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In this paper we investigate the global dynamics for the minimally coupled scalar field representation of

the modified Chaplygin gas in the context of flat Friedmann-Lemaı̂tre-Robertson Walker cosmology. The

tool for doing this is a new set of bounded variables that lead to a regular dynamical system. It is shown

that the exact modified Chaplygin gas perfect fluid solution appears as a straight line in the associated

phase plane. It is also shown that no other solutions stay close to this solution during their entire temporal

evolution, but that there exists an open subset of solutions that stay arbitrarily close during an intermediate

time interval, and into the future in the case when the scalar field potential exhibits a global minimum.
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I. INTRODUCTION

The total matter content in the Universe, now and in the
distant past, is a mystery. As a consequence cosmological
models abound, both as regards fields and the dynamical
laws they obey. This is reflected in a plethora of infla-
tionary models and models for dark matter and energy, in
the context of general relativity and in modified gravity
theories. This entails possibilities for new physical insight,
but it also causes explanatory problems, the latter exem-
plified by e.g. fine-tuning problems of potentials (see
e.g. [1]) and initial data.

One attempt to fit theory with observations is to phe-
nomenologically match the observed expansion history by
imposing conditions on e.g. the time development of the
cosmological scale factor, or by imposing a relationship
between pressure and energy density, and then use such a
relationship to produce a field description, as discussed in
e.g. [2–4] and references therein. The arguably simplest
field theoretic description is a minimally coupled scalar
field within the context of flat Friedmann-Lemaı̂tre-
Robertson Walker (FLRW) cosmology; see e.g. [5–8],
and references therein. A field theoretic description, how-
ever, leads to that the original relationship only is obeyed
by particular solutions to the field problem it has generated,
as pointed out in e.g. [9–11]. This is due to the fact that a
field theoretic description adds degrees of freedom; e.g. a
single minimally coupled scalar field adds one degree of
freedom to a perfect fluid description with a barotropic
equation of state. This then leads to the issue of how the
global solution space of the field theoretic description is
related to that of the generating relationship.

Although some work on the issue of initial data not
corresponding to the generating conditions has been
done, as exemplified by the numerical examples in [10]
and the investigation in [11] for the Chaplygin gas, as far as
the author knows there seems to be no global dynamical
systems investigation of this issue. In this paper, which is

the first in a series that will address fine-tuning problems
with global dynamical systems methods, we will, as a
specific example, consider flat FLRW cosmology and the
minimally coupled scalar field description of the modified
Chaplygin gas. The modified Chaplygin gas is character-
ized by an equation of state (see e.g. [12–14])

p ¼ ð�� 1Þ��M���; (1)

where p is the pressure of the fluid, � its energy density and
M, � and � are free parameters. For simplicity, we will
here restrict their range to M> 0, �> 0, 1 � � < 2. The
value � ¼ 1 leads to the so-called generalized Chaplygin
gas while � ¼ � ¼ 1 corresponds to the original
Chaplygin gas. This equation of state can be used to
construct the scalar field potential for a scalar field �
(see e.g. [12,13,15,16]), which can be written as

V ¼ V0

2

h
ð2� �Þcosh 2

1þ� ~�þ �cosh
�2�
1þ� ~�

i

¼ V0

2
cosh

2
1þ� ~�½2� �tanh2 ~��; (2)

where V0 :¼ ðM=�Þ 1
1þ�, ~� :¼ 1

2 ð1þ�Þ ffiffiffiffiffiffi
3�

p ð���0Þ.
In this paper we will introduce new bounded variables

that in the flat FLRW case with the above minimally
coupled scalar field lead to a two-dimensional regularized
dynamical system, with � and � as parameters. This will
yield a global picture of the scalar field dynamics, and
provide a context for the generating modified Chaplygin
gas perfect fluid solution, which, for a given � and �,
appears as a straight line in our regularized two-
dimensional dynamical system. Moreover, the scalar field
potential (2) yields three classes of different behavior,
characterized by conditions on � and � associated with a
bifurcation for the dynamical system; notably the original
Chaplygin gas appears as a member of the class of models
associated with the bifurcation.
The outline of the paper is as follows. In the next section

we derive, in a step by step manner, our regularized
dynamical system on a bounded state space, where the*claes.uggla@kau.se
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boundaries are included. In Sec. III we perform a both local
and global dynamical systems analysis which leads to a
complete understanding of the solution space. In particular
the generating perfect fluid is identified as an invariant
subset corresponding to a straight line in the phase plane,
and this subset is subsequently contextualized by the local
and global phase plane results. The paper is concluded with
a discussion in Sec. IV.

