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The Bañados-Silk-West effect consists in the possibility to obtain arbitrarily large energy Ec:m: in the

center of mass frame of two colliding particles near the black hole horizon. One of the common beliefs

was that the action of force on these particles (say, due to gravitational radiation) should necessarily

restrict the growth of Ec:m:. We consider extremal horizons, develop a model-independent approach, and

analyze the conditions for the force to preserve or kill the effect, using the frames attached both to

observers orbiting the black hole and to ones crossing the horizon. We argue that the aforementioned

expectations are not confirmed. Under rather general assumptions, the Bañados-Silk-West effect survives.

For equatorial motion it is required only that in the proper frame the radial component of the force be

finite, while the azimuthal one tend to zero not too slowly. If the latter condition is violated, we evaluate

Ec:m:, which becomes indeed restricted but remains very large for small forces.
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I. INTRODUCTION

Recently, an interesting effect was discovered by
Bañados, Silk, and West [1], called usually the BSWeffect
after the names of the authors: If two particles collide near
the black hole horizon, the energy Ec:m: in their center of
mass frame can grow indefinitely large, provided the pa-
rameters of one of the particles are fine-tuned. Immediately
after this observation, several considerations of theoretical
nature were brought forward suggesting that there must be
restrictions that would prevent the realization of this effect.
One of the basic objections is connected with the force of
gravitational radiation acting on particles. It was pushed
forward in [2] and is mentioned from time to time in
consequent works starting from [3]. There are also other
similar effects which seem to restrict the divergence of
Ec:m:—say, synchrotron radiation by charged particles near
black holes [4].

Meanwhile, the influence of the force of gravitational
radiation (or any other force) on the BSW effect is not so
obvious. First of all, the BSW effect is prepared from two
main ingredients—the presence of the horizon and the
presence of special ‘‘critical’’ trajectories (see below). It
was shown in [5], with minimal assumptions, that even for
neutral particles and nongeodesic motion such trajectories
do exist. Therefore, the question is whether or not the force
destroys these trajectories. If this happens, the BSW effect
is restricted. However, for a weak force, one can expect a
large bound on Ec:m:. For instance, the analysis of a parti-
cle’s motion on the innermost stable orbit near the Kerr
black hole with gravitational radiation taken into account
showed that Ec:m: can be far beyond the Planck energy
for collision of dark matter particles near a stellar mass

near-extremal black hole [6]. The analysis suggested in [6],
however, concerns special (although important for astro-
physics) cases: It applies to near-extremal Kerr black holes
when fine-tuning required for the BSWeffect is realized on
circular orbits. It also remains incomplete, since not all
factors responsible for the self-force are taken into account.
Meanwhile, it is of interest to elucidate the issue under
discussion in a model-independent way.
In this paper, we develop such a general approach and

analyze the BSW effect under the influence of a generic
force near the horizon of a generic axially symmetric
stationary ‘‘dirty’’ black hole (i.e., a black hole that is
surrounded by matter, so its metric may deviate from the
Kerr one). Here we consider only the case of an extremal
horizon of a maximally rotating black hole. The approach
used is applicable, with minimal modifications, to static or
charged black holes, as shown explicitly for the case of the
Reissner-Nordström metric.
We consider the conditions the force should satisfy for

the effect to be either preserved in some form or not. The
analysis is made in terms of tetrad components of the
corresponding quantities in the frames attached to both
an observer orbiting the black hole and the one crossing
the horizon. The nature of the force itself is not specified;
we assume only that its tetrad components in the particle’s
proper frame are finite and restrict our consideration to
equatorial motion. We show that the BSW effect survives
any force that satisfies the following assumptions: (i) It
remains finite near the horizon, and (ii) its azimuthal
component tends to zero fast enough (a more detailed
definition is given below). In case the above condition is
not satisfied, e.g. the azimuthal force does not vanish in the
horizon limit, the weaker version of the effect is realized
whenever the acceleration’s amplitude is small enough
(as should be for e.g. radiation reaction). For the latter
case, we find generic bounds on Ec:m:.

*igor.tanatarov@gmail.com
†zaslav@ukr.net

PHYSICAL REVIEW D 88, 064036 (2013)

1550-7998=2013=88(6)=064036(14) 064036-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.064036


It is worth stressing that the BSWeffect reveals itself not
only for extremal black holes but also for nonextremal
ones. The mechanism in the latter case, however, is
generally different, as it requires multiple scattering, which
for extremal black holes is not necessary [7] (see also [8]).
Correspondingly, we postpone consideration of the BSW
effect with a force near nonextremal horizons and, in
the present paper, restrict ourselves to the extremal case.
The effect for near-extremal horizons, considered in [6],
occupies an intermediate position between the two. This
problem contains some subtleties on its own related to the
properties of near-circular orbits and in the general setting
also needs separate treatment.

There are two aspects of the BSW effect—the behavior
of Ec:m: near the horizon and the properties of energies of
the collision outcome measured at infinity. The typical
energies at infinity are quite modest even in the absence
of force [9–11], so taking the force into account can change
them only slightly. It is the first aspect which is nontrivial
and is being discussed in the present paper.

The paper is organized as follows. In Sec. II, we consider
classification of particles relevant for the BSW effect and
discuss novel features that the force brings into the system.
In Sec. III, we consider behavior of acceleration near
the horizon in different frames (attached to an observer
orbiting the black hole or to one crossing the horizon).
In Sec. IV, we illustrate general relationships using the
Reissner-Nordström metric as an example. In Sec. V, we
consider generic motion in the equatorial plane under the
action of finite forces and derive conditions on the force
that allow or forbid critical trajectories. In Sec. VI, we
estimate the bounds on Ec:m: for the case when the force is
least favorable for the effect but small. In Sec. VII, we
discuss pure kinematic restrictions on particle’s trajectories
(valid even in the absence of force) which can influence the
properties of the BSW effect. Section VIII is devoted to
conclusion.

