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We analyze the behavior of the geodesic motion of test particles in the spacetime of a specific class of

axially symmetric static vacuum solutions to the Einstein equations, hereafter referred to as the linearized

multipole solution. We discuss its suitability to describe a quasispherical spacetime. The existence of an

innermost stable circular orbit very close to the (singular) horizon of the source is established. The

existence of such a stable orbit, closer than that of the Schwarzschild metric, as well as the appearance of a

splitting in the admissible region of circular orbits, is shown to be due to the multipole structure of the

solution, thereby providing additional potential observational evidence for distinguishing Schwarzschild

black holes from naked singularities.
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I. INTRODUCTION

As it follows from the Israel theorem [1], the only static
and asymptotically flat vacuum spacetime possessing a
regular horizon is the Schwarzschild solution. For all
the other Weyl exterior solutions [2–6], the physical com-
ponents of the Riemann tensor exhibit singularities at the
infinite-redshift surface. Even though we shall restrict
ourselves to the static case, it is worth noting that a result
similar to the Israel theorem exists for stationary solutions
with respect to the Kerr metric [7–9].

Now, sphericity is a common assumption in the descrip-
tion of compact objects, where deviations from spherical
symmetry are likely to be incidental rather than basic
features of these systems.

Furthermore, if the field produced by a self-gravitating
system is not particularly intense (the boundary of the
source is much larger than the infinite-redshift surface)
and fluctuations from spherical symmetry are slight, then
there is no problem in representing the corresponding
deviations from spherical symmetry (both inside and out-
side the source) as a suitable perturbation of the spherically
symmetric exact solution [10].

However, as the object becomes more and more com-
pact, such a perturbative scheme will eventually fail
close to the source. Indeed, as is well known [11–16],
though usually overlooked, as the boundary surface of

the source approaches the infinite-redshift surface, any
finite perturbation of the Schwarzschild spacetime be-

comes fundamentally different from the corresponding

exact solution representing the quasispherical spacetime,

even if the latter is characterized by parameters whose

values are arbitrarily close to those corresponding to the

Schwarzschild metric. This, in turn, is just an expression

of the Israel theorem.
In other words, for strong gravitational fields, there

exists a bifurcation between the perturbed Schwarzschild

metric and all the other Weyl metrics (in the case of

gravitational perturbations), no matter how small are the

multipole moments (higher than monopole) of the source.

Examples of such a bifurcation have been brought out

in the study of the trajectories of test particles in the �
spacetime [17–24], and in the M-Q spacetime [25,26], for

orbits close to the infinite-redshift surface [27,28].
Due to the bifurcation mentioned above, a funda-

mental question arises: How should we describe the quasi-
spherical spacetime resulting from the fluctuations from
Schwarzschild?
(a) By means of a perturbed Schwarzschild metric

producing a black hole?
or

(b) By means of an exact solution to the Einstein equa-
tions, whose (radiatable) multipole moments are
arbitrarily small, though nonvanishing, and leading
to a naked singularity?

As we shall see here, the quandary above might be
solved by comparing the behavior of circular geodesics
in either case.
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Indeed, in spite of some results obtained in the
study of the source of quasispherical spacetimes
[29,30], which favor scenario (b), we are well aware
of the fact that presently most researchers favor sce-
nario (a). Nevertheless, the doubt remains, and the
very different behavior of the system implied by the
bifurcation mentioned above opens the way for pro-
posing observational scenarios that will allow for
distinguishing between black holes and naked singular-
ities. In fact, this issue has attracted the attention of
many researchers in recent years (see Refs. [31–44]
and references therein).

However, an important open question arises, related to
the proposed approach, namely: Since there are as many
different (physically distinguishable) Weyl solutions as
there are different harmonic functions, which among the
Weyl solutions is best entitled to describe small deviations
from spherical symmetry?

In the past, different authors have resorted to dif-
ferent metrics to describe deviations from spherical
symmetry, e.g., the � metric or the M-Q spacetime
in Refs. [27–30,43], the Young-Coulter solution [45] in
Ref. [46], the Quevedo-Mashhoon solution [47] in
Ref. [48], or the Manko-Novikov solution [49] in Ref. [44].

The rationale behind the choice of the � metric is based
on the fact that it corresponds to a solution of the Laplace
equation (in cylindrical coordinates) with a singularity
structure similar to that of the Schwarzschild solution
(a line segment). In this sense the � metric appears as a
‘‘natural’’ generalization of Schwarzschild spacetime to
the axisymmetric case.

On the other hand, due to its relativistic multipole
structure, the M-Q solution (more exactly, a subclass of

this solution, M-Qð1Þ [25]) may be interpreted as a
quadrupole correction to the Schwarzschild spacetime,
and therefore represents a good candidate among
known Weyl solutions to describe small deviations from
spherical symmetry.