II. DYNAMICAL SYSTEMS FORMULATION

The field equations for a minimally coupled scalar field
�ðtÞ with potential Vð�Þ for flat FLRW cosmology are
given by

3H2 ¼ 1

2
_�2 þ V ¼: ��; (3a)

_H ¼ �H2 � 1

3
ð _�2 � VÞ ¼ � 1

2
_�2; (3b)

0 ¼ €�þ 3H _�þ V�: (3c)

Here an overdot signifies the synchronous time, t, deriva-
tive; V� :¼ dV=d�, and where we have used units to set

c ¼ 1 ¼ 8�G, where c is the speed of light and G is the
gravitational constant. The Hubble variable H is given by
H ¼ _a=a, where aðtÞ is the cosmological scale factor;
throughout we will assume an expanding Universe, i.e.
H > 0. It follows from (3b) that the deceleration parame-
ter, q, which is defined via _H ¼ �ð1þ qÞH2, is given by

q ¼ �1þ 1

2

_�

H

 !
2

: (4)

A commonly used formulation when V � 0 is obtained
by ‘‘Hubble normalization’’ which is used extensively
in cosmology (see e.g. [3,17] for FLRW scalar field
cosmology, and e.g. [17,18] for anisotropic spatially
homogeneous cosmology):

x :¼
_�ffiffiffi
6

p
H

y :¼
ffiffiffiffi
V

p
ffiffiffi
3

p
H
; (5)

and a new time variable �, defined by dt ¼ H�1d�, which
means that � ¼ ln ða=a0Þ [a0 ¼ aðt0Þ, where t0 is some
convenient reference time], where � sometimes is referred
to as N, the number of e-folds from the reference time t0.
This leads to

x0 ¼ �
0
@3x�

ffiffiffi
3

2

s
�

1
Að1� x2Þ; (6a)

y0 ¼
0
@3x�

ffiffiffi
3

2

s
�

1
Axy; (6b)

1 ¼ x2 þ y2; (6c)

where a 0 denotes differentiation with respect to �. The
quantity � is defined by

� ¼ �V�

V
; (7)

and is a function of � except when V ¼ c21 exp ðc2�Þ,
where c1 and c2 are constants, since then � ¼ �c2, which
leads to a one-dimensional problem for x. In general, since
� ¼ �ð�Þ, one has to add the equation

�0 ¼ ffiffiffi
6

p
x (8)

to the system (6) to obtain a closed constrained system. In
the above equations, the variable y can be replaced by a
variable �V ¼ y2 ¼ 1� x2 which can be globally solved
for to yield a two-dimensional unconstrained system for x
and �:

x0 ¼ �
0
@3x�

ffiffiffi
3

2

s
�

1
Að1� x2Þ; (9a)

�0 ¼ ffiffiffi
6

p
x: (9b)

Although x is bounded, � is not. Furthermore, �ð�Þ need
not be bounded either. In the special case that �ð�Þ is
bounded for all �, one can introduce a new variable
Yð�Þ to obtain a new system

x0 ¼ �
0
@3x�

ffiffiffi
3

2

s
�

1
Að1� x2Þ; (10a)

Y0 ¼ ffiffiffi
6

p dY

d�
x; (10b)

where, with some abuse of notation � ¼ �ðYÞ and dY
d� ¼

dY
d� ðYÞ. It turns out that it is possible to choose a bounded

variable Y for a number of scalar field potentials so that the
equations (10) become regular on a relatively compact
state space, whose boundary can be included in the
dynamical systems analysis, which allows one to obtain a
global picture of the dynamics.
It follows from (5), (6c), and (10) that the variable

