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We discuss the motion of spin in inertial and gravitational fields. The coupling of spin with rotation and

the gravitomagnetic field has already been extensively studied; therefore, we focus here on the inertial and

gravitational spin-orbit couplings. In particular, we investigate the classical and quantum aspects of spin

precession and spin-orbit coupling in an arbitrary translationally accelerated frame of reference as well as

the exterior Schwarzschild spacetime. Moreover, in connection with Einstein’s principle of equivalence,

we clarify the relation between the inertial and gravitational spin-orbit couplings.
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I. INTRODUCTION

Imagine a free spinning test particle in spacetime. To
begin with, we are interested in the motion of the particle
spin as described by noninertial observers in Minkowski
spacetime. Such observers are characterized by an anti-
symmetric acceleration tensor whose ‘‘electric’’ and
‘‘magnetic’’ components correspond respectively to the
observer’s 4-acceleration and the rotation of its spatial
frame relative to local comoving nonrotating axes. It turns
out that the spin couples differently to the observer’s trans-
lational acceleration (i.e., its 4-acceleration) than to the
angular velocity of rotation of its actual spatial frame
relative to a comoving nonrotating frame. Analogous cou-
plings are found in a gravitational field with respect to the
natural tetrad frame of the fundamental observers at rest.
Indeed, in the linear weak-field approximation, the cou-
plings of particle spin to the gravitoelectric and gravito-
magnetic fields are very similar to the corresponding
couplings to the electric and magnetic components of the
acceleration tensor of a noninertial observer in Minkowski
spacetime. It turns out that the couplings of the spin to
rotation and the gravitomagnetic field are related by the
gravitational Larmor theorem, which is a consequence of
Einstein’s principle of equivalence. This intimate relation-
ship thus leads to the spin-rotation-gravity coupling that
has been extensively studied in both classical and quantum
domains. On the other hand, the couplings of the spin to
4-acceleration and the gravitoelectric field, though very
similar in form, are not directly connected by a simple
application of Einstein’s heuristic principle of equivalence.
Moreover, the connection between the classical and quan-
tum results has not been clear in this case. The purpose of
this paper is to clarify this confusing situation by filling in

the gap in the calculations and then providing a consistent
correspondence between the classical and quantum results.
We consider spin precession within the framework

of general theory of relativity. The same results are natu-
rally expected in the teleparallel equivalent of general
relativity and we explain the origin of any possible dis-
crepancies between the two theories. In our convention, the
Minkowski metric tensor ��� is given by diagð�1; 1; 1; 1Þ;
moreover, Greek indices run from 0 to 3, while Latin

indices run from 1 to 3. The hatted Greek indices �̂, �̂,
etc., refer to anholonomic tetrad indices, while �, �, etc.,
refer to holonomic spacetime indices.
The motion of a free gyroscope in a gravitational field is

described by the Mathisson-Papapetrou-Dixon equations
[1–3]; for recent studies of these equations, see [4,5].
Restricting our attention to a small but extended pole-
dipole test particle and neglecting second-order spin ef-
fects, it is possible to show that the spin vector S� in this
case satisfies [6]

S�u
� � 0;

DS�

d�
� 0; (1)

where u� ¼ dx�=d� is the 4-velocity of a representative
point (‘‘center of mass’’) inside the gyroscope and � is the
proper time along this worldline. Moreover,

Du�

d�
� � 1

2m
R�

���u
�S��; (2)

wherem is the mass of the gyroscope and the spin tensor is
given by

S�� � 1

c
����	u�S	: (3)

Here, ����	 is the Levi-Civita tensor. The Mathisson-

Papapetrou equations—when supplemented with the
Frenkel-Pirani condition—have another principal interpre-
tation that involves the motion of a free classical point
particle with ‘‘intrinsic’’ spin [7–9]. In this case, it can be
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shown that the intrinsic spin vector S� is Fermi-Walker
transported along the path of the point ‘‘gyroscope’’ with
4-velocity u� [7]. In this interpretation, it is noteworthy
that Eqs. (1)–(3) turn out to be valid as well when second-
order spin effects can be neglected.

It is clear from Eq. (2) that spin couples to spacetime
curvature thereby giving rise to the Mathisson force [1];
therefore, Einstein’s local principle of equivalence may not
be generally applicable to spin precession. Henceforth, we
will work to linear order in spin, and so, for the sake of
simplicity, we will drop the approximate equality signs in
Eqs. (1)–(3) in what follows.

The motion of a free spinning particle in a general
translationally accelerated reference frame is considered
in the following section and geodetic precession in the
Schwarzschild geometry is briefly treated in classical and
quantum regimes in Secs. III and IV, respectively, in order
to clarify certain issues that exist in previous papers on this
subject, see [10,11] and the references cited therein. In
both cases the spacetime metric has the diagonal form,

g00 ¼ �V2; gij ¼ W2
ij: (4)

In particular, we emphasize that spin precession is not a
local phenomenon and there is no basic reason a priori to
expect that Einstein’s extremely local principle of equiva-
lence would apply in this case. We show explicitly that it
does not apply in the ‘‘gravitoelectric’’ case. It is curious,
however, that it does work for the case of rotation [12].
This is due to the fact that for a general noninertial ob-
server, spin does not couple in the same way to an observ-
er’s translational acceleration (i.e., 4-acceleration) and the
rotation of its spatial frame; in particular, there is no direct
analog of the spin-rotation coupling in the case of transla-
tional acceleration [13].

