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Since black holes can be formed through widely varying processes, the horizon structure is

highly complicated in the dynamical phase. Nonetheless, as numerical simulations show, the final state

appears to be universal, well described by the Kerr geometry. How are all these large and widely varying

deviations from the Kerr horizon washed out? To investigate this issue, we introduce a well-suited notion

of horizon multipole moments and equations governing their dynamics, thereby providing a coordinate-

and slicing-independent framework to investigate the approach to equilibrium. In particular, our flux

formulas for multipoles can be used as analytical checks on numerical simulations and, in turn, the

simulations could be used to fathom possible universalities in the way black holes approach their final

equilibrium.
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I. INTRODUCTION

Black hole uniqueness theorems [1] strongly suggest
that late stages of a gravitational collapse or a black hole
merger are well described by the Kerr solution. In particu-
lar, once the black hole reaches the final equilibrium, its
horizon is expected to match the Kerr isolated horizon
which can be characterized intrinsically, without reference
to the exterior space-time [2]. By now a wide variety of
numerical simulations have confirmed this expectation.
However, these simulations also bring out the fact that
there is great diversity in the structure of the horizon during
the preceding dynamical phase. At its formation, the hori-
zon of the final black hole generically exhibits large, time-
dependent distortions. Heuristically, its intrinsic geometry
appears to have many ‘‘bumps’’ and there is no simple
relation between its rotational state and the spin vector of
the final black hole. However, in the process of settling
down to equilibrium, the Einstein dynamics manages to
wash away these apparently large deviations leaving
behind the Kerr isolated horizon. How does this come
about? Can one provide a precise mathematical description
of this approach to equilibrium? Does it carry a clear
imprint of general relativity that could perhaps be seen in
future gravitational wave observations? The final state is
universal. Are there universalities associated also with the
approach to this final state? Answers to these questions
would both provide us a deeper conceptual understanding
of the strong field regime of general relativity and
suggest avenues to test the theory through its specific
predictions for the nonlinear, dynamical phase of black
hole formation.

However, it is rather difficult to investigate these issues
precisely because the dynamical processes of interest occur
in the strong field regime of general relativity. Numerical
simulations have provided insights but the horizon
distortions seen in simulations often refer to components
of geometrical tensors in coordinate systems and, more
importantly, foliations they use. What one needs is an
invariant characterization of the horizon geometry in its
dynamical phase. A natural avenue is provided by the
horizon multipole moments [3–5] which can be interpreted
as the ‘‘source multipole moments’’ of the black hole.
However, as we discuss in Secs. II B and IVC, the current
definitions are not as well suited to investigate the
approach to equilibrium as one would like.
The purpose of this article is to provide multipole

moments which are well tailored for this task and provide
equations for their dynamical evolution. These moments
are just sets of numbers that capture the diffeomorphism
invariant content of dynamical and arbitrarily distorted
horizon geometries. Their evolution provides a coordinate-
and slicing-independent description of how black holes
shed the deviations from the Kerr horizon geometry and
its spin structure. These equations can be used as nontrivial
checks on numerical simulations in the strong field regime
and, conversely, numerical solutions of these equations
will bring out universalities in the approach to equilibrium,
if they exist.
This article is organized as follows. In Sec. II we collect

the material on isolated and dynamical horizons that serves
as our starting point. Main results are presented in Secs. III
and IV which also include a discussion of the relation to
other definitions of multipoles in the literature [4,5] and to
vortexes and tendexes that have been used to visualize the
strong field geometry near black holes [6,7]. For the con-
venience of computational relativists, in Sec. IV the ideas
and equations needed for numerical simulations have been
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presented in a self-contained fashion. If the goal is only to
use these multipoles in numerical simulations, one can skip
Sec. III and go directly to IV. In Sec. V we discuss their
relation to similar issues that have been explored in the
literature, including Price’s law [8–10], the close-limit
approximation [11,12], and the relation between dynamics
at the horizon and at infinity [13–16]. The Appendix
collects a few analytical results on the behavior of the
key fields on the dynamical horizon H in the passage to
equilibrium: which of them diverge, which of them admit
finite limits and which of them vanish in the limit and at
what rate.

Our conventions are as follows. We use Penrose’s ab-
stract index notation. The space-time metric gab has sig-
nature �, þ, þ, þ and curvature tensors are defined by
2r½arb�kc ¼ Rabc

dkd, Rac ¼ Rabc
b and R ¼ Rabg

ab.

II. QUASILOCAL HORIZONS

This section is divided into two parts. In the first we
recall the notions of isolated and dynamical horizons and
their basic properties [17–19]. In the second, we summa-
rize the definition of multipoles in the axisymmetric case
[3,4]. These quasilocal horizons have had numerous appli-
cations, including black hole thermodynamics [19,20],
construction of initial data and extraction of physics from
numerical simulations [4,21–24], and the definition of
quantum horizons and analysis of their properties [25,26]
in loop quantum gravity.

A. Dynamical and isolated horizons

The notion of event horizons has played a major role in
the discussion of black holes. However, it is teleological
and ‘‘too global’’ in that one needs the entire space-time
evolution before one can locate it. Dynamical and isolated
horizons are quasilocal notions which are free from these
limitations.1

A dynamical horizon (DH) H is a three-dimensional
spacelike submanifold (possibly with boundary) of space-
time ðM; gabÞ, foliated by a family of 2-spheres S such that

(i) each S is marginally trapped—i.e., the expansion
�ð‘Þ of one of the (future directed) null normals ‘a

to each S vanishes—and
(ii) the expansion�ðnÞ of the other (future directed) null

normal is negative.
Heuristically, since H is obtained by ‘‘stacking together’’
marginally trapped surfaces (MTSs), it can be thought of as
the boundary of a trapped region of space-time represent-
ing a black hole. The area of the MTSs S increases in time,
depicting a dynamical phase during which the black hole

grows as it swallows matter and gravitational waves.
Furthermore, Einstein’s equations imply that there is a
detailed balance law equating the rate of growth of the
area radius RS of any MTS S with the total flux of energy
(in matter and gravitational waves) falling into the black
hole across S [19].
Given a DH H, one can show that it does not admit any

MTS that is not in the foliation. Thus, the foliation by
MTSs—the ‘‘internal structure’’ of H—is unique. DHs
naturally arise in numerical simulations where one begins
with a foliation of space-time and uses efficient algorithms
to zero in on the outermost MTSs. A local existence
theorem ensures that, given such an MTS, it will ‘‘evolve’’
to a DH (provided certain generic conditions are met)
[28,29]. However, DHs are not unique: A space-time
region that appears to represent a black hole can carry
multiple DHs. Nonetheless, partial uniqueness theorems
do exist. In particular they imply that in the numerical
relativity constructions, there is a unique DH that asymp-
totes to the event horizon in the distant future [27]. This is
the situation of interest in this paper.
Once the flux of energy across the horizon becomes

zero, the horizon becomes isolated. More precisely,
an isolated horizon (IH) � is a null, three-dimensional

submanifold in ðM; gabÞ, topologically S2 � R and

equipped with a specific null normal �‘a such that

(i) the expansion �ð �‘Þ of �‘a vanishes;

(ii) L �‘qab ¼ 0; and
(iii) ðL �‘Da �DaL �‘Þta ¼ 0.

Here qab is the intrinsic (degenerate) metric on �, D the
derivative operator induced on � by the space-time deriva-
tive operator r, and tb is any vector field that is tangential
to �.2

The fields ðqab; DÞ constitute the intrinsic geometry of
the IH �. By requiring that ðqab; DÞ be time independent

(with respect to the evolution defined by �‘a), the notion of
an IH extracts from that of Killing horizons just the mini-
mal properties to ensure that the horizon itself is in equi-
librium, allowing for dynamical processes to occur
arbitrarily close to it [22,30]. The definition ensures that
neither matter nor gravitational waves fall across� and the
area of any 2-sphere cross section of � is the same. Event
horizons of stationary black holes are simplest examples of
IHs [17,18,22–24].
Consider formation of a black hole via gravitational

collapse or merger of two compact objects, one or both
of which may be black holes. We are primarily interested in
the late stage of such processes, when a common DH H

1Since our goal is only to convey the main ideas, the dis-
cussion will be brief and we will have to gloss over some finer
points. For details and precise statements of results and proper-
ties, see [18,19,22–24,27].

2Note that qab has signature 0, þ, þ with �‘a as the degenerate
direction; qab �‘

b ¼ 0. Condition (ii) implies that r induces a
well-defined derivative operator D on �. It is automatically
satisfied if the stress-energy tensor satisfies a mild version of
the dominant energy condition: �Ta

b‘
b is a future directed

causal vector everywhere on �.
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develops and approaches an IH � representing the future
part of the event horizon of the final black hole. Because of
backscattering of gravitational waves, in the exact theory
the approach would only be asymptotic. However, in
numerical simulations one invariably finds that the back-
scattering becomes negligible within numerical errors
rather soon and H joins on to � at some finite time.
Therefore, in this paper we will focus on this situation.
(The case in which the equilibrium is reached only asymp-
totically is in fact somewhat simpler [19,31].)

B. Multipole moments: The axisymmetric case

Numerical simulations invariably use convenient
choices of coordinates and foliations and these choices
vary from one research group to another. Therefore, the
task of comparing the final results requires analytical tools
to probe and compare distinct horizon geometries in an
invariant fashion. Multipole moments provide such a tool.
In this subsection we will summarize the situation in the
case when the horizons are axisymmetric [3,4,22].

