued fraction techniques, the direct
integration is only accurate when �I 
 �R.

B. Polar QNMs

As discussed in Sec. II B 2, the polar sector can be
reduced to a system of three coupled second-order differ-
ential equations: two for the scalar field perturbations ��
and one for gravitational perturbations described by a
modified Zerilli equation. In practice, in the interior of
the object it is more convenient to solve directly for the
polar perturbation functions, K, H0 and H1, which are
described by three first-order differential equations and
by an algebraic relation.

As in the axial case, at the origin we require regularity of
the perturbations and we can expand them in powers of r as

Xðr � 0Þ � rl
XN
i¼0

xi0r
i; (60)

where X collectively denotesH2 ¼ H0,K,H1 and��. It is
straightforward to show that this expansion near the center
only depends on three free parameters.
At infinity, the background scalar field vanishes and

gravitational and scalar perturbations decouple [16].
Let us now discuss the asymptotic behavior of the

gravitational field. In vacuum, all polar metric perturba-
tions can be written in terms of one single function which
obeys the Zerilli equation,�

d2

dr2�
þ �2 � VZðrÞ

�
�Z ¼ 0; (61)

where dr=dr� ¼ 1� 2M=r,

VZðrÞ ¼ dr

dr�
2~�2r2ð3Mþ ð~�þ 1ÞrÞ þ 18M2ð~�rþMÞ

r3ð~�rþ 3MÞ2 ;

(62)

and ~� ¼ ðl� 1Þðlþ 2Þ=2. The generic solution at infinity
is a superposition of outgoing and incoming waves:

�Zðr ! 1Þ � Aoute
i�r� þ Aine

�i�r� ; (63)

and again the standard QNM condition requires Ain ¼ 0
[41]. The metric perturbations can be written in terms of
the Zerilli function through the following equations:

H1 ¼ �
~�r2 � 3~�Mr� 3M2

ðr� 2MÞð~�rþ 3MÞ �Z � r2
d�Z=dr�
r� 2M

;

K ¼
~�ð~�þ 1Þr2 þ 3M ~�rþ 6M2

r2ð~�rþ 3MÞ �Z þ d�Z

dr�
;

H0 ¼ H2

¼
~�rðr� 2MÞ � �2r4 þMðr� 3MÞ

ðr� 2MÞð~�rþ 3MÞ K

þMð~�þ 1Þ � �2r3

rð~�rþ 3MÞ H1:

The asymptotic behavior of the scalar field perturbations
is more involved. In vacuum, the equations for the scalar
perturbations (36) reduce to�

d2

dr2�
þ ð��!Þ2 � V�ðrÞ

�
�� ¼ 0; (64)

where

V�ðrÞ ¼
�
1� 2M

r

��
�2 þ lðlþ 1Þ

r2
þ 2M

r3

�
: (65)

The asymptotic solution for the scalar perturbations reads

��ðr ! 1Þ � B�e�k�r�r
� þ C�ek�r�r�
� ; (66)

where we have defined 
� ¼ M�2=k� and

k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � ð��!Þ2

q
: (67)
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Without loss of generality, we choose the root such that
Re½k�
> 0. Different physically motivated boundary con-
ditions are possible for the scalar field, depending on the
sign of the imaginary part of k�, Im½k�
 � �ð�R �!Þ�I.
As usual, a purely outgoing-wave boundary condition at

infinity, i.e. �� � eijIm½k�
jr� , defines the QNMs. On the
other hand, due to the presence of the mass term it is
possible to have quasibound-state modes, i.e. states
that are spatially localized within the vicinity of the com-
pact object and decay exponentially at spatial infinity
[51–53]. Therefore, quasibound states are simply defined
by C� ¼ 0. In the case at hand, the QNM conditions
depend on �R and on �I, as shown in Table II where all
cases are listed. In the following, we detail the QNM
condition for stable and unstable modes.

Let us start discussing the boundary conditions for stable
modes (�I < 0). When �R >! the QNM condition is the
same for both scalar perturbations, B� ¼ 0. However, if
�R < !, the QNM condition for the scalar field perturba-
tions is different, being Bþ ¼ 0 and C� ¼ 0. Note that in
this case the stable QNMs of �� decay exponentially and
degenerate with the bound-state modes.

For unstable modes (�I > 0) the situation is different. In
this case when �R > !, the QNM condition is the same for
both scalar perturbations, C� ¼ 0, and coincides with the
bound-state conditions. However, when �R <! the QNM
conditions readCþ ¼ 0 andB� ¼ 0, so that only the unstable
QNM condition of �þ coincides with the bound-state
condition.

This peculiar behavior is due to the presence of a mass
term (which allows for bound states) and of a complex
background scalar field, ! � 0, which essentially shifts
the real part of the frequency of the scalar perturbations.
Note that in the case of probe complex scalars around a
Schwarzschild BH, the terms introduced by ! can be
eliminated by a simple shift of the wave frequency, but in
the case at hand, this term is physical because of the
coupling to the gravitational perturbations.