In Sec. V, we discuss spin precession in the teleparallel
equivalent of general relativity, which involves a tetrad
approach to gravitation that is of current interest. Finally,
Sec. VI contains a brief discussion of our results.

II. SPIN PRECESSION IN ATRANSLATIONALLY
ACCELERATED SYSTEM

Imagine an observer following an arbitrary accelerated
path in a global inertial frame in Minkowski spacetime.
The observer carries along its worldline a nonrotating (i.e.,
Fermi-Walker transported) spatial frame. This spatial
frame and the observer’s 4-velocity constitute the observ-
er’s orthonormal tetrad frame. Based on this tetrad frame,
we establish a natural geodesic normal coordinate system
in the neighborhood of the worldline of the accelerated
observer. This (Fermi) coordinate system ðct;xÞ has a
metric tensor (4) with [14]

V ¼ 1þ aðtÞ � x
c2

; W ¼ 1: (5)

The accelerated observer occupies the spatial origin of this
coordinate system (x ¼ 0), t is its proper time and the
projection of its 4-acceleration vector on its tetrad frame
is given by ð0; aÞ, where aðtÞ is thus the invariant transla-
tional acceleration of the observer. The coordinate system
is admissible so long as V � 0.
Consider now a free spinning test particle in this space-

time region. The particle moves with velocity v ¼ dx=dt
and carries spin vector S�; therefore, we can write Eq. (1)
in the form

V2S0 ¼ v � S
c

;
dSi

dt
þ ai

c
VS0 ¼ 0; (6)

since the only nonzero components of the Christoffel
symbols are

�0
00 ¼

_a � x
c3V

; �0
0i ¼

ai
c2V

; �i
00 ¼

Vai
c2

: (7)

To determine spin precession unambiguously with re-
spect to the accelerated frame of reference, we need to
define an orthonormal tetrad frame that is comoving with
the spinning particle such that its spatial frame does not
rotate with respect to the background reference axes. In
such a local rest frame E�

�̂, where E�
0̂
¼ 1

c u
� is the

4-velocity of the spinning particle divided by c, the spin
vector is purely spatial, namely, S�̂ ¼ S�E

�
�̂ ¼ ð0; SîÞ.

This tetrad frame is derived in Appendix A, where we

write u� ¼ �ðc; vÞ and ��1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 � v2=c2

p
is the modi-

fied Lorentz factor of the particle in this case. We find,
using the results of Appendix A, that

Sî ¼ Si � ð�V � 1Þ
�Vv2

ðv � SÞvi: (8)

It is possible to show that in general this locally ‘‘mea-
sured‘‘ spin vector undergoes precession; in fact, this is
demonstrated in Appendix B, where we derive a general
expression for the precession frequency.
It proves useful at this point to limit our considerations

to terms that are at most of order 1=c2. In this connection,
we note that Eq. (5) yields �V � 1 ¼ v2=ð2c2Þ þ � � � ,
where the dots denote higher order terms that we neglect.
Thus Eq. (8) reduces to

Sî ¼ Si � 1

2c2
ðv � SÞvi þ � � � : (9)

Differentiating this equation with respect to time t and
using Eq. (6), we find that up to order c�2,

dSî
dt

¼ � 1

c2
ðv � SÞai � 1

2c2

�
dv

dt
� S

�
vi � 1

2c2
ðv � SÞdvi

dt
:

(10)

On the other hand, it follows from the reduced geodesic
equation of motion of the free particle that [14]
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dvi

dt
¼ ð _a � xþ 2a � vÞ

c2V
vi � Vai: (11)

Therefore,

dvi

dt
¼ �ai þO

�
1

c2

�
: (12)

Substituting this relation in Eq. (10), we find that up to
order c�2,

dSî
dt

¼ � 1

2c2
ðv � SÞai þ 1

2c2
ða � SÞvi: (13)

Taking into account the proper time � of the spinning
particle, Eq. (13) can be written as

dSî
d�

¼ �ijk
ðaÞ�jSk̂; (14)

where

ðaÞ� ¼ a� v

2c2
þ � � � (15)

is the instantaneous precession frequency of the spin rela-
tive to the comoving spatial axes that do not rotate with
respect to the background frame and the dots represent
terms of order higher than c�2.