x 2 ð�1; 1Þ can be extended to include the boundaries
x ¼ �1 so that x 2 ½�1; 1�. The invariant boundary sub-
sets x ¼ �1 correspond to y ¼ 0 ¼ V, and are hence
associated with the massless scalar field problem, and we
will therefore refer to them as the massless scalar field
boundary subsets, and denote them by M�. Note that

w :¼p�

��

¼
1
2
_�2�Vð�Þ

1
2
_�2þVð�Þ¼2x2�1; q¼�1þ3x2; (11)

and that acceleration (q < 0) hence occurs if x2 < 1
3 , which

corresponds to w<� 1
3 , while q ¼ 2, w ¼ 1 on M�.

Furthermore, it follows from (3a) and (5) that

3H2 ¼ VðYÞ
1� x2

¼: ZðY; xÞ; (12)

while (3b) gives

Z0 ¼ �6x2Z; (13)
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and hence Z is monotonically decreasing towards the
future, except when x ¼ 0 belongs to an invariant subset.
Next we turn to our dynamical systems formulation of the
modified Chaplygin gas scalar field problem.

Recall that the scalar field potential associated with the
modified Chaplygin gas given in (2) could be written as

V ¼ V0

2
cosh

2
1þ� ~�½2� �tanh2 ~��: (14)

This potential is invariant under the change ~� ! � ~�,
which will give rise to a discrete symmetry in the dynami-
cal systems treatment. It is instructive to Taylor expand the

potential at ~� ¼ 0:

V ¼ V0

�
1þ� ~�2 þ 1

8

�
ð2��Þ�þ 4�

�
�� 1

3

��
~�4 þ . . .

�
;

(15a)

where

� :¼ 1

1þ�
� �

2
¼ 2� �ð1þ�Þ

2ð1þ�Þ : (15b)

The potential has a global minimum at ~� ¼ 0 if � � 0,
although the minimum is quite ‘‘flat’’ if � ¼ 0 since then

d2V=d ~�2j ~�¼0 ¼ 0, while ~� ¼ 0 is a local maximum sur-

rounded by two identical minima if �< 0; see Fig. 1. As
can be expected, this will lead to a bifurcation at � ¼ 0 in
the dynamical systems analysis below.

To obtain a regular dynamical system on a relatively
compact state space we introduce the variable1

Y :¼ tanh ~�; (16)

which leads to2

x0 ¼ �
0
@3x�

ffiffiffi
3

2

s
�

1
Að1� x2Þ; (17a)

Y0 ¼ 3

2
ð1þ�Þ ffiffiffiffiffiffi

2�
p ð1� Y2Þx; (17b)

where

� ¼ � ffiffiffiffiffiffi
3�

p
Y

�
2� �� ��ð1� Y2Þ

2� �Y2

�
: (17c)

Since �ðYÞ is a differentiable function for Y 2 ½�1; 1�,
we can extend the state space to not just including the

boundaries x2 ¼ 1 but also Y2 ¼ 1. This leads to a state
space S for which x 2 ð�1; 1Þ, Y 2 ð�1; 1Þ, which when
extended to include its boundary yields �S: x 2 ½�1; 1�,
Y 2 ½�1; 1�. In addition to the massless scalar field bound-
ary subsets M�, we therefore also have the invariant
boundary subsets Y ¼ �1, for which �ðY ¼ 1Þ ¼
��ðY ¼ �1Þ is a constant, and hence the equation for x
is the same as that for a single exponential field potential
with V ¼ c21 exp ð��ðY ¼ �1ÞÞ. We will therefore refer to
the invariant Y ¼ �1 boundary subsets as the exponential
term subsets, and will denote them by E�. Furthermore, the
system (17) on �S admits a discrete symmetry; it is invariant
under the transformation ðx;YÞ!�ðx;YÞ, a property that is
a consequence of the discrete symmetry of the potential V.
In addition to the boundary subsets, the system (17)

admits another identifiable one-dimensional subset,
namely the interior subset that is associated with the per-
fect fluid solution that generated the scalar field potential.
This subset can conveniently be found by using the fact
that w ¼ 2x2 � 1 in general and that w ¼ wð�ðYÞÞ for the
perfect fluid solution, where wð�ðYÞÞ is obtained easily
from the expressions in e.g. [12,13]. By identifying the
two expressions for w, it then follows straightforwardly
that the perfect fluid solution satisfies