Let us begin with IHs �. An IH � is said to be axisym-

metric if it admits a vector field ’a satisfying L’
�‘a ¼ 0,

L’qab ¼ 0, and ðL’Da �DaL’Þtb ¼ 0 for all vectors ta

tangential to�. Thus, diffeomorphisms generated by’a on
� preserve its geometry. These conditions imply that ’a

has an unambiguous projection on the 2-sphere of integral

curves of �‘a which is a rotational Killing field there.
Now, it is known that the diffeomorphism invariant

content of the geometry ðqab; DÞ of � is captured in two
fields:

(i) the scalar curvatureR of ~qab, the induced metric on
any 2-sphere cross section S of �, and

(ii) the ‘‘rotational’’ 1-form !a on � defined by

Da
�‘a ¼ !a‘

a [18,22].
The geometrical relation of these fields is brought out by
the Weyl tensor. On any IH, the component �2 of Weyl
curvature is gauge invariant and furthermore we have

�2 ¼ 1

4
Rþ i

2
�abDa!b: (2.1)

Here �ab is the area bivector on any 2-sphere cross section
of � (and the right-hand side is independent of the specific
choice of the cross section S). Thus, on �, the scalar
curvature R is essentially the same as the real part of �2

while the rotational 1-form is a potential for the imaginary
part of �2. In numerical simulations, one can calculate
these fields on �. However, it is still not possible to
compare the results of two different simulations because
the fields live on two different 3-manifolds � and there is
no natural identification between them. Geometric multi-
poles are two sets of numbers Il, Ll, with l ¼ 0; 1; 2; . . .
which capture the entire diffeomorphism invariant content
of these fields [3]. Therefore, to compare the results of any
two simulations, it suffices to compute these numbers in

each simulation and compare them. In practice, it suffices
to compare just the first few multipoles.
The key idea behind the definition of multipoles is the

following. Given an axisymmetric metric qab on a 2-sphere

S, one can construct a canonical round 2-sphere metric q
�
ab

on S together with a preferred rotational Killing field [3].
This structure in turn provides canonical weighting func-

tions Yl;m, the spherical harmonics of q
�
ab. The multipoles

are now defined as

Il;m � iLl;m :¼
I
S

�
1

4
Rþ i

2
�abDa!b

�
Yl;md

2V (2.2)

�
I
S
�2Yl;md

2V; (2.3)

where the integral is performed on any 2-sphere cross
section S of � and d2V is the volume element on S. Of
course, because the horizon geometry is axisymmetric,
only the m ¼ 0 multipole moments are nonvanishing.
Furthermore, I0;0 is just 1=4th the Gauss invariant, I0;0 ¼
2�, and L0;0 vanishes. Therefore only the l � 0 moments

are nontrivial.
Since each step in the construction is diffeomorphism

covariant—none involved introduction of a structure other
than the given axisymmetric IH—the final numbers are
diffeomorphism invariant. A given axisymmetric horizon
geometry yields these numbers and, conversely, given the
numbers that arise from an axisymmetric horizon geome-
try, one can reconstruct that geometry up to an overall
diffeomorphism. Finally, by a simple rescaling of these
geometrical multipoles, one can obtain the mass and spin
multipoles associated with the horizon. Since these refer
only to the horizon without any reference to the exterior
space-time region, they represent the source multipoles
associated with the black hole itself. Indeed, as explained
in [3], the construction suggests that one can assign a
‘‘surface mass density’’ �� ¼ �ð1=8�ÞM�R and a
‘‘surface spin current’’ j�a ¼ ð1=8�GÞ!a to the isolated
horizon �, whereM� is the total mass ofM�. By contrast,
the multipole moments defined at infinity represent ‘‘field
multipoles’’ which include contributions not only from the
black hole but also from the exterior gravitational field
(and matter, if any). In the Newtonian theory, the two sets
agree. But because of its non-Abelian character, in general
relativity gravity sources gravity. Therefore the two mo-
ments differ. For the mass quadrupole in Kerr space-time,
for example, the difference increases with spin and is of the
order of 40% near extremality a�m [3].
What about dynamical horizons H? The diffeomor-

phism invariant content of the intrinsic geometry of any
MTS S is again encoded in the scalar curvature R of S,
while the role played by the rotational 1-form is now
played by ~!a :¼ ~qa

bKbcr̂
c, where ~qab is the intrinsic

2-metric on S, r̂c is the unit (spacelike) normal to S within
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H and Kab is the extrinsic curvature of H in space-time.3

Using the same motivation as on IHs, one can introduce an
effective ‘‘mass surface density’’ and an ‘‘angular spin
current density’’ on any MTS S of the DH H and they
are given by �S ¼ �ð1=8�ÞMSR and jSa ¼ ð1=8�GÞ ~!a,
where R is the scalar curvature of the 2-metric ~qab on S
[4,22]. Therefore, in the numerical relativity literature the
definition (2.2) has been recast in terms of these fields:

Il;m½S� � iLl;m½S� :¼
I
S

�
1

4
Rþ i

2
�ab ~Da ~!b

�
Yl;md

2V;

where ~!a ¼ ~qa
bKbcr̂

c; (2.4)

and taken over to assign multipole moments Il;0, Ll;0 with

each marginally trapped surface S in the foliation [4].
(Note that, whenever there is possible ambiguity, we use
a tilde over symbols that refer to two-dimensional fields on
the MTSs.)

On a DH, these multipole moments change in time,
capturing the ‘‘intrinsic’’ dynamics of the black hole,
encapsulated in the horizon geometry. However, to imple-
ment this strategy, one has to find an axial symmetry ’a on
each S. There are efficient numerical algorithms to locate
this required axial Killing field ’a, if it exists [21,32–35].
However, as one might expect, the DH formed in a gravi-
tational collapse or a black hole merger generically fails to
be even approximately axisymmetric except at very late
time when the geometry is already close to that of the
Kerr IH. Therefore the strategy is not well suited to study
how the horizon loses its ‘‘hair’’ in its approach to the final
Kerr state. Indeed, in the dynamical phase one expects the
black hole spin, for example, to change not only in magni-
tude but also in direction, while the axisymmetry assump-
tion forces the angular l ¼ 1 momentum moment to have
only the ‘‘z component.’’ More generally, one would
expect most moments to have nonzero values for m � 0
and it is of significant interest to see how dynamics of
general relativity forces the black hole to shed them as it
approaches equilibrium. To probe this issue, in Secs. III
and IV we will generalize the framework by going beyond
axisymmetry in a manner that is well suited to understand-
ing the passage to equilibrium. We will also comment on
the relation of this strategy to another approach [5] that has
been proposed in the literature.

1. Remarks

1. In recent years, there has been considerable interest in
using the Kerr multipoles to test the no-hair theorems of
general relativity through gravitational wave signals. Much
of this analysis is based on some key ideas introduced by
Ryan [36] using signals arising from a compact object
orbiting around a supermassive black hole. The strategy
is to express the metric of the supermassive black hole at
the location of the compact object as an expansion, with the
Geroch-Hansen field multipoles at infinity as coefficients
[37–39]. However, it would seem that the expansion of the
space-time metric in terms of the source multipoles that
characterize the horizon geometry would provide a more
accurate route to mapping the Kerr geometry, unless the
orbiting compact object is truly in the asymptotic region,
very far from the central black hole. If it is closer, then
expanding the space-time metric ‘‘outward’’ starting from
the horizon [17], rather than ‘‘inward’’ from infinity,
should require far fewer terms to attain the desired accu-
racy. There is also a conceptual advantage that one would
only need to assume vacuum equations in the region
between the two bodies.
2. The simple relation (2.1) between the fieldsR and!a

and the Weyl curvature component �2 on IHs is modified
on a DH. We now have

R ¼ ð4Re�2 � ~qab~qcd�ð‘Þ
ac�

ðnÞ
bd Þ; (2.5)

2�ab ~Da ~!b ¼ ð4 Im�2 þ �ab~qcd�ð‘Þ
ac�

ðnÞ
bd Þ; (2.6)

where �ðnÞ
ab and �ð‘Þ

ab are the shears associated with the null

normals ‘a and na to theMTSs S and ~qab is the metric on S.
Therefore, on a DH, multipoles are no longer determined

by �2 alone. (When the horizon becomes isolated, �ð‘Þ
ab

vanishes and the extra term drops out.)

III. MULTIPOLE MOMENTS OF GENERAL
QUASILOCAL HORIZONS

In this section we present the conceptual strategy which
allows us to define multipole moments on general, non-
axisymmetric horizons and track their time evolution. The
material is divided into four parts. In the first, we introduce
the main idea behind the generalization to nonaxisymmet-
ric contexts; in the second, we execute this strategy; in the
third, we present the generalized multipoles; and, in the
fourth, we present ‘‘balance laws’’ that dictate the dynam-
ics of multipole moments.

A. Main ideas

The underlying strategy is the same for both sets of
geometric moments Il;m and Ll;m. We will first describe it

in detail for the geometric spin moments Ll;m and then

summarize the situation for the Il;m. In the first part of the

discussion, we will consider the isolated and dynamical

3This follows from the following considerations involving
the ‘‘Weingarten map.’’ On an IH �, the 1-form !a that
features in (2.2) is the pullback to a 2-sphere cross section S
of � of the 1-form �ð1=2Þ �nbDa

�‘b � �ð1=2Þ �nbr
Q
a
�‘b, where

r
Q
is the pullback to � of the space-time connection. On a DH,

the 1-form ~!a :¼ ~qa
bKbcr̂

c is given by the pullback to MTSs S

of �ð1=2Þnbr
Q
a�̂

b, where r
Q
a is the pullback to H of the

space-time connection and �̂b is the unit timelike normal
to S. As in [19], we use the conventions ‘ana ¼ �2 ¼ �‘a �na.
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horizons simultaneously. For IHs, S can be any cross

section (or the 2-sphere of the null generators �‘a) of �
while for DHs, S can be any MTS.

Let us first integrate the expression (2.4) for Ll;m by parts

to obtain

Ll;m½S� ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4�

s
R�2

I
S
’a

l;m ~!ad
2V;

where ’a
l;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�

2lþ 1

s
R2�abDbYl;m; (3.1)

where, as before, R is the area radius of S and we have
introduced certain normalization factors for later
convenience. Note that the ’a

l;m are all divergence-free on

S and, furthermore, they provide a complete basis on the
space of divergence-free vectors. Therefore Ll;m can be

thought of as providing a linear map from a basis of
divergence-free vector fields on S to reals. In this respect,
there is a structural similarity between multipole moments
on � or H and ‘‘conserved’’ charges at null infinity, which
can be regarded as linear maps from the generators of the
Bondi-Metzner-Sachs (BMS) group to the reals [40–43].
With multipoles, the divergence-free vector fields play the
role of infinitesimal symmetries. This conceptual parallel
will be useful in our discussion.