1. Polar QNMs via direct integration

Computing the polar modes of a BS is particularly
challenging. To compute the polar QNMs of perfect fluid
stars, the usual continued fraction method proves to be very
robust. However, unlike the case of ordinary stars, BSs do
not possess a surface where fluid perturbations vanish. In
order to understand this issue, let us briefly review the case
of ordinary stars [45,46]. In that case polar QNMs are

found by first solving a boundary problem in the interior
of the star, requiring the perturbations to be regular at
the center and the pressure perturbations to be vanishing
at the surface of the star. For any given frequency, this
procedure singles out one solution that satisfies the correct
boundary condition in the interior, and it allows one to
construct the Zerilli function �Z at the radius of the star.
Then, Chandrasekhar transformations [38] are used to
transform the Zerilli function into the Regge-Wheeler
function �RW and, finally, the continued fraction method
can be implemented as explained above for the axial case.
Contrarily to the case of fluid perturbations in ordinary

stars, in the BS cases the matter perturbations (scalar field
perturbations) propagate in vacuum and, strictly speaking,
there is no exterior Schwarzschild solution in which the
linear dynamics is simply governed by a single Regge-
Wheeler equation. This prevents a direct extension of this
method.
To circumvent this problem, we opt for direct integration

techniques, which we now describe. The system of
linearized perturbation equations can be written as a
first-order system for the six-dimensional vector � ¼
ðH1; K;�þ; ��; �0þ; �0�Þ. We perform two integrations:
one from the origin and one from infinity, in both cases
imposing suitable boundary conditions as discussed above.
It is easy to show that, for each integration, there exists a
three-parameter family of solutions, corresponding to three
independent parameters of the near-origin and near-infinity
expansions. Then, we construct the linear combinations

�� ¼ �ð�Þ
1 �ð�Þ

1 þ �ð�Þ
2 �ð�Þ

2 þ �ð�Þ
3 �ð�Þ

3 ; (68)

�þ ¼ �ðþÞ
1 �ðþÞ

1 þ �ðþÞ
2 �ðþÞ

2 þ �ðþÞ
3 �ðþÞ

3 ; (69)

where �ð�Þ
i are constants and �� and �þ refer to the

integration from the origin and from infinity, respectively.
The subscripts 1, 2 and 3 refer to three linear independent
solutions of the homogeneous system. Since the system of
equations is linear, we have the freedom to set one of the

coefficients �ð�Þ
i of the linear combination to unity. The

other five coefficients can be obtained by requiring �� ¼
�þ at some arbitrary matching point. For a generic fre-
quency, only five out of the six components of � can be
matched smoothly. Finally, the eigenfrequency of the
problem is obtained by requiring that the remaining
component is also continuous. In practice, for each
frequency � we can perform six numerical integrations

TABLE II. Possible boundary conditions at infinity for the scalar field perturbations �� with eigenfrequency � ¼ �R þ i�I .

�I �R Im½k�
 QNM condition Bound-state condition

I Stable, �I < 0 �R >! Im½kþ
> 0, Im½k�
> 0 Bþ ¼ 0, B� ¼ 0 Cþ ¼ 0, C� ¼ 0
II Stable, �I < 0 �R <! Im½kþ
> 0, Im½k�
< 0 Bþ ¼ 0, C� ¼ 0 Cþ ¼ 0, C� ¼ 0
III Unstable, �I > 0 �R >! Im½kþ
< 0, Im½k�
< 0 Cþ ¼ 0, C� ¼ 0 Cþ ¼ 0, C� ¼ 0
IV Unstable, �I > 0 �R <! Im½kþ
< 0, Im½k�
> 0 Cþ ¼ 0, B� ¼ 0 Cþ ¼ 0, C� ¼ 0
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of the linear system, construct the linear combinations

above, obtain the coefficients �ð�Þ
i and compute the jump

of the only discontinuous component of� at the matching
point. Then, a standard shooting method can be imple-
mented to obtain the complex eigenfrequency. Similarly
to the direct integration discussed in the axial case, this
method provides accurate results only when �I 
 �R.

C. Results for BS QNMs

Using the methods described above, we have computed
axial and polar modes of several BS models in a fully
relativistic setting, i.e. without using any approximation
method. As shown in Table II, the spectrum of BS polar
modes is fairly rich. Here, we focus on the least damped
modes, i.e. those with the smallest imaginary part, which
are expected to dominate the ringdown waveform at late
times [41]. Note that, for all BS models we have inves-
tigated, there exists a class of much longer lived modes
than that considered in Ref. [16]. We have also shown the
modes in units of M, for future comparisons. In the tables,
N � 1 is the overtone number.