II. PARTICLES’ KINEMATICS NEAR
EXTREMAL HORIZONS

A. A particle in the axially symmetric metric

We consider the axially symmetric stationary metric
written (at least in the vicinity of the horizon) in coordi-
nates which are obtained from the Gaussian normal ones
by replacing the distance to the horizon n with the radial
coordinate r, defined so that1 AðrÞ � N2 in the horizon
limit, where N2 ! 0 (hereafter c ¼ 1):

ds2 ¼ �N2dt2 þ g�ðd��!dtÞ2 þ dr2

A
þ gzdz

2: (1)

Let there be some arbitrary, not necessarily geodesic,
particle of mass m, four-velocity u�, and four-momentum

p� ¼ mu�:

It is convenient to represent the four-velocity, with
both upper and lower indices, by the components of its
four-momentum in the following way:

u� ¼ 1

m

�
X

N2
;
L

g�
þ!X

N2
; pr; pz

�
; (2)

u� ¼ 1

m

�
�E; L;

1

A
pr; gzp

z

�
; (3)

where E ¼ �mu0 is energy, L ¼ mu� is angular momen-

tum, and

X ¼ E�!L: (4)

Because of the forward in time condition, X is always
positive.
For a free particle on a geodesic trajectory, the energy E

and angular momentum L are conserved; Eqs. (2) and (3) are
nothing but the equations of motion with given fixed values
of E and L. In the general case, E and L are not conserved
and together with uz should be treated as functions of the
particle’s proper time. Nonetheless, we still write the com-
ponents of the four-velocity in the same form (2) and (3)
which can be considered simply as useful parametrization.
The normalization condition u�u� ¼ �1 can be

written as

1

A
ðprÞ2 þ gzðpzÞ2 ¼ X2

N2
� L2

g�
�m2: (5)

Then pr is expressed through the three independent
parameters E, L, and uz:

pr ¼ �
ffiffiffiffi
A

p
N

Z; (6)

where

Z2 ¼ X2 � N2

�
L2

g�
þ gzðpzÞ2 þm2

�
: (7)

The formulas in this section are applicable also to
massless particles, with the only difference that one has
to set m ¼ 0. The four-momentum then, in the appropriate
parametrization of the worldline, is related to the wave
vector k� as p� ¼ ℏk�.

B. Two particles’ collision near horizon

The energy Eic:m: of a particle iwith four-momentum p
�
i

in its center of mass (c.m.) frame is simply its rest mass,
i.e., the norm of its four-momentum:

E2
ic:m: ¼ m2

i ¼ �p
�
i pi�: (8)

Likewise, for two particles with masses m1 and m2

and four-velocities u
�
1 and u

�
2 , the center of mass energy

Ec:m: at the collision event is the norm of their total
four-momentum:1Such as the quasiglobal coordinate of [12]; see Chap. 3.
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E2
c:m: ¼ �ðp�

1 þ p
�
2 Þðp1� þ p2�Þ

¼ m2
1 þm2

2 þ 2m1m2�c:m:; (9)

where

�c:m: ¼ �u1�u
�
2 (10)

is the relative Lorentz factor.
The contraction can be written as

m1m2�c:m: ¼ X1X2 � Z1Z2

N2
� L1L2

g�
� gzp

z
1p

z
2: (11)

For a collision of a massive particle of mass m and a
photon, one obtains that

E2
c:m: ¼ m2 þ 2mℏ!det; (12)

where !det ¼ �k�u
� is the photon’s frequency as

detected in the frame of this massive particle.

C. Usual and critical particles near extremal horizons

Consider a particle in the vicinity of a regular extremal
horizon, for which [13]

N2ðrÞ � ðr� rHÞ2; (13)

!ðrÞ ¼ !H �!1ðzÞN þOðN2Þ; !H ¼ const; (14)

where r ¼ rH is the horizon. The regularity of the horizon
implies [13] that, in particular, !H is a constant and that
other metric functions can also be expanded into series by
(r� rH) with positive powers. Note also the sign by !1,
defined so for consistency with earlier works.

From the normalization condition (5), then a particle’s
four-velocity components can always be presented as
series by N (though they can diverge at the horizon).
Assuming L and E are finite,

E ¼ EH þ E1N þOðN2Þ; L ¼ LH þ L1N þOðN2Þ;
(15)

and then

X ¼ XH þOðNÞ; (16)

XH ¼ EH �!HLH: (17)

For a usual (generic) particle, XH � 0. The normaliza-
tion (5) then implies that

ur ¼ Oð1Þ; (18)

uz ¼ Oð1=NÞ, so the particle reaches the horizon in finite
proper time �� R

dr <1.
However, there are also worldlines of particles with

angular momentum fine-tuned to energy in such a way
that XH ¼ 0, so that near the horizon

X ¼ OðNÞ: (19)

Such particles are called critical.

For critical particles the right-hand side of normalization
condition (5) is bounded, and, as the left-hand side there is
a sum of squares, we obtain

ur ¼ OðNÞ; uz ¼ Oð1Þ: (20)

Then the equation of radial motion in the main order
by N is

dr

d�
¼ � r� rH

�0
; (21)

where �0 is a constant for motion in the equatorial
plane2; its solution is

r� rH ¼ r0e
��=�0 ; (22)

and the proper time of reaching the horizon diverges
as ln ðr� rHÞ. In case ur is of higher order than N, the
divergence is stronger [i.e., if ur � ðr� rHÞ2, then �
diverges as ðr� rHÞ�1].

1. Example: The Kerr metric

It is instructive to look at the critical trajectory for the
Kerr metric. Let us restrict ourselves to equatorial motion
� ¼ �

2 . Then, the metric coefficients near the horizon of the

extremal Kerr black hole read

N � r� rH
2rH

;
ffiffiffiffi
A

p � r� rH
rH

; ðg�ÞH ¼ 4r2H; (23)

!H ¼ 1

2rH
; !�!H � � r� rH

2r2H
: (24)

Then, it follows from Eqs. (6) and (7) that the trajectory of
the particle with E ¼ !HL has exactly the form (21) with

�0 ¼ rHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 E2

m2 � 1
q : (25)

D. The BSW effect

Consider the collision of two particles. For a usual
(generic) particle, assuming E, L, and uz are finite,3

X ¼ XH þOðNÞ; Z ¼ X þOðN2Þ: (26)

Then the relative Lorentz factor at the collision event of
two usual particles is

m1m2�c:m: ¼ X1X2 � Z1Z2

N2
þOð1Þ ¼ Oð1Þ: (27)

2In general, the coordinate z can oscillate between some
limiting values; see [14] for the Kerr metric and [15] for
discussion of a more general case.

3Those are natural assumptions, but for justification see the
section on dynamics below.
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However, for a critical particle

X ¼ XNN þOðN2Þ; Z ¼ ZNN þOðN2Þ: (28)

Then for two critical particles �c:m: is also bounded, but the
relative Lorentz factor at the collision event of a critical (1)
particle and a usual (2) particle is

m1m2�c:m: ¼ Xð2Þ
H ðXð1Þ

N � Zð1Þ
N Þ

N
þOð1Þ ! 1: (29)

So, the BSWeffects occurs whenever one usual and one
critical particle collide near the horizon. Geodesic particles
can be critical just due to the choice of initial conditions
which fix E and L, so one can always achieve XH ¼ 0. The
question is how resilient is the criticality attribute with
respect to acceleration: whether a particle can remain
critical under the action of finite forces, such as radiation
reaction.