ð ffiffiffi
2

p
xþ ffiffiffiffi

�
p

YÞð ffiffiffi
2

p
x� ffiffiffiffi

�
p

YÞ ¼ 0; (18)

and therefore one of these factors must be zero. Taking

the combination
ffiffiffi
2

p
x0 þ ffiffiffiffi

�
p

Y0 gives

ð ffiffiffi
2

p
xþ ffiffiffiffi

�
p

YÞ0 ¼ 3

2
ð ffiffiffi

2
p

xþ ffiffiffiffi
�

p
YÞ

�
� ffiffiffi

2
p

xð ffiffiffi
2

p
x� ffiffiffiffi

�
p

YÞ� ð2� ffiffiffiffiffiffi
2�

p
xYÞR

2��Y2

�
;

(19)

φ∼

V/V0

FIG. 1. Representatives of the three types of potentials char-
acterized by �> 0, with � ¼ 4

3 , � ¼ 1
4 (dashed dotted line);

� ¼ 0, with � ¼ 1 ¼ � (solid line); �< 0, with � ¼ 1, � ¼ 2
(dashed line), where � ¼ 1

1þ� � �
2 .

1A variable similar to Y can be used for a whole range of scalar
field problems, although it is not always an optimal choice; it is
chosen here partly because it gives a simple description of the
modified Chaplygin perfect fluid solutions as straight lines.

2As follows from the mathematical properties of the system
(17), the range of � can be extended from �> 0 to �>�1,
without any qualitative dynamical changes taking place from a
mathematical point of view. However, at � ¼ �1 a bifurcation
takes place, which corresponds to the fact that the equation of
state of the generating solution becomes linear.
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where

R :¼ 2� �� ��ð1� Y2Þ; (20)

and hence
ffiffiffi
2

p
xþ ffiffiffiffi

�
p

Y ¼ 0 is an invariant subset (which,

by inspection,
ffiffiffi
2

p
x� ffiffiffiffi

�
p

Y ¼ 0 turns out not to be)

describing the perfect fluid solution, which, due to the
discrete symmetry, is represented by two equivalent solu-
tion trajectories. We will refer to the invariant subsetffiffiffi
2

p
xþ ffiffiffiffi

�
p

Y ¼ 0 as the ‘‘perfect fluid subset’’ and will

denote it as PF , and the two perfect fluid trajectories as
PF�, where the sign refers to the sign of Y.

The system (17) admits a number of fixed points:

dS0: ðx; YÞ ¼ ð0; 0Þ; (21a)

dS�: ðx; YÞ ¼ ð0;�Y0Þ Y0 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2� �

��

s
;

if �>
2� �

�
; (21b)

MY¼	
x¼�1: ðx; YÞ ¼ ð�1; 	Þ; where 	 ¼ 1 or 	 ¼ �1;

(21c)

PF�: ðx; YÞ ¼
�
�

ffiffiffiffiffiffiffiffiffi
�=2

q
;�1

�
: (21d)

The fixed points dS0 and dS� correspond to w ¼ �1 and
therefore represent de Sitter states. Note that the fixed

points dS� only exist when �> 2��
� , i.e., when �< 0,

which corresponds to the situation when the scalar field
potential V has two minima. The four fixed points MY¼	

x¼�1

at the corners of the phase plane have w ¼ 1 and hence
correspond to massless scalar field states. Finally, the PF�
fixed points are the origin (
 limits) of the perfect
fluid solution trajectories PF�.

3 At these fixed points
w ¼ �� 1, which is the limit of the perfect fluid equation
of state towards the initial singularity when � ! 1.