However, it should be obvious that the question above
does not have a unique answer (there are an infinite number
of ways of being nonspherical, so to speak) and therefore in
the study of any specific problem, the choice of the corre-
sponding Weyl spacetime has to be reasoned.

In this work, we intend to use yet another exact solution
of the Weyl family in order to describe deviations from
spherical symmetry. Such a solution is the so-called line-
arized multipole (LM) metric [50]; its properties and the
reasons behind its choice to describe a quasispherical
spacetime are presented in the next section. Next, we shall
calculate the circular geodesics in that spacetime and
compare its behavior with the spherically symmetric
case. The most relevant result emerging from that analysis
is the existence of stable innermost circular orbits very
close to the (singular) horizon of the source, and closer
than that of the Schwarzschild metric.

II. THE LINEARIZED MULTIPOLE SPACETIME

As mentioned in the Introduction, we shall carry
out a study of circular geodesics in the LM spacetime.
Thus, we shall first very briefly revise such a metric
and provide arguments justifying its use to describe
quasispherical (axially symmetric and static) spacetime
(see Ref. [50] for details). Finally, we shall present the
multipole structure of the solution.

A. The metric

As is known, the line element of a static and axisym-
metric vacuum spacetime is represented in Weyl form as
follows:

ds2 ¼ �e2�dt2 þ e�2�½e2�ðd�2 þ dz2Þ þ �2d’2�; (1)

where� and � are functions of the cylindrical coordinates
� and z alone. The metric function � is a solution of the
Laplace equation (4� ¼ 0), and the other metric function
� satisfies a system of differential equations whose
integrability condition is just the equation for the function
�. Thus, the Weyl family of solutions with good asymp-
totical behavior is given in associated spherical Weyl
coordinates fr; �g as

� ¼ X1
n¼0

an
rnþ1

Pnð!Þ; (2)

where r � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
, ! � cos � ¼ z=r, and Pn denotes

the Legendre polynomial.
Thus, the line element now reads

ds2 ¼ �e2�dt2 þ e�2�þ2�ðdr2 þ r2d�2Þ
þ e�2�r2sin 2�d’2: (3)

Also, as is well known, in spite of the form of Eq. (2), the
coefficients an are not the relativistic multipole moments
(RMMs) of the solution as defined for static and axisym-
metric vacuum solutions by Geroch [51,52] and Thorne
[53]. However, the ‘‘Newtonian’’ moments an, which pro-
vide the so-called ‘‘Newtonian image’’ of the solution, can
be expressed as functions of the RMMs [54–57]. Although
the full relations linking both sets of coefficients are ex-
tremely complicated, they can be used to obtain relatively
simple formulas for the coefficients fang in situations
where the deviation of the relativistic solution from spheri-
cal symmetry is small. This issue has been discussed in
some detail in Refs. [25,58,59].
A solution of theWeyl family that represents the exterior

gravitational field of a mass distribution whose multipole
structure only possesses mass M and quadrupole moment
Q was found in Ref. [25]. This solution (M-Q) has become
a useful tool for describing small deviations from the
spherically symmetric solution [28,60–62].
The basic idea underlying the obtention of the M-Q

solution is that Q is small, since we want to describe slight
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deviations from the Schwarzschild solution, and all the
RMMs of higher order are negligible. This assumption
about the RMMs higher than Q is supported by the follow-
ing argument: The Newtonian calculation of the multipole
moments of an ellipsoidal mass distribution shows that as
we move from lower to higher moments, their magnitudes
decrease as powers of the eccentricity of the ellipsoidal
configuration (see Refs. [58,63] for details). Then the M-Q
solution is constructed as a sum of functions in a power
series of the dimensionless quadrupole parameter q �
Q=M3, starting at the Schwarzschild solution as the first
order, in such a way that the successive powers of q control
the desired corrections to the spherical symmetry.

The LM solution [50] was constructed with the same
purpose, namely to describe the gravitational field of a
body slightly different from a sphere. However, the ap-
proach to find it, although similar, is different from the one
used for the M-Q solution. In both cases, it should be clear
that, in describing nonspherical spacetimes, their physical
components of the Riemann tensor exhibit singularities at
the infinite-redshift surface.

The rationale behind the LM solution is the following:
When attempting to describe an isolated compact body
which is not spherically symmetric, all the RMMs appear,
no matter how small is the deviation from spherical sym-
metry. Therefore, let us consider that all RMMs appear in
the solution that we want to construct, but let us restrict
their magnitudes to be very small, so that we can neglect all
terms in the Weyl coefficients whenever a cross product of
RMMs is involved. This is the origin of the name of the
family of solutions: linearized multipole (LM) solutions. It
should be observed that due to the linearity of the Laplace
equation, the so-obtained solution is an exact solution to
the Einstein equations.