E. Generalization: Usual, critical,
and subcritical particles

In the absence of external forces acting on a particle, in
the vicinity of a regular horizon, where all metric functions
can be expanded into series by the radial coordinate r, the
geodesic equation induces the same type of expansions for
the parameters of a particle, such as X and E. Therefore
there are only two principally different types of particles:
usual and critical ones. If we want to take into account
forces acting on a particle, however, we have to allow for a
more general setting. In particular, we assume that accel-
eration components in the proper frame of a particle and X
can behave as �q and �p, respectively, with some real q and
p, where

� � r� rH: (30)

Hereafter we consider this reasonably general while still
relatively simple model.

If a particle reaches the horizon, X must tend to zero
more slowly than N, so that Z2 remains positive. This is
possible only for p � 1. On the other hand, it is reasonable
to restrict our consideration to finite E and L, and thus X,
so p � 0. Then there are three possible particle types,
distinguished by p in

X � �p: (31)

(1) p ¼ 0: Usual particles.—

Xu ¼ xH þ x1�þ � � � ; Zu ¼ Xu þOð�2Þ:
(32)

(2) p ¼ 1: Critical particles.—

Xcr ¼ x1�þ x2�
2 þ � � � ; Zcr ¼ Oð�Þ: (33)

(3) p 2 ð0; 1Þ: The intermediate case, which will be
called subcritical particles hereafter.—

Xsc ¼ ��pð1þ x1�þ � � �Þ;
Zsc ¼ Xsc þOð�2�pÞ:

(34)

Their proper time of reaching the horizon�R
d�=Zsc is

finite.
As shown above (11), for a collision of two particles the

relative Lorentz factor is

�c:m: ¼ X1X2 � Z1Z2

m1m2N
2

þOð1Þ: (35)

For a collision of two usual or two critical particles near
the extremal horizon, for which N2 � �2 (13), we have
�c:m: ¼ Oð1Þ; for usual and critical �c:m: � 1=�. Likewise
for usual and subcritical, one obtains

�c:m: � ��p ! 1; (36)

for critical and subcritical

�c:m: � �p�1 ! 1: (37)

So, the corresponding particles behave as critical in
collisions with usual ones and as usual in collisions with
critical ones.
This result can be derived in the general setting. First of

all, let there be a particle with

X ¼ ��pð1þOð�ÞÞ; p 2 ½0; 1	; (38)

L2

g�
þm2 ¼ 	2 þOð�Þ; �; 	� 1: (39)

Then

Z� X ¼ �C�2�pð1þOð�ÞÞ; (40)

where

C ¼
�	2=2� for p < 1;

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 	2

p
for p ¼ 1:

(41)

As due to the forward in time condition �> 0 and 	2 is
also positive, C is strictly positive as well.
Now supposewe have two such particles, withp1 andp2,

colliding near the horizon. Then, by using (35) and (40),
the relative Lorentz factor is reduced to

m1m2�c:m:¼Oð1Þþð1þOð�ÞÞ½C1�2�
p2�p1þC2�1�

p1�p2	
(42)

� ��jp1�p2j½1þOð�Þ þOð�2jp1�p2jÞ	; (43)

and thus

�c:m: � ��jp1�p2j: (44)
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Here, gamma becomes finite only if p1 ¼ p2. We see that
consideration of subcritical particles is convenient, as it
allows one to describe usual and critical particles in a
more coherent and unified way while at the same time
providing greater generality, necessary when dealing with
nongeodesic motions.

III. DYNAMICS

A. OZAMO and FZAMO frames

There are two main qualitatively different frames of
reference in the vicinity of a black hole horizon. The tetrad
vectors and tetrad components of different quantities will
be denoted by superscripts in parenthesis, while lowercase
‘‘o’’ or ‘‘f’’ in the subscript will denote which frame is

used; i.e., aðtÞo is the t component of acceleration in the
OZAMO frame (see below).

a. OZAMO.—The first kind of frame is attached to an
observer who is orbiting the black hole with constant r,
having constant energy and zero angular momentum.
Wewill call it OZAMO for orbital zero angular momentum
observer.4 It is the analogue of the static observer in a
static spacetime, and it becomes lightlike in the horizon
limit [16].

The tetrad 1-forms of the OZAMO frame, denoted by
small o subscripts, read

eðtÞo ¼ �Ndt; (45)

eð�Þ
o ¼ g1=2� ðd��!dtÞ; (46)

eðrÞo ¼ A�1=2dr; (47)

eðzÞo ¼ g1=2z dz: (48)

If another particle’s four-velocity is u�, then its Lorentz
factor in this frame is

� ¼ �u�ðeðtÞo Þ� ¼ X

mN
: (49)

Thus, for a particle with X � �p,

�� �p�1; (50)

for a usual particle it diverges in the horizon limit, while for
a critical one it stays finite.

A particle’s acceleration is

a� � u
r
u
�: (51)

Its tetrad components in the OZAMO frame

aðiÞo ¼ a�ðeðiÞo Þ�; i ¼ t; �; r; z;

are equal to

aðtÞo ¼ Nat; (52)

að�Þ
o ¼ ffiffiffiffiffiffi

g�
p ða� �!atÞ; (53)

aðrÞo ¼ 1ffiffiffiffi
A

p ar; (54)

aðzÞo ¼ ffiffiffiffiffi
gz

p
az; (55)

the acceleration scalar then can be presented as

a2 � a�a� ¼ �ðaðtÞo Þ2 þ ðað�Þ
o Þ2 þ ðaðrÞo Þ2 þ ðaðzÞo Þ2: (56)

The OZAMO orbits the horizon at constant r and does
not cross it; therefore, it is not classified as either a usual or
critical particle, which does cross or approach the horizon
in infinite proper time, respectively. However, it is useful to
note that, as its Lorentz factor is finite with respect to a
critical particle, and vice versa, in the discussion that
follows, OZAMO and critical particles behave similarly.
It is well known that an OZAMO frame breaks down at

the horizon; thus, strictly speaking at the horizon it is not a
valid frame, and OZAMO is not an observer in the tradi-
tional sense. Hereafter, what we refer to as the values of
some quantities measured in the OZAMO frame in the
horizon limit are the limits of the corresponding quantities
measured in successive different OZAMO frames, with
different rZAMO, when rZAMO ! rH.
b. FZAMO.—The other important frame of reference is

realized by one of the usual particles crossing the horizon.
For simplicity, it is convenient to take for such an observer
L ¼ 0 similarly to OZAMO and, additionally, E ¼ m.
Thus we will call the corresponding observer FZAMO
for falling zero angular momentum observer. Its frame

feðiÞf g, with i ¼ t, �, r, z, is constructed by making a local

Lorentz transformation from the OZAMO in the direction
towards the horizon5:

ðeðtÞf Þ�
ðeðrÞf Þ�

0
@

1
A ¼ �f

1 vf

vf 1

 ! ðeðtÞo Þ�
ðeðrÞo Þ�

0
@

1
A: (57)

The FZAMO’s Lorentz factor in the OZAMO frame is

�f ¼ �ðu�ÞðeðtÞo Þ�, where u� is given by (2) with L ¼ 0

and E ¼ m, and vf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��2

f

q
.