In the axisymmetric case, we have a symmetry vector
field ’a and only Ll;0 are nonzero. In the language of

vector fields these correspond to moments associated
with the ’a

l;0 satisfying L’’
a
l;0 ¼ 0. In the literature one

often sets Y1;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3=4�

p
� . Then Yl;0 are all essentially just

the Legendre polynomials in � ; Yl;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þ=4�p

Plð�Þ.
The function � is singled out by the axial Killing field:
’a ¼ R2�ab ~Db� � ’a

1;0 (whence’
a ¼ ’a

1;0). On a general

horizon, the major obstacle has been that we do not have
access to this route; without axisymmetry, there is no
preferred � on S and hence we do not have the required
basis Yl;m of functions.

The first step in the generalization is just to forego the
preferred basis and use (3.1) to associate multipole mo-
ments L� with any divergence-free vector field �a on S:

L�½S� ¼ � 1

2

I
S
�a ~!ad

2V; where L��
ab ¼ 0: (3.2)

But since the vector fields �a are defined separately on
each S, we need a prescription to identify vector fields that
lie on different cross sections S. Otherwise, we would not
be able to compare multipoles associated with two differ-
ent cross sections: On an IH the definition would be
ambiguous and on a DH we would not be able to study
the evolution of multipoles.

On IHs the required identification is easy to achieve:
Consider the diffeomorphism generated by the appropriate

(possibly angle-dependent) multiple of the vector field �‘a

that maps the first cross section S1 to the second S2. This

natural map—the analog of the BMS supertranslation at
null infinity—sends divergence-free vector fields on S1 to
divergence-free vector fields on S2. With this identification
between divergence-free vector fields, it follows that multi-
pole moments are independent of the choice of the cross
section S. Equivalently, we can use the 2-sphere of gen-

erators �‘a of� for S in (3.2). This simpler procedure makes
it manifest that the multipoles L� are properties of the IH

as a whole.
On DHs, on the other hand, the geometry and hence the

multipoles evolve in time and we need to follow the analog
of the first procedure. Now S can be any one of the MTSs.
Therefore, we need to construct a dynamical vector field
Xa on H that provides a natural identification between the
leaves of the foliation provided by MTSs. Motions along
Xa will then be interpreted as ‘‘time evolution.’’ We need
this vector field Xa to have the following four properties:
(i) The one-parameter family of diffeomorphisms gen-

erated by Xa on H should preserve the foliation by
MTSs.

(ii) It should provide an isomorphism between the space
of divergence-free vector fields on any S to that of
divergence-free vector fields on its image.

(iii) Xa should be constructed covariantly, using only
that structure which is already available on general
dynamical horizons without any symmetry.

(iv) If the DH is axisymmetric, diffeomorphisms gen-
erated by Xa should preserve the symmetry vector
field ’a. As we will see this will guarantee that the
multipole moments given by the more general con-
struction—that does not refer to axisymmetry at
all—do reduce to the multipoles used in the litera-
ture in the axisymmetric case [4].

We will show that one can select, in a diffeomorphism
covariant fashion, a class of vectors fields Xa satisfying
these properties on any DH and multipoles are insensitive
to the choice of Xa within this class.

B. Determining the dynamical vector field Xa

Since we already have a natural foliation by MTSs, any
dynamical vector field Xa on H can be decomposed into a
part that is orthogonal to the foliation and a part that is
tangential: Xa ¼ Nr̂a þ Na, where, as before, r̂a is the unit
normal to each leaf of the foliation. Because Xa must map
every MTS to some other MTS, the ‘‘lapse’’ N is severely
restricted. To write out the restriction explicitly, let us
introduce a coordinate v on H such that the leaves of

the foliation are given by v ¼ const. Then N ¼
CðqabDavDbvÞ�1=2, where C is a constant and qab the
inverse of the intrinsic þ, þ, þ metric qab on H.
Without loss of generality, we can set C ¼ 1 making v
the affine parameter of the vector field Xa. This choice of
lapse is denoted by 2b in the literature. Thus, we have

Xa ¼ 2br̂a þ Na; where 2b ¼ jDvj�1
2; (3.3)
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and it now remains to determine the ‘‘shift’’ Na. We will
now show that the shift is also naturally fixed by our
requirements.

We will first describe the strategy. The dynamical hori-
zon is naturally equipped with a 2-form �ab that serves as
the area 2-form on each MTS: �ab ¼ �abcr̂

c, where �abc is
the volume 3-form on H. Had L2br̂�ab been zero, 2br̂a

would have mapped divergence-free vector fields on any S
to divergence-free vector fields on its image and we could
just set Xa ¼ 2br̂a, i.e., choose the shift Na to be zero. But
this strategy is not viable because L2br̂�ab ¼ 2b ~K�ab,
where ~K is the trace of the extrinsic curvature of the
MTS S within H which is necessarily nonzero because
the area of these MTSs increases in time. The idea is to
remedy this ‘‘problem’’ with an appropriate choice of the
shift Na. But no matter which shift Na we use, we will not
be able to compensate for the entire term 2b ~K: Since
LN�ab ¼ ð ~DaN

aÞ�ab, even with a judicious choice of the
shift Na, we can only remove the purely inhomogeneous
part

2b ~K � ð1=4�R2Þ
I
S
2b ~Kd2V ¼ 2b ~K � 2 _R=R (3.4)

of 2b ~K, where the area of each MTS is given by 4�R2, and
the ‘‘dot’’ denotes the derivative with respect to v. Then,
although LX�ab will not vanish, it will be of the form
fðvÞ�ab, where fðvÞ ¼ 2 _R=R. Clearly, this is the best
one can hope for, given the fact that the area of the
MTSs changes with v. But since v is constant on any S,
this is sufficient to guarantee that the diffeomorphisms
generated by Xa will map divergence-free vector fields
on anyMTS S to divergence-free vector fields on its image.

Let us now implement this strategy. First, we construct a
unique function g on each S such that

~qab ~Da
~Dbg¼�ð2b ~K�2 _R=RÞ and

I
S
gd2V¼0; (3.5)

where, as before, the tilde quantities refer to the intrinsic
2-geometry of each MTS. The existence of the solution to
the first equation is guaranteed because its right-hand side
integrates out to zero and the second equation makes the
solution unique by removing the freedom to add a constant
to g. We then set

Na¼ ~qab ~Dbg; so that ~DaN
a¼�ð2b ~K�2 _R=RÞ; (3.6)

so that Xa ¼ 2br̂a þ Na satisfies LX�ab ¼ ð2 _R=RÞ�ab or
LXR

�2�ab ¼ 0. Note that, since ~K ¼ �ð1=2Þb�ð �nÞ, and
�na is smooth on all ofM, b ~K vanishes in the limit v ! vo.
Since _R also vanishes, it follows from (3.5) that g and
hence the shiftNa vanishes on So and X

a joins on smoothly

with �‘a there.
By its construction, Xa satisfies the first three of our

four requirements: It is constructed covariantly, preserves
the foliation, and maps divergence-free vector fields on
any S to divergence-free vector fields on its image.

It turns out that it also satisfies the fourth requirement.
To see this, let us suppose the DH is axisymmetric with
an axial symmetry vector field ’a. Then, since our con-
struction of Xa uses only the horizon geometry, it follows
that L’X

a ¼ 0. Therefore the diffeomorphisms generated

by Xa map the axisymmetry vector field ’a on any given
MTS S to the axisymmetry vector field ’a on its image.
We will see in Sec. III C that this implies that, in the
axisymmetric case, the multipole defined using this
general strategy coincide with those defined using
axisymmetry as in [4].
Finally, what would happen if we replace the coordinate v

labeling the MTSs by v0 ¼ fðvÞ, where f is a monotonic
function of v? It is straightforward to check that

Xa � X0a ¼ _f�1Xa. Avector field�a which is everywhere
tangential to the MTSs and divergence-free on them satisfies
LX�

a ¼ 0 if and only if it satisfiesLX0�a ¼ 0. Therefore,
the ‘‘permissible’’ divergence-free vector fields �a selected
by Xa are the same as those selected by X0a, whence the
multipoles L�½S� of Eq. (3.2) are also the same.

C. Generalized multipoles

We can now readily combine the results of the last two
subsections to define the generalized geometric spin multi-
poles. We first introduce a vector field Xa ¼ 2br̂a þ Na on
H, where 2b is given by (3.3) and Na by (3.6) and (3.5).
Using it, we can single out the admissible weighting fields
�a: A vector field �a on H which is tangential to every
MTS, and divergence-free on it, is an admissible weighting
field if LX�

a ¼ 0. Note that every admissible vector field
can be obtained simply by fixing a MTS �S, and a
divergence-free vector field ��a thereon, and Lie dragging
it along Xa. Given an admissible weighting field �a and a
MTS S, we now define the spin multipole moments L�½S�
following Eq. (3.2):

L�½S� ¼ � 1

2

I
S
�a ~!ad

2V: (3.7)

By varying S we can study the dynamical evolution of
these multipoles. Our weighting fields �a are ‘‘time
independent’’ in the sense that LX�

a ¼ 0. Therefore the
multipole moments L�½S� derive their time dependence

solely from the time dependence of the horizon geometry
encoded in ~!a and the 2-sphere volume element.
Next, let us discuss the extension of the second set of

multipoles, Il;m, from axisymmetric horizons to generic

ones. For this we first note that any metric 2-sphere S
admits an Abelian Uð1Þ connection �a whose curvature
2-form is determined by the scalar curvature R of the
metric: ~D½a�b� ¼ ðR=4Þ�ab, where �ab is the area 2-form

of S. Therefore, one can think of repeating the above
procedure, and defining the other set of multipoles simply
by replacing the 1-form ~!a by �a in (3.2).
However, there is a subtlety. While ~!a is defined

globally on the 2-spheres S, the connection 1-form �a
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has to be defined in patches: Since
H
S
~D½a�b��abd2V ¼