Now, the expression for the metric function of the Weyl
family solution endowed with gþ 1 independent RMMs
(the LM solution) can be written, in prolate spheroidal
coordinates [64], as follows:

� ¼ � Hx

x2 � y2
� Xg

n¼0

Q2nðxÞP2nðyÞ
"Xg
j¼n

HjC2j;2n

#
; (4)

where Cn;k are the coefficients appearing at the

series expansion of any variable as a linear combination
of Legendre polynomials in that variable, i.e., �n ¼P1

k¼0 Cn;kPkð�Þ) and

H � Xg
k¼0

m2khðkÞ; Hj �
Xg
k¼j

m2khjðkÞ; (5)

where the parameter m2k � M2k

M2kþ1 denotes the dimension-

less relativistic multipole moment of order 22k-pole (M2k),
whereas the explicit expressions for the coefficients hjðkÞ
(8 k � j, since hjðkÞ ¼ 0 for k < j) and hðkÞ, are

hjðkÞ ¼ 1

24k�1
ð�1Þk�j�2

4kþ 1

2k

 !
k2 þ k=2� j

ðkþ 1Þ

� ð2kþ 2jÞ!
ð2jÞ!ðkþ jÞ!ðk� jÞ! ;

hðkÞ ¼ 1

22kðkþ 1Þ
4kþ 1

2k

 !
; 8 k > 0: (6)

The parameter H can be calculated in terms of the
coefficients Hj as follows:

H ¼ Xg
k¼0

m2k

22kðkþ 1Þ
4kþ 1

2k

 !
¼
�
1�Xg

j¼0

Hj

2jþ 1

�
: (7)

In terms of its ‘‘Newtonian image,’’ the LM solution can
be described by means of an ‘‘object image’’ whose
Newtonian gravitational potential (the gravitational poten-
tial corresponding to the Newtonian image, not to con-
found with the weak-field limit of the solution) and
Newtonian multipole moments equal the metric function
of the solution and theWeyl coefficients, respectively. That
‘‘object image’’ is represented by a kind of ‘‘dumbbell’’
consisting of a bar of length 2M with linear density �
given by an even polynomial of degree 2g and two balls at
each end of the bar with mass � (see Ref. [50] for details).
The other metric function � of the line element [Eq. (1)]

can be obtained from the metric function � by solving the
corresponding field equations

�� ¼ �ð�2
� ��2

zÞ; �z ¼ 2����z: (8)

There already exists an expression for this metric function
[64] in terms of the Weyl coefficients of the series �
[Eq. (2)], but it is highly complicated to handle, and a
summation of a series is required to obtain the analytic
expression of the metric function. One advantage inherent
to the dumbbell description of the solution consists of an
integral expression [65] for the metric function � in terms
of the density of the dumbbell:

� ¼
Z 1

�1
dX

Z 1

�1
dY

�dðXÞ�dðYÞ
ðY � XÞ2

�
�
r2ð1�!2Þ þ ðr!� XMÞðr!� YMÞ

RðXÞRðYÞ � 1

�
; (9)

or equivalently,

� ¼ �M2r2ð1�!2Þ½�2Aðr;!Þ þ 2�ðI� þ IþÞ þ II�;
(10)

where the following notation is used: RðXÞ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ X2M2 � 2r!XM

p
, where �dðXÞ represents the

density of the dumbbell, and

GEODESICS IN THE LINEARIZED MULTIPOLE . . . PHYSICAL REVIEW D 88, 064041 (2013)

064041-3



II �
ZZ 1

�1

�ðXÞ�ðYÞdXdY
RðXÞRðYÞ½r2ð1�!2Þ þ ðr!� XMÞðr!� YMÞ þ RðXÞRðYÞ� ;

I� �
Z 1

�1
dX

�ðXÞ
r�RðXÞ½r2ð1�!2Þ þ ðr!� XMÞðr!�MÞ þ r�RðXÞ�

;

Aðr;!Þ � 1

4r4�
þ 1

4r4þ
þ 1

r�rþ½r2 �M2 þ rþr��
:

(11)

The fact that the Newtonian image of the LM solution is a
dumbbell is quite convenient, since many properties of the
solution can be described in terms of the density of the bar.
Thus, for example, it can be shown that the source of the
solution will be prolate (oblate) if � is smaller (greater)
than 1=2. Also, as we shall see below, the possible exis-
tence of an innermost stable circular orbit (ISCO), within
the one corresponding to the spherically symmetric case, is
related to a condition on � at the origin [Eq. (32)].

B. Mutipole structure of the solution

As already mentioned, the RMMs of aWeyl solution can
be calculated in terms of the coefficients an. This relation
can be inverted to obtain the Newtonian moments (an) in
terms of the RMMs. The assumption used to construct the
LM solution is that every RMM is small, implying that we
may neglect all the terms with coupling interaction be-
tween RMMs appearing in the Weyl coefficients an. (Once
again it should be emphasized that, due to the linearity of
the Laplace equation, the so-obtained metric is an exact
solution to the Einstein equations.) With this selection of
the coefficients, we can consider that the solution possesses
a finite number of parameters (q � m2,m2i, with 1<i�g)
that represent each RMM of the solution.