Then,

�f ¼ 1

N
; vf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N2

p
: (58)

4This observer is usually called just ZAMO in textbooks, but
we need to be more specific.

5Note that this is the transformation for 1-forms; vectors are
transformed by the inverse matrix, which differs by the sign
of vf.
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The corresponding tetrad components of acceleration

aðiÞf ¼ a�ðeðiÞf Þ�; i ¼ t; �; r; z; (59)

are related to aðiÞo by the respective Lorentz transformation
which becomes singular on the horizon, where N ! 0,
�f ! 1.

c. Proper frame.—For noncritical particles with p < 1,
the Lorentz factor relative to the OZAMO frame diverges
as �� �p�1 (37). Thus the correct reference frame for it
will have the same behavior of the Lorentz factor. We will
construct it, analogously to FZAMO, by making the cor-
responding boost in the radial direction and call it for
simplicity the proper frame for a particle, although it
may not be exactly proper. What is important is that, in
contrast to the OZAMO, the particle’s velocity in it stays
finite (does not tend to c).

Thus, given a particle’s Lorentz factor in the OZAMO
frame, � (without subscripts), the tetrad components of
acceleration in the proper frame are

aðtÞpr

aðrÞpr

0
@

1
A ¼ �

1 v

v 1

 !
aðtÞo
aðrÞo

 !
: (60)

For a usual or critical particle this reduces to the already
considered OZAMO and FZAMO frames, respectively,
while for subcritical particles the proper frame does not
coincide with either one of those.

B. Acceleration in different frames

When describing particles’ motion near the horizon, we
must restrict ourselves to particles with finite acceleration.
This necessarily means that the acceleration scalar a2

should be finite. It would seem that it is natural to demand
that tetrad components of acceleration are finite as well.
However, as shown above, when we describe a particle’s
motion near the horizon, we have different frames of
reference, which are related to each other by singular
Lorentz transformations. This means that finite tetrad
components of acceleration in one of the frames may
correspond to diverging tetrad components in the other or
vice versa.

The frame in which tetrad components of a particle’s
acceleration should be finite is the instantly comoving
frame or, equivalently, any framewhich moves with a finite
Lorentz factor with respect to that. For example, recall the
reasonably realistic problem of a charged particle in a
uniform electric field in special relativity. The tetrad
components of acceleration in the laboratory frame
(with the Minkowski metric) diverge proportionally to
the Lorentz factor, while those in the instantly comoving
frame (with the Rindler metric and the horizon) are
constant (see, e.g. page 403 of [17]).

For a critical particle then acceleration is adequately and
most easily measured in the OZAMO frame. For a usual
particle we would have to attach the tetrad also to one of

the usual particles, for example, to FZAMO. Because of
normalization of four-velocity u�u� ¼ �1, which implies

a�u� ¼ 0, in each case it is sufficient to show that three of

the four tetrad components are finite.

C. Energy and angular momentum

If �� is a Killing vector field, then

d

d�
ð��u�Þ ¼ ��a�: (61)

In a stationary axisymmetric metric we have two Killing
vectors ��

t ¼ ��
t and ��

� ¼ ��
�, which give

1

m

dE

d�
¼ ðN2 �!2g�Þat þ!g�a

�; (62)

1

m

dL

d�
¼ �!g�a

t þ g�a
�; (63)

or through the tetrad components in the OZAMO frame
(52) and (53)

1

m

dE

d�
¼ NaðtÞo þ!

ffiffiffiffiffiffi
g�

p
að�Þ
o ; (64)

1

m

dL

d�
¼ ffiffiffiffiffiffi

g�
p

að�Þ
o : (65)

It is clear that if the proper time of crossing the horizon
is finite, as is the case for the usual particles, then the

finiteness of NaðtÞo and að�Þ
o implies that E and L are also

bounded. However, this does not seem to be necessarily so
for critical particles, for which the proper time of reaching
the horizon diverges.

D. Dynamic restrictions on a particle’s velocity

Let us enumerate and classify all the possible variants of
a particle’s type of asymptotic motion in the vicinity of
the horizon, now in more detail than in the section on
kinematics, so as to focus below only on those that are
not explicitly nonphysical.
First of all, diverging L, as seen from (65), would

correspond to continuous acceleration in the � direction,
which would cost formally infinitely large amounts of fuel
per unit mass particle. If one has the resources to make
such experiments, he would not need the BSW effect in
order to observe (formally) infinite energy in the center of
mass frame. So this variant is not of much interest.
Second, one could imagine divergent uz. Such a particle

would have velocity tending to c and directed along the z
axis (or at a finite angle with respect to it) in both the
OZAMO and FZAMO frames. This would mean that the
particle is ‘‘accelerated’’ (in the sense that its velocity
increases) not only in radial direction but also along the
horizon surface. This would be very strange behavior, and
in the Kerr metric such particles are naturally absent [14].
We will not consider this variant here.
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Given these two natural assumptions, from the normal-
izing condition

Z2 ¼ X2 � N2 ~	2; (66)

where ~	 in the horizon limit tends to a positive real
number, finite and separated from zero. Consequently, for
a particle reaching the horizon, where Z2 must remain
positive while X and E are finite [see the discussion after
Eq. (30)], we have

X� �p; with p 2 ½0; 1	; (67)

which corresponds to usual, subcritical, and critical
particles as discussed above.

E. Usual particles

For a usual particle, XH � 0 by definition. As discussed
above, the tetrad components of its acceleration in the

FZAMO frame aðiÞf must be finite. Then the components

in the OZAMO frame aðiÞo , related to them via the singular
Lorentz transform (58), with �f ¼ 1=N, can diverge as

1=N. Writing out explicitly the asymptotics for the t and r
components in both frames, we get

aðtÞf ¼ ðaðtÞf Þ0 þ ðaðtÞf Þ1N þOðN2Þ; (68)

aðrÞf ¼ ðaðrÞf Þ0 þ ðaðrÞf Þ1N þOðN2Þ; (69)

aðtÞo ¼ þðaðtÞf Þ0 � ðaðrÞf Þ0
N

þ ½ðaðtÞf Þ1 � ðaðrÞf Þ1	 þOðNÞ;
(70)

aðrÞo ¼ �ðaðtÞf Þ0 � ðaðrÞf Þ0
N

� ½ðaðtÞf Þ1 � ðaðrÞf Þ1	 þOðNÞ:
(71)

The � and z components are the same in the two frames
and must be bounded:

að�Þ
f ¼ að�Þ

o ¼ Oð1Þ; (72)

aðzÞf ¼ aðzÞo ¼ Oð1Þ: (73)

Then, we see that, if aðiÞf ¼ Oð1Þ, the right-hand side of (64)
is finite. The left-hand side is also finite, as for a usual
particle, given ur � 1 (18), dr� d�� dN.