For the axial modes, we have used the continued fraction
method and, for the modes with �I 
 �R, we indepen-
dently confirmed the results by using a direct integration
method. The direct integration works better for compact
configurations like the solitonic BSs, which share many
similarities with compact uniform density stars. The least
damped axial QNMs of solitonic BSs are presented in
Table III, comparing the results of the two different
methods.
Note that this class of BS modes is qualitatively similar

to the w modes of constant density stars with comparable
compactness [26]. Computing the modes for the mini BS
and massive BS models is more challenging because the
imaginary part of these modes is comparable to the real
part. In this case, a direct integration method becomes
inaccurate. On the other hand, for these cases, we have
successfully implemented the continued fraction method
discussed above. Some modes for the mini BS model and
the massive BS model are presented in Table IV. We
note that, according to Ref. [46], the value of R2 in the
expansion (55) cannot be completely arbitrary. In fact, it

TABLE III. Axial QNMs for solitonic BS configurations I and II for l ¼ 1 and l ¼ 2. Here we compare the results obtained through
the continued fraction and the direct integration methods.

Continued fraction Direct integration

Model N Reð�Þ [�2�] �Imð�Þ [�2�] ReðM�Þ �ImðM�Þ Reð�Þ [�2�] �Imð�Þ [�2�]

l ¼ 1

Solitonic BS I 1 0.22328867 0.08370555 0.412478 0.154628 0.22329050 0.08370789

Solitonic BS I 2 0.38509593 0.10287792 0.711383 0.190045 0.38509593 0.10287792

Solitonic BS I 3 0.55353269 0.11432831 1.022530 0.211197 0.55353269 0.11432831

Solitonic BS II 1 0.20007784 0.06608236 0.339858 0.112249 0.20007454 0.06608373

Solitonic BS II 2 0.32840222 0.08229700 0.557833 0.139792 0.32840223 0.08229700

Solitonic BS II 3 0.46744415 0.09216367 0.794014 0.156552 0.46744415 0.09216367

l ¼ 2

Solitonic BS I 1 0.25636868 0.05347247 0.47358 0.098779 0.25636863 0.05347248

Solitonic BS I 2 0.32633835 0.10252772 0.60284 0.189398 0.32633833 0.10252773

Solitonic BS I 3 0.47822011 0.10629265 0.88341 0.196353 0.47822011 0.10629266

Solitonic BS II 1 0.26620716 0.02511717 0.452187 0.0426647 0.26620715 0.02511717

Solitonic BS II 2 0.32967926 0.08729943 0.560002 0.148289 0.32967925 0.08729944

Solitonic BS II 3 0.41859619 0.08681748 0.711039 0.147471 0.41859618 0.08681749

TABLE IV. Axial QNMs of mini BS and massive BS configurations for l ¼ 1 and l ¼ 2, computed by a continued fraction method.

l ¼ 1 l ¼ 2
Model N Reð�Þ [�] �Imð�Þ [�] ReðM�Þ �ImðM�Þ Reð�Þ [�] �Imð�Þ [�] ReðM�Þ �ImðM�Þ
Mini BS I 1 0.136 0.254 0.085 0.160 0.277 0.388 0.175 0.246

Mini BS I 2 0.316 0.388 0.200 0.245 0.456 0.374 0.289 0.237

Mini BS II 1 0.297 0.296 0.158 0.158 0.452 0.552 0.242 0.295

Mini BS II 2 0.725 0.457 0.387 0.244 0.721 0.456 0.385 0.244

Massive BS I 1 0.228 0.207 0.515 0.468 0.225 0.197 0.507 0.444

Massive BS I 2 0.416 0.184 0.940 0.415 0.375 0.180 0.847 0.408

Massive BS II 1 0.264 0.213 0.508 0.410 0.260 0.204 0.502 0.395

Massive BS II 2 0.473 0.190 0.913 0.366 0.437 0.182 0.844 0.351
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has to be slightly larger than the BS effective radius, in
order to obtain a stable mode. This introduces an intrinsic
inaccuracy in the BS QNMs computed with the continued
fractions. Indeed, at r ¼ R2 the background scalar field is
not exactly vanishing and the recursion relations (56) are
not exactly satisfied. This error decreases for compact
configurations because the scalar field decays faster. In
our calculations, we use R2 ¼ 1:4R and check the accuracy
of the method by changing the location of R2 in the range
1:3M to 1:5M. We estimate an error of a few percent in the
values presented in Table IV.

Let us now discuss the polar modes, which show a much
richer structure due to the coupling between gravitational
and scalar perturbations. Some of these modes were
computed in Ref. [16] using a WKB approximation, for
the cases in which �< ð��!Þ [cf. Eq. (67)]. In this
case, both gravitational and scalar perturbations behave
as outgoing waves at infinity. However, this restriction
prevents the existence of quasibound-state modes for the
scalar field perturbations, which are expected to dominate
in the late time signal. Here we focus on this complemen-
tary regime, where scalar perturbations admit localized
states (cf. Table II). We have obtained the fundamental
modes of our BS models using the direct integration
method described above. A selection of the results is
presented in Table V. For the solitonic BS polar modes,
due to the precision needed for the background, a precise
root finder method was not possible, making the modes
more inaccurate than the mini and massive BS cases.