Thus, the first RMMs of the solution are the following
(odd moments are null because of the equatorial
symmetry):

M0 ¼ M; M2 ¼ M3q;

M4 ¼ M5m4; M6 ¼ M7

�
m6 � 60

77
q2
�
;

M8 ¼ M9

�
m8 � 226

143
qm4 � 1060

3003
q2 � 40

143
q3
�
;

M10 ¼ M11

�
m10 � 28616

46189
qm4 � 566

323
qm6 � 30870

46189
m2

4

� 19880

138567
q2 � 39150

46189
q2m4 þ 146500

323323
q3
�
: (12)

III. GEODESICS

We shall now study the geodesic motion of test particles
in the spacetime of the LM solution. We shall restrict
ourselves to the case of geodesics with constant � and
d’
d� � 0; i.e., those constrained to a constant hypersurface

(� ¼ �0) with coordinates ft; r; ’g.

Therefore, we obtain on the equatorial plane the follow-
ing expression (see Ref. [61]):�

dr

d�

�
2 þ Veff ¼ C; (13)

where� denotes the affine parameter along the geodesic,C
is a constant, and Veff is an effective potential which can be
obtained by integration as follows:

Veff ¼
Z k

g11
@r ln

�
g11
k

�
dr ¼ � k

g11
; (14)

with k � �� h2

g00
� l2

g33
, where h and l represent the energy

and angular momentum per unit mass, respectively, and �
denotes the norm of the tangent vector to the geodesic z	.
From Eqs. (13) and (14), we have that�

du

d’

�
2 ¼ k

g11

g233
l2

u4; (15)

where u � 1=r.
The above equations lead, for the line element in

Eq. (1), to �
du

d’

�
2 ¼ FðrÞ

l2e2�þ4�
; (16)

Veff ¼ �FðrÞ
e2�

; (17)

where the function FðrÞ � ke2� for timelike geodesics on
the equatorial plane is

FðrÞ ¼ �e2� þ h2 � l2

r2
e4�: (18)

When looking for circular orbits, we search for the sta-
tionary solutions of the autonomous partial differential
equation (16); i.e., du

dr ¼ 0 , u ¼ cte. Hence, we can say

that the circular orbits are defined by radial values r ¼ Ri

where the following condition is satisfied:

FðRiÞ ¼ dF

dr
ðRiÞ ¼ 0; (19)

since the extremals of the effective potential satisfy

dVeff

dr
ðRiÞ ¼ 0 ¼ ð�F0ðRiÞ þ FðRiÞ2�0ðRiÞÞe�2�ðRiÞ

) F0 � dF

dr
ðRiÞ ¼ 0; (20)
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where the prime denotes a derivative with respect to r.
Therefore, the circular orbits can be calculated by means of
the function FðrÞ without using the second metric function
�, since the complete effective potential is not needed.

The timelike geodesic described by a pointlike particle
around a circular orbit is defined by the zeros of both the
function FðrÞ and its derivative. The orbit r ¼ Ri is stable

( d
2Veff

dr2
> 0) if �F00ðRiÞ> 0 (the minimum), and it is

unstable ( d
2Veff

dr2
< 0) if �F00ðRiÞ< 0 (the maximum). In

the above, it has been used that

d2Veff

dr2
¼ e�2�ð�F00 þ F04�0 þ F2�00 � ð2�0Þ2FÞ; (21)

and hence

d2Veff

dr2
ðRiÞ ¼ �e�2�ðRiÞF00ðRiÞ: (22)

Observe that the specific energy of the geodesic orbit is
E ¼ �z0; therefore, since z0 ¼ h ¼ dt

d� g00 < 0, the

parameter h [with Veff ¼ 0 or equivalently FðRiÞ ¼ 0]
denotes, up to a sign, the energy per unit of mass of the
test particle, and it is fixed once the extremals (Ri) of FðrÞ
are determined:

h2 ¼ e2�ðRiÞ
�
1þ l2

R2
i

e2�ðRiÞ
�
: (23)

Also, observe that the conditions for circular orbits
[Eqs. (19) and (20)] determine the values of h and l as
follows:

l2i ¼
r3�0

e2�ð1� 2r�0Þ
��������r¼Ri

;

h2i ¼ e2�
1� r�0

1� 2r�0

��������r¼Ri

:

(24)

Then, these parameters are constants of motion for each
value of the radial coordinate r ¼ Ri. In what follows, we
shall consider the angular parameter as a function of the
radial coordinate r for different circular orbits, and hence
we introduce the notation

L ¼ LðrÞ � l2

4M2
¼ r3�0

4M2e2�ð1� 2r�0Þ : (25)