Several remarks are in order at this point. The precession
frequency vanishes if the free particle moves along the
direction of acceleration of the fiducial observer.
Moreover, up to order c�2, it makes no difference if the
frequency of precessional motion is referred to the coor-
dinate time t (which is the proper time of the fiducial
observer) or the proper time � of the free particle. Our
result, Eq. (15), appears to be similar in form to the
Thomas precession frequency (see Appendix C), but this
analogy is at best misleading, since in the Thomas preces-
sion a would be the acceleration of the spinning particle.
Note that if in Eq. (15) we replace a by �dv=dt in
accordance with Eq. (12), we get minus the expected result
from an invalid application of the Thomas precession
formula [10]. The fact is that accelerated motion is abso-
lute in relativity theory and the two situations are not
directly related. Finally, Eq. (15) agrees completely with
the result of Hehl and Ni [15]; that is, in the quantum
domain, the precession of the spin would be naturally
attributed to the Hamiltonian

ðaÞHspin ¼
1

2mc2
ða� pÞ � S; (16)

where p ¼ mv to lowest order. For a Dirac particle of spin
ℏ
2 , this Hamiltonian agrees with the ‘‘new inertial spin-orbit

coupling’’ first elucidated in Ref. [15] for Dirac particles in
accelerated frames of reference via Foldy-Wouthuysen
transformations. In connection with this concordance be-
tween classical and quantum results, we emphasize that in
Ref. [15], the same basic background reference frame has
been employed as in our classical treatment in this section.

An electron carries both electric charge and intrinsic
spin ℏ

2 , and the study of spin-dependent electron transport

phenomena has led to the emerging field of spintronics. It
is therefore of interest to study spin currents in noninertial
frames [16]. Some of the mechanical effects of rotation on
spin currents as well as on magnetic resonance phenomena
have been the subjects of recent investigations [17–22]. In
this connection, we mention that the results elucidated in
this paper may also be of observational interest in the
future.
We next turn to the coupling of spin with the gravito-

electric field.

III. SPIN PRECESSION IN THE
SCHWARZSCHILD FIELD

It turns out that for the considerations of this section,
namely, the calculation of spin precession up to order c�2

in Schwarzschild spacetime, the linear approximation to
general relativity is sufficient [12]. Thus, to linear order,
the nonzero components of the exterior Schwarzschild
metric in isotropic coordinates ðct;xÞ are given by
Eq. (4) with

V ¼ 1��; W ¼ 1þ�; (17)

where � ¼ GM=ðc2rÞ, � � 1, M is the mass of the
spherical source and r ¼ jxj. It is straightforward to
show that Eq. (1) reduces to order c�2 to S0 ¼ ðv � SÞ=c
and

dSi

dt
þ�;jS

jvi þ�;jv
jSi � 2ðv � SÞ�;i ¼ 0: (18)

Here �;i ¼ @i� ¼ c�2gi, where g is the Newtonian accel-

eration of gravity and Eq. (2) for the motion of the spinning
test particle reduces in this case to

dvi

dt
¼ gi þO

�
1

c2

�
: (19)

We are interested in the motion of the spin relative to an
orthonormal comoving frame E�

�̂, given in Appendix A,
that consists of the temporal axis u� and three spatial axes
that are boosted without any rotation with respect to the
background spatial axes of the spacetime. The advantage
of this procedure is that it exhibits the pure motion of the
spatial spin vector, as S0̂ ¼ 0 by definition. It follows from
the results of Appendix A that S�̂ ¼ S�E

�
�̂ ¼ ð0; SîÞ,

where up to order c�2,

Sî ¼ ð1þ�ÞSi � 1

2c2
ðv � SÞvi: (20)

Differentiating this expression with respect to time t, using
Eqs. (18) and (19) and expressing the end result in terms of
the proper time � of the spinning particle, we find that

dSî
d�

¼ �ijk
ðgÞ�jSk̂; (21)
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where, up to order c�2,

ðgÞ� ¼ � 3ðg� vÞ
2c2

(22)

is the well-known geodetic (i.e., de Sitter-Fokker) preces-
sion frequency [23]. It has recently been directly measured
in Earth orbit via the GP-B experiment [24].

It is important to note that replacing �g by a does not
turn Eq. (22) into Eq. (15); in fact, the gravitational effect is
3 times larger in magnitude than would be expected from a
naive application of Einstein’s principle of equivalence.

Einstein’s heuristic principle of equivalence is the cor-
nerstone of general relativity theory [25], upon which our
calculations are based. On the other hand, a simple and
direct application of the principle involves replacing minus
the acceleration of gravity by the translational acceleration
of the frame in Minkowski spacetime. We know, for in-
stance, that to order c�2 this procedure would predict only
half of the bending of light in the exterior Schwarzschild
geometry. Referring to Eqs. (17) and (5), one might inter-
pret the general relativity result for light bending as being
half due to temporal curvature and the other half due to
spatial curvature, since space is not flat in Eq. (17) in
contrast to Eq. (5). In a similar way, we can compare and
contrast our calculation of the geodetic precession with
that of the previous section and thereby characterize the
influence of the spatial part of the metric on the calculation
of the precession rate. In this way, the origin of the factor of
3 can be identified: One part of this factor is due to
temporal curvature—just as in the case of translational
acceleration—and the other two parts are due to spatial
curvature.

In the quantum domain, the analog of Eq. (16) in this
case would be a gravitational spin-orbit coupling given by
the Hamiltonian

ðgÞHspin ¼ � 3

2mc2
ðg� pÞ � S: (23)

The existence of such a coupling for a Dirac particle is
demonstrated in Sec. IV.