In Tables IV and V we also show the l ¼ 1 axial modes
and the l ¼ 0 polar modes, respectively. Given the quad-
rupolar nature of GR, in the Schwarzschild case the
l ¼ 0, 1 perturbations are simply associated with infinitesi-
mal changes in the mass and in the angular momentum,
respectively [23,24]. However, due to the coupling with the
scalar field, for BSs these modes become part of the spec-
trum and are associated with monopole and dipole emission.

Finally, by comparing the real part of the polar modes
shown in Table V with the orbital frequency of circular
geodesics shown in Fig. 2, we observe that such modes can

be potentially excited by a quasicircular EMRI [54,55] in
the point-particle limit. We investigate this effect in the
next section.

VI. POINT PARTICLE ORBITING A BOSON STAR

The gravitational and the scalar wave emission by a
particle in a circular geodesic motion around a BS is
governed by the inhomogeneous system of equations (26),
(28)–(30), and (36). The solutions can be constructed via
Green’s function techniques. Once again, we shall treat the
axial and polar sectors separately.

A. Axial sector

The axial sector is fully described by Eq. (26). The
general solution can be constructed from two independent
solutions of the associated homogeneous equations:

�RW ¼ 1

WZ

�
ZþðrÞ

Z r

0
dr�Z�SRW þ Z�ðrÞ

	
Z 1

r
dr�ZþSRW

�
; (70)

where Z� are solutions of the homogeneous associated
equation with the following boundary conditions,

Zþðr ! 1Þ � ei�r� ; (71)

Z�ðr ! 0Þ � rlþ1; (72)

and WZ ¼ Z�ðdZþ=dr�Þ � ZþðdZ�=dr�Þ is the
Wronskian. At large distance the solution (70) reads

�RWðr ! 1Þ � ei�r�

WZ

Z 1

0
dr�Z�SRW: (73)

For circular orbits the source terms generically contain
Dirac’s delta terms 
ðr� rpÞ and their derivative, namely,

SRW ¼ ½GRW
ðr� rpÞ þ FRW

0ðr� rpÞ

ð��m�Þ;

so that the solution (73) can be rewritten as

TABLE V. Polar QNMs of mini BS, massive BS and solitonic BS configurations for l ¼ 0 (left) and l ¼ 2 (right), computed by a
direct integration method.

l ¼ 0 l ¼ 2
Model N Reð�Þ [�] �Imð�Þ [�] ReðM�Þ �ImðM�Þ Reð�Þ [�] �Imð�Þ [�] ReðM�Þ �ImðM�Þ
Mini BS I 1 0.001416 1	 10�11 0.0009 7	 10�12 0.1195 5	 10�5 0.0757 3	 10�5

Mini BS I 2 0.11356 1	 10�13 0.0719 9	 10�14 0.1316 2	 10�5 0.0833 1	 10�5

Mini BS I 3 0.12958 9	 10�15 0.0820 5	 10�15 0.1404 8	 10�6 0.0888 5	 10�6

Massive BS I 1 0.0197 1	 10�4 0.04460 4	 10�4 0.0403 2	 10�5 0.0909 6	 10�5

Massive BS I 2 0.0636 1	 10�11 0.1436 4	 10�11 0.0716 2	 10�6 0.1616 5	 10�6

Massive BS I 3 0.0896 5	 10�13 0.2023 4	 10�13 0.0947 5	 10�7 0.2136 1	 10�7

Solitonic BS I 1 3	 10�4 2	 10�5 0.002 1	 10�4 0.0348 1	 10�4 0.3137 1	 10�3

Solitonic BS I 2 0.063 9	 10�6 4.631 7	 10�5 0.0769 3	 10�5 0.6928 2	 10�4

Solitonic BS I 3 0.103 2	 10�10 7.601 2	 10�9 0.1127 4	 10�6 1.0156 3	 10�5
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�RW � ��RW
ð��m�Þei�r� ; (74)

where [56]

�� RW ¼ e
1
2ðu�vÞ

WZ

½GRWZ� � d

dr�
ðe1

2ðu�vÞFRWZ�Þ
jr ¼ rp:

Finally, the energy flux at (null) infinity due to the axial
part of the perturbations is given by [56,57]

_E inf ;axial
lm ¼ 1

16�

ðlþ 2Þ!
ðl� 2Þ! j

��RWj2:

Due to the explicit form of the source term, the axial flux is
vanishing for even values of lþm. In Fig. 4 we show the
dominant l ¼ 2, m ¼ 1 contribution of the axial flux for
various stable BS models as well as that of a Schwarzschild
BH. The deviations from the BH case are basically indis-
tinguishable at large distances. As expected, more compact
configurations like the solitonic BS model are closer to the
BH case.