A. The spherically symmetric solution

For the forthcoming discussion, it would be convenient
to recover the Schwarzschild case, which is well known.
Depending on the value of L, the function �FðrÞ

acquires a maximum and a minimum starting from the
particular value L ¼ 3, for which both extremals coincide
at rs ¼ 6M. For large values of L, the minimum goes away
asymptotically along rs=M ¼ 3. In what follows, the no-
tation 
 � rs=M shall be used, where rs denotes the radial
Schwarzschild coordinate and it is related to the radial
Weyl coordinate r (on the equatorial plane) as follows:

s � r

M
¼ rs

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

M

rs

s
: (26)

FIG. 1. (a) The plot of the parameter L in terms of the dimensionless Schwarzschild radial coordinate rs=M. For each value of the
parameter L (horizontal axis), the solid line and the long-dashed line provide the points where the function �FðsÞ acquires
the minimum or the maximum, respectively. These values define the corresponding radii of the circular stable or unstable
orbits, respectively. As is known, no matter how large the parameter L would be, the inner unstable orbit is located at rs ¼ 3M
(dashed horizontal line), and the bifurcation point between stable and unstable orbits (the marginally stable orbit) is located at rs ¼
6M, where the inner stable orbit is reached (shown with a dot line in the graphic). (b) In this graphic, the function�FðsÞ is represented
for different values of L. Starting from the solid line and downward, the values of the parameter L are L ¼ 5, 4, 3.5. Let us note that the
value L ¼ 3 corresponds to the marginally stable orbit, where FðsÞ has no extremals points but an inflection point.
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In Fig. 1(a), we plot the parameter L as a function of the
dimensionless Schwarzschild radial coordinate rs=M, where
the fact that, for the circular orbits of the Schwarzschild

spacetime, rs=M ¼ 2Lð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3=L

p Þ has been used. The
value of the parameter h is taken to be zero, since it only
generates a displacement of the graphic along the vertical
axis. There exist certain values h for each extremal Ri,
where FðRiÞ ¼ 0. In Fig. 1(b), �FðrÞ with its extremals
are shown for different values of L.

B. The LM solution

Let us now analyze the situation in the LM solution. To
derive the consequences implied by the extremal condition
F0ðrÞ ¼ 0, we need to solve numerically the following
transcendent equation:

e2� ¼ r3

l2
�0

1� 2r�0 : (27)

Nevertheless, relevant information can be extracted from
the analytical study of the function �FðrÞ [Eq. (18)]. The
calculation of that function for the LM solution yields

� FðsÞ ¼ GCðsÞeAðsÞ þ 4L

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

p þ 1Þ2 G
2CðsÞ�1e2AðsÞ � h2

(28)

with the notation (for the case g ¼ 2)

AðsÞ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

p
BðsÞ � 2Hffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ 1
p ; (29)

G �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

p þ 1
; CðsÞ � H0 � 1

2
H1s

2 þ 3

8
H2s

4;

(30)

BðsÞ � H1 þH2

�
1

2
� 3

4
s2
�
: (31)

These expressions are easily obtained from the metric
function � [Eq. (4)] by considering it on the equatorial

plane (y ¼ 0) and taking into account that x ¼ 
� 1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p
(the explicit expression of � in Weyl coordinates

can be seen in Ref. [50]). Let us note that e2� ¼ GCðsÞeAðsÞ,
and G2CðsÞ ¼ G2CðsÞ�1s2

ð
ffiffiffiffiffiffiffiffi
s2þ1

p
�1Þ2 .

As can be seen in Fig. 2, the behavior of the function
�FðrÞ is different from that corresponding to the spheri-
cally symmetric case.

Indeed, as shown in that figure, for certain values of the
multipole parameters q � m2 and m4, the curve clearly
shows a minimum close to the origin. This implies the
existence of an ISCO, closer than the one corresponding to
the spherically symmetric case, and therefore related to the
presence of the multipole moments (m2 and m4). Let us

remember that r ¼ 0 corresponds to the infinite-redshift
surface [Eq. (26)].
If we calculate the behavior of the function�FðsÞ when

approaching the horizon, we see that this function goes to
infinity for certain values of the multipole parameters,
thereby exhibiting the existence of a minimum which is
absent in the Schwarzschild solution:

lim
s!0

ð�FðsÞÞ ¼
�
0; 2H0 � 1> 0

1; 2H0 � 1< 0
; (32)

since lim s!0e
2� ¼ lim s!0G

CðsÞeA ¼ 0 because Cð0Þ ¼
H0 � 2�LMð0Þ> 0 (the density of the dumbbell bar is
positive definite).

