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We present a new manifestation of the nonlinearity of gravity-matter interactions. We show explicitly

that there exists a nongravitating dynamical scalar field solution in Eddington-inspired Born-Infeld

gravity. This kind of solution has not been found in previous literature based on general relativity or

other modified gravity theories. The perturbation analysis shows that the solution is a late-time attractor if

the scalar field rolls down the potential. This indicates that there are two weak-gravity regimes in the

theory—one in the general relativity regime, and the other in the Eddington regime.
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Matter interacts with gravity closely. In this interaction,
the mutual roles of matter and gravity can be summarized
by the words of J. A.Wheeler: ‘‘Spacetime tells matter how
to move; matter tells spacetime how to curve.’’ However,
looking closely into the solution space of general relativity
(GR), one may find that the role played by gravity is not
exactly the same as that played by matter as a generator
of gravity, especially in the vacuum sector. In GR,
the nonlinearity of gravity allows curved spacetimes in
the absence of matter such as the gravitational soliton,
gravitational instanton, Bianchi solutions, etc. These solu-
tions play a crucial role in understanding the Einstein
gravity. Contrary to that, GR does not allow matter dy-
namics in the absence of gravity. Several generalized grav-
ity theories appear in the literature such as the scalar-tensor
theory, fðRÞ gravity, massive gravity, and Gauss-Bonnet
gravity. However until now, no gravity theory is known to
have the nonlinear interaction allowing a dynamical matter
field without developing gravity. Therefore, it is worth-
while to investigate nongravitating matter distributions
(nGMDs) via nonlinear interactions between the matter
and gravity in newly suggested gravity theories.

In gravity theories modified from the Einstein-Hilbert
action by adding higher-curvature terms, one can easily
notice that the nGMDs may not exist. The equation of
motion (EOM) for the action will take the formX

n¼0

cnðRnÞ�� ¼ T��;

where Rn represents the every-nth-order polynomial of
curvatures. Let us consider the regular situations when the
curvatures vanish. In the case of c0 ¼ 0, one may easily
notice that the zero curvature simply leads to zero stress
tensor T�� ¼ 0. The stress tensor corresponding to c0 plays

the role of the cosmological constant, which implies the
matter field is homogeneous and nondynamical. Therefore,
we may conclude that the gravity theory allowing nGMDs

should be based on a different starting point rather than
simply including higher-curvature terms.
In this paper, we show that the Eddington-inspired Born-

Infeld (EiBI) theory, which was suggested as an alternative
theory of gravity recently [1], allows nGMDs. The EiBI
action is given by

SEiBI ¼ 1

�

Z
d4x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jg�� þ �R��ð�Þj

q
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jg��j

q �

þ SMðg;�Þ; (1)

where jG��j denotes the determinant of G��, � is a

dimensionless parameter related with the cosmological con-
stant by� ¼ ð�� 1Þ=�, andwe set8�G ¼ 1. In this theory,
the metric g�� and the connection ��

�� are treated as inde-

pendent fields (Palatini formalism). The Ricci tensorR��ð�Þ
is evaluated solely by the connection, and the matter field�
is coupled only to the gravitational field g��. The merits of

this theory are that it requires only onemore theory parameter
�, and that it is equivalent to the theory of GR in vacuum.
In Refs. [1,2], the evolution of the Universe driven by

barotropic fluid is investigated in EiBI gravity. For the
equation-of-state parameter, w � P=� > 0, the Universe
starts from a nonsingular initial state of a finite size for
� > 0. More interestingly, the initial state of the Universe
driven by pressureless dust (w ¼ 0) approaches the de
Sitter state with the effective cosmological constant
�eff ¼ 8=� [2]. Subsequent works in EiBI gravity have
been performed on the subjects of the cosmological and
astrophysical constraints on the EiBI theory [3,4], the
constraint on the value of � by using the solar model [5],
the tensor perturbation [6], bouncing cosmology [7],
the five-dimensional brane model [8], the effective stress
tensor and energy conditions [9], cosmology with scalar
fields [10], the instability of compact stars [11], the surface
singularity of the compact star [12], etc. Recently, the
chaotic inflation [13] and the metric perturbations [14]
based on EiBI gravity have been studied.
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The equations of motion are obtained by varying the
action in Eq. (1) with respect to the fields g�� and �

�
��,

respectively: ffiffiffiffiffiffiffiffiffiffi�jqjp
ffiffiffiffiffiffiffiffiffiffi�jgjp q�� ¼ �g�� � �T�� (2)

and

q�� ¼ g�� þ �R��; (3)

where q�� is the auxiliary metric by which the connection

��
�� is defined, and q�� is the matrix inverse of q��.