The explicit expressions for aðrÞo and aðzÞo are

aðrÞo ¼ 1ffiffiffiffi
A

p
�
ður@r þ uz@zÞur � A0

2A
ðurÞ2 � A

2
@rgzðuzÞ2

� A

2

�
X2@rN

�2 � L2@rg
�1
� � 2

XL

N2
@r!

��
; (74)

azo ¼ ffiffiffiffiffi
gz

p �
ður@r þ uz@zÞuz þ @zgz

2gz
ðuzÞ2 þ @rgz

gz
uruz

� 1

2gz

�
X2@zN

�2 � L2@zg
�1
� � 2

XL

N2
@z!

��
: (75)

The conditions aðiÞf ¼ Oð1Þ can be reformulated in the

form of restrictions on the coefficients �k and 	k in the
expansions

ur ¼ �0ðzÞ þ �1ðzÞðr� rHÞ þOððr� rHÞ2Þ; (76)

uz ¼ 	0ðzÞ þ 	1ðzÞðr� rHÞ þOððr� rHÞ2Þ: (77)

F. Critical particles

Such particles approach the horizon, but, in contrast to
usual ones, the process takes infinite proper time. On the
other hand, as seen from (19) and (49), their Lorentz factor
in the OZAMO frame � is finite, and the velocity is v < 1,
so the tetrad components of acceleration in the OZAMO
frame must be finite. As mentioned above, we consider
only motion with E and L bounded in the horizon limit

� ! 1. This means that að�Þ
o should be not only bounded

but integrable (65):
R
d�að�Þ

o <1. If we assume that að�Þ
o is

expandable in power series by r with integer powers, this
means

að�Þ
o ¼ OðNÞ: (78)

With this condition satisfied, and Eq. (70) taken into ac-
count, the boundedness of E from (64) does not give any

more restrictions on aðtÞo . Then, using that E, L, and uz are
bounded (15), while ur and X are OðNÞ, and !H ¼ const
(which follows from regularity [13]), it is easy to see that
all the terms in (74) and (75) are automatically finite, so

aðrÞo ; aðzÞo ¼ Oð1Þ: (79)

Thus all components of acceleration of a critical particle
in the OZAMO frame, and therefore in the instantly
comoving proper frame, are finite unconditionally. This
is in contrast to usual particles, for which the conditions

aðiÞf ¼ Oð1Þ impose some additional constraints on �k and

	k in (76) and (77).
In the FZAMO frame, and the frame of any usual

particle, the picture looks different, as the relative
Lorentz factor of a usual and critical particle diverges as
1=N. Using the Lorentz transformation (57) between the
OZAMO and FZAMO frames, with �f � 1=N, we see that

aðtÞf and aðrÞf can diverge as 1=N. By using (57), the asymp-

totics of these components of acceleration in the two
frames can be brought to the form

aðtÞo ¼ ðaðtÞo Þ0 þ ðaðtÞo Þ1N þOðN2Þ; (80)
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aðrÞo ¼ ðaðrÞo Þ0 þ ðaðrÞo Þ1N þOðN2Þ; (81)

aðtÞf ¼ ðaðtÞo Þ0 þ ðaðrÞo Þ0
N

þ ½ðaðtÞo Þ1 þ ðaðrÞo Þ1	 þOðNÞ; (82)

aðrÞf ¼ ðaðtÞo Þ0 þ ðaðrÞo Þ0
N

þ ½ðaðtÞo Þ1 þ ðaðrÞo Þ1	 þOðNÞ: (83)

The � and z components in the two frames are the same
and therefore, as shown above, satisfy

að�Þ
o ¼ að�Þ

f ¼ OðNÞ; (84)

aðzÞo ¼ aðzÞf ¼ Oð1Þ: (85)

Thus we have two mutually complementary cases. In the
OZAMO frame, r and t components of acceleration
diverge for usual particles and stay finite for the critical
ones. In the FZAMO frame, the situation is opposite: r and
t components of acceleration are finite for usual particles
and diverge for the critical ones. The � and z components
are the same in the two frames and are finite. For critical

particles, additionally að�Þ
o ¼ OðNÞ near the horizon for

energy and angular momentum to remain bounded.

IV. EXAMPLE: THE REISSNER-NORDSTRÖM
METRIC

The approach and results of the present paper are
also valid in the case of the electromagnetic interaction
with minimal changes: In Eq. (4), one should make the
replacement X ! X � q’, where ’ is the electrostatic
potential and q is the particle’s charge. In order to demon-
strate this, it is instructive to consider as an example
the extremal Reissner-Nordström metric. In this case the
metric functions are

N ¼ ffiffiffiffi
A

p ¼ 1� r

rH
; ! ¼ 0; g� ¼ r2; (86)

and the electromagnetic field potential is

A� ¼ �’�t
�; ’ ¼ Q

r
; (87)

where

Q ¼ rH

is the extremal black hole’s charge, so that the only
nonvanishing components of the electromagnetic field
tensor are

Frt ¼ �Ftr ¼ Q

r2
:

For a particle of charge q moving radially towards the
horizon the four-momentum can be parametrized as

p� ¼ mu� ¼ �ðX; 0; Z=N2; 0Þ; (88)

and then the normalization condition implies

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 �m2N2

p
: (89)

The equation of motion

ma� ¼ qF�
u
 (90)

has the integral of motion

E ¼ Xþ q’ ¼ const: (91)

For usual particles, with XH � 0,

pr ¼ �XH � q

rH
ðr� rHÞ þOððr� rHÞ2Þ; (92)

in agreement with (76).
For a critical particle

E ¼ q; X ¼ qN; Z ¼ N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 �m2

q
: (93)

Then, by integrating the equation for radial motion

dr

d�
¼ � Z

m
¼ �NðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2=m2 � 1

q
;

it is easy to obtain that in the horizon limit the same
asymptotic as in Eq. (22) holds, with the characteristic time

�0 ¼ rH

�
q2

m2
� 1

��1=2
: (94)

Now, we will consider the acceleration measured by the
two types of observers.