For the case of theM-Qð1Þ solution, i.e., the LM solution
with monopole and quadrupole moments alone, the exis-
tence of the ISCO is determined by the following range of
values of the quadrupole parameter: q 2 ½ 415 ; 8

15�.
For the case of the LM solution with monopole, quad-

rupole, and 24-pole moments, the existence of the ISCO
is determined by the following ranges of values of the
quadrupole parameter:

q 2
8><
>:
h
� 32

255 ;� 16
255

i
; m4 ¼ qh

16
375 ;

32
375

i
; m4 ¼ �q

;

where we have assumed that the absolute values of both
multipole moments are identical (see Ref. [50] for details).
The determination of these ranges of values is obtained
from imposing two conditions: the positive-definite density
condition and 2H0 � 1< 0, which leads to 0<H0 < 1=2.
(See Fig. 3 for details and a graphical characterization of
these ranges.)

FIG. 2. The function �FðsÞ is represented for the LM solution
possessing monopole, quadrupole, and 24-pole moments
(h ¼ 0 is considered).
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In addition, a more relevant feature of these solutions is
obtained from the study of the marginally stable orbit
(MSO). Indeed, as is known, for a circular MSO, the
angular parameter (as well as the energy) have extremal
values. This condition is just equal to F00 ¼ 0, as can be
seen by taking the derivative of Eq. (25):

dL

dr
¼ 0 , 0 ¼ r�00 þ 3�0 þ 4r2ð�0Þ3 � 6rð�0Þ2: (33)

Therefore, the circular equatorial motion is known to be
stable when L0 > 0 and unstable for L0 < 0. Let us notice
that the epicyclic frequency is proportional to L0, and
hence the MSO (L0 ¼ 0) determines the orbit with non-
horizontal oscillations. The existence of an ISCO, as we
have previously shown, can be confirmed when studying
the behavior of L in terms of the orbital radius.

Such behavior is displayed in Fig. 4, using Eq. (25)
for different values of the quadrupolar parameter q,

for the case of the M-Qð1Þ solution. For the discussion
below, an important role will be played by the function
gðrÞ � 1� 2r�0, which is related to L by

dL

dr
¼ 1

4M

r3�00 þ 3r2�0 þ 4r4ð�0Þ3 � 6r3ð�0Þ2
e2�gðrÞ2 : (34)

The plot of g as a function of 
 is given in Fig. 5 for the

M-Qð1Þ and the LM solutions.

FIG. 4. Localization of circular orbital radii in terms of
the parameter L (in the vertical axis) for different values of
the quadrupolar parameter for the M-Qð1Þ solution. (a) For q 2
ðqc; 8=15�: Starting from the solid line and downwards, the values
of the corresponding quadrupolar parameter are q ¼ 0:4, 0.42,
0.46. (b) For q 2 ð0; 4=15�: This curve corresponds to q ¼ 0:2,
where the asymptote is located at 
 ¼ 2:8125 (a smaller value
than the corresponding one for the Schwarzshild case, 
 ¼ 3).
(c) For q 2 ð4=15; qc�: This piecewise curve corresponds to
q ¼ 0:3, where the asymptotic lines bounding the forbidden
region are located at 
m ¼ 2:0473 and 
M ¼ 2:6646.

FIG. 3. The domain of the existence of an ISCO in the LM
solution is shown. Dotted lines draw the condition assumed on
the parameters q and m4, which are supposed to be of equal
magnitude (in absolute value). The continuous line represents the
limit [Eq. (32)] 1� 15

4 qþ 315
16 m4 < 0 for the existence of an

ISCO; hence, the values of q must be situated on top of this line.
The intersections of these lines determine the upper value of q if
it is negative or the lower bound if it is positive, whereas the
other extremes of the ranges are determined by the definite-
positive condition of the density (horizontal dashed line and
dot-dashed line).
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The following conclusions emerge from Figs. 4 and 5:
(1) First, we see that stable orbits are located to the left

of the maximum, and the right of the minimum
[Fig. 4(a)] where L0 > 0. The slope of the curve
where L0 < 0 determines the range of the orbital
radius for unstable orbits. The MSO is located at
the maximum or minimum of the curve (Lþ and L�,
respectively). The values of the orbital radius
(msoþ and mso� for the maximum and minimum,
respectively) at these two extremals of L correspond
to the inflection points of the potential �F, for
which this function does not possess extremal
points. For other values of L 2 ðLþ; L�Þ (at each
value of q), the potential �F will possess one
maximum and two minima corresponding to the
intersection points of the curves in Fig. 4(a) with
the horizontal lines L ¼ cte.

(2) Second, Fig. 4(b) represents the curve for a value of
the quadrupolar parameter q where the inner un-
stable orbit is limited by the asymptotic dashed line,
and the inner stable orbit is located at the minimum
of the curve. This plot recovers the behavior of the
spherical case but slightly modifies the position of
the circular orbits when a quadrupole moment is
present. The relevant difference with respect to the
spherical case is that a maximum of L (Lþ) arises at
the value of the radial coordinate mso� whenever
some multipole of the solution, higher than the
monopole, is not zero (within a determined range
of that multipole parameter), and this fact leads to
the existence of stable circular orbits at a radius
smaller than those where the other known minima
and the maximum appear. In addition, these new
stable circular orbits possess smaller values of L and
energy h than the former ones.