ð1=2ÞHSRd2V ¼ 4�, the connection 1-form is globally

defined only on the nontrivial Uð1Þ bundle over S2 with the
first Chern class.4 But we can just fix a fiducial connection

�
�
a which is compatible with a round 2-sphere metric q

�
ab

whose area 2-form is the same as that of the given physical

metric qab on S. Then Ca :¼ �a � �
�
a is globally defined

on S with the property that ~D½aCb� ¼ ð1=4ÞðR� R
� Þ�ab,

where R
� ¼ 2=R2, where R is the area radius of S. Then, for

each permissible vector field �a on any MTS S of the
horizon, we can set

I�½S� ¼ 1

2

I
S
�aCad

2V

for any �a such that L��ab ¼ 0:

(3.8)

Although �
�
a is arbitrary, because each �a is divergence-

free, the integral is in fact independent of the choice of �
�
a

because
H
S R

�
d2V ¼ H

S R
�
d2V ¼ 8�, the Gauss invariant

of a 2-sphere.
Let us summarize. Given a generic DH H we have

introduced a family of vector fields Xa, unique up to a
rescaling by a function that is constant on each MTS. The
definition of this family is covariant and constructive:
Given any DH, one can construct this family using only
the structure that is already available. The diffeomor-
phisms generated by any of these Xa preserve the foliation
by MTSs. We then defined permissible weighting fields �a

onH; each�a is time independent, tangential to each MTS
and divergence-free on it. This family of �a refers only to
the geometric structure that is naturally available on H.
They generalize the weighting functions Yl;m used on

axisymmetric horizons. Given a permissible weighting
field �a, we use (3.2) and (3.8) to define geometric multi-
poles I�½S�, L�½S� on any MTS S. By varying S we track

its time development.
What if the DH under consideration is axisymmetric?

Then, as we saw in Sec. III B, the axial symmetry field
’a is guaranteed to be time independent, i.e., Lie dragged
by Xa. Now, by construction, LXR

2�ab ¼ 0 and,
since ’a ¼ R2�ab ~Db� with � satisfying

H
S �d

2V ¼ 0, it
follows that LX� ¼ 0. Therefore, the vector fields
’a

l;0
:¼ R2�ab ~DbPlð�Þ are all permissible in our general

setting. In this setting, they define multipoles via (3.8) and

(3.7). From (3.2) it is clear that this general definition
agrees with the definition introduced in [4]. Put differently,
in the axisymmetric case, the function � defined separately
on each cross section using the axial symmetry field ’a is
automatically time independent, i.e., satisfies LX� ¼ 0 in
the language of our general setting. Therefore, with the
identification �a ¼ ’a

l;0, the multipoles Ll;0½S� defined in

the axisymmetric case (2.4) coincide with the multipoles
L�½S� defined by the more general procedure, that does not

refer to axisymmetry at all.

D. Balance laws

On the DH, we have balance laws which express the
difference between the area radius (and in the axisymmet-
ric case also spin) associated with two different MTSs S1
and S2 and flux of energy (and angular momentum) across
the portion �H of the DH bounded by S1 and S2 [19,22]:

R2 � R1

2G
¼

Z
�H

jdRjTab�̂
a‘bd3V

þ 1

16�G

Z
�H

jdRjðj�ð‘Þj2 þ 2j�j2Þd3V; (3.9)

where as before �ð‘Þ
ab is the shear of the outward pointing

null normal ‘a to the MTSs and R is the area radius of the

MTSs, and where jdRj ¼ ðqabDaRDbRÞ1=2 and the vector
field �a tangential to each S is defined by

�a :¼ ~qabr̂crc‘b ¼ ~!a þ ~Da ln jdRj: (3.10)

For the horizon spin, we have [19,22]

J’½S2�� J’½S1�
¼�

Z
�H

�
Tab�̂

a’b þ 1

16�G
ðKab �KqabÞL’qab

�
d3V:

(3.11)

These two balance laws follow directly from Einstein’s
equations. On the conceptual side, they are significant
because (unlike, say, Hawking’s area theorem for event
horizons) they provide a detailed link between the changes
of physical quantities defined on S2 and S1 and energy and
angular momentum fluxes across the portion �H bounded
by them. In this respect, they are completely analogous to
the balance laws for the Bondi energy momentum and
angular momentum at null infinity. On the practical side,
because the quantities that appear in the integrand of the
right-hand side can be calculated independently of those
that appear on the left side of these equations, these bal-
ance laws can serve as internal checks on accuracy of
numerical simulations. We will now show that there are
balance laws associated with multipole moments that share
all these features.
As in Sec. III C, let us begin with the spin multipoles.

Note first that, apart from overall constants that are needed
for dimensional reasons, the spin multipole moment L�½S�

4In the language that is more familiar in the numerical rela-
tivity literature, we have a connection that acts on the complex
dyad ma, �ma on S which is orthonormal in the sense ~qabm

amb ¼
0 and ~qabm

a �mb ¼ 1: ~Damb ¼ i�amb. The Uð1Þ gauge freedom
corresponds to the local rotations of the dyad via ma � ei�ma,
where � is a function on S. Neither the dyad nor the connection is
globally defined on S. But we can define them in patches and in
the overlap region the two sets are related by a gauge trans-
formation, m0a ¼ ei�ma and �0

a ¼ �a � i ~Da�.
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of Eq. (3.7) is obtained simply by replacing the axial
Killing vector ’a in the definition of the horizon spin
[19,22]:

J’½S� :¼ � 1

8�G

I
S
~!a’

ad2V; (3.12)

with any permissible divergence-free vector field �a.
Therefore the balance law (3.11) readily generalizes to

L�½S2��L�½S1�
¼�

Z
�H

�
4�GTab�̂

a�bþ1

4
ðKab�KqabÞL�qab

�
d3V:

(3.13)

This generalization also has a direct analog at null infinity,
where one can introduce balance laws not just for the
4-momentum and angular momentum but for charges as-
sociated with any of the generators of the infinite dimen-
sional BMS Lie algebra [40–43]. Finally, we can also
obtain a differential balance law directly from the defini-
tion (3.2) of the spin multipole moments:

dL�

dv
¼ � 1

2

I
S
LXð ~!c�

c�abÞ

¼ � 1

2

I
S
½LXð ~!aÞ�a þ 2ð _R=RÞ ~!a�

a�d2V;
(3.14)

where we have used the fact that �a is a permissible
weighting field. The structure of the right-hand side of
this equation is quite analogous to that associated with
the ‘‘BMS fluxes’’ at null infinity [40–43].

As one might expect from Sec. III C, the situation is the
same for the other set of moments, I�½S�. One only has to

replace ~!a with �Ca ¼ �ð�a � �
�
aÞ:

dI�
dv

¼ 1

2

I
S
½LXðCaÞ�a þ 2ð _R=RÞCa�

a�d2V: (3.15)

IV. APPROACH TO AN AXISYMMETRIC
ISOLATED HORIZON

In this section wewill consider the physically interesting
situation in which a generic DH settles down to an axi-
symmetric IH. Then, on the IH portion we can introduce a
convenient basis ’a

l;m of divergence-free vectors using the

basis functions Yl;m made available by axisymmetry. By

transporting them along the canonical vector field Xa to the
DH portion we will obtain a convenient basis also on the
DH portion, thereby converting the multipoles I�, L�

defined in Sec. III to a set of numbers Il;m, Ll;m also on

the DH. These can be readily evaluated in numerical
simulations of black hole formation to study the approach
to equilibrium.

This section is of direct interest to numerical relativity
because (i) one expects the final IH in physical situations

to be the Kerr IH and therefore axisymmetric; (ii) these
moments are better suited to unravel universalities, if any,
in the approach to equilibrium; and (iii) in most circum-
stances it would suffice to track just the first few multi-
poles. Therefore, for convenience of this readership, we
have attempted to make this section self-contained.

A. The setting

Let us begin with a brief summary of the notation,
collecting in one place the terminology used to denote
the numerous fields that feature this analysis. Consider a
quasilocal horizon M with two parts: a DH H in the past
that is joined on to an IH at a 2-sphere cross section So (see
Fig. 1). We will assume that M is a three-dimensional,
Ckþ1 submanifold of space-time and the space-time metric
gab is C

k with k � 2. We will denote by qab the pullback of
gab toM; thus qab has signatureþ,þ,þ on the portion H
of M and 0, þ, þ on the portion �. The space-time
connection ra induces a natural connection on M which
we denote by Da. It satisfies Daqbc ¼ 0 on all of M.
The (future pointing) null normal to the IH � will be

denoted by �‘a. The second (also future pointing) null
normal to So will be denoted by �na. As noted below, these
null vector fields admit natural smooth extensions toH and
everywhere on M we choose them to satisfy the normal-

ization �‘a �na ¼ �2. Finally, we define a 1-form !a on all

of M via ta!a ¼ �ð1=2Þ �nbtara
�‘b for all ta tangential to

FIG. 1. A quasilocal horizonM. The past portion ofM consists
of a dynamical horizon H: This portion is spacelike and foliated
by marginally trapped surfaces S. �̂a is the unit timelike normal
to H and r̂a the unit spacelike normal within H to the foliation.
Although H is spacelike, motions along r̂a can be regarded as
time evolution with respect to observers at infinity. H joins on to
an isolated horizon � in the future, representing the equilibrium
state of the black hole. � is null, endowed with a preferred null
normal �‘a. The transition from H to � occurs at So.
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M. !a represents the rotational 1-form on � while, as
discussed below, on H it equals the ~!a defined in (2.4)
modulo a gradient which drops out of the expression of
multipole moments. We will denote the axial symmetry
vector field on the IH by ’a. But we do not assume that
the DH is axisymmetric. It is allowed to have arbitrary
distortions in its intrinsic and extrinsic geometry.