It is important to point out another situation where the
motion of the spin vector can be unambiguously studied.
We recall that up to order c�2, it is sufficient to take due
account of only the Newtonian orbit of the particle.
Neglecting scattering orbits of the spinning particle, we
note that the bounded orbits reduce in our approximation
scheme to planar Keplerian ellipses that perform a ‘‘fast’’
motion of period TK. On the other hand, any motion of the
spatial spin vector would be ‘‘slow,’’ with a long period
proportional to c2. To bring out this spin motion clearly, it
is therefore possible to average over the fast motion. The
averaging procedure is defined as usual by

hfi ¼ 1

TK

Z TK

0
fdt: (24)

Let us assume, without any loss in generality, that the
background axes are so oriented that the Keplerian ellipse
corresponding to the Newtonian motion of the particle is
given by x1 ¼ � cos’, x2 ¼ � sin’ and x3 ¼ 0, where

� ¼ Að1� e2Þ
1þ e cos’

;
d’

dt
¼ ‘

�2
: (25)

Here A and e are respectively the semimajor axis and
the eccentricity of the ellipse and the Keplerian period is

given by TK ¼ 2�AðGM=AÞ�1=2. Moreover, ‘ is the vector
of specific orbital angular momentum of the Newtonian

orbit and points along the x3 axis, while ‘ ¼ j‘j ¼
½GMAð1� e2Þ�1=2. In terms of the azimuthal angle ’, the
averaging takes the form

hfi ¼ ð1� e2Þ3=2
2�

Z 2�

0

fð’Þ
ð1þ e cos’Þ2 d’: (26)

It follows from our averaging procedure that hvi ¼ 0 and
hd�=dti ¼ 0 for any closed Newtonian orbit and hence
from the equations of motion for the spin vector we con-
clude that on average S0 ¼ 0. Moreover, in Eq. (18), we
find upon averaging that

�
xivj

�3

�
¼ 1

2

�
1

�3

�
�ijk‘

k; (27)

where �
1

�3

�
¼ 1

A3ð1� e2Þ3=2 : (28)

Therefore, Eq. (18) implies that on the average

dSi
dt

¼ �ijkhðgÞ�jiSk; (29)

where

hðgÞ�i ¼
�
� 3

2c2
ðg� vÞ

�
¼ 3

2c2
GM‘

A3ð1� e2Þ3=2 : (30)

We note that for a circular orbit, this average precession
frequency coincides with the instantaneous result given in
Eq. (22).
The formal results given in Eqs. (29) and (30) for the

coordinate components of spin S� acquire physical signifi-
cance once they are referred to the tetrad frame of a
suitable family of observers. Imagine, for instance, the
class of fundamental observers at rest all along the orbit
of the spinning particle. We assume that these observers
refer their spin measurements to their natural tetrad frames:
each such observer has a temporal axis ð1þ�Þ
�

0 and

spatial axes ð1��Þ
�
i in our linear approximation scheme

(� � 1). A detailed investigation reveals that, up to order
c�2, we recover Eq. (30) upon averaging.
The manifestation of geodetic precession in the quantum

domain is the subject of the next section.
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IV. DIRAC PARTICLE IN SCHWARZSCHILD
SPACETIME

The covariant Dirac equation for spin-1=2 particles in a
gravitational (or inertial) field is given by

ðiℏ�̂D�̂ �mcÞ� ¼ 0: (31)

The flat Dirac matrices �̂ are defined in local Lorentz
(tetrad) frames e�

�̂. For the class of diagonal metrics (4),

we choose e�
0̂ ¼ V
0

� and e�
î ¼ W
i

�. The spinor cova-

riant derivatives are given by

D�̂ ¼ e��̂D�; D� ¼ @� þ i

4
	�̂ �̂���̂ �̂: (32)

Here ��
�̂ �̂ ¼ ���

�̂ �̂ are the Lorentz connection coeffi-

cients and 	�̂ �̂ ¼ i
2 ð�̂�̂ � �̂�̂Þ.

We can derive the Dirac equation from the action

I ¼
Z

d4xL; L ¼ ffiffiffiffiffiffiffi�g
p

L (33)

with the Lagrangian

L ¼ iℏ
2
ð ���̂D�̂��D�̂

���̂�Þ �mc ���: (34)

The naive Hamiltonian for the Schrödinger form of the
Dirac equation, derived from action (33), is not Hermitian.
In order to solve this Hermiticity problem, we need to
redefine the wave function as

c ¼ ð ffiffiffiffiffiffiffi�g
p

e0
0̂
Þ12 � ¼ W

3
2�: (35)

As a result, the variation of the action with respect to the
rescaled wave function yields the Dirac equation in

Schrödinger form iℏ @c
@t ¼ H c . The corresponding

Hermitian Hamiltonian [26–28], for metric (4), can be
expressed as

H ¼ �mc2V þ c

2
½ð� � pÞF þF ð� � pÞ�: (36)

Here F :¼ V=W and p is the momentum operator, p ¼
�iℏr. As usual, we denote � ¼ 0̂ and �i ¼ �î.