(3) Finally, we notice the existence of a splitting [see
Fig. 4(c)] in the admissible region of circular orbit
radii for some values of the multipole moments of
our spacetime. This fact was already discussed in
Ref. [44], where by means of numerical methods the
authors obtain results that suggest the existence of
disconnected nonplunging regions at small radii.
The existence of such regions could be tested, for
instance, in the presence of accretion disks forming
a ring structure around the source. The analytical
determination of that region consists of calculating
the zeros of the function gðrÞ.

Thus, for some values of q the maximum of L disappears
and a region of forbidden circular orbits arises, as is shown
in Fig. 4(c). This region corresponds to the range of values
of the radial coordinate leading to gðrÞ< 0 (let us remem-
ber that L � 0, h2 � 0). The zeros of the function gðrÞ
(see Fig. 5) provide the asymptotical behavior of L at the
values 
m and 
M [Fig. 4(c)].
To complement the discussion above, it is instructive

to take a look at Tables I and II, which display the values
of different parameters characterizing ISCOs for the

LM solution with g ¼ 1 [M-Qð1Þ]. As mentioned before,
if q 2 ð0; 4

15�, the behavior of circular orbits is similar to the

spherically symmetric case: the minimum of L [Fig. 4(b)]
defines the change from stable to unstable orbits, and
thereby the minimal value of the radius of the stable
circular orbit (mso�).
The maximum of the orbital radius for the unstable orbit

exhibits (as in the Schwarzschild case) an asymptote in the
value of 
 which is smaller than that corresponding to the
spherically symmetric case (
 ¼ 3).
There exists a critical value for q (qc) beyond which a

gap in the range of possible values of the radius of the
circular orbit appears for which there are not ISCOs.

FIG. 5. Plot of g as a function of 
 for the (a)M-Qð1Þ and (b) LM solutions for different values of themultipole parameters. The solid line in
both plots corresponds to the Schwarzschild case q ¼ 0, whereas the other values of q are (a) q ¼ 0:5 (upper dotted line), q ¼ 0:374� qc
(dashed line), and from that line and downwards q ¼ 0:3, 4=15, 0.2. The special value q ¼ 4=15 corresponds to the lower bound for the
existence of ISCOs near the horizon. (b) from the solid line q ¼ m4 ¼ 0 and upwards, q ¼ m4 ¼ �0:063,�0:08, �0:1, �0:124.
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This is clearly indicated in Fig. 4(c), where the gap is
determined by the interval ð
m; 
MÞ for q 2 ð 415 ; qc�.

In the interval ð0; 
mÞ, there are ISCOs close to the
infinite-redshift surface.

For the M-Qð1Þ solution, qc is given by

qc ¼ 0:373434; rs=M ¼ 2:367; (35)

which corresponds to the value of q for which gðrÞ has a
single zero (see Fig. 5).

If q 2 ðqc; 8
15�, there are ISCOs in the interval ð0; LþÞ,

with values of the orbital radius smaller than those corre-
sponding to stable circular orbits for L� where L has a
minimum (mso�).

Three comments are in order at this point:
(1) It should be stressed that the range of admissible

values of the angular momentum ð0; LþÞ is quite
large. Therefore, ISCOs correspond to test particles
with a wide range of angular velocities.

(2) The energies corresponding to ISCOs are smaller
than those corresponding to larger values of the
orbital radii.

(3) It should be observed that for the M-Qð1Þ solution,
there are ISCOs (within 3M) only for positive values
of q (i.e., prolate sources). This important difference
between the two cases (prolate and oblate) has been

brought out before for the � [27] and the M-Qð1Þ
[28,62] spacetimes. We ignore what could be (if
any) the fundamental physical reason for such a
difference.

Finally, Table III displays some values of relevant
parameters (mso�, L� and 
), as well as the interval of
nonexistence of stable circular orbits (
m, 
M), for the LM
solution with a quadrupole and 24-pole.
It should be observed that now, unlike in the case of

the M-Qð1Þ solution, the function Lð
Þ has no maximal
value, implying there exists no msoþ. Thus, the existence
of ISCOs is restricted to the interval rs=M 2 ð0; 
mÞwhen-
ever the quadrupole and the 24-pole are localized within
the ranges mentioned before Eq. (33).
Also, the value of 
m is significantly reduced with

respect to the M-Qð1Þ case, and therefore ISCOs are now
very close to the infinite-redshift surface (rs=M ¼ 2). At
the same time, the range ð
m; 
MÞ increases with respect to
the previous case. For values of rs=M starting from mso�
(the minimum of L), we obtain the values of the farthest
possible stable circular orbits.