B. Polar sector

The polar sector is described by the inhomogeneous
system of coupled equations (28)–(30). A general method
to solve this class of problems was presented in Ref. [20],
which we shall closely follow. The polar equations can be
written as

d�

dr
þ V� ¼ S; (75)

where we introduced the six-dimensional vectors

� ¼ ðH1; K;�þ; ��; �0þ; �0�Þ; (76)

and the vector S describes the source terms. The matrix V
can be straightforwardly constructed from Eqs. (28)–(30).
In order to solve Eq. (75), let us define the 6	 6matrixX,
whose columns are formed by independent solutions of the
associated homogeneous problem. It is easy to show that

dX

dr
þ VX ¼ 0: (77)

The general solution can be written in terms of the
homogeneous solutions by [20]

� ¼ X
Z

drX�1S: (78)

The matrix X can be constructed in the following way
[20,58]: the solution close to the origin is defined by three
independent parameters, say ðc or

0 ; �
orþ; �or�Þ. Likewise, the

solution close to infinity is characterized by ðc1
0 ; �

1þ; �1�Þ.
We can construct three independent solutions integrating
the equations from the origin by setting the triad to (1, 0, 0),
(0,1, 0) and (0, 0, 1). Using the same for the integration
from infinity, we construct the set of six independent
solutions which form X.
The boundary conditions for the problem are analogous

to those described in the previous sections. For the gravi-
tational functions, we require regularity at the origin and
outgoing waves at infinity. For the scalar field, we require
regularity at the origin, but the condition of outgoing waves
is not satisfied for all values of �. In fact, for sufficiently
small frequencies, when k2� > 0 [cf. Eq. (67)], the pertur-
bations of the scalar field are localized near the star and
form quasibound states. If k2� < 0, the orbital frequency is
larger than the potential well and the perturbations are
wavelike at infinity. The value of � for which this tran-
sition occurs depends on the specific model through � and
! and on the azimuthal number m [cf. Eq. (67) and recall
that, for a circular orbit, � ¼ m�].
To compute the polar gravitational part of the flux,

we construct the Zerilli function at infinity, using the
solutions for K and H1 obtained by solving the coupled
system. Then, the polar gravitational flux is the sum of the
multipolar contributions [20,56,57]:

_E inf ;Z
lm ¼ 1

64�

ðlþ 2Þ!
ðl� 2Þ! ðm�pÞ2j�Zðr ! 1Þj2; (79)

which, by virtue of the specific source term, are nonvanish-
ing only for even values of lþm.
The scalar flux can be computed through the energy

momentum tensor of the scalar field [20,59] (see also
Refs. [60,61] for another approach). It reads

_E inf ;��
lm ¼ 2ðm�pÞ2j��ðr ! 1Þj2: (80)

The total energy flux for the polar sector is the sum of the
two contributions, i.e.

_E
inf ;polar
lm ¼ _Einf ;Z

lm þ _Einf ;��
lm : (81)

In the next subsection, we give the details of the polar part
of the flux.
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FIG. 4 (color online). (Adapted from Ref. [1]) Dominant
l ¼ 2, m ¼ 1 contribution to the axial gravitational flux emitted
by a point particle orbiting a BS for the stable BS configurations
used in this work, compared to that of a Schwarzschild BH. The
solitonic configurations for r > 3M have basically the same
values as the BH case.
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C. Emitted polar flux and inspiral resonances

Adopting the procedure explained above, we have eval-
uated the total scalar and polar gravitational flux emitted by
a test particle orbiting a BS in several BS models. In some
cases, the numerical integration is challenging. Indeed, for
sufficiently small orbital frequency the scalar perturbations
decay exponentially at infinity, but they are nonetheless
coupled to the gravitational perturbation which instead
propagate to infinity as waves. To achieve good accuracy,
the numerical domain of integration should extend up to
many wavelengths, i.e. r1� � 1, where r1 is our numeri-
cal value for infinity. On the other hand, the typical length
scale of the scalar perturbation is given by the Yukawa-like
term, i.e. 1=�. Due to the exponential decay, it is challeng-
ing to integrate the scalar field if r1� � 1, and this sets a
limit to the values of r1 that can be used. To circumvent
this problem, we have constructed the large distance solu-
tion perturbatively using many terms (typically 20) in the
series expansion of the solutions at infinity. This allows us
to reduce numerical truncation errors. Note that this prob-
lem becomes more severe when the mass of the scalar field
is large, � � �.

An interesting phenomenon that occurs for test particles
orbiting a relativistic star is the appearance of resonances
in the flux (see, e.g., Ref. [54]). The resonance condition
reads

m� ¼ �R; (82)

where m is the azimuthal number and �R is the real part of
the QNM frequency. In other words, if the characteristic
frequency of the BS matches (multiples of) the orbital
frequency of the particle, sharp peaks appear in the emitted
flux. This is consistent with a simple harmonic oscillator
model, where the orbiting particle acts as an external force
and where �R is the proper frequency of the system. In this
picture, the imaginary part of the frequency �I is related to
the damping of the oscillator and it is roughly proportional
to the width of the resonance, while the quality factor
�R=�I is proportional to the square root of the height [54].