On the dynamical horizon H, we will denote the unit
normal to H in the space-time manifold ðM; gabÞ by �̂a

and the unit normal to the MTSs S within H by r̂a. Then
‘a ¼ �̂a þ r̂a and na ¼ �̂a � r̂a are the two null normals to
the MTSs, with ‘ana ¼ �2. Let the MTSs be the level
surfaces of a Ckþ1 function v. We will assume that So is the
uniform limit of MTSs and is thus labeled by v ¼ vo. One
can continue the foliation in the future on the IH such that

v is the affine parameter of the null normal �‘a. We will do

so. On H we set 2b ¼ jdvj�1 ¼ ðqabDavDbvÞ�1=2. The
area radius of the horizon cross sections will be denoted by
R; R increases monotonically with v and remains constant
on �. The extrinsic curvature of H within space-time
ðM; gabÞ is denoted by Kab. The intrinsic 2-metric on
the MTSs S is denoted by ~qab and its derivative operator
by ~Da. More generally, if there is an ambiguity in the
notation, we use a tilde to denote fields that are intrinsic
to the MTSs.

SinceM is spacelike in the past and null in the future, the
transition at So is somewhat subtle. Let us collect the basic
facts (from [19,31] and the Appendix) that are needed in
the analysis of multipoles.

(i) b2 admits a Ck limit to So and vanishes there.

(ii) On H we have �‘a ¼ b‘a and �na ¼ b�1nb. Thus,
while ‘a is well defined on H it diverges at So and

cannot be extended to�. ð �‘a; �naÞ, on the other hand,
are smooth on all of M.

(iii) The vector field Va :¼ 2br̂a on H admits a smooth

extension to � and equals �‘a on �. On all ofM, Va

can be regarded as an evolution vector field with
zero shift. Indeed, since VaDav ¼ 1 everywhere on
M, v serves as the affine parameter of Va. Finally,

b2 ¼ Va �‘bgab.
(iv) If we set _R ¼ dR=dv, then both _R and b are non-

zero on H but vanish on So and remain zero on �.
The field b2o :¼ b2= _R is nonzero and smooth on So.

(v) The rotational 1-form !a which is well defined
everywhere on M and the 1-form ~!a :¼ ~qa

bKbcr̂
c

defined on H are related by !a ¼ ~!a � ~Da lnbo.

B. Steps for numerical simulations

The general multipole moments defined in Sec. III are
somewhat abstract: Given any MTS S, the I�½S�, L�½S�
can be regarded as linear mappings from permissible
divergence-free vector fields �a on H to real numbers.
As noted in the beginning of this section, in physical
situations we expect H to join on to an axisymmetric
isolated horizon in the future, in fact the Kerr IH. We

can exploit this extra structure by first locating a preferred
basis ’a

l;m of divergence-free �a on � and then dragging

it along the preferred dynamical vector field Xa [of (3.3),
spelled out again below] to the DH portion H of M. Put
differently, we can now define the weighting functions
Yl;m on the axisymmetric IH and drag them down to H
along Xa, making them explicitly time independent.
Given this basis of weighting functions, one can now
replace the multipole moments I�½S� and L�½S� on H

with just a set of numbers Il;m½S�, Ll;m½S� which are well

suited to study, in an invariant manner, how the black hole
reaches its equilibrium in any one numerical simulation.
Furthermore, now one can also compare the results of two
different simulations since one just has to compare num-
bers Il;m½S�, Ll;m½S� associated with the MTSs S with the

same area. In practice the first few moments are likely to
contain the most interesting information on passage to
equilibrium.
Consider, then, a numerical simulations of a black hole

formation. The world tube of MTSs found after a common
horizon forms provides us with the 3-manifoldM of Fig. 1.
To extract multipole moments, one has to carry out the
following steps.
(i) In the portion H of M on which the area of the

MTSs increases monotonically, calculate the follow-
ing quantities: (a) the 3-metric qab, (b) the intrinsic
2-metric ~qab, (c) the area radius R of each MTS S, so
that the area of S is 4�R2, (d) the unit normal r̂a to
each S, and (e) the trace of the extrinsic curvature ~K
of each S within H.5

(ii) Find the 1-form ~!a :¼ ~qa
bKbcr̂

c on each MTS S.
This is the ‘‘seed’’ that will generate the (geometric)
spin moments Ll;m. Find the scalar curvature R of

the metric ~qab on each MTS S, which will serve as
the seed for the (geometric) mass moments Il;m.
Taking the required second derivatives may intro-
duce undesirable numerical errors (see, however,
[34]). If so, it may be more convenient to introduce
a complex orthonormal dyad ma, �ma on each S and
calculate the so-called ‘‘spin connection’’ �a via
~Damb ¼: i�amb. This 1-form �a can also serve as
the seed to calculate the second set of moments Il;m.

(iii) Now introduce a coordinate v on M such that the
MTSs are the v ¼ const surfaces and the vector
field Va ¼ jdvj�1r̂a � 2br̂a smoothly becomes

the null normal �‘a to the IH in the future region
of M.

5In numerical simulations, one solves the initial value problem
using a one-parameter family of Cauchy surfaces �t and locates
the outermost marginally trapped surface St on each �t. The DH
H is the world tube of these 2-surfaces. Therefore, fields which
are naturally available refer to �t and St and some extra steps are
necessary to extract the fields such as qab and r̂a we need here.
These are described in Sec. III of [4]; see in particular Eqs. (3.3),
(3.5), (3.9), and (3.13) in that section.
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(iv) In the next step, construct the dynamical vector
field Xa (that will be used to transport the weighting
functions Yl;m from the IH to the DH). On each

MTS S, find the function g via (3.5):

~q ab ~Da
~Dbg ¼ �ð2b ~K � 2 _R=RÞ andI

S
gd2V ¼ 0

(4.1)

and define the shift field Na via Na ¼ ~qab ~Dbg.
Then the dynamical vector field Xa is given by
Xa ¼ Va þ Na. (As we approach the IH, g
and Na tend to zero and Xa joins on smoothly

with �‘a.)
(v) On the 2-surface So where the DH H joins on to the

IH � (or anywhere to its future), find the axial
Killing field ’a, e.g., using the algorithm described
in [21,32–35]. In practice, one would expect the
geometry to become axisymmetric within numerical
errors already at late times on the DH and one can
then find ’a on that MTS without having to locate
So. On the MTS S on which ’a is found, by the
standard procedure developed in [4] using [3], find
the basis functions Yl;m (defined by the canonical

‘‘round’’ metric determined by ’a and the ~qab on
that MTS).

(vi) Drag these weighting functions to any MTS S of
interest via LXYlm ¼ 0. Construct the multipole
moments Ll;m on that S using (3.2):

Ll;m ¼ � 1

2

I
S
ð�ab ~DbYl;mÞ ~!ad

2V

¼ � 1

2

I
S
ð�ab ~DbYl;mÞ!ad

2V: (4.2)

Thus, one has to evaluate either the 1-form ~!a that
refers to the extrinsic curvature Kab of H in the
four-dimensional space-time, or the rotational

1-form !a that refers to �‘a and �na, whichever is
numerically easier. Next consider the moments Il;m.
For l ¼ 0, we have I0;0 ¼ 2�, a topological invari-
ant. For l � 0, we again have two avenues, given in
the following two equivalent definitions:

Il;m :¼ 1

4

I
S
RYl;md

2V

¼ 1

2

I
S
ð�ab ~DbYl;mÞð�a � �

�
aÞd2V; (4.3)

where �
�
a is a fiducial connection; we can set

�
�
a ¼ �ð1=R2Þ cos �@a� in the coordinates used

to express the Yl;m. The second form may be more

helpful if there are large numerical errors in
computing the scalar curvature R. Finally, the

mass and spin multipoles Ml;m and Jl;m can be

constructed by multiplying these geometric multi-
poles with appropriate dimensionful factors
[3,4,22].

This six-step procedure enables one to compute the
geometric multipole moments and study their evolution
during the highly dynamical phase immediately after the
formation of the common horizon. Computing these
moments in examples is likely to bring out patterns in the
way black holes shed their hair and approach the final
equilibrium state, which in turn may enable one to uncover
any universalities this process may have. In particular, on
each MTS S the procedure provides a spin vector since
generically L1;m will be nonzero even when m � 0. The
‘‘direction’’ of the spin vector can change during the
dynamical phase and the black hole would shed the x and
the y components of this spin vector entirely as it reaches
equilibrium. Does this process simply vary from case to
case, depending strongly on the structure of the common
horizon at its birth, or is there some underlying law that
relates it to, say, the angular momentum radiated away to
null infinity?
Note that all the moments are anchored in the structure

provided by the final equilibrium state of the black hole.
The change in the mass dipole, for example, tells us how
the black hole loses its 3-momentum with respect to its
final equilibrium state. In fact a natural ‘‘home’’ for the
multipoles is provided by the tangent space at the point iþ
at future timelike infinity: The Il;m (or Ll;m), for example,

can be naturally regarded as constituting an lth-rank, trace-
free, symmetric tensor in the tangent of iþ, all of whose
indices are orthogonal to the final Bondi 4-momentum of
the black hole.
Finally, as discussed in Sec. III D, there are balance laws

that bring out the fact that the multipoles evolve in time in
response to fluxes of physical fields across the DH H. In
Sec. III D we considered the multipole moments weighted
by permissible divergence-free vectors �a. We now have a
preferred basis �a

l;m constructed from spherical harmonics

Yl;m, given in Eq. (3.1). Therefore we can rewrite the

balance laws using the Yl;m as weighting fields. Given

two MTSs S1 and S2, the difference between the spin
multipoles associated with them can be expressed in
terms of a flux across the portion �H of H, bounded by
S1 and S2:

Ll;m½S2� � Ll;m½S1�
¼ �

Z
�H

�
4�GTab�̂

a�bcDcYl;m

þ 1

2
ðKab � KqabÞDað�bcDcYl;mÞ

�
d3V: (4.4)

Similarly, for the Il;m, we have the balance law:
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Il;m½S2� � Il;m½S1�

¼
Z
�H

jdRj
2R

ðj�ð‘Þj2 þ 2j�j2 þ 16�GTab�̂
a‘bÞYl;md

3V

þ
Z
�H

jdRj
�
1

4
Yl;m@RRþ 1

R
�a@aYl;m

�
d3V: (4.5)

On the IH, the flux integral on the right vanishes identically
and the multipoles are conserved. On the DH portion, on
the other hand, these balance laws could provide useful
checks for numerics since the left and right sides refer to
entirely different fields and they are equal only when
Einstein’s equations are satisfied.