The energy-momentum tensor is given by the usual sense,

T�� ¼ ð2= ffiffiffiffiffiffiffiffiffiffi�jgjp Þ�LM=�g��.

In this paper, we investigate the dynamics of a homoge-
neous scalar field in EiBI gravity. The action for the matter
field is then given by

SM ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi
�jgj

q �
� 1

2
g��@

��@��� Vð�Þ
�
; (4)

where the scalar field depends only on time, �ðtÞ, because
of the spatial homogeneity. The homogeneous and iso-
tropic Ansätze for the metric and auxiliary metric are

g��dx
�dx� ¼ �dt2 þ a2ðtÞdx2;

q��dx
�dx� ¼ �X2ðtÞdt2 þ Y2ðtÞdx2:

(5)

From the EOM of the first kind [Eq. (2)], we obtain the
auxiliary metric in terms of physical parameters,

X ¼ ð�� �pÞ3=4ð�þ ��Þ�1=4;

Y ¼ ½ð�þ ��Þð�� �pÞ�1=4a;
(6)

where � ¼ _�2=2þ V and p ¼ _�2=2� V. From the com-
ponents of the EOM of the second kind [Eq. (3)], we obtain
the Hubble parameter,

H � _a

a
¼ 1ffiffiffiffiffiffi

3�
p 1

ð�=�þ VÞ2 þ _�4=2

�
�

ffiffiffiffiffiffi
3�

p
2

�
�

�
þ V þ

_�2

2

�
V 0ð�Þ _��

�
�

�
þ V �

_�2

2

�

�
�
�

�
�

�
þ V þ 1

2
_�2

�
3=2

�
�

�
þ V �

_�2

2

�
3=2 �

�
�

�
þ V þ 1

2
_�2

��
�

�
þ V � _�2

��
1=2

�
: (7)

This equation was first obtained in Eq. (46) in Ref. [10]
with � ¼ 1. There, it was also shown that GR is recovered
in the leading order at later times in the expanding
Universe. Varying the action in Eq. (4) with respect to �,
the equation of motion for the scalar field is given by

€�þ 3H _�þ V 0ð�Þ ¼ 0: (8)

Now let us investigate the zero-curvature solution, i.e., the
flat solution in terms of the metric g��. We consider the flat

spacetime, aðtÞ ¼ constant, with the scalar field �ðtÞ being
dynamical. This corresponds toH ¼ 0. Equation (7) allows
a nontrivial solution for this, contrary to the case of GR
inwhichH ¼ 0 at all times directly implies� ¼ 0 ¼ p. The
scalar field equation [Eq. (8)] can be integrated as follows:

€� ¼ �V0ð�Þ ) 1

2
_�2 ¼ E� Vð�Þ; (9)

where E is the integration constant which plays the role of
a conserved energy density. If we introduce an effective
potential V � ð�� �Eþ 2�VÞ=c2, where c2 � �þ �E,
H ¼ 0 reduces to a simple form,

dV
d�

¼ �
ffiffiffi
8

3

s
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3V þ 2c2V 3=2

p
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V

p : (10)

Equation (9) can be recast into

�

c2
_�2 þV ð�Þ ¼ 1: (11)

The rescaled dynamical field ð ffiffiffiffi
�

p
=cÞ� with a fixed energy

scale E ¼ 1 subject to the potential V ð�Þ which is a solu-
tion to Eq. (10) produces the nGMD, a flat spacetime with a
dynamical field.1

Let us comment on the values of c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ �E

p
. We shall

consider the case of � > 0 in this work, and assume that the
energy density is non-negative, � ¼ E � 0. The cosmo-

logical constant becomes �⪌ 0 for �⪌ 1. Then one can

have c > 1 for all types of the cosmological constant by
tuning the energy density � ¼ E. One can have c < 1 only
for a negative cosmological constant. One can have c ¼ 1
for a negative cosmological constant with E> 0, or for a
zero cosmological constant with E ¼ 0.
The shape of dV =d� for c > 0 is qualitatively different

from that for c � 1. The domain of V is [0, 1]. For all the
values of c, dV =d� ¼ 0 at V ¼ 0. For c > 1, dV =d�
diverges to infinity at V ¼ 1. For c � 1, dV =d� pos-

sesses another zero atV c where 1�3V cþ2c2V c
3=2¼0.

[See Fig. 1(a).]
Now let us analyze the field dynamics and the effective

potential from Eq. (10).