The Chaplygin gas case plays a historical special role
and it is of interest to write down the equations explicitly
for this case, including its fixed points. In this case
p ¼ �M��1, and hence � ¼ � ¼ 1, which leads to the
scalar field potential [15]

V ¼ V0

2
cosh ~�½2� tanh 2 ~�� ¼ V0

2
½cosh ~�þ cosh�1 ~��;

(22)

where ~� :¼ ffiffiffi
3

p ð���0Þ. As a consequence

x0 ¼ �
0
@3x�

ffiffiffi
3

2

s
�

1
Að1� x2Þ; (23a)

Y0 ¼ 3
ffiffiffi
2

p ð1� Y2Þx; (23b)

� ¼ � ffiffiffi
3

p �
Y3

2� Y2

�
: (23c)

The PF subset is characterized by
ffiffiffi
2

p
xþ Y ¼ 0, while

the seven fixed points the dynamical system (23) admits are
given by

dS0: ðx; YÞ ¼ ð0; 0Þ; (24a)

MY¼	
x¼�1: ðx; YÞ ¼ ð�1; 	Þ; where 	 ¼ 1 or 	 ¼ �1;

(24b)

D�: ðx; YÞ ¼ ð�1=
ffiffiffi
2

p
;�1Þ: (24c)

The fixed points PF� have here been denoted by D� since
w ¼ 0 in this case, and thus D� represents a ‘‘dust’’ state.

III. DYNAMICAL SYSTEMS ANALYSIS

A. Local fixed point analysis

The eigenvalues of the various fixed points of (17) are
given by

dS0: � 3

2
½2� �ð1þ�Þ�; � 3

2
�ð1þ�Þ; (25a)

dS�: � 3

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 4�ð1þ�Þ

q �
; if �>

2� �

�
;

(25b)

MY¼�1
x¼�1 : 3

ffiffiffiffiffiffi
2�

p ð1þ�Þ; 3ð2� ffiffiffiffiffiffi
2�

p Þ; (25c)

MY¼�1
x¼�1 : � 3

ffiffiffiffiffiffi
2�

p ð1þ�Þ; 3ð2þ ffiffiffiffiffiffi
2�

p Þ; (25d)

PF�: 3�ð1þ�Þ; � 3

2
ð2� �Þ: (25e)

As expected there is a bifurcation associated with the
PF� fixed points when � ¼ 2, since � ¼ 2 leads to the fact
that the perfect fluid solution asymptotically towards the
past behaves like a stiff fluid, which is equivalent to a
massless scalar field. As a consequence, the PF� fixed
points pass through the MY¼�1

x¼�1 points at this value for �,
which leads to a bifurcation. For simplicity we have
therefore assumed that � < 2, but we will return to the
case � ¼ 2 in the concluding discussion.
We also have a bifurcation at 2� �ð1þ�Þ ¼ 0

(� ¼ 0), which is when the dS� fixed points merge with
the dS0 fixed point. When 2� �ð1þ�Þ< 0 (�< 0) the
fixed points dS� exist and are hyperbolic sinks, while dS0
is a hyperbolic saddle. In this case only two solutions end at
dS0 (have dS0 as their ! limit) and these are the perfect
fluid trajectories PF�, since the invariant subset PF can
be identified as the stable manifold of dS0. When
2� �ð1þ�Þ> 0 (�> 0) the fixed point dS0 becomes a

3Note that the fixed points PF� are associated with the perfect
fluid solution that generates the exponential scalar field potential
which is associated with the E� subsets; i.e., again the generating
perfect fluid solution constitutes an invariant set of codimension
1 compared with the scalar field state space it generates.
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hyperbolic sink, however, when 2� �ð1þ�Þ ¼ 0 dS0 is a
nonhyperbolic sink (as will be shown below in the global
analysis). Note that the Chaplygin case belongs to this
case. The fixed pointsMY¼�1

x¼�1 are hyperbolic sources while
MY¼�1

x¼�1 are hyperbolic saddles, with eigenvectors along the
boundaries, so there are no solutions originating from these
fixed points into S. Finally, PF� are hyperbolic saddles
where each fixed point gives rise to a single solution enter-
ing the state space S, the perfect fluid solution PF� (thus
being the unstable manifold of PF�).