The physical content of the theory is revealed in the
Foldy-Wouthuysen representation. After performing the
Foldy-Wouthuysen transformation, the Hamiltonian is
recast in the semiclassical approximation [29,30] into the
form

H FW ¼ �

�
�þ ℏ

2
� ��

�
: (37)

Here � is the spin operator, � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4V2 þ c2p2F 2

p
,

p ¼ jpj and

� ¼ p�A
mc2

; A ¼ mc4F
�

�
mc2F

�þmc2V
rV � rF

�
:

(38)

Keeping only the leading terms in c�2 expansion, for the
Schwarzschild metric we have � ¼ mc2V, V ¼ 1��,
F ¼ 1� 2� and we findA ¼ 3g=2, in perfect agreement
with the classical result (22).
We can straightforwardly compare this result with the

dynamics of quantum spin in the noninertial reference
frame of Sec. II. Substituting Eq. (5) in Eq. (38), we obtain
A ¼ �a=2 in complete agreement with Ref. [15].
Many aspects of the behavior of Dirac particles in

gravitational and inertial fields have been extensively
studied in the past—see, for instance, Ref. [30] for further
references and discussion. The purpose of the brief account
presented here has been to demonstrate explicitly the com-
plete consistency of the classical and quantum approaches
to the problem of spin precession. This follows from the
general correspondence principle and the circumstance
that, in either approach, the same orthonormal tetrad frame
is employed for the fundamental background observers
[31]. To illustrate this latter point, let us employ a different
spatial frame for the fundamental observers at rest in the
Schwarzschild field. In the linear approximation, the stan-
dard form of the Schwarzschild metric can be expressed in
Cartesian coordinates [11] as follows:

g00 ¼ �V2; g0i ¼ 0; gij ¼ W k̂
iW

l̂
j
k̂ l̂: (39)

Here V ¼ 1��, W k̂
i ¼ 
k

i þ�xkxi=r
2, the spatial in-

dices are raised and lowered using the Euclidean 3-metric

ij and r

2 ¼ 
ijx
ixj. We note that metric (4) belongs to the

general family (39), since we can choose W k̂
i ¼ W
k

i .
The tetrad coframe e�

�̂ of the background fundamental

observers at rest would then have a temporal axis given as

before by e�
0̂ ¼ V
0

� and spatial axes that are now e�
î ¼

W î
j


j
�. This spatial frame coincides with the old one at

spatial infinity. Starting from this new background frame,
we can construct a new boosted tetrad frame along the path
of a free spinning test particle as in Sec. III and
Appendix A, and show explicitly that to order c�2 in the
classical regime, particle spin precesses with the geodetic
precession frequency precisely as in Eqs. (21) and (22).
This means that to order c�2, no dynamic rotation is
involved here; indeed, the new and old spatial frames are
Fermi-Walker transported along the worldlines of the fun-
damental static observers.
In the quantum approach, we therefore expect to recover

the same result as before; in fact, this also follows from the
work of Varjú and Ryder [11] once a computational error is
corrected. The Hermitian Dirac Hamiltonian in the new
Schwarzschild coordinates can now be expressed as

H ¼ �mc2V þ c

2
½piF i

k�
k þ �kF i

kpi�: (40)

Here F i
k
:¼ VW i

k̂
, where the matrix W i

k̂
is defined to

be the inverse of the matrix W k̂
i. For W

k̂
i ¼ W
k

i , we
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obviously recover Eq. (36). Performing the
Foldy-Wouthuysen transformation, we obtain the semi-
classical Hamiltonian (37) such that the first term is now

generalized to � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c4V2 þ c2
klF i

kF
j
lpipj

q
; more-

over, the components of the precession angular velocity are
now given by

�i ¼ c2

�
F l

npl

�
��î ĵ k̂VC

ĵ k̂
n̂ þ �

�þmc2V
�î ĵ n̂W l

ĵ
@lV

�
:

(41)

Here the anholonomity object is defined as usual by
C
ĵ k̂

n̂ ¼ W i
ĵ
W l

k̂
@½iW n̂

l�. One can verify that for the

diagonal case W k̂
i ¼ W
k

i , the general formula (41) re-
duces to the simplified result (38). Keeping again only the
leading terms in c�2 expansion, for metric (39) we have
� ¼ mc2V, V ¼ 1�� and C

ĵ k̂
n̂ ¼ �
n

½j gk�=c
2; there-

fore, we find � ¼ 3p� g=ð2mc2Þ, in perfect agreement
with the corresponding classical result. On the other hand,
the numerical coefficient of � deduced from Ref. [11]
would be unity instead of our 3=2.

Our new computation thus confirms that, contrary to
previous reports [10,11], the classical and quantum pic-
tures are completely consistent irrespectively of the local
coordinates used—namely, the isotropic form of metric (4)
linearized via Eq. (17), or the linearized Schwarzschild
metric in Cartesian coordinates (39). We suspect that the
origin of the erroneous numerical coefficient in front of
gravitational spin-orbit coupling term in the final
Hamiltonian of Ref. [11] is buried in the details of the
evaluation of the commutators in the Foldy-Wouthuysen
transformation.