1From Eq. (11), one gets _� ¼ �ðc= ffiffiffiffi
�

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V

p
. Without loss

of generality, one can take c > 0. Here, the signature change
þ ! � is equivalent to the transformation Vð�Þ ! Vð��Þ
accompanying � ! ��. Therefore, in this work, we consider
only the positive signature, which describes the positive velocity,
_�> 0.
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(i) For c ¼ 1, Eq. (10) is integrated in terms of elliptic functions,

2i

2
4F

0
@arcsin

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þV 1=2

2

s 1
A
�����������4

1
A��

0
@2; arcsin

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þV 1=2

2

s 1
A
�����������4

1
A

� F

�
�

2

��������4
�
þ�

�
2;
�

2

��������4
��

¼ �
ffiffiffi
2

3

s
ð���cÞ; (12)

where F and � are the elliptic integral of the first
kind and the incomplete elliptic integral. The solu-
tion V ð�Þ is plotted in Fig. 1(b). The field �
evolves in the positive direction with the energy
level E ¼ 1, while the spacetime remains flat. The
field velocity becomes zero at � ¼ �c, and it takes
infinite time in arriving there. This point is an
unstable extremum.

(ii) Near V ¼ 0 for all values of c, we have

dV
d�

� �
ffiffiffi
8

3

s
V
c

) V � V 0e
�

ffiffi
8
3

p
�
c ; (13)

where V 0 is an integration constant. Note that
this solution is valid for V � 0, and so for
j�j 	 c. The positive/negative signature corre-
sponds to the left/right side of V in Fig. 1(b).

From _� ¼ ðc= ffiffiffiffi
�

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V

p
, the scalar field becomes

�ðtÞ � cffiffiffiffi
�

p t

ffiffiffiffiffiffi
3

32

s
cV 0e

�
ffiffiffi
8
3�

p
t for t ! 
1:

(14)

The scalar field rolls up the exponential potential
[Eq. (13)] for t � � ffiffiffiffi

�
p

=c, and rolls down for
t 	 ffiffiffiffi

�
p

=c.

(iii) Near V ¼ V c � 1 for c � 1, we have

dV
d�

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V c �V

q
c1

) V � V c � ð���cÞ2
4c21

with �� � ��c; (15)

where c1¼ðc=V cÞ½ð1�V cÞ=8=ð1þc2V 1=2
c Þ�1=2.

The scalar field becomes then

�ðtÞ � �c þ 2c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V c

q
sinh

�
cðt� tcÞ
2c1

ffiffiffiffi
�

p
�
: (16)

The top of the potential V c is reached at
�ðt ¼ tcÞ ¼ �c. The field passes this point with
nonvanishing velocity except for c ¼ 1.

(iv) Near V ¼ 1 for c > 1, we have

@V
@�

�� 1

c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V

p ;)V �1�
�
3ð���cÞ

2c2

�
2=3

with �����c; (17)

where c2 ¼
ffiffiffi
3

p
c=ð4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
Þ. The scalar field

evolves as

� � �c 
 2

3
ffiffiffiffiffi
c2

p
�
cffiffiffiffi
�

p jt� tcj
�
3=2

: (18)
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FIG. 1 (color online). (a) Plot of jdV =d�j vsV for c ¼ 1:02, 1.0, 0.8, 0.5, 0.2. (b) Plot ofV vs� for c ¼ 1, 1.02, 0.84, respectively
from the top. For the motion of the field � subject to V , the energy level is fixed to E ¼ 1.
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At the top of the potential, V ½�ðt¼tcÞ¼�c�¼1,

the field velocity becomes zero ( _� ¼ 0) and the

acceleration becomes infinite ( €� ¼ �dV =d� ¼

1). This point is unstable.

The dynamical scalar field solutions that we have
obtained here produce the flat spacetime. Since EiBI
gravity is equivalent to GR in vacuum, the flat spacetime
is also achieved in vacuum without a scalar field. This
means that there exist two branches of the flat spacetime.
Therefore, it is worthwhile to check the stability of the flat
spacetime originated from the dynamical scalar field.
In order to investigate the linear perturbation, we

introduce the linear perturbations hðtÞ and c ðtÞ for the
velocities of the metric and the scalar field,

HðtÞ ¼ 0þ 	hðtÞ; _�ðtÞ ¼ cffiffiffiffi
�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V

p
½1þ 	c ðtÞ�;

(19)

and consider the field equations in the linear order in 	. The
scalar field equation [Eq. (8)] in the linear order is recast as

_c

c
þ 3h

c
�

_V

1�V
¼ 0: (20)

The Hubble parameter [Eq. (7)] in the linear order is
given by

h

c
¼

_V

3ð1þV 2Þ � 2V

�ð1�V Þð5� 3V � 3c2V 1=2ð1�V ÞÞ
2ð1� 3V þ 2c2V 3=2Þ þV � 1� 1

V

�
: (21)

Then Eq. (20) can be integrated as

c ¼ c 0

V ð1� 3V þ 2c2V 3=2Þ1=2
ð1�V Þð3� 2V þ 3V 2Þ : (22)