The appearance of these resonances seems to be a
generic feature of BSs. As shown in Fig. 5, the resonant
frequencies may correspond to a stable circular orbit
located outside the BS effective radius (as for the rightmost
resonance of the massive BS case in the right panel of
Fig. 5) or may correspond to stable circular orbits inside
the BS (as in the mini BS case shown in the left panel of
Fig. 5). While resonant circular orbits also occur outside
perfect-fluid stars [54] and gravastars [55], the existence of
resonant geodesics inside the compact object is peculiar of
BSs, due to the absence of a well-defined surface and due
to the existence of stable circular orbits inside the star [1].
We shall address the solitonic BS case later, due to its
complexity.

The existence of these inner resonances is intriguing
because they appear to be a generic feature of compact

objects supported solely by the self-gravity of a scalar field.
Indeed, any sufficiently compact object can support bound
and quasibound modes in its interior. In Appendix A, we
show that constant density stars can support bound-state
modes (i.e. modes with purely real frequency) for massive
scalar perturbations with l > 0, and they can also support
quasibound modes (i.e. modes with a small but nonvanish-
ing imaginary part) for massless scalar and for gravitational
perturbations. In the case of ordinary stars, these modes
cannot be excited because their frequency is higher than
the frequency of the innermost stable circular orbit.
However, the same class of modes exists also for BSs which,
however, admit stable circular orbits in their interior. In the
case of a BS, even the massive scalar modes are quasibound.
The small imaginary part of the frequency is related to the
coupling between scalar and gravitational perturbations:
even if the scalar flux is zero for bound-state modes, part
of the energy carried by the scalar field can be converted into
gravitational energy that is then dissipated at infinity
through gravitational waves. This also explains qualitatively
why the imaginary part of these modes is small (i.e. why the
resonances are generically narrow) because the dissipation
mechanism is not efficient.
The structure of the resonances is fairly rich and it

depends on the values of l,m and on the specific BS model.
We can gain some insight by looking at the analog problem
for a Schwarzschild BH. In that case, the location and width
of the resonances can be computed analytically in the small
mass limit [62,63]. For the Schwarzschild BH case, the real
and imaginary parts of the quasibound modes read

�R � �

�
1� M2�2

2ðnþ lþ 1Þ
�
;

�I � � 41�2l�2ðM�Þ4lþ6

Mð1þ lþ nÞ2ð2þlÞ

� ð2lþ nþ 1Þ!
�½12 þ l
2�½32 þ l
2n!

�
;

where n � 0 is the overtone number. Therefore, as �
approaches �R there is a multitude of modes that can be
excited, and their separation in orbital frequency vanishes
in the large l or large n limit. However, in the same limit the
imaginary part (and hence the width of the resonances)
of the modes decreases very rapidly, as shown by the last
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FIG. 5 (color online). (Adapted from Ref. [1]) Main multipole
contributions to the polar flux, l,m ¼ 2, 3 and 4, for the mini and
massive BS configurations I. The dots indicate the approximated
results obtained by setting the scalar perturbations to zero.
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equation above. Our results for the resonances appearing
in the flux from a BS inspiral are in qualitative agreement
with this behavior. This is shown in Fig. 6, where we
show the polar flux in a restricted region of the orbital
radius for some BS model. Due to the complex scalar
field, the resonance condition is shifted, ��! � �, and
corresponds to k� � 0 in Eq. (67), i.e. to the interface
between quasibound states and QNMs. In the left panel of
Fig. 6, we show the main l ¼ m ¼ 2 contribution for our
mini BS configuration I. In this case, the interface con-
dition kþ ¼ 0 occurs at rp � 7:3624M and, even for l¼2,

several resonances appear when the particle approaches
this peculiar orbit. Similar results hold for the contribu-
tion to the flux l ¼ m ¼ 3 for the mini BS configuration I
and l ¼ m ¼ 4 for the massive BS configuration I. In
these cases, the interface conditions read rp � 10:0292M

and rp � 3:8540M, respectively. Note that the width of

the resonances decreases very rapidly for large values of
l, so that the resonances of higher multipoles are more
difficult to resolve and the corresponding modes have a
smaller quality factor.

Our analysis generically shows that the orbital frequency

�res ���!

m
(83)

plays a special role in the gravitational and scalar flux
emitted in a quasicircular inspiral around a BS. The
detectability and some observational implications of these
resonant frequencies are discussed in Ref. [1].