B. Global dynamical systems analysis

It follows from (13) and

V ¼ VðYÞ ¼ V0

2
ð1� Y2Þ� 1

1þ�ð2� �Y2Þ (26)

that ~Z :¼ ð1� Y2Þ� 1
1þ�ð2� �Y2Þð1� x2Þ�1 > 0 on S

satisfies ~Z0 ¼ �6x2 ~Z and hence that

�Z0 ¼ �6x2 �Zð1� �ZÞ;
�Z :¼ ~Z

1þ ~Z
¼ 2� �Y2

ð1� Y2Þ 1
1þ�ð1� x2Þ þ 2� �Y2

:
(27)

Thus �Z is a bounded monotone decreasing function on
S \ dS0 when 2� �ð1þ�Þ � 0 (� � 0) and on S\dS0\
dSþ\dS� when 2� �ð1þ�Þ< 0 (�< 0), since the
fixed points are the only invariant subsets on x ¼ 0.
As a consequence, when 2� �ð1þ�Þ � 0, i.e., when

� � 0, all solutions in S, except for the fixed point dS0,
originate from the boundary @S where �Z has its maximum
�Z ¼ 1. It also follows that when �< 0 all solutions also
originate from the boundary @S, except for the fixed points
dS� and the two solutions that originate from dS0.
Combining this with the structure on the boundary, and
the hyperbolic eigenvalues of the fixed points on @S, it
follows that when � � 0 all orbits in S originate from the
sourcesMY¼�1

x¼�1 except for the two perfect fluid trajectories

PF� which originate from PF�. Furthermore, the mono-
tone function obtains its minimum �Z ¼ 2

3 at dS0 which is

the future attractor for all orbits in S; i.e., they all have dS0
as their ! limit (i.e., dS0 is a global sink on S, even though
it is a nonhyperbolic fixed point when � ¼ 0). Note that
this is the case the Chaplygin gas belongs to. On the other
hand, when �< 0 all solutions end at the hyperbolic sinks
dS� except for the perfect fluid trajectories PF�, which
end at dS0, as mentioned above. Note also that the unstable

−1 0 1
−1

0

1

x

Y

−1 0 1
−1

0

1

x

Y

−1 0 1
−1

0

1

x

Y

FIG. 2. Representative phase planes for the three cases characterized by �> 0 (� ¼ 4
3 , � ¼ 1

4 ), � ¼ 0 (� ¼ 1, � ¼ 1) and �< 0
(� ¼ 1, � ¼ 2), where � ¼ 1

1þ� � �
2 .

GLOBAL COSMOLOGICAL DYNAMICS FOR THE SCALAR . . . PHYSICAL REVIEW D 88, 064040 (2013)

064040-5



manifold of dS0 yields two solution trajectories that end at
dS�, respectively, which follows from the monotone func-
tion in combination with the fact that dS0 is a hyperbolic
saddle in this case. These results are illustrated by the
phase plane portraits given in Fig. 2.

Remark. The present statements concerning the use of
the monotone function can be formalized by means of the
monotonicity principle [18], which is stated as follows: Let
�t be a flow onRn with S an invariant set. Let Z: S ! R be
a C1 function whose range is the interval ða; bÞ where
a < b. If Z is decreasing on orbits in S, then for all
x 2 S the ! and 
 limits belong to the boundary of S
according to

!ðxÞ 	 fs 2 �S n Sjlim
y!s

ZðyÞ � bg;

ðxÞ 	 fs 2 �S n Sjlim

y!s
ZðyÞ � ag:

The existence of a monotone function on S therefore e.g.
excludes any periodic orbits in S.

IV. DISCUSSION

We have here shown that the perfect fluid solution that
generates the scalar field problem of the modified Chaplygin
case appears as two straight lines in the phase plane.
Moreover, the two straight lines originate from fixed points
that correspond to the scale-invariant perfect fluid solution
with a linear equation of state p ¼ ð�� 1Þ� on one-
dimensional boundaries that describe the scalar field problem
corresponding to an exponential potential, which this scale-
invariant solution generates. All other scalar field solutions
originate from fixed points that correspond to scale-invariant
massless scalar field solutions (except for the two solutions
that originate from the de Sitter fixed point dS0 and ending at
the de Sitter fixed points dS� when �< 0). Hence no other
solutions behave like the perfect fluid solutions towards the
past limit (which perhaps is a somewhat moot issue in the
present context since the purpose of these particular models
is to describe intermediate and late stage behavior).