1. Remarks

1. Throughout this analysis we have restricted ourselves
to the dynamical horizonH of the final black hole. Suppose
we begin with two widely separated black holes which
coalesce. Before the merger, we would have two distinct
DHs, say, H1 and H2. In the distant past these would join
on to two distinct IHs �1 and �2, each of which would be
well modeled by a Kerr IH and hence axisymmetric.
Therefore, using the procedure described in this section,
on each of these two quasilocal horizons, one would be
able to define multipole moments Il;m and Ll;m separately,

where the required weighting functions Yl;m would now be

transported from�1 toH1 and from�2 toH2. In particular,
one would be able to study the evolution of the spin L1;m of

each individual black hole. However, at present the DH
framework cannot describe the merger phenomenon sim-
ply because H1 [H2 [H is not a DH. Therefore, there is
no simple relation between the two sets of multipoles prior
to the merger and the set of multipoles after the merger.

2. Nonetheless, using the structure available at null
infinity one can discuss global balance laws. Recall first
that the total Arnowitt-Deser-Misner energy-momentum is
well defined at the point io at spatial infinity [44], or,
equivalently, in the distant past of the future null infinity
Iþ [45]. Denote it by Pa

initial. (Note that P
a
initial � Pa

1 þ Pa
2

in general, e.g., because of the potential energy in the
system.) Similarly, in the distant future, the mass monopole
of the IH determines the final Bondi 4-momentum Pa

final.

Both can be thought of as living in the four-dimensional
vector space dual to the space of BMS translations.
Therefore, it is meaningful to consider their difference
Pa
initial � Pa

final and this is precisely the Bondi 4-momentum

radiated across Iþ in the dynamical coalescence for which
we have an independent formula [45].

The situation with angular momentum is similar but
more subtle. The total (Lorentz) angular momentum of
the system Mab

initial is a well-defined mapping [42,43] from

the Lorentz Lie algebra of the BMS Lie algebra, picked out
by the fact that the Bondi news goes to zero as one
approaches io [46,47]. Again, Mab

initial is not simply related

to Sa1 þ Sa2 , e.g., because it also contains a contribution due

to the orbital motion. The final angular momentum Mab
final,

on the other hand, is determined entirely by the final spin of
H because in the distant future we only have a single black
hole. However, it refers to a distinct Lorentz sub-Lie
algebra of the BMS Lie algebra now selected by the fact
that the Bondi news goes to zero in the distant future. (The
two Lorentz subalgebras agree only in the special circum-
stance in which the integral of the Bondi news along every
generator of Iþ vanishes [46,47].) Therefore it is not
meaningful to take the difference Mab

initial �Mab
final. Rather,

in place of Mab
initial, we have to consider the angular

momentum �Mab
initial, again evaluated in the distant past of

Iþ but associated with the Lorentz subgroup picked out by
the Kerr geometry in the distant future. This �Mab

initial is well

defined but not the same as Mab
initial even conceptually. The

difference �Mab
initial �Mab

final is well defined because both

quantities now refer to the same Lorentz subgroup of the
BMS group. Furthermore, by the balance laws [42,43], this
is precisely the angular momentum (associated with the
common Lorentz group) radiated across Iþ.
To summarize, the balance laws are meaningful both for

the 4-momentum and angular momentum, although in the
case of angular momentum, to compare ‘‘apples with
apples,’’ we have to drag the weight functions correspond-
ing to the canonical Lorentz group in the distant future of
Iþ to distant past. Thus, there is no simple relation
between the initial spins S1 and S2 of the individual black
holes, the final spin S of the common black hole and the
angular momentum radiated away across Iþ. For the
4-momentum, we do have a balance law relating Pa

final,

Pa
initial and the 4-momentum radiated away across Iþ.

However, unless Pa
initial � Pa

1 þ Pa
2 , there is no simple

relation between the initial 4-momenta of individual black
holes and the 4-momentum of the single, final black hole.

C. Comparisons

We will conclude Sec. IV with a discussion of the
relation of this construction with similar ideas in the
literature.
As we showed in Sec. III, ours is a genuine general-

ization of the definition [4] used in cases when the DH is
axisymmetric. The generalization is both technically non-
trivial and conceptually important because in the early
stage of the postmerger phase, the DH is generally very
far from being axisymmetric. We allowed the DH to be
generic and assumed axisymmetry only for the IH repre-
senting the final equilibrium. Nonetheless, if the entire
quasilocal horizon is axisymmetric as in [4], then on any
MTS S our weighting functions Yl;m coincide with those

determined intrinsically on S using the restriction of the
axial symmetry ’a to S.
There is another generalization in the literature, due to

Owen [5]. That definition has the nontrivial feature that,
while it uses only the DH portion of M without reference
the final IH as in Sec. III, the multipoles are a set of
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numbers as in Sec. IVB. This is achieved using a construc-
tion that is local to eachMTS S of the DH. In particular, the
weighting functions used in [5] are eigenfunctions of cer-
tain elliptic operators constructed entirely from the geome-
try of the MTS; one does not transport them from a final
axisymmetric state. For the mass moments, the elliptic
operator is just the intrinsic Laplacian (determined by the
physical metric ~qab) but for the spin moments a different,
fourth-order elliptic operator is used to ensure that, if the
DH is axisymmetric, the general procedure provides the
well-established spin vector. These multipoles are distinct
from ours and, generically, in the axisymmetric case they
are different also from the multipoles introduced in [4].

The main differences from our definition are the follow-
ing. First, while we use the same weighting functions for
both sets of multipoles, Owen used different weighting
functions. The second and more important difference is
that we transport the weighting functions by dragging them
from the final equilibrium configuration so that they are
constant along the dynamical vector field Xa. By contrast,
Owen’s weighting functions are determined by the local,
time-varying geometry. Owen’s construction has the ad-
vantage of being ‘‘local in time,’’ i.e., being covariant with
respect to the geometry of each individual MTS. Our
procedure is covariant only with respect to the geometry
of the quasilocal horizonM as a whole. On the other hand,
because our weighting functions on any MTS are ‘‘the
same’’ as those in the final equilibrium state, our multi-
poles directly capture the dynamics of the horizon geome-
try encoded in R and d ~! in the passage to equilibrium;
one compares apples with apples.

To clarify this issue of time dependence, it is useful to
recall the conceptual parallel between the definition of
multipoles on a DH and that of the ‘‘BMS charges’’ at
null infinity [40–43] we used in the remark at the end of
Sec. IVB. The BMS charges are integrals over 2-sphere
cross sections of null infinity of seed physical fields,
weighted by functions that refer to the BMS symmetry
corresponding to the charge. (In this analogy, the cross
sections of null infinity play the role of the MTS S on the
DH, the seed physical fields correspond to ourR, d ~! on S,
and the weighting functions to the Yl;m used here.) In the

BMS case, given any cross section of null infinity, using its
intrinsic geometry, one can find weighting functions cor-
responding to a specific Lorentz sub-Lie algebra of the
BMS Lie algebra and construct six charges that represent
the Lorenz-angular momentum at (the retarded instant of
time represented by) that cross section. However, generi-
cally, different cross sections select different Lorentz sub-
Lie algebras of the BMS Lie algebra and therefore it is not
meaningful to compare the resulting Lorentz charges on
one cross section to that on another. To compare apples
with apples, one has to use the same Lorentz subgroup
of the BMS group. This is achieved by appropriately
transporting the generators (or weighting functions)

corresponding to the Lorentz subgroup used on the first
cross section to the second cross section and carrying out
the 2-sphere integral with these transported generators
which, in general, are distinct from those determined
intrinsically by that cross section. Thus, the notion of the
‘‘same’’ Lorentz sub-Lie algebra refers to the structure of
the three-dimensional null infinity as a whole; it cannot be
captured by working locally on each cross section. And it is
only when the same Lorentz generators are used that the
change between the two sets of Lorentz charges refers to
the change in the same physical quantities. There is no
‘‘contamination’’ due to a change in the weighting function
itself, which would have occurred if we had used the
generators selected by each cross section separately.
On quasilocal horizons, our procedure embodies this

spirit in that our transport of weighting fields Yl;m from

the final isolated horizons � to the dynamical horizon H is
analogous to the transport of the Lorentz generators which
is necessary for comparisons. Therefore, our multipoles
Il;m½S�, Ll;m½S� on any MTS S of the DH can be mean-

ingfully compared to those in the final equilibrium state.
They are thus well adapted to meet the goal of this paper:
capturing the physics of dynamics that makes the black
hole shed its hair in its approach to equilibrium. Owen’s
goal was different. The focus there was to investigate the
structure of the final state itself and the analysis provided
evidence that it is Kerr. To meet that goal, it is not
necessary to transport the weighting fields.
Finally, over the last two years there has been notable

interest in numerical simulations whose goal is to visualize
the strong field regime around black holes in terms of the
so-called ‘‘tendex and vortex lines’’ [6,7]. The idea is to
repeat the strategy that has been so successful in electro-
dynamics where pictorial representations of the magnetic
lines of force often provide good intuition for the compli-
cated dynamics, e.g., in problems involving neutron stars.
In the case of black holes, the gravitational lines of force
are obtained using the eigendirections of the electric and
magnetic parts of the Weyl tensor:

Eab ¼ Cacbd~�
c~�d and

Bab ¼ ?Cacbd~�
c~�d ¼ 1

2
�ac

pqCpqbd~�
c~�d;

(4.6)

with respect to a space-time foliation to which ~�a is the unit
timelike normal field. In the Kerr space-time, one can use
natural foliations, the lines cross the MTSs, and their visual
properties provide intuition for physical effects of the near-
horizon, strong gravitational field. These images are also
useful when one considers perturbations around Kerr.
However, in a truly nonlinear, dynamical situation, e.g.,
at the formation of the common horizon during generic
black hole collisions, there are no natural space-time folia-
tions. Since the lines of force are tied to foliation choices
that are made by extrapolating one’s intuition based on the
stationary Kerr geometry (and perturbative dynamics
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thereon) these visual images cannot be used to draw reli-
able conclusions about the physics of dynamical processes
in the strong field, near-horizon geometry. Multipole
moments introduced in this paper serve a complementary
role. In particular, it would be instructive to develop pro-
grams to visualize the distortions in the geometry and the
angular momentum content of the dynamical horizon
membrane. In Kerr space-times, the geometrical intuition
provided by these visualizations would not be as rich as
that provided by vortexes and tendexes where the lines of
force extend beyond the horizon, all the way to infinity.
But in the strong field and highly dynamical regime, the
intuition these multipoles provide would capture a more
accurate depiction of the actual, invariant physics.