The presence of the scalar field perturbations is crucial
for the resonances. In order to illustrate this point, we
have considered a decoupling limit, where gravitational
and scalar perturbations do not couple to each other.
Although this approximation is not fully consistent, it is
nevertheless useful to separate the features of the flux
computed for the full coupled system. In this limit, scalar

perturbations are described by two coupled second-order
equations, which support normal modes, i.e. modes with a
purely real part. These modes are very close to the real part
of the slowly damped modes found in the full system and
they roughly coincide with the resonant frequencies of the
point-particle quasicircular inspiral. Likewise, we have
computed the gravitational flux after having artificially
set the scalar perturbations to zero. In Fig. 5 we show a
comparison between the fluxes in the decoupling limit and
those obtained by solving the full equations for mini BSs
and massive BSs. Away from the resonances, the gravita-
tional flux is in very good agreement with the exact result.
This is consistent with the picture presented above: in the
absence of gravito-scalar coupling, the systemwould admit
normal bound scalar modes. The latter, however, acquire a
small imaginary part due to the coupling with the gravita-
tional sector and can be dissipated at infinity as gravita-
tional waves. Thus, the real part of the QNMs is mainly
governed by the scalar sector, whereas the generic aspects
of the flux away from the resonant modes is mainly driven
by the gravitational sector.
Supported by the good agreement of the decoupling of

the scalar field and gravitational perturbations, we have
adopted it to compute the flux in the solitonic BS configu-
rations. In this case, the large mass of the background
scalar field makes it challenging to solve the full system.
This is due to the presence of two different length scales:
the BS mass M which regulates the gravitational sector,
and the scalar field mass �M � 1 which regulates the
decay of the scalar field.
In Fig. 7 we show the flux obtained in the decoupling

limit, compared to its (exact) Schwarzschild counterpart.
We only show the stable circular orbits located roughly
at r > 6M. For these orbits, the difference is small. This
is expected because the external spacetime is very close
to the Schwarzschild one. On the other hand, unlike the
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other BS models, highly energetic stable circular orbits
exist close to the stable light ring inside the star. In
Fig. 7 we have neglected the resonance structure of the
flux. However, as shown in Table V, resonant frequencies
for this model correspond to relativistic high-energy
orbits and they are not excited by the quasicircular
inspiral. Furthermore, since the mass coupling of these
configurations is higher than the other models, scalar
field radiation is only emitted for very high multipoles,
which are subdominant. Thus, for solitonic compact
configurations the main distinctive feature of such com-
pact horizonless configurations with respect to a
Schwarzschild BH is the possibility of having stable
geodesics in the core of the object, which are also
associated with large gravitational fluxes. We refer the
reader to Ref. [1], where other features of the inner
inspiral are discussed.

VII. CONCLUSIONS AND OUTLOOK

In this work we constructed three different BS models,
namely, mini, massive and solitonic BSs. The spacetimes
were constructed using the full Einstein equations, without
any approximation method. Moreover, we discussed circu-
lar geodesic motion in the BS spacetime, showing some
specific features that are also present in the case of circular
motion in uniform density stars in general relativity, like
the presence of two light rings, depending on the compact-
ness of the star. We computed the QNMs of the BS con-
figurations, extending the results of Ref. [16], showing that
generically they would be excited by the motion of a point
particle in circular orbits. The energy fluxes emitted by the
particle were calculated, showing the distinctive character-
istics of the resonances in the flux. The analysis made here
also extends the results of Ref. [18]. The discussion on
he detectability and observational consequences of the
resonances was given in Ref. [1].

The results presented in this paper offer an answer to the
question of whether or not one can distinguish BSs from
BHs, from the gravitational point of view. We conclude

that the motion of stellar-size objects would leave charac-
teristic imprints in the signal that are intrinsically con-
nected with the BS models. The mass of the bosonic
particle forming the star has to be light enough to repro-
duce supermassive objects. The studies presented here for
the gravitational flux are for point particles in circular
orbits, and are most applicable in the region where the
scalar field�0 is small enough, i.e., outside an effective BS
radius. Inside the star other effects like accretion and
dynamical friction should be considered (see [1] for more
details). In particular, these effects in a head-on collision
could lead to interesting features. Also, the study of eccen-
tric orbits is a direct and important generalization of the
present work.
Another possible extension of the present study is the

investigation of EMRIs in rotating BS spacetimes. Rotating
BSs were analyzed in the literature, in both Newton’s and
Einstein’s gravity context [64]. Perturbation theory around
nonspherically symmetric spacetimes is still a challenge,
and some cases were studied only within approximation
schemes, like in slowly rotating BHs [50,53,65]. The study
presented here serves as a reference for further studies of
BSs systems.
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APPENDIX A: MASSIVE SCALAR MODES
OF A CONSTANT DENSITY STAR