V. SPIN PRECESSION IN GRk
Teleparallel gravity (GRk), also known as the telepar-

allel equivalent of general relativity, is a viable alternative
tetrad theory constructed within the framework of the
gauge approach to the gravitational interaction—see
[32–34] for recent comprehensive treatments of this sub-
ject. GRk is a gauge theory of the group of spacetime

translations. In this model, the gravitational field is de-
scribed via the coframe (or tetrad) e�

�̂, in terms of which

the Weitzenböck connection is constructed that has vanish-
ing curvature (‘‘distant parallelism’’), but is instead char-
acterized by the nontrivial torsion tensor

T��
� ¼ e�

�̂
ð@�e��̂ � @�e�

�̂Þ: (42)

It is important to stress that for matter source without
intrinsic spin, teleparallel gravity is essentially indistin-
guishable from Einstein’s general relativity theory (GR)
[35]. Furthermore, the coupling of the spinning matter to
the coframe inGRk is in general inconsistent [36,37]. More

exactly, one can construct a consistent coupling if one
assumes that the Dirac spinor fermion field interacts with

the gravitational field by means of the usual Riemannian
connection in the framework of standard minimal coupling
scheme (32). In this case, the precession results obtained
for GR will be valid mutatis mutandis in GRk as well.
Suppose, on the other hand, that instead of the

Riemannian connection, we use the Weitzenböck connec-
tion, which would be more in keeping with the spirit of the
gauge-theoretic approach; then, the Dirac field Lagrangian
is only invariant under global Lorentz transformations.
This circumstance is in sharp contrast to the invariance
of the gravitational Lagrangian under local Lorentz trans-
formations of the tetrad fields. In this case, the dynamics of
particles with spin will be different in GR than in GRk
[35,38–40]; indeed, making use of the formalism devel-
oped in Sec. IV, we can derive the Foldy-Wouthuysen
Hamiltonian for the Dirac particle in this teleparallel
model. Using the Weitzenböck connection, the influence
of the torsion tensor (42) shows up in a new contribution to
the precession frequency. In fact, we find that the preces-
sion frequency � in Eq. (38) is replaced by �þ��,
where

�� ¼ 3cV

2

�
�T� cF

�
p �T0̂

�
: (43)

Here �T0̂ and �Tîð¼ �TÞ are the components of the axial
torsion pseudovector

�T �̂ ¼ 1

6
��̂ �̂ �̂ �̂T�̂ �̂ �̂: (44)

Our result (43) agrees with previous treatments of this issue
[35,38–40]. When we specialize to the specific cases dis-
cussed in the present paper (i.e., the static gravitational
field or the translational acceleration), the axial part of the
Weitzenböck torsion (44) vanishes. Our conclusions in this
paper thus remain valid for teleparallel gravity precisely in
the same form as for Einstein’s general relativity. However,

the torsion components in �T are in general nontrivial for
stationary gravitational field configurations, such as the
Kerr spacetime, as well as for rotating systems in
Minkowski spacetime. The corresponding additional con-
tribution to the precession frequency, given in the linear

weak-field approximation by �� ¼ 3c
2
�T, should then be

combined with similar terms arising from the total spin J of
the gravitational source or the angular velocity ! of the
rotating reference frame [30].

VI. DISCUSSION

The main purpose of this paper has been to elucidate the
classical and quantum aspects of spin-orbit coupling in
inertial and gravitational fields. There is no analog of the
coupling of spin to rotation and gravitomagnetic fields for
translational acceleration and gravitoelectric fields and this
has been a source of some confusion. In particular, we have
addressed the problems raised in Refs. [10,11], and have
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clarified the physics of spin precession in GR and GRk, the
teleparallel equivalent of general relativity.
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APPENDIX A: BOOSTED TETRADS

Consider the fundamental observers at rest in an inertial
frame with coordinates ðct;xÞ in Minkowski spacetime. An

inertial observer moves with constant velocity v ¼ vt̂ with

respect to the fundamental observers. Here t̂ is the tangen-
tial unit vector. The Lorentz transformation to the rest
frame of the moving observer ðct0;x0Þ involving a pure
boost with no rotation is given by

t ¼ ðt0 þ v � x0Þ; (A1)

x ¼ x0 þ ð� 1Þðx0 � t̂Þt̂þ vt; (A2)

where  is the Lorentz factor. In the ðct0;x0Þ frame, the
tetrad of the inertial observers at rest is given by h0��̂ ¼


�
� . Transforming the local tetrad frame of the moving

observer to the ðct;xÞ system via the Lorentz boost matrix
�b that can be simply deduced from Eqs. (A1) and (A2),
we find

h�
0̂
¼ 

�
1;
v

c

�
; (A3)

h�
î
¼ 
�

i þ vi

�


c
;
ð� 1Þ

v2
v

�
: (A4)

This is the tetrad of the boosted observer with respect to the
fundamental observers at rest in the ðct;xÞ system. We are
interested in the generalization of this result to arbitrary
spacetimes.