The role of the perfect fluid solution in the scalar field
case for the Chaplygin gas has been previously discussed in
[10,11] and hence the role of the perfect fluid solution in
the case � � 0 deserves some comments (� � 0 is
assumed throughout the subsequent discussion). Let us first
give the linearization of PF :

ð ffiffiffi
2

p
xþ ffiffiffiffi

�
p

YÞ�1ð ffiffiffi
2

p
xþ ffiffiffiffi

�
p

YÞ0j
x¼�

ffiffiffiffiffiffi
�=2

p
Y

¼ 3

2

�
2�Y2 � R

�
2þ �Y2

2� �Y2

��
; (28a)

ð ffiffiffi
2

p
xþ ffiffiffiffi

�
p

YÞ�1ð ffiffiffi
2

p
xþ ffiffiffiffi

�
p

YÞ0jPF� ¼ � 3

2
ð2� �Þ; (28b)

ð ffiffiffi
2

p
xþ ffiffiffiffi

�
p

YÞ�1ð ffiffiffi
2

p
xþ ffiffiffiffi

�
p

YÞ0jdS0 ¼ � 3

2
½2� �ð1þ�Þ�;

(28c)

where R ¼ 2� �� ��ð1� Y2Þ. Here the values at the
fixed points PF� and dS0 are just one of the eigenvalues
at each fixed point and show that the perfect fluid
submanifold PF is stable at PF� and at dS0 when
�> 0. Note, however, that the sign of the right-hand side
of (28a) depends on the value of Y2 (and the values
of � and �), as illustrated by the Chaplygin case

ð ffiffiffi
2

p
xþ YÞ�1ð ffiffiffi

2
p

xþ YÞ0j
x¼�

ffiffiffiffiffiffi
1=2

p
Y
¼ 3

2
Y2ð3Y2�2Þ

2�Y2 . As a

consequence, solutions nearby PF� drift away slightly
from PF� during part of their intermediate evolution, as
seen in Fig. 2. This means that the perfect fluid submani-
fold PF is not stable everywhere, which is a physical
effect that can be measured in terms of x and hence the
deceleration parameter q. Nevertheless, thanks to the fact
that dS0 is a sink, even in the � ¼ 0 case, solutions that are
close to the fixed points PF� stay close to the trajectories
PF� throughout their subsequent evolution. Indeed, there
is an open set of solutions that are arbitrarily close to the
perfect fluid solution throughout their intermediate and late
time evolution when � � 0, which can be seen as follows.
Consider the two finite heteroclinic chains that start

from the source MY¼1
x¼�1 along the boundary @S that are

described by4

MY¼1
x¼�1 ! PFþ ! dS0; (29a)

MY¼1
x¼�1 ! MY¼�1

x¼�1 ! PF� ! dS0; (29b)

and similarly forMY¼�1
x¼1 . As follows from the regularity of

the dynamical system, continuity, and the stability proper-
ties of the fixed points, there exist two open sets of solu-
tions that stay arbitrarily close to the heteroclinic chains in
(29) throughout their entire history (and similarly for the
analogous equivalent chains associated with MY¼�1

x¼1 ). As a
consequence, these open sets of solutions describe an open
set of solutions that behaves like the perfect fluid solution
during the solutions intermediate and future evolution
when � � 0, i.e., when dS0 is the future attractor.
However, there also exists an open set which only behaves
like the perfect fluid solution toward their asymptotic
future, described by dS0. In the case of �< 0, the chains
continue with the heteroclinic orbits that go from dS0 to
dS�, and in this case there exists an open set of solutions
that behaves like the perfect fluid solution at an intermedi-
ate stage, but not toward the asymptotic future. On the
other hand, in this case there also exists an open set of
solutions that never behaves like the perfect fluid solution.
It should be stressed that the current results are not in

contradiction to those in [11]. There the authors introduced
a function involving the Chaplygin equation of state which
was zero for the Chaplygin case. By studying the evolution

4A heteroclinic chain is a concatenation of heteroclinic orbits
(solution trajectories that begin and end at two distinct fixed
points), where the ‘‘final’’ (! limit) fixed point of one solution
trajectory is the ‘‘initial’’ (
 limit) fixed point of the next
solution trajectory.