In this appendix we compute the massive scalar modes
of a constant density star and show that they share many
features with those obtained for the BSmodels presented in
the main text. The background metric of a spherically
symmetric star reads

ds20 ¼ �evðrÞdt2 þ euðrÞdr2 þ r2ðd�2 þ sin 2�d’2Þ;
(A1)

where e�uðrÞ ¼ 1� 2mðrÞ=r. In the case of an isotropic,
perfect-fluid star, the Einstein equations are given by [33]

m0ðrÞ ¼ 4�r2	ðrÞ; (A2)

v0ðrÞ ¼ 2
mðrÞ þ 4�r3PðrÞ

r2 � 2rmðrÞ ; (A3)

P0ðrÞ ¼ � ðmðrÞ þ 4�r3PðrÞÞðPðrÞ þ 	ðrÞÞ
rðr� 2mðrÞÞ ; (A4)

together with an equation of state, relating 	 with P.
We consider a probe scalar field which satisfies the

massive Klein-Gordon equationhc ��2c ¼ 0. In order
to facilitate a comparison with the BS cases, we assume an

ansatz c ¼ �ðrÞr�1Ylme
ið��!Þt. The scalar perturbation

equation then reads

d2

dx2
�þ ½ð��!Þ2 � V0
� ¼ 0; (A5)

with

V0 ¼ ev
�
�2 þ lðlþ 1Þ

r2
þ 2m

r3
þ 4�ðP� 	Þ

�
; (A6)

where we have used Eqs. (A2) and (A3) in order to
eliminate v0 and m0.

For constant density stars we have that 	ðrÞ ¼ 	c, and
Eqs. (A2)–(A4) can be solved analytically, resulting in

m ¼ 4

3
�r3	c; (A7)

ev ¼
�
3

2

�
1� 2M

R

�
1=2 � 1

2

�
1� 2Mr2

R3

�
1=2

�
2
; (A8)

P ¼ 	c

�
RðR� 2MÞ1=2 � ðR3 � 2Mr2Þ1=2
ðR3 � 2Mr2Þ1=2 � 3RðR� 2MÞ1=2

�
: (A9)

In the equations above, R is the star radius and M ¼ mðRÞ
is the total mass. The solution above is valid for r < R,
whereas for r > R the spacetime coincides with the
Schwarzschild one due to Birkhoff’s theorem.

For constant density stars, the potential (A6) can support
bound states in a certain region of the �-M parameter
space. An example is shown in Fig. 8.

The potential may develop up to two minima: one is
located in the outer region for a certain range of nonvanish-
ing � and exists for sufficiently compact stars; the other is
located inside the star and it also exists at small densities if
the scalar mass � is sufficiently large. Furthermore, the
inner minimum also exists when � ¼ 0 in a small range of
compactness. In both cases, the system allows for normal,
bound modes, i.e. modes characterized by a purely real
frequency, which can be straightforwardly computed. In
Table VI we show some modes computed using a direct
integration method for l ¼ 2, R=M � 6:93, M� � 2:257
and M! ¼ 1:865 and l ¼ 2, R=M � 3:10, M� � 7:37
andM! ¼ 0:899. These parameters were chosen to repro-
duce the massive and solitonic BS configuration I, analyzed
in the main text (cf. Table I). In those cases, the potential
only has one minimum, located in the interior of the star.
In Table VI we also exhibit the orbital frequency of a
particle that excites the modes when m ¼ 2, i.e. when
the condition �n ¼ 2�p is met. This configuration is

0 5 10 15 20 25 30
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0 M

2

constant density star

FIG. 8 (color online). Example of Schroedinger-like potential
for a massive scalar perturbation of a constant density star with
l ¼ 2, R=M � 2:81 and M� ¼ 0:65. For this choice of parame-
ters, the potential has two minima. The location of the star radius
is marked by the vertical dashed line.

TABLE VI. A selection of massive scalar modes !n of a
constant density star for l ¼ 2. The parameters chosen in the
left part of the table are R=M � 6:93, M� � 2:257 and M! ¼
1:865. For the right part of the table we have chosen R=M �
3:10, M� � 7:37 and M! ¼ 0:899. We adopt this choice of
parameters to represent the massive BS I and solitonic BS I.

n M�n M�p M�n M�p

1 0.030 0.015 2.632 1.316

2 0.119 0.059 2.850 1.425

3 0.188 0.094 3.065 1.532

4 0.236 0.118 3.277 1.638

5 0.271 0.135 3.486 1.743

6 0.296 0.148 3.692 1.846

7 0.314 0.157 3.891 1.945
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qualitatively similar to the case of a point particle orbiting a
BS, due to the coupling between scalar and gravitational
perturbations. Indeed, the resonance frequencies are quali-
tatively similar to those obtained for the massive BS con-
figuration I in the main text. An important difference from
the BS case is that even localized scalar modes acquire a
small imaginary part. This is due to the fact that scalar

perturbations are coupled to the gravitational ones and,
although the former are localized in a region of width
�1=� close to the BS, the latter dissipate energy at infinity
through gravitational-wave emission. Thus, part of the
scalar field energy is converted and emitted as gravitational
waves. We refer the reader to the discussion in the main text
for the interpretation of these results and for more details.
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