A. Static observers

The tetrad (45)–(48) in this case turns into the tetrad of a
static observer. Then, using (45) and (52), we obtain

maðtÞo ¼ �qQ

r2
Z

mN
; (95)

maðrÞo ¼ þqQ

r2
X

mN
; (96)

m2a2 ¼
�
qQ

r2

�
2
: (97)

For the critical particle (93), both components of
acceleration

maðtÞo ¼ � qQ

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2=m2 � 1

q
; (98)

maðrÞo ¼ qQ

r2
E

m
(99)

are finite on the horizon and can be expanded into a series
by (r� rH) or N.
However, for a usual particle, with XH � 0, near the

horizon
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X ¼ XH þOðNÞ; Z ¼ X þOðN2Þ;
so

aðrÞo � �aðtÞo ¼ a�1

N
þOð1Þ; (100)

where

a�1 ¼ q

Q

XH

m2
: (101)

Thus both components diverge near the horizon, in
accordance with (71) and (70), while satisfying

aðrÞo þ aðtÞo ¼ OðNÞ: (102)

B. Falling observers

The falling frame eðiÞf is attached to a particle falling into

the black hole according to (57) and (58), with the Lorentz
factor �f ¼ 1=N and velocity vf ¼ 1�OðN2Þ in the

static frame.
In this frame the tetrad components of acceleration are

equal to

maðtÞf ¼ ��F

qQ

r2
Z� vFX

mN
; (103)

maðrÞf ¼ þ�F

qQ

r2
X � vFZ

mN
: (104)

For usual particles, in the horizon limit N ! 0, XH � 0.

Then (58) and (89) imply that Z� X ¼ OðN2Þ, so aðtÞf and

aðrÞf are finite.

If the particle under consideration is critical, then
Z� X � N, and both components of acceleration diverge:

aðtÞf ¼ ~a�1

N
þOðNÞ; (105)

aðrÞf ¼ ~a�1

N
þOðNÞ; (106)

~a�1 ¼ r�1
H

q

m

2
4q

m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

m2
� 1

s 3
5: (107)

Thus we see that, indeed, all the general properties (68)–(71),
described in the preceding section, are explicitly verified in
this exactly solvable case.

V. BSW EFFECT UNDER FINITE FORCES:
EQUATORIAL MOTION

A. Motion in the equatorial plane

Let m ¼ 1, and let us consider motion in the equatorial

plane so that uz ¼ 0 and aðzÞo ¼ 0. Then for arbitrary
motion we have (i) the normalization condition for velocity

ur ¼ �
ffiffiffiffi
A

p
N

Z; Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � N2

�
L2

g�
þ 1

�s
; (108)

and (ii) the orthogonality condition for acceleration, which
can be written in terms of (52)–(55) as

0 ¼ u�a
� ¼ þuta

t þ u�a
� þ ura

r (109)

¼ �Eat þ La� þ A�1urar (110)

¼ � X

N
aðtÞo þ Lffiffiffiffiffiffi

g�
p að�Þ

o þ urffiffiffiffi
A

p aðrÞo : (111)

Generically, at least two of the three components of aðiÞ
have to be nonzero if there is acceleration. Also for sim-
plicity we will assume6 that A ¼ N2, so that ur ¼ �Z and
the orthogonality condition takes the form

X

N
aðtÞo � Lffiffiffiffiffiffi

g�
p að�Þ

o þ Z

N
aðrÞo ¼ 0: (112)

Of the four components of the equation of motion

ðu�r�Þu
 ¼ a
; (113)

one is trivial7 (az ¼ 0), and the other three are related
through the orthogonality condition, so it is always suffi-
cient to consider only two components, for example, (64)
and (65), which can be written in terms of X and L as

dX

d�
¼ NaðtÞo � L

d!

d�
; (114)

dL

d�
¼ ffiffiffiffiffiffi

g�
p

að�Þ
o : (115)

As dr=d� ¼ ur ¼ �Z, in terms of X and derivatives by
� � ðr� rHÞ, which are denoted by primes, this can be
written as

X0 þ L!0 ¼ �N

Z
aðtÞo ; (116)

L0 ¼ �
ffiffiffiffiffiffi
g�

p
Z

að�Þ
o : (117)

It can be checked that, indeed, in the case uz ¼ 0,
Eqs. (114) and (115) together with (112) give (74).

B. Acceleration in the proper frame

Expressing acceleration components in the OZAMO
frame through the particle’s parameters E and L from

6This assumption is purely technical. In general, one should
write A ¼ N2B, where B is some bounded function which does
not vanish at the horizon. Its form does not affect the results
qualitatively but leads to more cumbersome expressions. Thus
we put for simplicity B ¼ 1, which also fixes the time scale.

7In the equatorial plane, derivatives of metric functions by z in
(75) must vanish due to symmetry.
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(116) and (117) and the orthogonality condition (112), one
obtains

að�Þ
o ¼ � Zffiffiffiffiffiffi

g�
p L0; (118)

aðtÞo ¼ � Z

N
ðX0 þ L!0Þ; (119)

aðrÞo ¼ �X

Z
aðtÞo � N

LL0

g�
: (120)

For critical particles, the OZAMO frame is the proper
frame. For other types of particles, the r and t components
of acceleration in the proper frame are given by (60) with
Lorentz factor (49):

� ¼ X

N
; (121)

while að�Þ
pr ¼ að�Þ

o for any type. By using (118)–(120), this
gives

aðtÞpr

aðrÞpr

0
@

1
A ¼ X

N

�
aðtÞo
Z

Z� vX

Zv� X

 !
� N

v

1

 !
LL0

g�

�
: (122)

Suppose we have a particle with

X ¼ ��pð1þOð�ÞÞ; � ¼ X

�
; (123)

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��2

q
¼ 1� 1

2�
�2ð1�pÞð1þOð�ÞÞ; (124)

where p < 1. Using (40), we get

Z� Xv ¼
�
1

2
� C

�
�2�pð1þOð�ÞÞ; (125)

X � Zv ¼
�
1

2
þ C

�
�2�pð1þOð�ÞÞ: (126)

1. Usual particles

For a usual particle, p ¼ 0; so, assuming L0 is bounded,
að�;r;tÞ
o ¼ Oð1Þ, while �� 1=�, and one can easily check

term by term that acceleration in the proper frame (122) is
always bounded: As expected, for usual particles there are
no additional requirements.

2. Subcritical particles

For a subcritical particle, p 2 ð0; 1Þ. As X� Z,
the derivative X0 � �p�1 in (119) diverges, while
L!0 ¼ Oð1Þ, so

aðtÞo
Z

� �p�2: (127)

Then taking into account (125) and (126), the first term in
the braces of (122) is Oð1Þ, and different in the two rows,
thus separated from zero.