V. DISCUSSION

There is growing evidence that, in general relativity, the
final equilibrium state of black hole horizons is extremely
well approximated by the Kerr horizon. However, imme-
diately after its formation, the common horizon that sur-
rounds all matter and individual black holes is highly
dynamical and its evolution varies from case to case. In
this paper we have introduced multipole moments to gain
physical insights into the strong field dynamical processes
that efficiently smoothen all the distortions, leading to an
universal final geometry.

We presented two sets of ideas. The first, discussed in
Sec. III, is most useful on DHs H. It associates with each
MTS S of H multipole moments I�½S�, L�½S�, where the

weighting functions� are a set of time-independent vector
fields �a which are tangential to each S and divergence-
free on them. On any given DH, the evolution of these
multipoles captures the dynamics of the transition to equi-
librium in a coordinate- and slicing-independent fashion.
The second idea, presented in Sec. IV, is applicable only in
a setting in which the DH is joined on to an axisymmetric
IH in the future. However, from physical considerations,
this is not a genuine restriction because, as we just noted,
one expects the final equilibrium state to be the Kerr IH. In
this case, one can introduce a convenient basis ’a

l;m in the

space of weighting fields�a, labeled by spherical harmon-
ics Yl;m that are determined onH in an invariant fashion by

the future axisymmetric structure. Consequently, now the
multipole moments on anyMTS S are just a set of numbers
Il;m½S�, Ll;m½S�. As we saw in Sec. IVB, their definitions

are well suited for numerical simulations. Not only can one
use them to monitor dynamics on any one DH, but they
also enable one to compare results of distinct simulations.
(This is not possible with I�½S�, L�½S� because one does

not have a canonical identification between the divergence-
free vector fields �a on the two DHs obtained in two
distinct simulations.) Also, these multipoles provide tools
to physically interpret the dynamical process. For example,
L1;m½S� provides a well-defined notion of the spin vector

during the dynamical phase. Tracking the evolution of the

direction of the spin is likely to provide new insights. More
generally, by explicitly evaluating a few low l multipoles
and monitoring their evolution, numerical simulations
should be able to find any patterns or universalities in the
manner black holes shed their hair. We also provided
formulas for fluxes of these multipoles. Since they are
strict consequences of field equations, they can serve as
analytic checks on numerics in the strong field and highly
dynamical regimes.
This framework is well suited to analyze a number of

issues. Recall first that, over the years, perturbative inves-
tigations have provided strong indications that the passage
to equilibrium may have some universal features. In par-
ticular, Price’s law and increasing evidence in its favor
[8–10], the success of the close limit approximation of
Price and Pullin [11,12], and the universality of quasinor-
mal ringing [9] all suggest that, although the strong field
dynamics after the formation of a common horizon is
highly nonlinear, it has a deep underlying simplicity.
However, to date the investigations in the strong field limit
have been restricted to spherical symmetry [10]. In this
case, there is no gravitational radiation, the DH has no hair,
and its dynamics is rather simple and fully understood [48].
The central questions concerning the dynamical processes
that wash away the distortions and nontrivial angular
momentum structure of the DH simply do not arise.
Therefore, numerical studies of the time evolution of mul-
tipoles Il;m½S�, Ll;m½S� in the general case, far removed

from spherical symmetry, could lead to fresh and interest-
ing insights. As the DH reaches its equilibrium, is there a
correlation between the rate at which it sheds its multipoles
and, say, Price’s law? For example, recent numerical simu-
lations suggest that the end point of the collision of two
spinning black holes can be a Schwarzschild black hole
[49]. In this case the DH would have to lose all its multi-
poles except the mass monopole. Is there a pattern to how
they are lost? Is it the case, as one would intuitively expect,
that the high l multipoles die quickly while the low l are
dissipated more slowly? Is there in fact a quantitative,
universal behavior? Another example is provided by the
‘‘antikick’’ that is associated with the postmerger phase of
dynamics of binary black holes [14]. There are general
arguments to suggest that it should be possible to account
for this phenomenon in terms of the behavior of the mass
monopole and dipole of the DH that forms after coales-
cence. Again, calculation of these moments and investigat-
ing their dynamics are likely to provide new physical
insights.
The physical process involved in the manner equilibrium

is reached is not directly intuitive because the DH lies
inside the event horizon. Consequently, it does not radiate
away its multipoles to infinity. Rather, distortions in the
geometry and the angular momentum structure of the DH
are washed out by the radiation that falls into the black
hole. But it appears that there is a correlation between what
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falls into the DH and what gets radiated away to null
infinity. The qualitative picture is that there is some radia-
tion in the potential just outside the event horizon, some of
which falls into the black hole and the rest escapes to
infinity ‘‘remembering’’ the way it was correlated. At first
this scenario can seem rather far-fetched because it is
difficult to imagine processes responsible for this memory
retention. But the paradigm is supported by several recent
simulations [13–16]. Multipole moments defined here
should help further develop these ideas.
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APPENDIX: LIMITING BEHAVIOR OF
PHYSICAL FIELDS

In this Appendix we sketch the limiting behavior of
various fields on the DH H, as one approaches the tran-
sition 2-surface So that joins H with a nonextremal IH �.
These limits were used in Secs. III and IV. They also
provide guidance for numerical simulations in that they
separate fields which are likely to be easier to evaluate
numerically from those that would be challenging because
they involve ratios of quantities, both of which vanish or
diverge in the limit. Finally, this discussion of the limiting
behavior should be helpful for further analytical work on
the approach to equilibrium.

Our notation is the same as in the main paper; see, e.g.,
Sec. IVA.

1. The intrinsic and the extrinsic
geometry of the DH

Since the DH H is foliated by MTSs S, it is natural
to decompose the intrinsic metric qab and the extrinsic
curvature of H as follows:

qab ¼ ~qab þ r̂ar̂b; (A1)

Kab ¼ A~qab þ Sab þ 2 ~!ðar̂bÞ þ Br̂ar̂b; (A2)

where, as in the main text, r̂a is the unit normal to the
MTSs S, ~qab is the intrinsic 2-metric on each S, Sab is a
symmetric trace-free tensor field on S and ~!a is a 1-form
field on S. We will investigate the limiting behavior of
these fields as we approach the limiting MTS So that joins
H to an IH �.

As in the main text, let us introduce a time coordinate v
on the entire quasilocal horizon M such that the MTSs are
the level surfaces of v and v ¼ vo on So. Thus the portion

v < vo on M corresponds to the DH and the portion
v > vo corresponds to the IH. We are interested in the
behavior of various geometric fields as v approaches vo

from below. We will assume that on the IH portion ofM, v

is the affine parameter of the null normal field �‘a, i.e.,
�‘a@av ¼ 1. Given such a function v, there is a unique
vector field Va on M such that (i) on the DH, Va is normal
to each MTS S and (ii) satisfies Va@av ¼ 1 on all of M.

Thus, Va is a smooth extension of �‘a on � to all of M.
On H, Va is proportional to r̂a:

Va ¼ jdvj�1r̂a ¼: 2br̂a; with 2b ¼ _RjdRj�1; (A3)

where a ‘‘dot’’ will denote the derivative with respect to v.
It then follows that V 	 V ¼ 4b2. Since Va is smooth and

coincides with �‘a on �, we conclude that b2 is smooth,
vanishes at v ¼ vo, and remains zero for v > vo.
Since the function b features in the relation between the

natural null normals ‘a, na adapted to H and the natural

null normals �‘a, �na adapted to �, its limiting behavior
dictates that of several fields. Let us therefore make a small
detour to specify the ‘‘rate’’ at which b vanishes as we
approach v ¼ vo from below. Note first that the rate of
change of area AS of a MTS S on H can be expressed
as _AS ¼ H

S LVð�abÞ. Using the identity LV�ab ¼
�b2�ð �nÞ�ab, and expressing _AS in terms of the rate of

change _R of the area radius, we obtain 8�R _R ¼
�H

Sv
b2�ð �nÞd2V. Therefore,

lim
v!vo

I
Sv

b2

_R
�ð �nÞd2V ¼ �8�Ro; (A4)

where Ro is the area radius of So. Now, the integrand in
(A4) is strictly negative for v < vo and �ð �nÞ has a well-

defined limit �ðoÞ
ð �nÞ on So. Let us assume that we are in a

generic case and the limit is nonzero (a condition satisfied
on the Kerr isolated horizon). Then it follows, e.g., by
Taylor expansion of fields in v, that

bo ¼ bð _RÞ�1
2 (A5)

is a well-defined function on H admitting a regular non-
vanishing limit to So. We can thus conclude that b2 van-
ishes at the same rate as _R: b2 � _Rb2o as v tends to vo. As
an example, in the Vaidya collapse, if one uses for v the
standard ingoing Eddington-Finkelstein coordinate, then

bo ¼ 1=
ffiffiffi
2

p
.

Let us return to the expression (A1) of the metric qab on
M. Since b vanishes as v tends to vo, and Va joins on

smoothly with �‘a on � at v ¼ vo, it follows from Eq. (A3)
that r̂a diverges on So. On the other hand, since

r̂ a ¼ 2b@av (A6)

ABHAYASHTEKAR, MIGUEL CAMPIGLIA, AND SAMIR SHAH PHYSICAL REVIEW D 88, 064045 (2013)

064045-14



on H, we conclude that r̂a vanishes at So. Finally, the
2-metric ~qab smoothly approaches the intrinsic metric
at So.