CLAES UGGLA PHYSICAL REVIEW D 88, 064040 (2013)

064040-6



of this quantity they came to the conclusion that the
Chaplygin case was stable. The idea to study stability by
means of a function that reflects the scalar field generating
solution’s equation of state characteristics is an interesting
one, but the connection with the stability of the correspond-
ing solution in a state space picture is not straightforward.
Indeed, even to make a comparison demands that the
function is dimensionally compatible with the state space
variables one uses to describe the solution space. The
present variables are dimensionless (under conformal
weight) while the function used in [11] to analyze the
Chaplygin case carried dimension. To be able to make a
comparison with the present phase space picture and the
type of analysis done in [11] therefore requires changing the
‘‘equation of state function’’ to a dimensionless one. Such
a dimensionless function was used in [11] in the case of a
perfect fluid with linear equation of state, which makes a
comparison possible. The conclusion in [11] was that the
perfect fluid solution is stable, and this precisely corre-
sponds to the local analysis of PF� on the E� subsets, which
indeed yields that the fixed points PF� are stable on E�.

The presently studied example has shown a connection
between the shape of the potential for finite values of the
field and bifurcations in the dynamical systems picture. The
same holds true when � ! �1. In this case we have a
bifurcation when � ¼ 2. This corresponds to the fact that
the fixed point sources are replaced by a heteroclinic cycle
described by the boundary as the 
-limit set. This is due to
the fact that the potential walls become sufficiently steep so
that oscillations take place towards the past. This can be
seen from considering the case of a scalar field with two
exponential terms with opposite signs, as done in [19]. This
suggests that scalar field problems can be classified in terms
of the properties of the extremum properties of the potential

for finite values of the field (see [20]) and the properties of
the potential when the field goes to infinity in terms of
bifurcations in global regularized dynamical systems treat-
ments, with subclassifications based on where and how the
bifurcations occur in the associated dynamical systems
pictures (in a more general context classifications involve
several matter and geometrical degrees of freedom). Due to
the correspondence with some modified gravity theories
and scalar field problems in general relativity, similar clas-
sifications are presumably possible for some gravity theo-
ries as well. Note, however, that in the present global
regularized dynamical systems treatment, all bifurcations
are associated with physical changes, such as changing a
minimum of the potential to a maximum. The world regu-
larized, including the sense that all fixed points are hyper-
bolic (or that fixed point sets are transversally hyperbolic)
to the extent this is physically possible, is an essential
demand for any sensible classification; classifications
involving nonhyperbolic fixed points that are consequences
of ‘‘bad’’ choices of variables would be of little use.
The present example of the modified Chaplygin gas

presumably illustrates some quite general features as
regards the relationship between solutions, associated
with some conditions, e.g. observational ones, and the field
theoretic descriptions they might generate. For example, as
particular solutions the ‘‘field generating solutions’’ may
only describe part of the temporal behavior of most solu-
tions, and only for special initial data (and sometimes even
none of the temporal behavior for an open set of solutions,
as illustrated by the present �< 0 case). It is only if the
field generating solutions originate at a source and end at a
sink that they might describe global temporal behavior for
an open set of solutions, and even then in general only for,
in some sense, special initial data.

[1] A. Ijjas, P. J. Steinhardt, and A. Loeb, Phys. Lett. B 723,
261 (2013).

[2] V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 15, 2105
(2006).

[3] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod.
Phys. D 15, 1753 (2006).

[4] K. Bamba, S. Capozziello, S. Nojiri, and S.D. Odintsov,
Astrophys. Space Sci. 342, 155 (2012).

[5] B. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406 (1988).
[6] J. D. Barrow, Phys. Lett. B 235, 40 (1990).
[7] G. F. R. Ellis and M. S. Madsen, Classical Quantum

Gravity 8, 667 (1991).
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