Let us first assume that the metric of the background
spacetime is not ���, but instead g��, where the difference

between them is in the purely temporal component,
namely, g00 ¼ �V2ðt;xÞ, as in Sec. II. We are interested
in the local comoving tetrad frame E�

�̂. It is straightfor-
ward to conclude via inspection that the generalization of
Eqs. (A3) and (A4) is given in this case by

E�
0̂
¼ �

�
1;
v

c

�
; (A5)

E�
î
¼ 
�

i þ vi

�
�

Vc
;
ð�V � 1Þ

v2
v

�
; (A6)

where ��1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 � v2=c2

p
. That is, Eqs. (A5) and (A6)

are such that the temporal axis is the observer’s 4-velocity
and

g��E
�
�̂E

�
�̂
¼ ��̂ �̂; (A7)

moreover, they agree with Eqs. (A3) and (A4) for V ¼ 1
and reduce for v ¼ 0 to the natural tetrad frame of the
fundamental observers at rest.
As our second example, we consider the generalization

of Eqs. (A3) and (A4) to the case of metric (4), where
V > 0 and W > 0 are positive functions of spacetime
coordinates. An important example is the isotropic form
of the exterior Schwarzschild metric with

V ¼
�
1��=2

1þ�=2

�
; W ¼

�
1þ�

2

�
2
; (A8)

where � ¼ GM=ðc2jxjÞ and M is the mass of the
Schwarzschild source. The metric in this general case is
formally related to the previous metric via a conformal
transformation. It is an immediate consequence of Eq. (A7)
that if g�� � W2g��, then the corresponding tetrad com-

ponents must all be multiplied by W�1, which is the
inverse of the conformal factor W. It thus follows from
Eqs. (A5) and (A6), via V � F ¼ V=W, that in this case
the relevant tetrads are

E�
0̂
¼ �

W
ð1; v=cÞ; (A9)

E�
î
¼ 1

W

�
i þ vi

�
�

cV
;
ð�V �WÞ
W2v2

v

�
; (A10)

where ��1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 � v2=c2

p
.

The projection of the particle’s spin 4-vector on this
tetrad is given by ð0; SîÞ, since E�

0̂
¼ 1

c u
� by construction

and

V2S0 ¼ W2 ðv � SÞ
c

: (A11)

Moreover,

Sî ¼ W

�
Si � ð�V �WÞ

�Vv2
ðv � SÞvi

�
: (A12)

For the Schwarzschild metric with � � 1, keeping terms
linear in� as well as up to order c�2, we have V ¼ 1��,
W ¼ 1þ�, F ¼ 1� 2� and Wð�V �WÞ=ð�Vv2Þ ¼
v2=ð2c2Þ.
For more complicated metrics, the general approach

consists of first identifying the natural tetrad frame of the
fundamental static observers in spacetime. For instance,
for an asymptotically flat geometry, we may choose the
frame of the fundamental observers to agree with that of
the inertial observers at spatial infinity. Next, at an arbitrary
event along the worldline of the particle, we project the
particle’s 4-velocity u� on the local tetrad of the funda-
mental observer to get bðc; vbÞ, where b is the Lorentz
factor corresponding to vb, which is the boost velocity that
we need to employ in the Lorentz matrix �b in order to
boost the local tetrad of the fundamental observer to the
instantaneous comoving tetrad of the particle. To imple-
ment this procedure in the two simple examples above, we
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need vb ¼ V�1v in the first case and vb ¼ ðW=VÞv in the
second case.

APPENDIX B: PRECESSION FREQUENCY

Consider an arbitrary observer following a timelike path
in spacetime. The observer carries along its path a local
orthonormal tetrad frame ��

�̂ such that ��
0̂
¼ u�=c is the

temporal axis and ��
î
, i ¼ 1, 2, 3, are the spatial axes of its

local reference frame. The moving frame field in general
satisfies

D��
�̂

d�
¼ ��̂

�̂��
�̂
; (B1)

where � is the observer’s proper time and ��̂ �̂ ¼ ���̂ �̂

is its antisymmetric acceleration tensor. This tensor has
electric components �0̂ î given by the components of

4-acceleration a� relative to the spatial axes divided by
c, while its magnetic components �î ĵ define the angular

velocity of rotation of the spatial frame relative to a local
nonrotating (i.e., Fermi-Walker transported) frame. The
latter can be defined, for instance, by means of ideal free
test gyro directions [12].

Let us next imagine that the observer is comoving with a
free spinning test particle along the path given by Eq. (2).
For the spin motion, Fermi-Walker transport reduces to
parallel transport, as in Eq. (1), since in our approximation
scheme second-order spin effects are neglected [6]. That is,
u�S

� ¼ 0 implies that Fermi-Walker transport reduces to

Fermi transport—see Eq. (C2) of the next Appendix—
where, because of Eq. (2), a�S

� is of second order in
spin and can therefore be neglected. We then replace
��

�̂ in Eq. (B1) with E�
�̂ given in Appendix A and note

that the spatial components of the acceleration tensor are
now given by

�î ĵ ¼ ��ijk�k; (B2)

where� is the desired frequency of rotation of the particle
spin relative to the spatial frame of the boosted tetrad E�

�̂.
Using Eq. (1), the covariant derivative of Sî ¼ S�E

�
î

along the path can be calculated via Eqs. (B1) and (B2)
and the result is

dSî
d�

¼ �ijk�jSk̂: (B3)

From

�î ĵ ¼ �E�
î

DE�ĵ

d�
; (B4)

and Eq. (B2), we find the general expression for the pre-
cession frequency, namely,

�i ¼ 1

2
�ijkE

�
ĵ

�dE�k̂

d�
� u���

��E�k̂

�
: (B5)

In computing the right-hand side of this equation, the
particle’s equation of motion (2) must be employed. In
view of Eq. (B3), we may simply use the geodesic equation
instead of Eq. (2), as second-order spin effects are ne-
glected in accordance with our general approximation
scheme [6].

