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The Kerr metric is one of the most important solutions to Einstein’s field equations describing the

gravitational field outside a rotating black hole. We thoroughly analyze the curvature scalar invariants to

study the Kerr spacetime by examining and visualizing their covariant gradient fields. We discover that the

part of the Kerr geometry outside the black hole horizon changes qualitatively depending on the spin

parameter, a fact previously unknown. The number of observable critical points of the curvature

invariants’ gradient fields along the axis of rotation changes at several transitional values of the spin

parameter. These transitional values are a fundamental property of the Kerr metric. They are physically

important since in general relativity these curvature invariants represent the cumulative tidal and frame-

dragging effects of rotating black holes in an observer-independent way.
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I. INTRODUCTION

The discovery of the Kerr metric in 1963 was a mile-
stone in mathematical relativity and astrophysics. It is a
vacuum solution to Einstein’s field equations that describes
the gravitational field outside a massive axisymmetric
rotating object, and no interior solution has been found
so far. This solution established that general relativity
predicts the existence of the objects we now call black
holes, even with angular momentum and away from perfect
spherical symmetry. The Kerr metric provides the founda-
tion and framework to study and understand many aspects
of modern astrophysics ranging from supermassive black
holes at the center of most galaxies to supernova explo-
sions and gamma-ray bursts. For a thorough review of the
Kerr metric and its impact and applications to modern
astrophysics, see Ref. [1]. In Boyer-Lindquist coordinates
and using natural units (G ¼ c ¼ 1), the Kerr metric can
be expressed as

ds2 ¼ �
�
1� 2mr

r2 þ a2cos 2�

�
dt2 � 4mra sin 2�

r2 þ a2cos 2�
dtd�

þ
�
r2 þ a2cos 2�

r2 � 2mrþ a2

�
dr2 þ ðr2 þ a2cos 2�Þd�2

þ
�
r2 þ a2 þ 2mra2 sin 2�

r2 þ a2cos 2�

�
sin 2�d�2; (1)

where m is the mass, and a ¼ J=m is the angular moment
per unit mass or spin parameter.

There is no established standard approach to analyze a
metric or a spacetime in general relativity. A common tool
used to achieve this is by studying the null and timelike
geodesics (i.e. the paths that photons and free-falling test
particles follow) produced by the metric. This approach has

been applied extensively to the Kerrmetric (see Ref. [1] and
referenceswithin). In this paper, we explore the geometry of
the Kerr metric using a novel analysis and visualization tool
proposed in [2,3]. Instead of geodesics, we analyze the
geodesic deviations (i.e. tidal and frame-dragging effects)
produced by the metric through the Weyl curvature tensor.
A somewhat similar approach has been proposed [4–7],
where the electric and magnetic components of the Weyl
tensor representing tidal and frame-dragging effects, re-
spectively, are visualized via tendex and vortex flow lines.
Those flow lines are produced by an observer projection of
the electric and magnetic tensors into 3D spatial coordi-
nates, then obtain the eigenvectors of those projections. Our
approach has a common starting point, but in contrast, we
base the analysis on observer-independent curvature invar-
iants constructed from theWeyl tensor. The results obtained
this way are genuine properties of the underlying geometry
and independent of any observer or coordinate choice. We
discover that the cumulative tidal and frame-dragging ef-
fects produced by a rotating black hole change qualitatively
depending on the dimensionless ratio between its spin
parameter and mass, A � a=m. There are seven unique
values of A where critical points of the Weyl curvature
invariants emerge from the rotating black hole and become
accessible to observers outside its horizon. This is a major
difference compared to nonrotating black holes modeled by
the Schwarzschild metric (i.e. A ¼ 0), where there is only
one critical point on the bifurcation two-sphere, so it is
never accessible to an observer outside the horizon, nor
can it be produced via gravitational collapse [2].