The solution is plotted in Fig. 2. The perturbation of the gravitational field velocity hðtÞ in Eq. (21) becomes

h ¼ �
ffiffiffiffiffiffi
2

3�

s
c 0

V ð�2þ 9V � 7c2V 3=2 þ 2c2V 5=2 � 3V 3 þ c2V 7=2Þ
ð1�V Þð3� 2V þ 3V 2Þ2 : (23)

Stability requires that both c and h approach zero in time.
From Eq. (22), c ¼ 0 when V ¼ 0 and V cð<1Þ. From
Eq. (23), h ¼ 0 when V ¼ 0, V � (the value of V which

makes the numerator zero). Therefore, the stability is

achieved only when V ¼ 0. There are two regions of �

for V ! 0:
(i) At � � �c � c, V ! 0. There, the potential is

approximated by V � V 0e
ffiffi
8
3

p
�
c from Eq. (13). As

� increases with time, c and h increase exponen-
tially. Therefore, the nGMD is unstable in this region.

(ii) At � 	 �c þ c, V ! 0. There, the potential is

approximated by V � V 0e
�

ffiffi
8
3

p
�
c . As � increases

with time, c and h decrease exponentially.
Therefore, the nGMDbecomes an attractor as� ! 1.

As a whole, when the scalar field climbs up the potential at
�<�c, the nGMD is difficult to produce by the dynami-

cal scalar field because it is unstable under perturbations.

On the other hand, when the scalar field rolls down the
potential at �>�c, the perturbations decrease and go to
zero as� ! 1. Especially for 0< c � 1, the perturbations
c and h always remain finite. Therefore, although the
nGMD is perturbed after it is formed, it comes back to
the nGMD configuration when the scalar field enters the
region rolling down the potential at late times. Note that the

scalar field is still dynamical ( _� � 0), so this type of flat
spacetime is different from the ordinary flat one produced in
vacuum.
Owing to the stability analysis discussed above,

the nGMD will be achieved at late times during the cos-
mological evolution of the scalar field if the potential

asymptotes to V ¼ V 0e
�

ffiffi
8
3

p
�
c . For example, consider the

scalar field subject to the potential,

Vexp ð�Þ ¼ E� c2

2�
þ c2V 0

2�
e�

ffiffi
8
3

p
�
c ; (24)
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FIG. 2 (color online). The perturbation c ðtÞ for the same
values of c as in Fig. 1(a). The perturbation vanishes at
V ¼ 0 and V cð<1Þ.
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which is defined for the whole range of�. When the scalar
field slides down this potential, there could exist a solution
which approaches the one in Eq. (14). At late times, this
solution will asymptote to the attractor solution which is
the nGMD and is stable under perturbations for �> c.
Therefore, this system gives rise to a stable, nongravitating
dynamical scalar field.

In summary, we have investigated the possibility that
the nonlinearity of matter-gravity interactions allows non-
gravitating matter distributions (nGMDs). We showed that
nGMDs are not possible in gravity theories such as general
relativity, fðRÞ gravity, and higher-derivative gravity, if
they are regular in the zero-curvature limit. On the other
hand, the Eddington-inspired Born-Infeld gravity allows
nGMDs. Explicitly, we found that a flat zero-curvature
spacetime exists with nontrivial scalar field configurations
subject to the potential Vð�Þ which satisfies the differen-
tial equation (10). This potential is a runaway type as in
Fig. 1(b). For this configuration, the metric g�� is flat,

while the auxiliary metric q�� is nontrivial as in Eq. (6).

The spacetime curvature vanishes while the Ricci tensor
evaluated by q�� is not trivial. The modification of GR

through the connection term by the Palatini formulation
makes the EiBI theory allow nGMDs. The general gravity
theories will be divided into two classes: the collections
of gravity theories with and without nGMDs. The EiBI
gravity will be the first example belonging to the class
with nGMDs.

Since EiBI gravity is equivalent to GR in vacuum, a flat
spacetime is also achieved when there is no matter. This
implies that there are two stable branches of the flat space-
time. One is the nGMD solution in the Eddington regime2

given above, and the other is the usual flat spacetime in the
GR regime. In other words, there are two weak-gravity
regimes in the EiBI theory.
During the evolution of the Universe driven by a scalar

field rolling down the potential [Eq. (24)], it is very inter-
esting to ask when it goes to the GR regime and when to
the Eddington regime. At the moment, what we know is as
follows. As the Universe expands, both the Hubble pa-

rameter H and the field velocity _� decrease. If H becomes

zero with finite _�, the Eddington regime appears. On the

other hand, if _� ! 0 with H � 0, the GR regime will be
realized. Another interesting question is whether or not the
EiBI gravity allows a nongravitating localized object such
as a boson star.
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