APPENDIX C: THOMAS PRECESSION

Imagine a classical point particle following an arbitrary
accelerated path xðtÞ in the background global inertial
frame and carrying a torque-free intrinsic spin vector S.
As is well known, according to the fundamental static
inertial observers, the spin vector undergoes Thomas pre-
cession with frequency [41–43]

!Thomas ¼ 2

þ 1

a� v

c2
; (C1)

where v ¼ dx=dt and a ¼ dv=dt are the velocity and
acceleration vectors of the particle, respectively.
Moreover,  is the particle’s Lorentz factor, so that d� ¼
dt, where � is the proper time along the path of the particle.
Let us note that in the lowest nonrelativistic approximation
 � 1 and hence, !Thomas � ða� vÞ=ð2c2Þ. Thomas pre-
cession is ultimately due to the noncommutativity of
Lorentz transformations. The spin is in general Fermi
transported along the worldline of the spinning particle,
namely,

dS�

d�
þ ��

��u
�S� ¼ u�a�

c2
S�; (C2)

where a� ¼ Du�=d� is the particle’s 4-acceleration
vector.
According to the quantum description of intrinsic spin,

the particle Hamiltonian H0 has, in this case, an additional
part given by!Thomas � S; that is, the Thomas precession of
spin in the inertial frame implies that the Hamiltonian for
the motion of the spinning particle is given by

H ¼ H0 þ!Thomas � S: (C3)

Thomas precession and the spin-rotation coupling provide
the necessary physical effects for a simple semiclassical
description of spin motion in a rotating frame [44].
Recent work in this direction has focused on the physics
of compound spin systems involving heavy ions in stor-
age rings [45–49].
It is interesting to note that Eq. (C1) can be expressed as

!Thomas ¼ ð� 1Þ a� v

v2
; (C4)

since ðþ 1Þð� 1Þ ¼ 2v2=c2. The acceleration vector
of an arbitrary path in space can be written as

a ¼ dv

dt
t̂þ v2

�
n̂; (C5)
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where v ¼ vt̂ and dt̂=dt ¼ ðv=�Þn̂. Here, the unit vectors
t̂ and n̂ are respectively tangent and normal to the path and
form the osculating plane, while � is the instantaneous
radius of curvature of the path. Thus, the acceleration
vector lies in the osculating plane and consists of the
tangential acceleration dv=dt and the centripetal accelera-
tion v2=� that is directed toward the instantaneous center

of curvature. The unit vectors t̂ and n̂ together with the

binormal unit vector b̂ ¼ t̂� n̂ form the moving Frenet
frame field along the path. The instantaneous angular

velocity of the frame is given by !ðtÞ ¼ ðv=�Þb̂. It then
follows from Eq. (C5) that

!Thomas ¼ �ð� 1Þ!: (C6)

In view of this result, namely,!Thomas ¼ !� !, Thomas
precession can be interpreted in terms of an overcompen-
sation due to time dilation [50].

Let us now imagine that the acceleration of the spinning
particle is due to gravity. In general relativity, the
Newtonian concept of acceleration of gravity is nonexis-
tent, as gravity is absorbed into the geometry of spacetime
and only nongravitational forces can be the source of true
acceleration for a point particle. For the spin motion in
Eq. (C2), the acceleration term on the right-hand side thus
disappears and is replaced by the Christoffel term on the
left-hand side. This is ultimately a consequence of
Einstein’s principle of equivalence and means that in

Eq. (C4), we replace a by �g and  ¼ dt=d� by the
corresponding expression for proper time in the
Schwarzschild geometry. The question is then the connec-
tion between this gravitational ‘‘Thomas precession’’ and
geodetic precession. This issue has been discussed in
Ref. [50] and an exact correspondence has been pointed
out for circular orbits in the exterior Schwarzschild space-
time when the standard Schwarzschild coordinates are
employed—see pages 94 and 95 of Ref. [50]. On the other
hand, we are interested here in the precession as perceived
by our background observers and thus should compare the
corresponding average precession rate with Eq. (30). To
order c�2, we have d�=dt ¼ 1��� v2=ð2c2Þ; therefore,
we find

�
�
�
�þ v2

2c2

� ðg� vÞ
v2

�
¼ hðgÞ�i

�
1� 1

3
e2
�
; (C7)

since

1

2�

Z 2�

0

ð1þ e cos’Þ2
1þ 2e cos’þ e2

d’ ¼ 1� 1

2
e2; (C8)

which is valid for e 2 ½0; 1�. Thus to order c�2, the average
gravitational Thomas precession in powers of the eccen-
tricity e, 0 � e < 1, is the same as the average geodetic
precession up to terms that are linear in the orbital
eccentricity.
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