II. GRADIENT FIELDS OF THE WEYL
INVARIANTS

As explained in the introductory paper by one of us [2],
we limit our analysis to the eight nondifferential curvature
scalar invariants that have the crucial property of being
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observer independent: the four Ricci invariants and the
four Weyl invariants. The Kerr spacetime is Ricci flat,
and the four Ricci invariants vanish. The four Weyl
invariants for any Petrov-type D spacetime, which is the
case for the Kerr metric, are algebraically constrained by
the complex syzygy ðw1Þ3 ¼ 6ðw2Þ2, wherew1 andw2 are
the complex Weyl invariants, and the four Weyl invariants
can be explicitly expressed as w1R ¼ <ðw1Þ, w2R ¼
<ðw2Þ, w1I ¼ =ðw1Þ, and w2I ¼ =ðw2Þ. Note that in
vacuum solutions such as the Kerr metric, w1R ¼
1=8RabcdR

abcd ¼ 1=8K, where K is the Kretschmann
scalar. However, in order to thoroughly explore the Kerr
geometry, it is not sufficient to examine this scalar alone.
Furthermore, the syzygy above means that only two of the
four invariants are algebraically independent. In spite of
this, we find that it is still necessary to analyze the gradient
fields for all of the four invariants, because, surprisingly,
the structure revealed by each one of these fields is not
constrained by the syzygy.

The simplified formulas in Boyer-Lindquist coordinates
for each of the invariants are1

w1 ¼ 6m2=a6

ðR� i cos �Þ6 ; w2 ¼ �6m3=a9

ðR� i cos�Þ9 ; (2)

where R � r=a. The gradient field of an invariant is simply
defined as the covariant derivative k���r�I¼�@I=@x�,

where I is the scalar invariant (see Ref. [2]). The figures
presented here are in Kerr coordinates, or pseudo-oblate
spheroidal coordinates, inspired by the original Kerr coor-
dinates,2 where the singularity is unfolded to a ring of
radius a. Figure 1 shows a 3D visualization of the gradient
flow of w1R for the Kerr metric in the original Kerr
coordinates. Figure 2 shows the gradient fields of the
four invariants, as well as the outer horizon for different
values of the dimensionless spin parameter A. The trans-
formation equations from Boyer-Lindquist coordinates to
the coordinates used in Fig. 2 are

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin ð�Þ cos ð�Þ;

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin ð�Þ sin ð�Þ; z ¼ r cos ð�Þ;

(3)

where the only difference between these coordinates and
the original Kerr coordinates is that ½�� is replaced by
½�� tan�1ða=rÞ� in the equations above for x and y. We
choose to omit the ½tan�1ða=rÞ� term in Fig. 2 to keep the
gradient fields � independent and allow us to plot a 2D
slice of the spacetime with constant �. The spacetime in
these coordinates is symmetric about the z axis and about

the x-y plane; therefore, it is sufficient to plot one quadrant
of the 2D slice of the spacetime with constant � and t, and
in this case we use � ¼ 0 (i.e. the z-x plane).
With the exception of the singularity, all of the

critical points of the four gradient fields (i.e. the points
where k� ¼ 0) lie on the z axis.3 There are exactly seven

critical points with z > a; more specifically, zcritical=a ¼
½6:314; 4:381; 3:078; 2:077; 1:963; 1:376; 1:254� and an-
other seven critical points with z < a, where zcritical=a ¼
½0:7975; 0:7265; 0:5095; 0:4816; 0:3249; 0:2282; 0:1584�.
The 14 values of zcritical above are evaluated numerically to
four significant figures.

III. TRANSITIONALVALUES OF
THE SPIN PARAMETER

The event horizons of the Kerr black hole are given

by r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

p
. Therefore, when expressed in

the dimensionless form, they simplify to r�=a ¼ R� ¼
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

p
Þ=A. Note that the horizons still depend on

FIG. 1 (color online). Three-dimensional visualization of ro-
tating black holes in Kerr coordinates via flow lines of the vector
field k� � �r�ðw1RÞ for a dimensionless spin parameter value

of A ¼ 0:9. The transparent sky-blue surface is the ergosphere,
and the horizon is the black surface. The black circles are the
critical points of the gradient field. The colors of the flow lines
are of no physical significance and used to distinguish the
different regions of the spacetime with common flow structure
separated by asymptotic critical directions of the field repre-
sented by the brown surfaces, which connect the critical points to
the ring singularity.