The second term could only compensate the first one
(in one of the two rows), if L0 � ��1, which would imply
divergent L� ln�. Therefore the quantity in the braces is
finite and separated from zero, so the proper acceleration
diverges as (121):

� ¼ X

N
� �p�1 ! 1: (128)

This means that there are no subcritical particles with
finite acceleration for motion in the equatorial plane.

3. Critical particles

The only remaining case to be considered is critical
particles. Although (122) for them is unnecessary, one
restores the acceleration in the OZAMO frame from it by
setting � ¼ 1 and v ¼ 0. We see that8

að�Þ
o � �L0; (129)

aðr;tÞo � ðX0 þ L!0Þ; (130)

so in order for such a trajectory to be realized we need the
azimuthal force to tend to zero fast enough:

að�Þ
o ¼ Oð�Þ: (131)

There is no restriction on the radial component: It can be of
the order of unity, as it will still be possible to fine-tune a
critical particle by the appropriate choice of initial condi-
tion (this will be shown in more detail in the next section).
Thus the radial component does not affect or hinder the
existence of critical trajectories and consequently the BSW
effect. This is in agreement with the already established
fact that the radial force itself is the reason for the BSW
effect near charged nonrotating black holes [18].

C. Example: Azimuthal dissipative force

Let us consider the particular case when the radial force,
which does not hinder critical particles anyway, is absent:

aðrÞo ¼ 0; aðtÞo ; að�Þ
o � 0: (132)

By using orthogonality (112),

aðtÞo ¼ N

X

Lffiffiffiffiffiffi
g�

p að�Þ
o ; (133)

so, in terms of derivatives with respect to �, Eqs. (116) and
(117) can be rewritten as

g�XðX0 þ L!0Þ ¼ N2LL0; (134)

8Remember that components aðiÞo are related through the
orthogonality condition (112); if two of them are finite, then
the third is bounded as well.
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aðtÞo ¼ �N
Z

X

LL0

g�
; (135)

að�Þ
o ¼ �Z

L0ffiffiffiffiffiffi
g�

p : (136)

1. Tuning a critical particle

In this section we show in more detail how one would
tune the particle to be critical X � �.

Assuming expansions

N2 ¼ 
2�
2 þ 
3�

3 þ � � � ; (137)

! ¼ !H �!1�þ!2�
2 þ � � � ; (138)

g� ¼ gH þ g1�þ g2�
2 þ � � � ; (139)

X ¼ x1�þ x2�
2 þ � � � ; (140)

L ¼ lH þ l1�þ l2�
2 þ � � � ; (141)

from (134) we obtain in consecutive orders

lH ¼ x1
!1

; (142)

l1 ¼ 2
x1!2 þ x2!1

!2
1 þ 
2=gH

; (143)

l2 ¼ l2ðx1; x2; x3Þ; . . . : (144)

Then

Z2

�2
� x21

�
1� 
2

gH
!�2

1

�
� 
2: (145)

There is a critical particle for

jx1j> x1min ; (146)

and there is a solution

x1min ¼ 
2

1� 
2

gH
!�2

1

(147)

as long as

!2
1 >


2

gH
: (148)

From (135) we get

aðtÞo ¼ � Z

N
ðX0 þ L!0Þ (149)

and, after substitution of expansions for X, L, and !,

aðtÞo � � 2Z

!1
ffiffiffiffiffi

2

p x1!2 þ x2!1

1þ gH!
2
1=
2

� Z� �: (150)

Further terms are obtained straightforwardly, but they are
quite cumbersome.
So, if acceleration is expanded in a series by �

aðtÞo ¼ a1�þ a2�
2 þ � � � ; (151)

in the first order we obtain a1ðx1; x2Þ. As long as a ¼ Oð�Þ,
and the metric coefficients satisfy (148), we can take
arbitrary x1 such that jx1j> x1min (or, equivalently,
lH ¼ x1=!1). Then for the given a1 in the first order we
obtain x2ða1Þ, in the next order x3ða1; a2Þ, and so on. The
set of critical trajectories9 is parametrized by one free
parameter x1 (or lH).

2. Other realizations of critical trajectories

Suppose now the azimuthal force tends to zero as �s

with some integer s > 1. Then from (136) we see that
L0 � �s�1, and therefore expansion (15) for L near the
horizon takes the form

L ¼ LH þ Ls�
sð1þ oð1ÞÞ: (152)

It is perfectly consistent with the particle being critical,
so that X � �: (134) can be satisfied for any integer s > 1
and solved for XðLÞ [or, equivalently, EðLÞ] in each con-
secutive order by �. Let us consider, for example, the case
s ¼ 2. Assuming

X ¼ x1�þ x2�
2 þ x3�

3 þOð�4Þ; (153)

from (134) in consecutive orders one obtains

x1 ¼ LH!1; (154)

x2 ¼ �2!2LH; (155)

x3 ¼ �!3LH þ!1

3
L2 þ 2

3g�H

LHL2; (156)

� � � :
This can be turned around to give LHðx1Þ and L2ðx3Þ, but
x2=x1 is fixed to metric function coefficients; in terms of
EðLÞ this is

E ¼ !HLH þ ðL2!H � LH!2Þ�2 þ � � � : (157)

For other integer s, the procedure is analogous.

9For large enough jx1j, the turning point, given by Z ¼ 0, will
be at finite values of (r� rH) from the horizon. Thus it will be at
the coordinate distance that does not have to be small in order to
gain arbitrarily large Ec:m: at the collision event near the horizon.
This is in contrast to the case discussed in [19], which is realized
near the turning point of a usual particle with small XH, and the
turning point itself must be close to the horizon: The nearer it is,
the larger Ec:m: is achieved.
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VI. ENERGY BOUNDS IN COLLISIONS WITH
NEAR-CRITICAL PARTICLES

We have seen in the previous section that, as long as the
azimuthal force is weak enough, critical particles exist and
can be tuned via initial conditions. Then the BSWeffect in
its primary version [1] manifests itself. However, what
if this is not the case and azimuthal force is e.g. sepa-
rated from zero on the horizon? The condition for critical
particles is that

að�Þ ¼ OðxÞ; (158)

where

x ¼ �

rH
(159)

is the dimensionless radial coordinate. Suppose that
instead

að�ÞðxÞ � a0x
�

rH
; � < 1; (160)

so that (158) is violated, and we factored out the dimen-
sional quantity r�1

H , so that a0 is dimensionless.
Does it mean that the BSW effect necessarily breaks

down? Under no additional assumptions—yes. However,
what if a0 is small? Radiation reaction forces are usually
considered very small (see e.g. [14,20]). In that case, the
question is how high Ec:m: can be achieved for the given
small a0?