Next, let us consider the expression (A2) of the extrinsic
curvature Kab of H. Since Va ¼ 2br̂a ¼ bð‘a � naÞ on H,

and Va joins on smoothly with �‘a on �, it follows that we

can smoothly extend �‘a and �na from � to H via

�‘ a :¼ b‘a and �na :¼ b�1na (A7)

(where we have used the fact that these null vector fields

are normalized via ‘ 	 n ¼ �2 ¼ �‘ 	 �n). Now the part Sab
of Kab in Eq. (A2) is related to the shear tensors of these
null vector fields:

Sab ¼ 1

2
ð�ð‘Þ

ab þ �ðnÞ
ab Þ �

1

2
ð�ð‘Þ

ab þ b�ð �nÞÞ: (A8)

Since �na is smooth on all of M, on So we have Sab ¼
ð1=2Þ�ð‘Þ

ab . Now, on the DHs, we have the following identity

that arises directly from the constraint equations onH [19]:

1

2G
¼

I
S

�
1

16�G
ðj�ð‘Þj2 þ 2j�j2Þ þ Tab�̂

a‘b
�
d2V (A9)

on any MTS S, where �a is a vector field tangential to S,
given by Eq. (3.10):

�a :¼ ~qabr̂crc‘b ¼ ~!a þ ~Da ln jdRj: (A10)

Since each term in the integrand of (A9) is positive defi-
nite, by Taylor expanding the fields in v we conclude that
Sab admits a regular limit to So.

Next, consider the term ~!a in the expansion (A2) ofKab.
It is easy to check that ~!a ¼ �ð1=2Þ~qabncrb‘c. On the
other hand we also have the corresponding 1-form !a

associated with the barred null vectors �‘a, �na, namely,

!a ¼ �ð1=2Þ~qab �ncrb
�‘c, which is well defined on all of

M. On H, the two are related by

!a ¼ ~!a þ ~Db lnb: (A11)

Recall, further, that b ¼ bo
ffiffiffiffi
_R

p
, where bo has a well-

defined limit to So which is nowhere zero. Since _R is
constant on any MTS S, on H we can rewrite (A11) as

!a ¼ ~!a þ ~Db lnbo; (A12)

which shows that ~!a admits a well-defined limit to So.
Finally, let us examine the coefficients A and B in the

expression (A2) of the extrinsic curvature. We have

A ¼ 1

2
~qabra�̂b and B ¼ r̂ar̂bra�̂b: (A13)

Writing �̂a in terms of the null normals and using the fact
that each S is a MTS, we find A ¼ �ðnÞ=4 ¼ b�ð �nÞ=4, and
so A ! 0 as v ! vo. To explore the limiting behavior of B,
let us rewrite it as

B ¼ 1

2b
ð	V � Va@a ln bÞ; where 	V :¼ � 1

2
�nbV

araV
b:

(A14)

Note that 	V is the surface gravity on DHs [19,31] which,
at So, becomes the surface gravity 	 �‘ of the IH which is
positive because of our assumption that � is a nonextremal
IH. Thus, 	V has a well-defined limit to So. However,
because of the overall 1=b factor, for B to have a well-

defined limit, Va@a ln b ¼ _b=b must approach 	 �‘ > 0 at a
suitable rate. But this would imply b� exp	 �‘ðv� voÞ as
v approaches vo which is impossible since b ¼ 0 on So.
Thus, B diverges in the limit as the DH approaches
equilibrium.
This concludes the discussion of the limiting behavior

of qab and Kab as v ! vo from below. In Eq. (A1), r̂a
tends to zero and ~qab has a well-defined limit which
equals the intrinsic metric on So induced by the IH struc-
ture. In Eq. (A2), A tends to zero, and Sab and ~!a have
well-defined limits. However, B diverges in the
limit. This implies in particular that the trace K ¼
qabKab of the DH also diverges as we approach the isolated
horizon.
The divergence of K has the following important con-

sequence. Since the dynamical horizons are spacelike, one
can use them as partial Cauchy surfaces for the initial value
problem of Einstein’s equations. If one could find a general
solution to the constraint equations for ðH; qab; KabÞ, one
would have a complete description of all DHs that could
ever arise in the formation of a black hole. In the spheri-
cally symmetric case, thanks to the systematic analysis of
[48], this problem has been solved and the initial value
equations have been reduced to a single, second-order
linear ‘‘master equation.’’ As a result, one can locally
construct general spherically symmetric space-times ad-
mitting a DH and also locate the spherical DH in any given
spherically symmetric space-time [48]. It is tempting to try
to extend this analysis to general dynamical horizons. But
because the diffeomorphism and the Hamiltonian con-
straints are coupled in a complicated fashion in the general
setting, the standard strategy to solve initial value con-
straints is to first decouple them by assuming constancy
of the trace K of the extrinsic curvature Kab. However,
because K in fact diverges as one approaches So, unfortu-
nately this strategy cannot be used to solve the initial value
problem for general DHs that approach equilibrium. It
would be very interesting to devise another strategy by
exploiting the fact that the initial data we seek are very
special, in that the 3-manifold H admits a foliation by
MTSs.

2. Constraint equations

We will conclude our discussion of the behavior of
fields on H as H approaches equilibrium by listing a few
consequences of the field equations.
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On the DH, by projecting the constraint equations along
and orthogonal to the MTSs and using 2r̂a ¼ ‘a � na the
initial value equations can be written as

2Gab�̂
a‘b ¼ 16�GTab�̂

a‘b; (A15)

2Gab�̂
anb ¼ 16�GTabn

a‘b; (A16)

Gbc�̂
b~qca ¼ 8�GTbc�̂

b~qca: (A17)

Equation (A15) implies [19]

R� j�ð‘Þj2 � 2j�j2 þ 2 ~Da�
a ¼ 16�GTab�̂

a‘b; (A18)

and by integrating this equation on any MTS S we obtain
Eq. (A9) which, as we have already noted, implies that

�ð‘Þ
ab , �a and Tab�̂

a‘b have well-defined limits as we

approach v ¼ vo from below. Therefore R also has a
well-defined limit and, as one would expect, the limit is
just the scalar curvature of the 2-metric ~qab on So.
Furthermore, (A9) implies that the limiting values of

�ð‘Þ
ab , �

a and Tab�̂
a‘b cannot all vanish. In fact, if the IH

� that H approaches is generic in the precise sense spelled
out in [18]—and this is in particular the case if it is the Kerr

IH—then one can prove a stronger result: �ð‘Þ
ab and Tab‘

a�b

cannot both vanish [50]. On the other hand, the energy flux
across any MTS is dictated by these fields and that across
any 2-sphere cross section of � is zero. But there is no

conflict because, even if �ð‘Þ
ab and Tab‘

a�b cannot both

vanish on So, the energy flux across So does vanish because
it is given by [19]

Eflux½S�¼
I
S
jdRj

�
1

16�G
ðj�ð‘Þj2þ2j�j2ÞþTab�̂

a‘b
�
d2V

(A19)

for any MTS S and jdRj vanishes in the limit.
Let us now turn to Eq. (A16). By expressing the fields in

terms of those which have manifestly well-defined limits as
v ! vo, we obtain

� b2

2
�2

ð �nÞ þ Va@a�ð �nÞ þ 	V�ð �nÞ � b2j�ð �nÞj2

� 2 ~Da!
a � 2j!j2 þR ¼ 16�GTab�̂

anb; (A20)

which reduces to

L �‘ð�ð �nÞÞ þ 	 �‘�ð �nÞ � 2 ~Da!
a � 2j!j2 þR

¼ 8�GTab
�‘a �na; (A21)

at So. This is precisely one of the field equations on the IH
side. Thus, the field equation under consideration is
automatically continuous across the transition surface. It
does not further constrain the limiting behavior of geomet-
rical fields as the horizon attains equilibrium.
Finally let us examine the projection (A17) of the vector

constraint into the MTSs. Again, we can express all fields
in terms of those which are manifestly smooth at So to
obtain

� 1

4b
~Daðb2�ð �nÞÞ � 1

2
b�ð �nÞ�a þ 1

b
~DcðbSacÞ

þ 1

2b
ðLV!a � ~Da	VÞ ¼ 8�GTbc�̂

b~qca: (A22)

The limit of this equation is somewhat subtle since it
contains quotients of vanishing quantities. Moving these
terms to the right side and taking the limit, we obtain

1

bo
~Dcðbo�ð‘Þ

ac Þjv¼0

¼ lim
v!0

�
1

b

�
8�GTbc

�‘b~qca�ðLV!a � ~Da	VÞ
��
: (A23)

Since the left side is well defined on So, we conclude the
numerator on the right side must vanish in the limit. This is
in complete agreement with the equations on the IH side,
which tell us that each term in the numerator vanishes
identically on the entire IH. What we learn from
Eq. (A23) is that the numerator on the right side must
vanish at a rate equal to or faster than b.
We will conclude with an observation pertaining to the

physically most interesting case in which vacuum equa-
tions hold on the IH �. Then, if the IH horizon is generic,

our discussion of Eq. (A15) implies that �ð‘Þ
ab must be

nonzero on So. This in turn implies that the left side of
(A23) is necessarily nonzero.6 Therefore we conclude that

(LV!a � ~Da	V) goes to zero as
ffiffiffiffi
_R

p
. Consider now the

case of a Ck transition, that is, when M is Ckþ1 and the

space-time metric is Ck. The vector field �‘a on M is then
Ck, which implies that (LV!a � ~Da	V) is Ck�1.
Therefore, in local coordinates, it vanishes as �vk or
faster. Similarly, b2 is Ck and so _R� vn with n � k� 1.
But the condition that the ratio in (A23) is finite implies
that actually n � 2k. Thus b and R are smoother than what
one might initially expect.

6For symmetric trace-free tensors Aab on S, ~DbAab ¼ 0 )
Aab ¼ 0. This follows from the fact that there are no harmonic
1-forms on 2-spheres. Since Aab can be expanded as Aab ¼
~DaXb þ ~DbXa � ð ~DcX

cÞqab for some Xa, if ~DaAab ¼ 0, we
have ~DbAab ¼ ðdþ dyÞ2Xa ¼ 0. This implies Xa—and there-
fore Aab—must vanish.
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