1This compact way of writing the invariants was pointed out to
us by Jan Åman [8], up to integer factors to make the invariants
consistent with the notation in [2].

2Although the shape of the plotted flow lines depends on the
coordinate choice, the existence of each critical point, the
classification of each critical point, and the existence of asymp-
totic critical directions of the fields between critical points is
coordinate independent (see [2,3]).

3For a thorough definition and classification method of these
critical points in general, see Ref. [2].
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the mass and spin parameter through A in a nonlinear way.
On the other hand, the locations of the critical points of the
gradient fields along the axis of rotation scale linearly
with a, as we stated above. Therefore, we find that the
observable part of the gradient fields of the Weyl scalar
invariants of the Kerr metric (i.e. the structure of curvature
outside a rotating black hole) changes qualitatively

depending the dimensionless spin parameter A.
Furthermore, at very specific values of A, the outer
horizon crosses one of the critical points of the four
gradient fields, making that critical point accessible
to an observer outside the black hole. The transitional
values of the spin parameter are A ¼ ½0:3090; 0:4339;
0:5878; 0:7818; 0:8090; 0:9511; 0:9749� evaluated to four

FIG. 2 (color online). (a) Two-dimensional slice of Fig. 1 in Kerr-like coordinates introduced in Eq. (3). The ergosphere is omitted,
and different horizons are plotted in grey for the corresponding transitional values of A indicated in the small boxes, in addition to
A ¼ 0:27, which is not a transitional value but is plotted for presentation purposes. (b), (c), and (d) are the same as (a) but for the
gradient vector fields of w2R, w1I, and w2I, respectively.
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significant figures. We also find that the inner horizon also
crosses one of the critical points with zcritical < a at each
one of the transitional values of A stated above. This
indicates a deeper connection between the four Weyl in-
variants and the horizons of the Kerr black hole, even
though the algebraic form of the invariants does not
seem to include any information about the horizons in
Eq. (2). Figure 3 summarizes the result plotting the outer
and inner horizons as a function of A. The transitional
values of A mentioned above are indicated on the curves,
along with the value of zcritical that the horizons cross at
each transitional A.

IV. CONCLUSION

Wehave applied a new curvature visualization and analy-
sis tool to the Kerr metric and have discovered some fun-
damental properties of the Kerr spacetime. The observable
structure of the Kerr geometry outside the horizon of rotat-
ing black holes changes qualitatively at seven specific val-
ues of the spin parameter. The invariants under scrutiny
represent the cumulative tidal and frame-dragging effects
that the rotating black hole exerts on the surroundings, as
explained in detail in [2–7]. In other words, if one can send a
spaceship with very precise tools to measure tidal and
frame-dragging forces, it is possible in principle to map
the values of these invariants around a rotating black hole.
Therefore, the critical points that emerge from the horizon
at each transitional value of the spin parameter are observ-
able in principle. It is interesting to note that the region
surrounding the event horizon of SagittariusA*will soon be
visible by way of the Event Horizon Telescope [9,10].
Another useful application of the technique in this paper

would be in the analysis of numerical relativity simulations.
The visualization tool presented here has provided a
coordinate-independent, observer-independent, and physi-
cally intuitive picture where the flow lines seek the extre-
mum points of curvature associated with each invariant.
Furthermore, proper lengths between the critical points
(e.g. the null affine distances or the proper length of a time-
like curve between points) would provide a coordinate-
independent way to extract angular moment and mass
estimates of black holes in the simulations.
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FIG. 3 (color online). The outer horizon rþ (black) and the
inner horizon r� (brown) of a rotating black hole vs its dimen-
sionless spin parameter A. The transitional values of A are
indicated by the red, blue, green, and yellow points associated
with the horizons crossing one of the critical points of the
invariant w1R, w2R, w1I, and w2I, respectively.
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