Let us reformulate the condition that is satisfied (160)
via another small parameter:

að�ÞðxÞ � r�1
H x�x1��

m ; (161)

where

xm ¼ a
1

1��

0 
 1: (162)

Then

að�ÞðxmÞ � r�1
H xm; (163)

and for all x * xm the necessary condition for acceleration
(158) is effectively obeyed.

But then for � * rHxm the trajectory of a particle can be
effectively tuned to be critical (or subcritical, for the
chosen p), at will. At the near-horizon end of this region,
i.e., at �m � rHxm, the Lorentz factor with a usual particle
with p2 ¼ 0 will behave as described in (44) and can grow
very large. Thus, for p ¼ 1 (the particle is tuned to be
critical) from (42) we get

�ðmax Þ
12 � �12ðxmÞ � C1�2

rH
� a� 1

1��

0 : (164)

We see that, as long as the amplitude a0 of the azimuthal
force acting on the particle is small enough, the BSWeffect
survives almost any kind of perturbation: One has only to

calculate accurately the corresponding tuning parameters
for the effectively critical trajectories.

VII. KINEMATIC RESTRICTIONS ON
CRITICAL PARTICLES AND TWO TYPES

OF THE BSW EFFECT

In the preceding section, it was assumed that collision
occurred not exactly on the horizon but at some coordinate
distance from it, its scale being tied to the amplitude of
azimuthal acceleration, which is supposed to be small. The
force, being too large, prevents the critical particle from
approaching the horizon. In this sense, the reason for it is
dynamic. Meanwhile, even if the external force is small
enough or absent at all, pure kinematic factors can also
create an obstacle for reaching the horizon.
Let us recall the situation with geodesic particles. If the

horizon is nonextremal, the critical particle cannot reach
the horizon at all. Nonetheless, it was demonstrated in [7]
for the Kerr metric and in [8] for generic dirty axially
symmetric black holes that Ec:m: can be made as large as
one likes provided (i) the critical particle is replaced with a
slightly noncritical one, and (ii) the coordinate distance
between the point of collision and horizon is adjusted to the
small deviation of the particle’s parameters from the values
corresponding to the critical case.
Now, we are dealing with an extremal horizon, but

there is a special situation when X � �p with p > 1
(‘‘supercritical’’ particle). Such a particle cannot reach
the horizon (in this sense, it is similar to the case of the
nonextremal horizon).
Then, instead of taking a critical particle, we can choose

a usual one with sufficiently small XH. More precisely, let
us consider expansion for X of the form

X ¼ XH þ �s�
sð1þ x1�þ � � �Þ; p > 1: (165)

Then, we look for the region in which both terms in
Z (7) are of the same order of magnitude. This is achieved
at � � �c � rHXH. Then we can neglect the correction
in (165), so that

Zð�cÞ � XH � �c � Nð�cÞ; (166)

and therefore (27) implies

�ðmax Þ
c:m: � �c:m:ð�cÞ � N�1ð�cÞ � ��1

c : (167)

Thus one can distinguish between two main types of the
BSW effect: BSW 1, in which the critical particle can
approach the horizon, so that the horizon limit can be
taken, and BSW 2, for which the critical particle does
not reach the horizon. We see that, in general, the presence
of the external force is compatible with both types of the
BSW effect.10

It is worth noting that, even in the absence of force, the
expansion for X can take the form (165), if the linear terms
cancel each other. Say, this happens for solutions near the
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so-called ultraextremal horizon [N2 � ðr� rHÞ3] in spe-
cial ‘‘exotic’’ metrics described in Sec. IVB 5 of [13], for
which @r!jH ¼ @2r!jH ¼ 0, and thus s in Eq. (165) can be
equal to 2 or 3. Correspondingly, the BSW-2 effect can be
realized near such horizons.

VIII. CONCLUSION

In general, three main circumstances were considered as
the factors which were expected to restrict the indefinite
growth of Ec:m: and thus create obstacles to the manifesta-
tion of the BSW effect. These are (i) self-gravitation,
(ii) deviation of a black hole from extremality [3], and
(iii) the force due to backreaction of gravitational or
electromagnetic radiation. As far as self-gravitation is
concerned, it was shown in [21] that, for collisions of
massive shells, either the BSW effect does not occur or it
occurs but in the region inaccessible by a remote observer.
However, in this case the shell does not approach the
horizon from the viewpoint of an external observer.
As there is no horizon, there is no BSW effect. Factor
(ii) was analyzed in [7] for the Kerr metric where it was
shown that for nonextremal black holes the BSW effect
does exist (this conclusion was generalized in [8] to ge-
neric dirty axially symmetric black holes).

And, in the present work, we showed for extremal
horizons that the BSW effect is compatible with a nonzero
force under rather general assumptions: The radial force
should be finite, and the azimuthal force should tend to
zero not too slowly. In terms of energy and angular
momentum, the kinematic condition for the realization of
the BSW effect is the same as for geodesic particles:
E ¼ !HL. In this sense, this condition by itself survives
the action of the force (see also Sec. V of [6], where,

however, another physical situation was considered—
near-circular orbits around near-extremal black holes).
Our approach is model independent and is based on general
properties of the horizons.
For the finite radial component of the force and the

azimuthal one which tends to zero near the horizon as
r� rH, the BSW effect still exists. Otherwise, the effect
is formally absent. The reason for the restriction on the
azimuthal force seems to be clear: If azimuthal force was
too large or did not tend to zero, in the infinite proper time
that it takes for a critical particle to reach the horizon this
force would accelerate the particle to infinite values of
angular momentum. Obviously, one would not expect a
force dissipative by nature, such as radiation reaction, to
have such an effect. So, this only seeming restriction
should be always obeyed. Even if it is not (so critical
trajectories are absent), but the amplitude of the azimuthal
force is small, the restrictions on Ec:m: are shown to be
inessential, and one can still attain very high energies.
In summary, the BSWeffect turned out to be more viable

than one could expect.
The present work confirmed that the BSW effect relies

on two main properties: (i) the presence of the horizon
and (ii) the existence of special types of trajectories. Thus
it has geometric nature and reflects general features of
black holes irrespective of the details of the system.
Concrete realization of the BSW effect certainly depends
on particular properties of a system, but near the horizon
these properties manifest themselves in a universal way.
We see that, although dissipative forces in flat spacetime
generically bound the values of energy peaks from above,
in the strong gravitational field regime near the horizon,
the geometry dominates over the influence of dissipative
forces on the system.
The present results refer to extremal horizons only.

The nonextremal case and, especially, motion on circular
orbits around near-extremal black holes, so important in
the astrophysical context, require separate treatment.
Generalization to nonequatorial motion is also necessary.
This will be done elsewhere.
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