TABLE I. Numerical values of characteristic parameters cor-
responding to ISCOs in the M-Qð1Þ solution.

q L h2 ISCOðrs=MÞ
0 3 0.889 6

0.28 0.1 0.016 2.000

0.28 1.1 0.147 2.001

0.28 2.1 0.269 2.004

0.28 3.1 0.388 2.006

0.28 4.1 0.508 2.007

0.28 5.1 0.626 2.008

0.34 0.1 0.053 2.003

0.34 1.1 0.259 2.041

0.34 2.1 0.433 2.062

0.34 3.1 0.602 2.076

0.34 4.1 0.769 2.086

0.34 5.1 0.935 2.093

0.40 0.1 0.093 2.015

0.40 1.1 0.335 2.104

0.40 2.1 0.535 2.148

0.40 3.1 0.728 2.179

0.40 4.1 0.918 2.202

0.40 5.1 1.106 2.222

0.46 0.1 0.130 2.038

0.46 1.1 0.392 2.174

0.46 2.1 0.606 2.245

0.46 3.1 0.811 2.301

0.46 4.1 1.010 2.352

0.46 5.1 1.202 2.407

0.52 0.1 0.163 2.068

0.52 1.1 0.436 2.248

0.52 2.1 0.657 2.350

0.52 3.1 0.865 2.446

0.52 4.1 1.064 2.577

TABLE II. Extremal values of the marginally stable orbits
msoþ and mso� with the corresponding value of the angular
momentum parameter L for which ISCOs exist, and the range of
nonexistence of stable orbits for different values of the quadru-
pole moment, for the M-Qð1Þ solution.

q msoþ Lþ mso� L� ð
m; 
MÞ 


0 	 	 	 	 	 	 6 3 	 	 	 3

0.04 	 	 	 	 	 	 5.957 2.987 	 	 	 2.968

0.08 	 	 	 	 	 	 5.913 2.973 	 	 	 2.934

0.12 	 	 	 	 	 	 5.868 2.960 	 	 	 2.898

0.16 	 	 	 	 	 	 5.821 2.946 	 	 	 2.857

0.20 	 	 	 	 	 	 5.772 2.931 	 	 	 2.812

0.24 	 	 	 	 	 	 5.722 2.917 	 	 	 2.761

0.26 	 	 	 	 	 	 5.696 2.909 	 	 	 2.732

0.28 	 	 	 	 	 	 5.670 2.902 2.014, 2.701 	 	 	
0.30 	 	 	 	 	 	 5.643 2.894 2.047, 2.665 	 	 	
0.32 	 	 	 	 	 	 5.615 2.886 2.092, 2.623 	 	 	
0.34 	 	 	 	 	 	 5.587 2.878 2.149, 2.571 	 	 	
0.36 	 	 	 	 	 	 5.559 2.870 2.230, 2.498 	 	 	
0.37 	 	 	 	 	 	 5.544 2.866 2.298, 2.434 	 	 	
0.374 2.374 7:04e9 5.538 2.865 	 	 	 	 	 	
0.40 2.435 18.277 5.500 2.854 	 	 	 	 	 	
0.44 2.540 8.152 5.436 2.837 	 	 	 	 	 	
0.48 2.645 5.634 5.370 2.820 	 	 	 	 	 	
0.52 2.753 4.498 5.298 2.801 	 	 	 	 	 	
8=15 2.789 4.248 5.273 2.795 	 	 	 	 	 	
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IV. CONCLUSIONS

We have presented a systematic study on the structure of
circular geodesics in the LM spacetime. The case has been
made for the use of such spacetime when describing slight
deviations from spherical symmetry.

The analysis presented clearly exhibits the differ-
ence between the motion in the Schwarzschild and the
LM, spacetimes. In the former case we have a black
hole, whereas in the latter a naked singularity appears.
Our results, as well as those in the references already

mentioned, point to potentially observable evidence alow-
ing us to distinguish between the two above mentioned
situations. We may summarize such results as follows:
(1) The presence of multipole moments (higher than the

monopole) leads to the presence of ISCOs closer to
the infinite-redshift surface than those existing in the
exactly spherically symmetric case.

(2) Such multipole moments also produce an interval in
the values of radial coordinates within which no
stable circular orbits exist.

(3) Specific numerical values have been presented to
illustrate the two above mentioned effects.

(4) Particularly relevant might be the application of the
presented results to studying the dynamics of accre-
tion discs around compact objects, which as is well
known, are assumed to be an essential ingredient of
active sources such as x-ray binaries or galactic
nuclei (see Ref. [66] and references therein).
However, such a study is outside the scope of this
paper.
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[56] T. Bäckdahl and M. Herberthson, Classical Quantum

Gravity 22, 3585 (2005).
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